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Abstract
ICD-9 coding is a relevant clinical billing task,
where unstructured texts with information
about a patient’s diagnosis and treatments are
annotated with multiple ICD-9 codes. Auto-
mated ICD-9 coding is an active research field,
where CNN- and RNN-based model architec-
tures represent the state-of-the-art approaches.
In this work, we propose a description-based
label attention classifier to improve the model
explainability when dealing with noisy texts
like clinical notes. We evaluate our proposed
method with different transformer-based en-
coders on the MIMIC-III-50 dataset. Our
method achieves strong results together with
augmented explainablilty.

1 Introduction

Physicians are obliged to thoroughly document
every patient encounter. Structured and semi-
structured reports become more common, which
contain comprehensive information about per-
formed treatments, procedures and diagnoses.
They are typically annotated with multiple billing
codes, the international classification of diseases
codes (ICD-9 in the US, ICD-10 in Europe). Anno-
tating the noisy discharge summaries with ICD-9
codes is not only manual and labor-intensive, but
also error-prone, which has attracted much atten-
tion both from clinical and technical perspectives.
To facilitate the clinical workflow, we propose a
new approach with state-of-the-art annotation per-
formance while providing an explanation for the
proposed annotation.

de Lima et al. (1998) introduced automated
ICD-9 coding as a text-based multi-label classi-
fication problem. Deep learning-based approaches,
which exploit convolutional (CNNs) and recur-
rent neural networks (RNNs) with attention mech-
anisms (Shi et al., 2017; Mullenbach et al., 2018;
Vu et al., 2020) define the current state-of-the-art.
Meanwhile, large-scale pre-trained language mod-
els based on transformer (Vaswani et al., 2017)

architectures have demonstrated considerable per-
formance improvements for text-based tasks, e.g.,
BERT (Devlin et al., 2019). Especially their abil-
ity to model long-range dependencies within an
input sequence would potentially benefit the task
of ICD-9 coding since the information for a certain
label prediction can be distributed across the whole
text. Unlike other areas of natural language process-
ing (NLP), little research on applying transformer-
based architectures on the task of ICD-9 coding has
been explored (Pascual et al., 2021; Biswas et al.,
2021; Ji et al., 2021). Sun and Lu (2020) argue that
attention scores are able to capture global, absolute
importance of work tokens and can thus provide
some degree of explainability for text classification.

In this work, we propose a description-based
label attention classifier (DLAC). We show that
it can be applied to different transformer-based
encoders and provides explainable predictions on
noisy texts. DLAC learns ICD-9 code embeddings
by integrating the descriptions of the ICD-9 codes
and applies the embeddings to the respective text
representations to obtain label-specific represen-
tations for each code classification. We evaluate
different model architectures on the MIMIC-III-50
dataset, a benchmark dataset for the task of ICD-9
coding, in order to answer the following research
questions (RQs).

RQ1: Which transformer-based encoder is best
suited for ICD-9 coding?

We evaluate and compare BERT (Devlin et al.,
2019), hierarchical BERT (Pappagari et al.,
2019) and Longformer (Beltagy et al., 2020) as
transformer-based encoders and find that the Long-
former (Beltagy et al., 2020) yields the best results
for ICD-9 coding. Furthermore, we investigate:

RQ2: How does our proposed description-based
label attention classifier perform on ICD-9 coding?

We compare DLAC with a common logistic re-
gression classifier (LRC) on top of the transformer-
based encoder for ICD-9 coding. While adding ex-
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plainability to the predictions, DLAC outperforms
the corresponding LRC by 1-4 %. Since explain-
able predictions are crucial for noisy texts, like
discharge summaries, we investigate:

RQ3: To which extent can the DLAC provide
explainable predictions for ICD-9 codes?

Since the attention scores in DLAC offer a way
to explain the predictions with respect to different
text segments, we analyze the top attention scores
of DLAC and demonstrate the utility as part of a
graphical interface.

2 Methods

As a multi-label text classification problem, each
discharge summary is represented by a tokenized
input sequence of words Xi := [x1, . . . ,xti ] ∈
Rl×ti , where l denotes the vector dimension and
ti is the length of the i-th input sequence. The
goal is to predict a binary vector yi ∈ Rm, where
m represents the set size of ICD-9 codes. Each
element in the predicted vector y is of value 0 or 1.
In the following, we denote scalars with lowercase
letters like x, vectors with bold lowercase letters
like x, and matrices with bold uppercase letters
like X .

2.1 Description-based Label Attention

An overview of the proposed model architecture
with DLAC is illustrated in Figure 1. It includes
a transformer-based encoder to represent the dis-
charge summaries into a word embedding matrix E.
Meanwhile, the descriptions of the ICD-9 codes are
represented with a description embedding matrix
D, which is initialized by ICD-9 code descriptions
with Word2vec embeddings (Mikolov et al., 2013).

Figure 1: Overall model architecture

Figure 2: Description-based Label Attention Classifier

More specifically, as shown in Figure 2, DLAC is
fed with two matrices: The word embedding matrix
E ∈ Rti×de is computed from a transformer-based
encoder and the ICD-9 code description embed-
ding matrix D ∈ Rm×da . Here, de, da denote the
dimension of the word embeddings and the descrip-
tion embeddings, respectively. The description em-
bedding matrix D is set to be trainable. To compute
the attention score ajk for the i-th word on the j-th
label, we first apply a dimension transformation on
the word embedding matrix with U ∈ Rde×da to
match the shape of description matrix D. The ICD-
9 code description vectors stored in the description
matrix D can be seen as queries that include the
essential information from the label description of
respective ICD-9 codes. Formally, we compute the
label attention matrix A ∈ Rti×m as

A = softmax(EU ·D>).

After that, we compute contextual embeddings
for each label by aggregating information from the
word embedding matrix E with attention scores
in A. More concretely, the contextual embedding
matrix C ∈ Rde×m is computed as

C = E>A.

2.2 Classification

Each label specific contextual embedding is fed
into a single layer fully-connected network (FCN)
for the prediction of the respective ICD-9 code
label. A sigmoid activation function is applied
to have a probabilistic prediction. The training
objective is the binary cross-entropy loss computed
from predictions ŷi ∈ Rm and ground-truth labels
yi ∈ Rm.
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2.3 Transformer-based Encoders
Since DLAC is agnostic to encoders, we con-
duct experiments with different transformer-based
encoders by integrating them into the proposed
model architecture. The first one is a pre-trained
BERTBASE model (Devlin et al., 2019), which can
only consume input sequences with a length of
up to 512 tokens. Longer discharge summaries
are simply truncated. The second architecture is a
hierarchical BERTBASE model (Pappagari et al.,
2019), which aims to overcome the input sequence
length limitation. The discharge summary of
length ti is split into k overlapping chunks, where
k = d ti

512e, where d·e is a ceiling operation. The
chunks are fed sequentially into the BERTBASE
model to obtain the word embedding matrices for
every chunk, which are then averaged using mean-
pooling across all chunks. The third architecture
is a pre-trained LongformerBASE model (Beltagy
et al., 2020). A limitation of transformer-based lan-
guage models such as BERT is their inability to pro-
cess long input sequences due to the computational
cost of the self-attention mechanism, which scales
quadratically with the input sequence length. The
LongformerBASE model overcomes this limitation
by offering a "sparsified" self-attention mechanism,
making it more suitable to process longer input se-
quences. As a result, the LongformerBASE model
can process input sequences of lengths of up to
4096 tokens.

3 Data

MIMIC-III (Johnson et al., 2016) is a large, freely
available clinical database. Similar to Mullenbach
et al. (2018), we create the subset MIMIC-III-50
from the full dataset. It includes discharge sum-
maries containing the 50 most frequent ICD-9
codes, as otherwise, the label distribution is ex-
tremely imbalanced. After pre-processing, MIMIC-
III-50 contains 11.368 samples and 50 ICD-9
codes, where a summary of different statistics can
be found in Table 1. Following the pre-processing
in Mullenbach et al. (2018), we first lowercase all
tokens, remove punctuations and remove numerical
tokens-only. The MIMIC-III-50 dataset is split into
a training, validation and test set with 8.066, 1.573
and 1.729 samples, respectively.

4 Experiments

We train the proposed description-based label at-
tention classifier (DLAC) using BERT, hierarchical

MIMIC-III-50 # Words # ICD-9 Codes
mean 1.612 5,77
std 788 3,37
min 105 1
max 7.567 24
25% 1.065 3
50% 1.478 5
75% 1.992 5

Table 1: Descriptive statistics of MIMIC-III-50 dataset

BERT, and Longformer as encoders. As a baseline
classifier, we choose a simple logistic regression
classifier (LRC) on top of the different encoders.
In contrast to DLAC, LRC does not take the de-
scription embeddings D, into account. We set
da = 600 and de = 768. We train all architec-
tures using Adam optimizer with a learning rate
of α = 1.41× 10−5 and a global batch size of 64.
Furthermore, we use k-fold cross-validation with
k = 5 folds and train every fold for 25 epochs. For
regularization, we use dropout layers with a prob-
ability set to p = 0, 1 and early stopping. We use
the widely adopted micro-and macro averaged area
under the ROC curve (AUC), F1 and Precision@n
as evaluation metrics to ensure comparability with
other works. For P@n we choose n = 5 because
this roughly equals the average number of ICD-9
codes one discharge summary is annotated with,
which is 5, 77 for the MIMIC-III-50 dataset. The
implementation is made available to ensure the re-
producibility of the work1.

5 Results and Discussions

Table 2 presents the results for all proposed model
architectures. The Longformer+DLAC yields the
best results across all metrics for the architectures
in this work.

5.1 RQ1: Transformer-based Encoders
Among the transformer-based encoders that
are combined with the simple LRC classifier
(BERT+LRC, H-BERT+LRC, Longformer+LRC),
the Longformer encoder yields the best results
across all metrics. This can be attributed to the
inability of BERT to process sequences longer than
512, where over 75% of the discharge summaries
are truncated and potentially important information
is disregarded. For the micro- and macro F1 scores,
H-BERT+LRC model yields even poorer results

1https://git.io/JzOyk
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Model AUC F1 P@5
Macro Micro Macro Micro

BERT+LRC 0.80 ± 0.007 0.84 ± 0.006 0.33 ± 0.033 0.45 ± 0.026 0.51 ± 0.011
H-BERT+LRC 0.82 ± 0.006 0.86 ± 0.006 0.29 ± 0.030 0.41 ± 0.032 0.51 ± 0.012

Longformer+LRC 0.85 ± 0.003 0.89 ± 0.003 0.48 ± 0.005 0.58 ± 0.003 0.59 ± 0.012
BERT+DLAC 0.80 ± 0.006 0.84 ± 0.004 0.35 ± 0.032 0.46 ± 0.026 0.51 ± 0.013

H-BERT+DLAC 0.83 ± 0.035 0.87 ± 0.004 0.32 ± 0.020 0.43 ± 0.013 0.52 ± 0.010
Longformer+DLAC* 0.87± 0.008 0.91± 0.006 0.52± 0.020 0.62± 0.024 0.61± 0.013

JointLAAT** 0.93 0.95 0.67 0.72 0.68
TransICD 0.89 0.92 0.56 0.64 0.62

Table 2: Test results on the MIMIC-III-50 dataset for all proposed model architectures compared to the state-of-
the-art architectures. ** marks the best overall model architecture. * marks the best model architecture of this
work.

than the BERT+LRC model. This indicates that
the way of aggregating the chunks k using mean-
pooling is suboptimal, and thus the model fails to
create rich input feature representations.

5.2 RQ2: Longformer+DLAC

The results of the Longformer+DLAC model show
that it performs well on the task of ICD-9 coding.
In addition, DLAC outperforms the LRC for all
encoder architectures on the task of ICD-9 coding
across all metrics by 1 − 4%. Meanwhile, Joint-
LAAT (Vu et al., 2020) is one state-of-the-art CNN-
based model architecture. Our Longformer+DLAC
underperforms it by ∆ − 0.06,∆ − 0.04,∆ −
0.15,∆− 0.10,∆− 0.07 for Macro AUC, Micro
AUC, Macro F1, Micro F1 and P@5 respectively.
In comparison to state-of-the-art transformer-based
architectures, like TransICD (Biswas et al., 2021),
our model shows a comparable performance with
the difference being ∆ − 0.02,∆ − 0.01,∆ −
0.04,∆− 0.02,∆− 0.01 for Macro AUC, Micro
AUC, Macro F1, Micro F1 and P@5, respectively.
Transformer-based models haven’t reached state-of-
the-art dominated by more lightweight CNN-based
architectures. This can be partially attributed to the
fact that the MIMIC-III-50 dataset does not hold
enough training samples for training such a large
architecture, e.g., the Longformer+DLAC has up
to 152 million trainable parameters. Furthermore,
the Longformer+DLAC model could potentially be
improved by using a domain-specific, pre-trained
Longformer architecture (Gu et al., 2020) and by
developing a regularization mechanism (Cao et al.,
2019) that helps to classify rare labels more accu-
rately. On the other hand, as an encoder agnos-
tic classifier, DLAC can be combined with other

...family members arrive from inside and outside state they offered that he is
an organ donor past medical history diabetes type ii hyperlipidemia glaucoma
osteoarthritis carotid stenosis left rt vasovagal syncope back pain family history
nc physical exam no eye opening pupils 2 mm and minimally react no
corneal on left minimally corneal on on right extensor posture with lue rue
attempts to localize ble withdraw to noxiousstim no gag not over breathing the
vent tone increased in left arm normal bulk toes are down going bilaterally
pertinent results findings there is a large intraparenchymal basal ganglionic
based hemorrhage it is multilobulated in nature and at its greatest extent
measures x cm this is causing mass effect and shift of the normally midline
structures of approximately cm at the level of the hemorrhage there is also
intraventricular extension into the ipsilateral and contralateral ventricles there
is effacement of the ipsilateral frontal doctor last name of the lateral ventricle
brief hospital course pt was admitted to the neurosurgery service and the ic
u the organ bank was contact name ni name 2 ni was extubated on without
incident and a morphine drip was started and titrated torespiratory rate he
passed away on at pm the family declined a post morteum examination

ICD-9: 272 ICD-9: 96.71 ICD-9: 250

Figure 3: The top attention scores for the predicted
ICD-9 codes 272, 96.71, 250 are highlighted with color
intensity. Higher color intensity represents larger atten-
tion scores and vice versa.

models to improve the performance while keeping
explainable predictions.

5.3 RQ3: Explainability
In a setting where a machine learning model would
serve as a decision support tool for medical work-
ers, explainability of the obtained model predic-
tions are of utmost importance. In contrast to LRC,
DLAC provides explainable predictions using the
attention scores. DLAC can retrieve the top atten-
tion scores for each ICD-9 code prediction. As an
example, the text segments that lead to a certain
ICD-9 code prediction are highlighted with respec-
tive color intensity in Figure 3. This can be useful
for working with noisy texts in general because it
provides some extent of explainability.

6 Conclusion

Transformer-based architectures show promising
performance on the task of ICD-9 coding. We find



66

that the Longformer encoder is the best suitable
encoder architecture for processing long, noisy in-
put sequences such as discharge summaries. We
show that our proposed description-based label at-
tention classifier (DLAC) can be applied to vari-
ous transformer-based encoders and the resulting
model outperforms a common decoder architecture
like logistic regressions by 1-4%. In addition, our
proposed DLAC is especially suitable for a practi-
cal use case when working with fuzzy, long texts
such as the discharge summaries, where explain-
ability for the predicted ICD-9 codes is necessary.
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