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Abstract

Emotion recognition in conversation (ERC) has
attracted much attention in recent years for its
necessity in widespread applications. With the
development of graph neural network (GNN),
recent state-of-the-art ERC models mostly use
GNN to embed the intrinsic structure informa-
tion of a conversation into the utterance fea-
tures. In this paper, we propose a novel GNN-
based model for ERC, namely S+PAGE, to bet-
ter capture the speaker and position-aware con-
versation structure information. Specifically,
we add the relative positional encoding and
speaker dependency encoding in the represen-
tations of edge weights and edge types respec-
tively to acquire a more reasonable aggregation
algorithm for ERC. Besides, a two-stream con-
versational Transformer is presented to extract
both the self and inter-speaker contextual fea-
tures for each utterance. Extensive experiments
are conducted on four ERC benchmarks with
state-of-the-art models employed as baselines
for comparison, whose results demonstrate the
superiority of our model.

1 Introduction

Emotion recognition in conversation (ERC), which
aims to identify the emotion of each utterance in
a conversation, is a task arousing increasing inter-
ests in many fields. With the prevalence of social
media and intelligent assistants, ERC has great
potential applications in several areas, such as emo-
tional chatbots, sentiment analysis of comments
in social media and healthcare intelligence, for
understanding emotions in the conversation with
emotion dynamics and generating emotionally co-
herent responses. ERC problem still remains a
challenge. Both lexicon-based (Wu et al., 2006;
Shaheen et al., 2014) and deep learning-based (Col-
nerič and Demšar, 2018) text emotion recogni-
tion methods that treat each utterance individu-
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A good friend of mine passed 
away the other day. [sad]

Speaker A Speaker B

Oh he had some pretty 
progressive cancer. [sad]

Yeah, he was pretty awesome 
and supportive. 

Oh no, I'm so sorry. What 
happened? [sad]

Did you know him well?
[neutral]

[happy] [sad]

Figure 1: A dialogue from IEMOPCAP, in which the
emotion of the last utterance by speaker A will be
wrongly classified if the dialogue context is not taken
into consideration.

ally fail in this task as these works ignore some
conversation-specific characteristics.

In the past few years, recurrent neural network
(RNN)-based solutions, such as CMN (Hazarika
et al., 2018b), ICON (Hazarika et al., 2018a) and
DialogueRNN (Majumder et al., 2019), have dom-
inated this field due to the sequential nature of
conversational context. Nonetheless, they share
some inherent limitations: 1) RNN model performs
poorly in grasping distant contextual information;
2) RNN-based methods are not capable of handling
large-scale multiparty conversations.

With the rise of graph neural network (GNN)
(Wu et al., 2020) in many natural language pro-
cessing (NLP) tasks, researchers pay increasing
attention to GNN-based ERC methods recently. In-
stead of modeling only sequential data recurrently
in RNN, GNN is designed to capture all kinds of
graph structure information via various aggregation
algorithms. Existing GNN-based ERC methods,
such as DialogueGCN (Ghosal et al., 2019), RGAT
(Ishiwatari et al., 2020) and DAG-ERC (Shen et al.,
2021), which are the state of the art, have demon-
strated the superiority of GNN in modeling con-
versational structure information. A directed graph
is constructed on each dialogue in these methods,
where the nodes denote the individual utterances,
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and the edges indicate relationships between utter-
ances. However, we notice that the relative position
and speaker dependency information are mostly
encoded together in one weight matrix according
to the edge type in these methods, which can not
exploit these conversation structure information
sufficiently.

On the other hand, these methods do not work
well on modeling speaker-specific context, which
is also important in the ERC task. For example,
in Figure 1 the third utterance spoken by speaker
A is more influenced by speaker A’s prior utter-
ances rather than the second utterance spoken by
speaker B, even though the latter is closer. Thus,
in contextual modeling, we should consider both
the emotional influence that speakers have on them-
selves during a conversation, i.e., self-speaker con-
text, and context on the entire conversation flow,
i.e., inter-speaker context, as well as the interaction
between them.

In this paper, we propose a novel Speaker and
Position-Aware GNN model for ERC (S+PAGE)
to settle the above drawbacks of existing methods.
Our model contains three stages to fully consider
both contextual modeling and conversation struc-
ture modeling. Specifically, given a sequence of
utterances in the same dialogue, we first leverage a
Two-Stream Conversational Transformer (TSCT)
with the attentive masking mechanism to get both
self and inter-speaker contextual features. Then,
guided by the speaker dependency, we construct a
conversation graph. We propose an enhanced rela-
tional graph convolution network (R-GCN), called
SPGCN, to refine the contextual features with con-
versation structure information. Particularly, we
introduce relational relative positional encoding in
the aggregation algorithm to make SPGCN capable
of capturing fine-grained positional information
in a conversation. Finally, the global transfer of
emotion labels is modeled by a conditional ran-
dom field (CRF) layer with the features from both
TSCT and SPGCN. Experimental results demon-
strate the superiority of our model compared with
state-of-the-art models. Ablation study illustrates
the effectiveness of the proposed components in
the model. To conclude, our contributions are as
follows:

• We propose a new GNN-based ERC method,
called S+PAGE, in which a novel graph neu-
ral network, namely SPGCN, is presented to
better capture the conversation structure infor-

mation.

• We present a two-stream conversational Trans-
former architecture to extract both self and
inter-speaker contextual features.

• We conduct extensive experiments on four
ERC benchmark datasets, and the results
demonstrate that the proposed model achieves
the competitive performance on all of them.

2 Related Works

2.1 Emotion Recognition in Conversation
Emotion recognition in conversation is a popular
area in NLP. Many ERC datasets have been scripted
and annotated in the past few years, such as IEMO-
CAP (Busso et al., 2008), MELD (Poria et al.,
2018), DailyDialog (Li et al., 2017), EmotionLines
(Chen et al., 2018) and EmoryNLP (Zahiri and
Choi, 2018). IEMOCAP, MELD, and EmoryNLP
are multimodal datasets, containing acoustic, vi-
sual and textual information, while the remaining
two datasets are textual.

In recent years, ERC solutions are mostly deep
learning-based models. CMN (Hazarika et al.,
2018b) and ICON (Hazarika et al., 2018a) utilize
gated recurrent unit (GRU) and memory networks
to capture the dialogue dynamics. In IAAN (Yeh
et al., 2019) and DialgueRNN (Majumder et al.,
2019), attention mechanisms are applied to interact
between the party state and global state. With the
rise of Transformer and graph neural networks in
NLP tasks, many works have also introduce them
into the ERC task. (Zhong et al., 2019) propose
KET, which is a structure of hierarchical Trans-
formers assisted by external commonsense knowl-
edge. DialogueXL (Shen et al., 2020) applies
dialogue-aware self-attention to deal with the multi-
party structures. In DialogueGCN (Ghosal et al.,
2019) and RGAT (Ishiwatari et al., 2020), GCN
(Kipf and Welling, 2016) and GAT (Veličković
et al., 2017) are applied to refine the features with
speaker dependencies and temporal information.
DAG-ERC (Shen et al., 2021) applies a directed
acyclic graph for conversation representation and
it achieves the state-of-the-art performance on mul-
tiple ERC datasets.

2.2 Transformer
(Vaswani et al., 2017) first propose Transformer
for machine translation task, whose success subse-
quently has been proved in various down-stream
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NLP tasks. Self-attention mechanisms endow
Transformer with the ability of capturing longer-
range dependency among elements of an input se-
quence than the RNN structure. (Beltagy et al.,
2020) propose a novel self-attention mechanism for
feature extraction of long documents. Pre-trained
models such as BERT (Devlin et al., 2018) and
GPT (Brown et al., 2020) use Transformer encoder
and decoder respectively to learn representations
on large-scale datasets.

2.3 Graph Neural Network

Graph neural network has attracted a lot of atten-
tion in recent years, which learns a target node’s
representation by propagating neighbor informa-
tion in the graph. (Kipf and Welling, 2016) propose
a simple and well-behaved layer-wise propagation
rule for neural network models and demonstrate
its effectiveness in semi-supervised classification
tasks. Better aggregation methods for large graphs
are proposed in GAT (Veličković et al., 2017) and
GraphSage (Hamilton et al., 2017). (Schlichtkrull
et al., 2018) propose R-GCN to deal with the highly
multi-relational data characteristic by assigning dif-
ferent aggregation structures for each relation type.

3 Methodology

The framework of our model is shown in Figure
2. We decompose the emotion classification pro-
cedure into three stages, i.e., contextual model-
ing, speaker dependency modeling, and global con-
sistency modeling. In the first stage, we present
a conversation-specific Transformer to get both
self and inter-speaker contextual features. Then,
a graph neural network is proposed to refine the
features with conversation structure information,
including the speaker dependency and relative po-
sition of each utterance. Subsequently, we em-
ploy conditional random field as the output layer to
model the context of global consistency of emotion
labels.

3.1 Problem Definition

The ERC task is to predict emotion labels (e.g.,
Happy, Sad, Neutral, Angry, Excited, and Frus-
trated) for utterances {u1;u2; · · · ;uN}, where N
denotes the number of utterances in a conversa-
tion. Let S be the number of speakers in a given
dataset. P is a mapping function, and s = P (ui)
denotes utterance ui uttered by speaker s, where
s ∈ {1, · · · , S}.

3.2 Utterance Encoding
Following previous works (Ghosal et al., 2019; Ma-
jumder et al., 2019), we use a simple architecture
consisting of a single convolutional layer followed
by a max-pooling layer and a fully connected layer
to extract context-independent textual features of
each utterance. The input of this network is the 300
dimensional pre-trained 840B GloVe vectors (Pen-
nington et al., 2014). We use the output features,
denoted as u⃗i, as the representation of each utter-
ance. Notice that we do not use any pre-trained
model like BERT and RoBERTa to make utterance
encoding for fairness of comparison with the base-
line methods.

3.3 Contextual Modeling
We present a Two-Stream Conversational
Transformer (TSCT) to better extract the
contextual representation of each utterance
in a conversation, which is also capable of
handling multi-party conversations efficiently.
The collection of utterance representations
U = {u⃗1; u⃗2; · · · ; u⃗N} is taken as the input. We
design a multi-head self-attention mechanism,
composed of two streams, i.e., the inter-speaker
self-attention stream and the intra-speaker
self-attention stream.

3.3.1 Inter-Speaker Self-Attention
The inter-speaker self-attention is same with the
self-attention in vanilla Transformer, in which each
utterance can attend to all positions in the dialogue
as shown in Figure 3(a). It is calculated as:
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where W t
iq, W t

ik and W t
iv are three learnable

weight matrices for attention head i at layer t.

3.3.2 Intra-Speaker Self-Attention
The intra-speaker self-attention models speaker-
specific contextual information by only computing
attention on the same speaker’s utterances in a di-
alogue. In this way, the model is able to capture
the emotional influence that speakers have on them-
selves during the conversation. It is implemented
by the attentive masking strategy as illustrated in
Figure 3(b) and formulated as:
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Figure 2: The overall framework of S+PAGE. First, contextualized representation of each utterance is obtained
by contextual modeling part. Subsequently, we employ SPGCN to model the speaker dependency and position
information. Finally, the CRF layer applied to model the consistency using information from the previous parts. ⊕
denotes the concatenation operation. L is the total number of graph layers.
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Figure 3: (a) Inter-speaker self-attention: the attention
among all speakers, same with vanilla Transformer.(b)
Intra-speaker self-attention: the attention only on the
utterances spoke by the current speaker.

z̃ti = softmax(
qti(k

t
i)

T

√
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+m)vti (3)

where m ∈ RN×N is the attentive masking matrix.
The elements of m are set as below:

mij =

{
−∞ P (ui) ̸= P (uj)

0 otherwise
(4)

where P (·) is the function that maps the utterance
and its corresponding speaker.

Each attention head i of the t-th layer in TSCT,
denoted as headti, is the concatenation of the zi and
z̃i, and the output of the multi-head attention can
be formulated as follows:

MultiHeadti = ∥Mi=1head
t
i (5)

where ∥ denotes concatenation operation. M is the
number of attention heads, while 1 ≤ i ≤ M .

Following the structure of the original Trans-
former, the output of the TSCT layer can be gener-
ated by passing MultiHeadti through a FF (feed-
forward network):

ht = LayerNorm(FF(MultiHeadti)) (6)

3.4 Speaker Dependency Modeling

After extracting the contextual features, we intro-
duce a novel graph neural network, named SPGCN,
to propagate structure-aware utterance features.
Specifically, in SPGCN, speaker dependency and
position information are modeled by edge types
and edge weights respectively, and are combined
in the aggregation function to update the features.

3.4.1 SPGCN

Graph Architecture We construct a directed
graph, G = (V, E ,R,W), for each dialogue
with N utterances. The nodes in the graph are
the utterances in the conversation, i.e., V =
{v1; v2; · · · , vN}. (vi, vj , rij) ∈ E denotes a la-
beled edge (relation), where rij ∈ R is a relation
type, defined according to speaker identity and rela-
tive distance. W represents the set of edge weights.

Nodes Feature vector gi of each node vi is initial-
ized as the output of the TSCT layer, i.e., hi. gi is
modified by the aggregation algorithm through the
stacked graphical layers in GNN. The output fea-
ture is described as gli, where l denotes the number
of layers.
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Figure 4: An example of incoming edges for nodes v3
(left) and v2 (right) in the dialogue graph. Different
types of arrows denote different edge types. Nodes
share the same edge types if they are spoke by the same
speaker. v3, v1 and v5 are spoke by speaker1, thus the
edge between v3, v1 and the edge between v3, v5 belong
to the same edge type.

Edges Instead of only focusing on past utter-
ances, we take converse influence into account
(Ghosal et al., 2019). We construct edges E with
a sliding window for each utterance. The window
sizes p and f denote the number of past and future
utterances from the target utterance. Each utterance
node vi has an edge with p utterances of the past:
{vi−1, vi−2, ..., vi−p}, f utterances of the future:
{vi+1, vi+2, ..., vi+f}, and itself.

Edge Types The relation type r ∈ R is deter-
mined by the speaker identity. Assuming there are
S distinct speakers in a dialogue, there should be
Ne = S2 relation types in the constructed graph
G. Two utterances share the same edge type only
if they are uttered by the same speaker. For exam-
ple, in Figure 4 the incoming edges v1 → v3 and
v5 → v3 share the same edge type, and v4 → v3 is
a different edge type.

Edge Weights Edge weight αij ∈ W is com-
puted by an attention mechanism. The particular
attentional setup in our model closely follows the
work of GAT (Veličković et al., 2017). The input of
the attention module is a set of node features from
the last layer. Motivated by (Shaw et al., 2018),
which shows that absolute positional encoding is
not effective for the model to capture the infor-
mation of relative word order, we inject relative
positional encoding into the attention mechanism.

βij = Ep(o(vj)− o(vi)) (7)

Γij = LReLU
(
a⃗T

[
Wgl−1

i ∥(Wgl−1
j + βij)

])
(8)

αij =
expΓij∑

k∈Ni expΓik
(9)

βij denotes the signed relative position representa-
tion between utterance i and utterance j in a dia-
logue, which is encoded by a trainable embedding
matrix Ep. o(·) is a mapping function between
utterance and its absolute position in the dialogue
sequence. LReLU denotes the activation function
LeakyReLU . W is a weight matrix applied to ev-
ery node. Ni is the number of nodes linked with
node i. a⃗ is a parametrized weight vector. ·T rep-
resents transposition, and ∥ is the concatenation
operation.

Aggregation Function Inspired by R-GCN
(Schlichtkrull et al., 2018), we define the following
aggregation algorithm to calculate the forward-pass
update of a node in the graph:

g̃i
l = σ

∑
r∈R

∑
j∈Nr

i

αl
ij

ci,r
W l

rg
l−1
i + αl

iiW
l
og

l−1
i


(10)

where g̃il is the aggregated state of node i in the l-th
layer. N r

i denotes the set of neighbors of utterance
i under the edge type r ∈ R. ci,r is a normalization
constant, and we set ci,r = |N r

i | in our experiment.
W l

r and W l
o are learnable weight matrices, and σ(·)

is an activation function, such as the ReLU. Differ-
ent from R-GCN, we use edge weights calculated
by Equation 9 to involve fine-grained positional
information in a conversation.

After the aggregation, we employ a gate fusion
function to make g̃i

l interact with its hidden state
at the previous layer. Finally, the representation at
the l-th layer is formulated as:

g
′
= [g̃i

l; gl−1
i ; g̃i

l ∗ gl−1
i ; g̃i

l − gl−1
i ] (11)

ϵ = sigmoid
(
Wfg

′
+ bf

)
(12)

gi
l = ϵ ∗ g̃il + (1− ϵ) ∗ gl−1

i (13)

where l ≥ 1, and Wf and bf are trainable parame-
ters. g

′
is the concatenation of the four vectors.

3.5 Consistency Modeling
Instead of directly using a softmax function in the
output layer, we employ conditional random field
(CRF) to yield final emotion tags of each utterance.
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Our motivation is to model the emotional consis-
tency in a conversation, i.e., the emotion transfer.
Using the CRF layer enables the model to take into
account the dependency between emotion tags in
neighborhoods and choose the globally best tag
sequence for the entire conversation at once.

Following the describe by Lample et al., for an
input set of utterances U = {u1, u2, ..., uN} and
a sequence of tag predictions y = {y1, y2, .., yN},
yi ∈ 1, · · · ,K (K is number of emotion tags), the
score of the sequence is defined as,

score(U,y) =

n∑
i=0

Dyi,yi+1 +

n∑
i=1

Bi,yi (14)

where D ∈ RK×K is the matrix of transition,
B ∈ Rn ×K is the output score of the prepended
classification model. The model is trained to max-
imize the log-probability of the correct tag se-
quence:

log(p(y | U)) =

score(U,y)− log

∑
ỹ∈Y

escore(U,ỹ)

 (15)

where Y is set of all possible tag sequences. Equa-
tion 15 is computed using dynamic programming,
while Viterbi applied applied to get most likely
sequence following the work of Rabiner et al. (Ra-
biner, 1989).

4 Experiments

4.1 Datasets and Baselines
We evaluate our S+PAGE model on four widely-
used benchmark datasets – IEMOCAP (Busso
et al., 2008), which is a audiovisual dataset consist-
ing of dyadic conversations where actors perform
improvisations or scripted scenarios, MELD (Po-
ria et al., 2018) and EmoryNLP (Zahiri and Choi,
2018), both of which are multi-modal and multi-
party datasets created from scripts of the Friends
TV series, and DailyDialog (Li et al., 2017), which
is a human-written dyadic dataset covering vari-
ous topics about our daily life. For this work, we
only consider emotion recognition based on textual
features, and thus some recent ERC solutions on
multi-modal features (Chudasama et al., 2022; Hu
et al., 2022) are not selected as our baselines for
fairness. The statistic of them is shown in Table 1.

Dataset
# Conversations # Uterrances

Train Val Test Train Val Test

IEMOCAP 120 31 5810 1623
MELD 1038 114 280 9989 1109 2610
DailyDialog 11118 1000 1000 87170 8069 7740
EmoryNLP 713 99 85 9934 1344 1328

Table 1: The statistics of the datasets.

For a comprehensive performance evaluation,
we choose CNN, CNN+cLSTM (Poria et al.,
2017), DialogueRNN (Majumder et al., 2019) as
baselines of CNN and RNN-based methods, KET
(Zhong et al., 2019) as advanced Transformer-
based approach with external commonsense knowl-
edge included, DialogueGCN (Ghosal et al., 2019),
RGAT (Ishiwatari et al., 2020) and DAG-ERC
(Shen et al., 2021) as GNN-based approaches. Par-
ticularly, these three GNN-based models are the
recent state of the art. DialogueGCN applies GCN
to model speaker dependency, but it does not con-
tain fine-grained positional information. Similarly,
DAG-ERC applies a directed acyclic graph for con-
versation representation, which lack positional in-
formation in a conversation too. RGAT encodes
both speaker dependency and relative positional en-
coding into the edge type, and use graph attention
networks to make information aggregation.

For the evaluation metrics, we choose micro-
averaged F1 for DailyDialog and weighted-average
F1 for the other datasets, following previous works
(Ishiwatari et al., 2020; Shen et al., 2021).

4.2 Experimental Settings

We set the initial learning rate as 1e-4 in the Trans-
former layers, 2e-4 in the SPGCN layers and 2e-2
in the CRF layer. AdamW optimizer is used un-
der a scheduled learning rate following (Vaswani
et al., 2017). The number of dimensions of the ut-
terance representations and contextual embeddings
is set to 300. We set the layer number of TSCT and
SPGCN to 8 and 3 respectively. We set the dropout
rate and number of attention head in TSCT to be
0.1 and 8 respectively. 3-head attention is used
during calculating the edge weights. We also con-
duct experiments with different window sizes and
SPGCN layers. We choose the hyper-parameters
that achieve the best score on each dataset by us-
ing development data. The training and testing
process is run on a single Tesla P100 GPU with
32G memory. The reported results of our imple-
mented models are all based on the average score
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Model IEMOCAP MELD DailyDialog EmoryNLP
CNN 48.18 55.86 49.34 32.59
CNN+cLSTM 54.95 56.87 50.24 32.89
DialogueRNN 62.75 57.03 - -
KET 59.56 58.18 53.37 33.95
DialogueGCN 64.18 58.10 - -
RGAT 65.22 60.91 54.31 34.42
DAG-ERC 68.03 63.65 59.33 39.02
S+PAGE 68.75 (0.11) 63.43 (0.15) 64.08 (0.21) 39.16 (0.12)
S+PAGEBert 68.77 (0.13) 63.25 (0.18) 64.18 (0.25) 38.96 (0.13)
S+PAGERoBERTa 68.93 (0.12) 64.67 (0.15) 64.11 (0.21) 40.05 (0.14)

Table 2: Overall performance on the four datasets.

of 5 random runs on the test sets.

5 Results and Analysis

5.1 Overall Performance

We compare our model with the baseline meth-
ods, and the results are reported in Table 2. We
can note that our proposed S+PAGE has the best
performance on all the four benchmark datasets.
All GNN-based models outperform RNN-based
models, which indicates the necessity of modeling
the conversation structure information in the ERC
task. Compared with existing GNN-based models,
our model even has competitive results. There are
three main advantages that contribute to our perfor-
mance: 1) contextual modeling with both self and
inter-speaker dependency, 2) a better speaker de-
pendency and relative positional encoding in GNN,
3) consistency modeling of global emotion transfer.

We find that the improvements on MELD and
EmoryNLP are not significant without utilizing pre-
trained language models, i.e, BERT and RoBERTa.
The performances of S+PAGE enhanced after re-
placing GloVe vectors by embeddings from pre-
trained language models. This is because both
datasets consturcted on Friends TV series, extra
knowledge from large pre-trained language help
the model to understand the dialogue better.

5.2 Ablation Study

To better understand the contribution of each com-
ponent in our proposed model, we conduct exper-
iments by replacing TSCT with the vanilla Trans-
former, and removing SPGCN and CRF from our

Method IEMOCAP MELD
S+PAGE 68.93 64.67

- TSCT 68.11 (↓0.82) 63.21 (↓1.46)
- SPGCN 64.25 (↓4.68) 62.03 (↓2.64)
- CRF 68.29 (↓0.64) 64.24 (↓0.43)

Table 3: Results of ablation study.

model respectively. The results on IEMOCAP and
MELD are shown in Table 3. We can observe that
when TSCT is removed, the weighted F1 score
drops more on MELD than that on IEMOCAP.
This shows the superiority of TSCT on contextual
feature extraction of multi-party conversations, as
there are more speakers in dialogues of MELD. Re-
moval of SPGCN leads to significant drop on both
datasets, which implies the importance of SPGCN
to refine the contextual features with speaker de-
pendency and relative position. Meanwhile, after
removing CRF layer, we can also observe the per-
formance degradation. It implies that the modeling
of label consistency is essential in the ERC task.
To sum up, all of the three components contribute
to the performance improvement of S+PAGE.

5.3 Whether SPGCN outperforms other
graph structures?

We conduct experiments on IEMOCAP by re-
placing SPGCN with the graph structures in Di-
alogueGCN, RGAT and DAG-ERC respectively.
As shown in Table 4, S+PAGE still outperforms the
other methods significantly. Notice that both Dia-
logueGCN and RGAT with our contextual and con-
sistency modeling perform better than their orig-
inal versions. This indicates the necessary of the
speaker-spcific information modeling in contextual
modeling and speaker emotional consistency mod-
eling, which is neglected in the previous methods.
We use language embeddings from BERTbase in
RGAT and RoBERTalarge in DAG follow the origi-
nal papers for fair comparision.

5.4 Effect of Window Size
We analyze the influence of past and future win-
dow sizes by conducting experiments with window
size w of (4, 4), (6, 6), (8, 8), (10, 10), (20, 20),
(30, 30), (40, 40) on IEMOCAP dataset. As shown
in Figure 5, the F1 score of S+PAGE, RGAT
and DialogueGCN significantly increase, when
the window sizes expand from 4 to 10. The rea-
son is that useful contextual information keeps

Method IEMOCAP
S+PAGE 68.93
S+PAGE(-SPGCN) + GCN 64.82
S+PAGE(-SPGCN) + RGAT 65.78
S+PAGE(-SPGCN) + DAG 67.93

Table 4: Results of replacing SPGCN with other graph
structures.
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Figure 5: Results of varying window sizes.

growing with the increasing of w. However, af-
ter window sizes exceed 20, the F1 score drops for
both DialogueGCN and RGAT. The reason is that
the amount of useless long-range dependency in-
creases when the window size continuously grows,
which hinders the models from efficiently captur-
ing crucial context. In contrast, the performance
of S+PAGE fluctuates in a relatively narrow range,
which shows the robustness of our model on varied
window sizes. We can infer that the relative posi-
tional encoding endows capability of distinguishing
critical contextual information to our model.

5.5 Number of SPGCN layers

We further explore the relationship between model
performance and the number of layers of the
SPGCN. Stacking too many layers of GNN may
lead to performance degradation because of over-
smoothing problem (Kipf and Welling, 2016). As
shown in Figure 6, we conduct an experiment on
IEMOCAP by setting different number of layers
of the SPGCN, with the comparison of Diaglog-
GCN and DAG-ERC. As can be seen from Figure
6, DialogGCN suffers from a significant perfor-
mance degradation after number of layers exceeds
3. On the other hand, for SPGCN and DAG, the
drop seems to be more slight, which indicate the

Method IEMOCAP
S+PAGE(RPE) 68.93
S+PAGE(APE) 66.38
S+PAGE(PER) 65.93

Table 5: Results of S+PAGE with other positional en-
coding methods in SPGCN. RPE is proposed relative
positional embedding, APE is absolute positional em-
bedding and PER is positional embeddings in RGAT.

Figure 6: Graph layer ablation

over-smooth problem alleviated in both structures.

5.6 Effect of Relative Positional Embedding
In this part, we conduct experiments to study
whether our relative positional embedding(REP)
in SPGCN is superior to other positional embed-
ding methods. We replace REP with the popular
absolute positional embedding (APE) and the po-
sition encoding (PE) implemented in RGAT. As
shown in Table 5, the model with our RPE signifi-
cantly outperforms the models with other position
embedding methods.

6 Conclusion

In this paper, we propose a novel graph neural
network-based model, named S+PAGE, for emo-
tion recognition in conversation (ERC). Specif-
ically, S+PAGE contains three parts, i.e., con-
textual modeling, speaker dependency modeling,
and consistency modeling. In contextual mod-
eling, we present a new Transformer structure
with two-stream attention mechanism to better cap-
ture the self and inter-speaker contextual features.
In speaker dependency modeling, we introduce a
novel GNN model, named SPGCN, to refine the
features with the conversation structure informa-
tion including speaker dependency and relative po-
sition information. Furthermore, we use a CRF
layer to model emotion transfer in the consistency
modeling part. Experimental results on four ERC
benchmark datasets demonstrate the superiority of
our model.
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