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Abstract

Transformer-based models have greatly ad-
vanced the progress in the field of the natu-
ral language processing and while they achieve
state-of-the-art results on a wide range of tasks,
they are cumbersome in parameter size. Sub-
sequently, even when pre-trained transformer
models are used for fine-tuning on a given task,
if the dataset is large, it may still not be feasi-
ble to fine-tune the model within a reasonable
time. For this reason, we empirically test 8
subsampling methods for reducing the dataset
size on text classification task and report the
trade-off between metric score and training
time. 7 out of 8 methods are simple methods,
while the last one is CRAIG, a method for core-
set construction for data-efficient model train-
ing. We obtain the best result with the CRAIG
method, offering an average decrease of 0.03
points in f-score on test set while speeding up
the training time on average by 63.93%, rela-
tive to the score and time obtained by using the
full dataset. Lastly, we show the trade-off be-
tween speed and performance for all sampling
methods on three different datasets.

1 Introduction

In recent years, a great progress has been ob-
served in the field of natural language processing
thanks to use of deep neural network models and,
most notably, Transformer (Vaswani et al., 2017)
architecture-based models, such as BERT (Devlin
et al., 2019). While transformer-based models
achieve state-of-the-art results on a wide range of
benchmarks (Wang et al., 2018, 2019), they are
cumbersome in the number of parameters. Con-
sequently, computers with large amounts of RAM
memory and specialized hardware, such as mul-
tiple GPU or TPU devices, are required to train
the models in reasonable time. As a result, such
vast computational requirements put constraints on
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what can be done in smaller research teams, both
in academia and in industry.

As one of the approaches to alleviate this prob-
lem, an extensive research has been conducted on
methods for model compression, such as, model
pruning, quantization, knowledge distillation, pa-
rameter sharing and others (Gupta and Agrawal,
2021). Although model compression methods can
produce models characterising with low-latency
and low-memory footprint for transfer learning, e.g.
DistilBERT (Sanh et al., 2020), but if the dataset
is significantly large, it may still be not feasible
to fine-tune the model within a reasonable time.
Therefore, if the model’s size can’t be further re-
duced without sacrificing its generalization perfor-
mance, reducing the dataset is a task worth consid-
ering to further reduce training resource require-
ments.

The challenge of reducing dataset size while try-
ing to preserving model’s performance is the main
focus of this paper. Previous research conducted
on this topic mainly focuses on computer vision
or traditional machine learning domain. Pruning
the dataset by removing noisy examples to improve
model’s performance was done in Angelova et al.
(2005), while Lapedriza et al. (2013) ranks ex-
amples by how valuable they are and takes the
top ones in a greedy fashion w.r.t. the rankings.
In instance selection methods, only the informa-
tive examples are selected prior to model train-
ing (Olvera-López et al., 2010). Similarly, a core-
set (or weighted subset) construction was done in
Tsang et al. (2005); Bachem et al. (2017) for spe-
cific traditional ML models while Mirzasoleiman
et al. (2020) introduced a general approach appli-
cable also to neural network models. In Wang
et al. (2020); Sucholutsky and Schonlau (2020), the
idea of knowledge distillation was used to distill a
dataset to a small set of synthetic examples. To the
best of our knowledge, there is no previous work
on reducing the train set size for lowering the time
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and resource requirements for transformer-based
model training.

In this paper, we applied a general method for
coreset construction described in Mirzasoleiman
et al. (2020) to a transformer model. We empir-
ically compared its performance against simpler
subsampling approaches across 3 text classifica-
tion datasets. The rest of the paper is organized as
follows. In section 2, we describe methodology,
including construction of the datasets, description
of the sampling methods and experiment set up.
In section 3, we show the performance across the
datasets. And finally, in section 4, we discuss the
results together with our outlook for future work.

2 Methods

2.1 Datasets

In our experiments we used 3 datasets for text
classification where texts are sorted over time and
partitioned (or segmented) by e.g. months, based
on their corresponding timestamp. We chose this
data ordering because it simulates a typical real-
world problem in which new data arrives over time.
An overview of the dataset properties is presented
in Table 1. Texts that don’t have a timestamp
have been discarded from each dataset. All of the
datasets have a non-uniform distribution of exam-
ples over classes. In the rest of the paper we use
the terms classes and categories interchangeably.

AG’s news corpus (AGNC). The news articles
corpus was introduced by Antonio Gulli’s group1.
We took 4 largest classes from the corpus and used
the title, and description fields as the article’s text,
similarly as in Zhang et al. (2015). We used weeks
as time segments (Appendix. Figure 3 b)).

Multi-Domain Sentiment Dataset (MDSD).
Dataset consist of product reviews taken from Ama-
zon.com and was introduced in Blitzer et al. (2007)
for solving sentiment classification task. We chose
an updated version of the dataset avaliable on the
web2, provided by the same authors. Instead of try-
ing to solve sentiment classification task, we used
product type information as a target class for the
product review. We used months as time segments
(Appendix. Figure 3 c)).

Text Classification Dataset (TCD). Our private
real-world dataset for text classification. We used

1http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

2http://www.cs.jhu.edu/~mdredze/
datasets/sentiment/

months as time segments (Figure 1).
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Figure 1: Number of examples per time segment and
data split information for Text Classification Dataset.
Test 1, 2 and 3 are subsets of the full test set.

2.2 Sampling Methods
We used 8 sampling methods to subsample the
dataset. Methods 1) to 7) were used as a data pre-
processing step prior to model optimization while
method 8) is used after each epoch as part of the
model optimization procedure. In the rest of the pa-
per, sampling methods are also called as samplers.
Samplers have a hyper-parameter called sampling
ratio which is used to determine sample size, where
sampling ratio ∈ [0, 1]. When saying at random,
we mean uniformly at random unless otherwise
stated. A description of the sampling methods used
in the experiments is as follows (the implementa-
tion for methods 1) to 7) is available in the supple-
mentary materials).
1) Full Dataset Sampler (FDS) takes all the exam-
ples, i.e. samples the dataset with sampling ratio
of 1.0.
2) Latest Examples Sampler (LES) samples por-
tion of the temporally most recent examples per
each category proportional to sampling ratio. In a
corner case, such that when there are more exam-
ples in a time segment than it is needed to satisfy
the sample size, the examples are picked at random.
3) Random Sampler (RS) samples the portion of

Dataset AGNC MDSD TCD
Classes 4 25 221

Time Segments 6 35 20
Train 46111 16517 59104
Valid 5124 1833 6563
Test 1 9026 4224 19185
Test 2 8520 7294 14635
Test 3 3249 6444 13576

Test Full 20795 17962 47396

Table 1: An overview of dataset properties. AGNC,
MDSD and TCD are abbreviations for AG’s news cor-
pus, Multi-Domain Sentiment Dataset and Text Classi-
fication Dataset, respectively.

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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examples per each category proportional to sam-
pling ratio at random and independently of the time
segments.
Samplers 4) to 7) are clustering-based approaches
for subsampling the dataset inspired by previous
work of Li et al. (2011); Agrawal et al. (2015);
Arafat et al. (2017). However, we didn’t balance
the distribution of examples over classes, but kept
the same ratio of examples per category as it is
prior to sampling. We did this because the cited
methods are not directly applicable or practical
to be used with transformers-based models so we
only followed the subsampling approaches which
by themselves do not balance distribution. For each
clustering method we used k-means++ (Arthur and
Vassilvitskii, 2007).
4) Clustering C1 samples portion of the examples
per each category proportional to sampling ratio
and independently of the time segments, as follows.
First, it clusters the category to partition the ex-
ample space. Then, at random selects from which
cluster to take the example from, repeating the sam-
pling procedure sample size times. After this step,
the number of examples that sampler needs to pick
from each cluster is known. Finally, sampler picks
determined number of examples from each cluster
at random. For representing the examples as a con-
tinuous vector we apply TF-IDF.
5) Clustering C2 is same as the C1 but sam-
ples from a non-uniform distribution, by which
we model the dependence of the examples on the
time segment. In short, the most recent examples
and clusters containing these are more likely to be
picked (Appendix. A.2).
6) Clustering C3 is the same as C1 and 7) Cluster-
ing C4 is the same as C2 but both use DistilBERT
model to calculate vector representations.
8) CRAIG is a method proposed by Mirzasoleiman
et al. (2020). We used the provided implementa-
tion by the authors3, but adjusted it to work for the
transformer-based model for text classification.

2.3 Experiments

Dataset Splits. Split statistics are shown in Ta-
ble 1. Additionally, we show the splits for TCD in
Figure 1 with more details in Appendix Figure 3.
Neural Net Architecture. We chose DistilBERT
(Sanh et al., 2020) to simulate the use of a com-
pressed model while we want to reduce the dataset.
Metrics. For measuring the model performance we

3https://github.com/baharanm/craig

used f1 micro score. Training times are measured
against a wall clock, while we treat a total training
time as a sum of the sampling time and the training
time without evaluation on the validation set.
Training and Evaluation Procedure. For each
sampler we trained the model for 10 epochs on
the sampled training set and picked the model
that achieved the best f-score on the validation set.
Then, for each sampler, we evaluated the selected
model on the full test set as well as on 3 test sub-
sets. We get the 3 subsets by dividing the test set
over time into 3 buckets, the main goal being to
additionally test model performance for examples
that are near/far in time from the train set. Each
model starts from the same initial weights and uses
the same hyperparameters (Appendix. A.3). What
changes across the experiments is the training sub-
set provided by each of the samplers.

3 Results

We report the mean and standard deviation over
sampler’s f1 scores on the full test set (Figure 2
a)) as well as the training times (Figure 2 b)), both
relative to the full dataset sampler. Exact values
are shown in Table 2, with additional information
for the 3 test subsets. Detailed results with actual
training times can be found in the supplementary
materials. Secondly, we report results for the top
4 samplers w.r.t. f1 score but with condition of
0.7, 0.5 and 0.3 on the maximum training time
(Table 3), where measures are relative to the full
dataset sampler.
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Figure 2: Samplers average f1 scores on full test set and
training times, both relative to the full dataset sampler.

4 Discussion

As seen in Figure 2, on average and relative to
the full dataset sampler, f-score and training time

https://github.com/baharanm/craig
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Samp.
Ratio Dataset

Rel. F1 Rel. Train
TimeFull Test 1 Test 2 Test 3

mean ± std mean ± std

0.3
AGNC 0.99± 0.01 0.98± 0.01 0.99± 0.01 0.99± 0.01 0.39± 0.10
TCD 0.93± 0.02 0.94± 0.02 0.93± 0.02 0.93± 0.02 0.39± 0.10

MDSD 0.85± 0.04 0.88± 0.03 0.84± 0.05 0.84± 0.05 0.36± 0.08

0.1
AGNC 0.97± 0.01 0.97± 0.01 0.97± 0.01 0.97± 0.01 0.17± 0.09
TCD 0.81± 0.03 0.81± 0.03 0.80± 0.03 0.80± 0.03 0.18± 0.09

MDSD 0.62± 0.03 0.69± 0.03 0.57± 0.04 0.62± 0.04 0.16± 0.08

Table 2: Training time and f-score on test sets, averaged over all samplers. Measures are relative to the full dataset
sampler. Results in bold indicate when a significant drop in f-score happened w.r.t. sampling ratio.

Max Rel.
Train Time Sampler Samp.

ratio
Rel. F1 Rel. Train Time Rel. Loss

mean ± std mean ± std mean ± std
1.0 Full data 1.0 1.00± 0.00 1.00± 0.00 1.00± 0.00

0.7

CRAIG 0.3 0.97± 0.02 0.61± 0.03 0.99± 0.04
Clustering C2 0.5 0.96± 0.03 0.56± 0.01 1.18± 0.21
Clustering C4 0.5 0.96± 0.03 0.58± 0.02 1.18± 0.18

Latest Examples 0.5 0.95± 0.02 0.50± 0.02 1.19± 0.19

0.5

Latest Examples 0.3 0.93± 0.04 0.31± 0.01 1.27± 0.19
Random 0.3 0.92± 0.05 0.31± 0.01 1.26± 0.21

Clustering C4 0.3 0.92± 0.05 0.37± 0.01 1.18± 0.06
Clustering C2 0.3 0.92± 0.05 0.36± 0.01 1.29± 0.21

0.3

Latest Examples 0.1 0.82± 0.11 0.10± 0.00 1.50± 0.12
Clustering C4 0.1 0.82± 0.11 0.17± 0.01 1.63± 0.45

Random 0.1 0.81± 0.13 0.10± 0.00 1.55± 0.27
Clustering C1 0.1 0.81± 0.12 0.15± 0.01 1.52± 0.18

Table 3: Results of top 4 samplers over datasets w.r.t. f-score per condition on the maximum train time. Measures
are relative to the full dataset sampler. Results in bold indicate the best score per maximum train time condition.

decline almost linearly by reducing the sampling
ratio from 0.7 up to 0.3. Reducing the sampling ra-
tio below 0.3, causes a significant non-linear drop
in f-score. More precisely, focusing on the sam-
pling ratio interval from 0.3 to 0.1, we have a drop
on average of 0.2, 0.12 and 0.23 points in relative
f-score for all the datasets, respectively. We as-
sume that after discarding certain portion of the
examples, we can not reduce it more without re-
moving good representative examples from each
category, i.e. there are less redundant examples to
discard. Additionally, we measured relative f-score
on each test subset to see if and when the drop in
performance might happen, as this simulates use
cases where new data arrives over time. On MDSD
dataset we observed that performance drops as we
try to predict further in time, when sampling ratio
is 0.3 or lower (Table 2). Specifically, f-score drops
from 0.69 to 0.57 and then raise to 0.62 as we go
through Test 1, 2 and 3, respectively. This is likely
related to the number of classes and examples per
class, we leave it for further investigation.

We further discuss the effect of conditioning on
the maximum allowed training time (Table 3). We
chose values for maximum relative training time
(Table 3, column 1) based on the Figure 2, with

intention to cover the different situations regarding
picked sampling ratio. With a condition of a maxi-
mum relative training time of 0.7, CRAIG achieves
the best results, on average, with decrease of 0.03
points in f1 score while speeding up the training
time by 63.93%, relative to the score and time ob-
tained by using the full dataset. As we reduce the
condition value below 0.5 we are left only with data
preprocessing samplers. In this case, the top per-
forming sampler w.r.t. f-score is LES. Interestingly,
LES was ranked in top 4 samplers for each condi-
tion on the maximum relative training time. We
assume this might be the case because we sorted the
data by their timestamp and partitioned into time
segments. It might be that the most recent time
segments contain more representative examples for
the test set as they are closer in time. Next, we com-
pare clustering samplers. We observed that C2 and
C4, the ones which apply bigger weights for more
recent examples while sampling, outperformed C1
and C3, the ones that use uniform weights. This
aligns with our previous assumption that the recent
examples give more information for predicting on
the future time segments. Additionally, C4, on av-
erage, outperformed C2, which may indicate that
clustering transformer embeddings instead of using
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TF-IDF vectors might provide more representative
examples for model training.

Finally, for the completeness of comparison, we
tested the samplers on the same datasets but with-
out preserving temporal information. Only sam-
plers which do not require temporal information to
work were taken into account. Again, we obtained
top results by using CRAIG sampler (Appendix
Table 6). The samplers, on average, performed
similarly w.r.t sampling ratios as on datasets with
temporal information (Appendix Figure 4 and Ta-
ble 7). The samplers, on average, achieved slightly
better results on datasets without temporal informa-
tion (Appendix Table 6). Interestingly, after setting
the time condition equal to 0.7 or less, samplers are
not performing better than random sampler besides
CRAIG, hence we leave the topic for future inves-
tigation. As datasets without temporal information
are not our primary focus, we include additional
information in Appendix C about the results and
the methodology used.

Conclusion. Fine-tuning a compressed trans-
former model can still take significant amount of
time if the dataset is large. We empirically com-
pared 8 sampling methods for reducing train set on
3 datasets and reported trade-offs between f1 score
and training time.
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A Additional Methods Details

A.1 Dataset Splits

We created training, validation and test sets for each
of the datasets described in Subsection 2.1. First,
we created full test set by taking 6 most recent time
segments. Then, in order to get test sets 1, 2 and
3, we divided the test set over time into 3 buckets,
each containing two time segments. Thirdly, in
train set are all examples from time segments older
than test set 1. Finally, we created validation set
by sampling 10% of the train set while keeping
example ratio per category the same between the
splits. The splits are fixed and do not change across
experiments. Data splits for each dataset are shown
in Figure 3 and split statistics are given in Table 1.

A.2 Sampling Distribution Calculation

We calculated the distributions by using weights
wi assigned to each example ei where i ∈
1, 2, ..., |TrainSet|. Each dataset has n train time
segments T , known after segmentation and dataset
split is done (Figure 3). Each time segment T has
index j, where the most recent segment in time
has index j = 1, the second most recent has index
j = 2 and so on up to the last index j = n. Every
example ei belongs to one of the time segments
Tj so we define membership function to get index
of the segment in which example belongs to, as
follows:

µT (ei) =

{
j if ei ∈ Tj

0, otherwise
, j ∈ {1, ..., n} (1)

Note that µT (ei) will never be 0 as every example
belongs to one of the segments. We chose linear
decay function fw to assign weight wi to example
ei w.r.t. index j of the segment Tj to which the
example ei belongs. Function fw is defined as
follows:

wi = fw(ei) =
1

µT (ei)
(2)

where the weightwi has the highest value for exam-
ples from the most recent segments and decreases
linearly as the segments get older. After perform-
ing clustering we obtained m clusters. For a cluster
weight ck, we averaged weights wi of all examples
ei which belong to the cluster k. We did this for
each cluster. To determine distribution for sam-
pling which cluster to take the example from, we

calculated cluster probability pk as follows:

pk =
ck∑m
l=1 cl

, k ∈ {1, ...,m} (3)

m∑
k=1

pk = 1 (4)

To determine distribution for sampling examples
within cluster Ck, we calculate example probability
p′i per cluster Ck, k = 1, ...,m, as follows:

p′i =
wi∑|Sk|
l=1 wl

, l, i ∈ Sk (5)

|Sk|∑
i=1

p′i = 1 (6)

where Sk is a set of indexes of examples ei that
belongs to a cluster Ck.

A.3 Neural Network Training Info
Transformer’s maximum sequence length used was
512 and we used batch size of 32. We used Adam
optimizer with initial learning rate of 3e−5.

B Additional Discussion Remarks

B.1 CRAIG Remarks
In Table 5, we ranked the samplers w.r.t. relative
f-score over the datasets, setting no condition on
max rel. time. Top f-score performance on average
is achieved by CRAIG, but if we look at the aver-
age and standard deviation of the relative training
time we see that by sampling the data with ratio
of 0.7 the model training was slower than on the
full dataset. This is because the time needed for
selecting the subsets creates the time overhead if
sampling ratio is not small enough.

C Case Without Temporal Information

C.1 Dataset Splits
We created datasets without temporal information
as follows. For TCD and MDSD we took splits
with temporal information, merged them and dis-
carded the time information. Subsequently, we
shuffled the data and randomly split it in 8:1:1 ratio
to create the training, validation and test sets. For
AGNC we took the same training and test splits as
in Zhang et al. (2015), and did not discard articles
that do not have timestamp. Hence we could have
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Figure 3: Number of examples per time segments together with dataset split information for each used dataset.

Samp.
Ratio Dataset

Rel. F1 Rel. Train
TimeFull Test 1 Test 2 Test 3

mean ± std mean ± std
1.0 Every 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

0.7
AGNC 1.00± 0.00 0.99± 0.00 1.00± 0.00 1.00± 0.00 0.82± 0.11
TCD 0.98± 0.01 0.98± 0.01 0.98± 0.02 0.98± 0.01 0.78± 0.09

MDSD 0.96± 0.02 0.96± 0.01 0.96± 0.02 0.95± 0.02 0.76± 0.08

0.5
AGNC 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.60± 0.11
TCD 0.96± 0.01 0.96± 0.01 0.96± 0.02 0.96± 0.02 0.58± 0.09

MDSD 0.92± 0.03 0.93± 0.03 0.92± 0.03 0.92± 0.03 0.55± 0.08

0.3
AGNC 0.99± 0.01 0.98± 0.01 0.99± 0.01 0.99± 0.01 0.39± 0.10
TCD 0.93± 0.02 0.94± 0.02 0.93± 0.02 0.93± 0.02 0.39± 0.10

MDSD 0.85± 0.04 0.88± 0.03 0.84± 0.05 0.84± 0.05 0.36± 0.08

0.1
AGNC 0.97± 0.01 0.97± 0.01 0.97± 0.01 0.97± 0.01 0.17± 0.09
TCD 0.81± 0.03 0.81± 0.03 0.80± 0.03 0.80± 0.03 0.18± 0.09

MDSD 0.62± 0.03 0.69± 0.03 0.57± 0.04 0.62± 0.04 0.16± 0.08

Table 4: Average f1 scores and training times on test sets for each sampler, both relative to the full dataset sampler.
Results in bold signal when a significant drop in f-score happened w.r.t. sampling ratio.

one dataset that is often used as a benchmark for
text classification. To create AGNC validation set
we randomly sampled 10% of the AGNC training
set. We kept the same ratio of examples per cat-
egories across splits for each dataset. The splits
statistics are presented in Table 8.

C.2 Results
We report the mean and standard deviation over
samplers f1 scores on the test set (Figure 4 a)) and
the training times (Figure 4 b)), both relative to
the full dataset sampler. Exact values are shown
in Table 7. Detailed results with measured training
times are in the supplementary materials. Next,
we report results for the top 4 samplers w.r.t. f1
score but with condition of 0.7, 0.5 and 0.3 on the
maximum training time (Table 6), where measures
are relative to the full dataset sampler.
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Figure 4: Samplers average f1 scores on test set and
training times on datasets without time dimension, both
relative to the full dataset sampler.
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Max Rel.
Train Time Sampler Samp.

ratio
Rel. F1 Rel. Train Time Rel. Loss

mean ± std mean ± std mean ± std
1.0 Full data 1.0 1.00± 0.00 1.00± 0.00 1.00± 0.00
inf CRAIG 0.7 1.00± 0.00 1.00± 0.05 1.01± 0.08
inf CRAIG 0.5 0.99± 0.00 0.79± 0.04 1.04± 0.12
inf Latest Examples 0.7 0.98± 0.01 0.70± 0.03 1.05± 0.11
inf Clustering C4 0.7 0.98± 0.01 0.77± 0.01 1.10± 0.17
0.7 CRAIG 0.3 0.97± 0.02 0.61± 0.03 0.99± 0.04
0.7 Clustering C2 0.5 0.96± 0.03 0.56± 0.01 1.18± 0.21
0.7 Clustering C4 0.5 0.96± 0.03 0.58± 0.02 1.18± 0.18
0.7 Latest Examples 0.5 0.95± 0.02 0.50± 0.02 1.19± 0.19
0.5 Latest Examples 0.3 0.93± 0.04 0.31± 0.01 1.27± 0.19
0.5 Random 0.3 0.92± 0.05 0.31± 0.01 1.26± 0.21
0.5 Clustering C4 0.3 0.92± 0.05 0.37± 0.01 1.18± 0.06
0.5 Clustering C2 0.3 0.92± 0.05 0.36± 0.01 1.29± 0.21
0.3 Latest Examples 0.1 0.82± 0.11 0.10± 0.00 1.50± 0.12
0.3 Clustering C4 0.1 0.82± 0.11 0.17± 0.01 1.63± 0.45
0.3 Random 0.1 0.81± 0.13 0.10± 0.00 1.55± 0.27
0.3 Clustering C1 0.1 0.81± 0.12 0.15± 0.01 1.52± 0.18

Table 5: Results of top 4 samplers on average over datasets w.r.t. relative f1 micro scores with condition on the
maximum relative training time. Results in bold indicate the best scores for specific condition on the maximum
training time. inf condition represents no limit on the maximum training time.

Max Rel.
Train Time Sampler Samp.

ratio
Rel. F1 Rel. Train Time Rel. Loss

mean ± std mean ± std mean ± std
1.0 Full data 1.0 1.00± 0.00 1.00± 0.00 1.00± 0.00
inf CRAIG 0.7 0.99± 0.01 0.95± 0.09 1.09± 0.16
inf CRAIG 0.5 0.99± 0.00 0.77± 0.01 0.92± 0.36
inf Clustering C3 0.7 0.98± 0.01 0.77± 0.01 1.02± 0.40
inf Clustering C1 0.7 0.98± 0.01 0.75± 0.03 0.94± 0.35
0.7 CRAIG 0.3 0.98± 0.01 0.59± 0.02 1.01± 0.10
0.7 Random 0.5 0.97± 0.02 0.50± 0.01 0.98± 0.36
0.7 Clustering C3 0.5 0.97± 0.02 0.55± 0.00 1.34± 3.52
0.7 Clustering C1 0.5 0.96± 0.02 0.55± 0.01 1.14± 0.49
0.5 Random 0.3 0.95± 0.04 0.30± 0.00 1.07± 0.41
0.5 Clustering C3 0.3 0.94± 0.04 0.35± 0.00 1.10± 0.43
0.5 Clustering C1 0.3 0.94± 0.03 0.34± 0.02 1.08± 0.41
0.5 Random 0.1 0.87± 0.07 0.10± 0.00 1.40± 0.59
0.3 Random 0.1 0.87± 0.07 0.10± 0.00 1.40± 0.59
0.3 Clustering C3 0.1 0.86± 0.07 0.15± 0.00 1.40± 0.58
0.3 Clustering C1 0.1 0.86± 0.07 0.14± 0.02 1.34± 0.53

Table 6: Results of top 4 samplers on average over datasets w.r.t. relative f1 micro scores with condition on the
maximum relative training time. Results in bold indicate the best scores for specific condition on the maximum
training time. inf condition represents no limit on the maximum training time. Datasets have no time dimension.
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Samp.
Ratio Dataset

Rel. F1 Rel. Train
TimeTest

mean ± std mean ± std
1.0 Every 1.00± 0.00 1.00± 0.00

0.7
AGNC 0.99± 0.00 0.80± 0.13
TCD 0.98± 0.00 0.78± 0.06

MDSD 0.97± 0.02 0.82± 0.16

0.5
AGNC 0.99± 0.00 0.60± 0.11
TCD 0.97± 0.01 0.60± 0.10

MDSD 0.94± 0.03 0.58± 0.10

0.3
AGNC 0.98± 0.00 0.39± 0.11
TCD 0.94± 0.02 0.41± 0.12

MDSD 0.90± 0.04 0.39± 0.11

0.1
AGNC 0.96± 0.01 0.18± 0.10
TCD 0.83± 0.03 0.20± 0.10

MDSD 0.77± 0.05 0.18± 0.09

Table 7: Average f1 scores and training times on test
sets for each sampler, both relative to the full dataset
sampler. Datasets have no time dimension.

Dataset AGNC MDSD TCD
Classes 4 25 221
Train 108000 29049 90450
Valid 12000 3631 11306
Test 7600 3632 11307

Table 8: An overview of dataset properties where time
dimension is excluded. AGNC, MDSD and TCD are
abbreviations for AG’s news corpus, Multi-Domain
Sentiment Dataset and Text Classification Dataset, re-
spectively.


