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Abstract

This paper investigates bounds on the generative
capacity of prosodic processes, by focusing
on the complexity of recursive prosody in
coordination contexts in English (Wagner, 2010).
Although all phonological processes and most
prosodic processes are computationally regular
string languages, we show that recursive prosody
is not. The output string language is instead
parallel multiple context-free (Seki et al., 1991).
We evaluate the complexity of the pattern over
strings, and then move on to a characterization
over trees that requires the expressivity of multi
bottom-up tree transducers. In doing so, we
provide a foundation for future mathematically
grounded investigations of the syntax-prosody
interface.

1 Introduction

At the level of words, all attested processes in phonol-
ogy form regular string languages and can be gener-
ated via finite-state acceptors (FSAs) and transducers
(FSTs) (Johnson, 1972; Kaplan and Kay, 1994; Heinz,
2018). However, not much attention has been given
to the generative capacity of prosodic processes at
the phrasal or sentential level (but see Yu, 2019). The
little work that exists in this respect has shown that
many attested intonational processes are finite-state
and regular (Pierrehumbert, 1980). It is thus a common
hypothesis in the literature that the cross-linguistic ty-
pology of prosodic phonology should also be regular.

In this paper, we falsify this hypothesis by provid-
ing a mathematically grounded characterization of a
pattern of recursive prosody in English coordination,
as empirically documented by Wagner (2010). Specif-
ically, we show that when converting a syntactic repre-
sentation into a prosodic representation, the string lan-
guage that is generated by this prosodic process is nei-
ther a regular nor context-free language, and thus can-
not be generated by string-based FSAs. As a tree-to-
tree function, the pattern can be captured by a class of

bottom-up tree transducers whose outputs correspond
to parallel multiple context-free string languages.

This paper is organized as follows. In §2, we
provide a literature review of phonology and prosodic
phonology, with emphasis on the general tendency for
regular computation. In §3, we describe the recursive
prosody of coordination structures, and why it cannot
be generated with an FST over string inputs. In §4,
we show how a multi bottom-up tree transducer can
generate the prosodic patterns. We discuss our results
in §5, and conclude in §6.

2 Computation of prosody

Within computational prosody, there are two strands
of work. One focuses on the generation of prosodic
structure at or below the word level. The other
operates above the word-level.

At the word level, there is a plethora of work
on generating prosodic constituents, all of which
require finite-state or regular computation, whether
for syllables (Kiraz and Möbius, 1998; Yap, 2006;
Hulden, 2006; Idsardi, 2009), feet (van Oostendorp,
1993; Idsardi, 2009; Yu, 2017), or prosodic words
(Coleman, 1995; Chew, 2003).1 In fact, most word-
level prosody seems to require at most subregular
computation (Strother-Garcia, 2018, 2019; Hao, 2020;
Dolatian, 2020; Dolatian et al., 2021; Koser, in prep).

However, there is a dearth of formal results for
phrasal or intonational prosody. Early work in genera-
tive phonology treated the prosodic representations as
directly generated from the syntax, with any deviations
caused by readjustment rules (Chomsky and Halle,
1968). Notoriously, syntactic representations are at

1For syllables and feet, there is a large literature of formal-
ization within Declarative Phonology (Scobbie et al., 1996). This
work tends to employ formal representations that are similar
to context-free grammars (Klein, 1991; Walther, 1993, 1995;
Dirksen, 1993; Coleman, 1991, 1992, 1993, 1996, 2000, 1998;
Coleman and Pierrehumbert, 1997; Chew, 2003). But these
representations can be restricted enough to be equivalent to
regular languages (see earlier such restrictions in Church, 1983).
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least context-free (Chomsky, 1956; Chomsky and
Schützenberger, 1959). Because sentential prosody
interacts with the syntactic level in non-trivial ways, it
might seem sensible to assume that 1) the transforma-
tion from syntax to prosody is not finite-state definable
(= definable with finite-state transducers), and that
2) the string language of prosodic representations
is a supra-regular language, not a regular language.
Importantly though, this assumption is not trivially
true. In fact, early work has shown that even if syntax
is context-free, the corresponding prosodic structures
can be a regular string language. For instance, Reich
(1969) argued that the prosodic structures in SPE can
be generated via finite-state devices (see also Langen-
doen, 1975), while Pierrehumbert (1980) modeled
English intonation using a simple finite-state acceptor.

When analyzed over string languages, this
mismatch between supra-regular syntax and regular
prosody was not explored much in the subsequent
literature. In fact, it seems that current research on
computational prosody uses the premise that prosodic
structures are at most regular (Gibbon, 2001). Cru-
cially, this premise is confounded by the general lack
of explicit mathematical formalizations of prosodic
systems. For example, there are algorithms for Dutch
intonation that capture surface intonational contours
and other acoustic cues (t’Hart and Cohen, 1973;
t’Hart and Collier, 1975). These algorithms however
do not themselves provide sufficient mathematical
detail to show that the prosodic phenomenon in
question is a regular string language. Instead, one
has to deduce that Dutch intonation is regular because
the algorithm does not utilize counting or unbounded
look-ahead (t’Hart et al., 2006, pg. 114).

As a reflection of this mismatch, early work in
prosodic phonology assumed something known as the
strict layer hypothesis (SLH; Nespor and Vogel, 1986;
Selkirk, 1986). The SLH assumed that prosodic trees
cannot be recursive — i.e. a prosodic phrase cannot
dominate another prosodic phrase — thus ensuring
that a prosodic tree will have fixed depth. Subsequent
work in prosodic phonology weakened the SLH:
prosodic recursion at the phrase or sentence level is
now accepted as empirically robust (Ladd 1986, 2008,
ch8; Selkirk 2011; Ito and Mester 2012, 2013). But
empirically, it is difficult to find cases of unbounded
prosodic recursion (Van der Hulst, 2010). Consider
a language that uses only bounded prosodic recursion
— e.g. there can be at most two recursive levels of
prosodic phrases. The prosodic tree will have fixed
depth; and the computation of the corresponding

string language is regular. It is then possible to create
a computational network that uses a supra-regular
grammar for the syntax which interacts with a
finite-state grammar for the prosody (Yu and Stabler,
2017; Yu, 2019). To summarize, it seems that the
implicit consensus in computational prosody is that
1) syntax can be supra-regular, but the corresponding
prosody is regular; 2) prosodic recursion is bounded.

However, as we elaborate in the next section,
coordination data from Wagner (2005) is a case where
syntactic recursion generates potentially unbounded-
recursive prosodic structure. The rest of the paper is
then dedicated to exploring the consequences of this
construction for the expressivity of sentential prosody.

3 Prosodic recursion in coordination

To our knowledge, Wagner (2005, 2010) is the
clearest case where syntactic recursion gets mapped
to recursive prosody, such that the recursion is
unboundedly deep for the prosody. In this section, we
go over the data and generalizations (§3.1), we sketch
Wagner’s cyclic analysis (§3.2), and we discuss issues
with finiteness (§3.3). Finally, we show that that this
construction does not correspond to a regular string
language (§3.4).

3.1 Unbounded recursive prosody
Wagner documents unbounded prosodic recursion
in the coordination of nouns, in contrast to earlier
results which reported flat non-recursive prosody
(Langendoen, 1987, 1998). Based on experimental
and acoustic studies, Wagner reports that recursive
coordination creates recursively strong prosodic
boundaries. Syntactic edges have a prosodic strength
that incrementally depends on their distance from the
bottom-most constituents.

When three items are coordinated with two non-
identical operators, then two syntactic parses are pos-
sible. Each syntactic parse has an analogous prosodic
parse. The prosodic parse is based on the relative
strength of a prosodic boundary, with | being weaker
than ||. The boundary is placed before the operator.

Table 1: Prosody of three items with non-identical
operators

Syntactic grouping Prosodic grouping
[A and [B or C]] A || and B | or C
[[A and B] or C] A | and B || or C

When the two operators are identical, then three
syntactic and prosodic parses are possible. The
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difference between the parses is determined by
semantic associativity. For example, a sentence like
I saw [[A and B] and C] means that I saw A and B
together, and I saw C separately.

Table 2: Prosody of three items with identical operators

Syntactic grouping Prosodic grouping
[A and [B and C]] A || and B | and C
[[A and B] and C] A | and B || and C
[[A and B and C] A | and B | and C

When four items are coordinated, then at most
11 parses are possible. The maximum is reached
when the three operators are identical. We can have
three levels of prosodic boundaries, ranging from the
weakest | to the strongest |||.

Table 3: Prosody of four items with identical operators

Syntactic grouping Prosodic grouping
[A and B and C and D] A | and B | and C | and D
[A and B and [C and D]] A || and B || and C | and D
[A and [B and C] and D] A || and B | and C || and D
[[A and B] and C and D] A | and B || and C || and D
[A and [B and C and D]] A || and B | and C | and D
[[A and B and C] and D] A | and B | and C || and D
[[A and B] and [C and D]] A | and B || and C | and D
[A and [B and [C and D]] A ||| and B || and C | and D
[A and [[B and C] and D]] A ||| and B | and C || and D
[[A and [B and C]] and D] A || and B | and C ||| and D
[[[A and B] and C] and D] A | and B || and C ||| and D

We can extract the following generalizations from
the data above. First, the depth of a constituent di-
rectly affects the prosodic strength of its edges. At a
syntactic edge, the strength of the prosodic boundary
depends on the distance between that edge and the
most embedded element: for instance, in (1a) the left-
bracket between A-B is mapped to a prosodic bound-
ary of strength three |||, because A is above two layers
of coordination. The deepest constituent C-D gets the
weakest boundary |. Second, when there is associativ-
ity, the prosodic strength percolates to other positions
within this associative span. For example, in (1b) the
boundary of strength || is percolated to A-B from B-C.

1. Generalizations on coordination
(a) Strength is long-distantly calculated

[A and [B and [C and D]]] is mapped to
A ||| and B || and C | and D

(b) Strength percolates when associative
[A and B and [C and D]] is mapped to
A || and B || and C | and D

3.2 Wagner’s cyclic analysis

In order to generate the above forms, Wagner devised
a cyclic procedure which we summarize with the
algorithm below.

2. Wagner’s cyclic algorithm

(a) Base case: Let X be a constituent that
contains a set of unprosodified nouns
(terminal nodes) that are in an associative
coordination. Place a boundary of strength
| between each noun.

(b) Recursive case: Consider a constituent Y.
Let S be a set of constituents S (terminals
or non-terminals) that is properly contained
in Y, such that at least one constituent in
S be prosodified. Let |k be the strongest
prosodic boundary inside Y. Place the
boundary |k+1 between each constituent
in Y.

The algorithm is generalized to coordination of any
depth. It takes as input a syntactic tree, and the output
is prosodically marked strings. We illustrate this below,
with the input tree represented as a bracketed string.

3. Illustrating Wagner’s algorithm
Input [A and B and [C and D]]
Base case C | and D
Recursive case A || and B || and C | and D

3.3 Issues of finiteness

Because Wagner’s study used noun phrases with
at most three or four items, the resulting language
of prosodic parses is a finite language. Thus, the
relevant syntax-to-prosody function is bounded. It is
difficult to elicit coordination of 5 items, likely due
to processing reasons (Wagner, 2010, 194).

If the primary culprit is performance, though,
then syntactic competence may in fact allow for
coordination constructions of unbounded depth with
any number of items. Wagner’s algorithm generates
a prosodic structure for any such sentence, such as
for (4). For the rest of this paper, we abstract away the
finite bounds on coordination size in order to analyze
the generative capacity of the underlying system (see
Savitch, 1993, for mathematical arguments in support
of factoring out finite bounds).

4. Hypothetical prosody for large coordination
[A and B and [C and [D and E]]] is mapped to
A ||| and B ||| and C || and D | and E
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3.4 Computing recursive prosody over strings

The choice of representation plays an important role
in determining the generative capacity of the prosodic
mapping. We first start by treating the mapping as
a string-to-string function. We show that the mapping
is not regular.

Let the input language be a bracketed string
language, such that the input alphabet is a set of
nouns{A, ..., Z}, coordinators, and brackets. The
output language replaces the brackets with substrings
of |∗. For illustration, assume that the input language
is guaranteed to be a well-bracketed string. At a
syntactic boundary, we have to calculate the number
of intervening boundaries between it and deepest node.
But this requires unbounded memory. For instance, to
parse the example below, we incrementally increase
the prosodic strength of each boundary as we read
the input left-to-right.

5. Linearly parsing the prosody:
[[[A and B] and C] and D] is mapped to
A | and B || and C ||| and D, where
Input alphabet Σ ={ A, ... , Z, and, or, [, ]}
Output alphabet ∆ ={ A, ... , Z, and, or, |}
Input language is Σ∗ and well-bracketed

Given the above string with only left-branching
syntax, the leftmost prosodic boundary will have a
juncture of strength |. Every subsequent prosodic
boundary will have incrementally larger strength.
Over a string, this means we have to memorize the
number x of prosodic junctures that were generated
at any point in order to then generate x+1 junctures
at the next point. A 1-way FST cannot memorize an
unbounded amount of information. Thus, this function
is not rational function and cannot be defined by a
1-way FST. To prove this, we can look at this function
in terms of the size of the input and output strings.

6. Illustrating growth size of recursive prosody
[n A0 and A1 ] and A2] and ... and An]
is mapped to
A0 | and A1 || and A2 ||| and ... |n and An

Abstractly, for a left-branching input string with
n number of left-brackets [, the output string has
a monotonically increasing number of prosodic
junctures: | ··· || ··· ||| ··· |n. The total number of
prosodic junctures is a triangular number n(n+1)/2.
We thus derive the following lemma.

Lemma 1. For generating coordination prosody as a
string-to-string function, the size of the output string

grows at a rate of at leastO(n2) where n is the size
of the input string.

Such a function is neither rational nor regular.
Rational functions are computed by 1-way FSTs,
and regular functions by 2-way FSTs (Engelfriet
and Hoogeboom, 2001).2 They share the following
property in terms of growth rates (Lhote, 2020).
Theorem 1. Given an input string of size n, the size
of the output string of a regular function grows at
most linearly as c·n, where c is a constant.

Thus, this string-to-string function is not regular.
It could be a more expressive polyregular function
(Engelfriet and Maneth, 2002; Engelfriet, 2015;
Bojańczyk, 2018; Bojańczyk et al., 2019), a question
that we leave for future work.

The discussion in this section focused on generat-
ing the output prosodic string when the input syntax
is a bracketed string. Importantly though, Lemma 1
entails that no matter how one chooses their string
encoding of syntactic structure, prosody cannot be
modeled as a rational transduction unless there is
an upper bound on the minimum number of output
symbols that a single syntactic boundary must be
rewritten as. To the best of our knowledge, there is
no syntactic string encoding that guarantees such a
bound. In the next section, we will discuss how to
compute prosodic strength starting from a tree.

4 Computing recursive prosody over trees

Wagner (2010)’s treatment of recursive prosody as-
sumes an algorithm that maps a syntactic tree to a
prosodic string. It is thus valuable to understand the
complexity of processes at the syntax-prosody inter-
face starting from the tree representation of a sen-
tence. Assuming we start from trees, there is one
more choice to be made, namely whether the prosodic
information (in the output) is present within a string or
a tree. Notably, every tree-to-string transduction can
be regarded as a tree-to-tree transduction plus a string
yield mapping. As the tree-to-tree case subsumes the
tree-to-string one, it makes sense to consider only
the former. For a tree-to-tree mapping, the goal is
to obtain a tree representation that already contains
the correct prosodic information (Ladd, 1986; Selkirk,
2011). This is the focus of the rest of this paper.

4.1 Dependency trees
When working over syntactic structures explicitly, it is
important to commit to a specific tree representation.

2This equivalence only holds for functions and deterministic
FSTs. Non-deterministic FSTs can also compute relations.
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In what follows, we adopt a type of dependency trees,
where the head of a phrase is treated as the mother of
the subtree that contains its arguments. For example,
the coordinated noun phrase Pearl and Garnet is
represented as the following dependency tree.

and

Pearl Garnet

Dependency trees have a rich tradition in descrip-
tive, theoretical, and computational approaches to lan-
guage, and their properties have been defined across a
variety of grammar formalisms (Tesnière, 1965; Nivre,
2005; Boston et al., 2009; Kuhlmann, 2013; Debus-
mann and Kuhlmann, 2010; De Marneffe and Nivre,
2019; Graf and De Santo, 2019; Shafiei and Graf,
2020, a.o.). Dependency trees keep the relation be-
tween heads and arguments local, and they maximally
simplify the readability of our mapping rules. Hence,
they allow us to focus our discussion on issues that
are directly related to the connection of coordinated
embeddings and prosodic strength, without having to
commit to a particular analysis of coordinate structure.

Importantly, this choice does not impact the gener-
alizability of the solution. It is fairly straightforward to
convert basic dependency trees into phrase structure
trees. Similarly, although it is possible to adopt n-ary
branching structures, we chose to limit ourselves
to binary trees (in the input). This turns out to be
the most conservative assumption, as it forces us to
explicitly deal with associativity and flat prosody.

4.2 Encoding prosodic strength over trees
We are interested in the complexity of mapping a
“plain” syntactic tree to a tree representation which con-
tains the correct prosodic information. Because of this,
we encode prosodic strength over trees in the form of
strength boundaries at each level of embedding. Each
embedding level in our final tree representation will
thus have a prosodic strength branch. The tree below
shows how the syntactic tree for Pearl and Garnet
is enriched with prosodic information, according to
our encoding choices. For readability, we use $ to
mark prosodic boundaries in trees instead of |, since
the latter could be confused with a unary tree branch.

and

Pearl $ Garnet

As the tree below shows, the depth of the prosody
branch at each embedding level corresponds to the

number of prosodic boundaries needed at that level.

and4

Pearl1 $2

$3

and7

Garnet5 $6 Rose8

Finally, the prosodic tree is fed to a yield function
to generate an output prosodified string. In particular,
the correct tree-to-string mapping can be obtained
by a modified version of a recursive-descent yield,
which enumerates nodes left-to-right, depth first,
and only enumerates the mother node of each
level after the boundary branch. This strategy is
depicted by the numerical subscripts in the tree above,
which reconstruct how the yield of the prosodically
annotated tree produces the string: Pearl || and
Garnet | and Rose. The rest of this section will focus
on how to obtain the correct tree encoding of prosodic
information, starting from a plain dependency tree.

4.3 Mathematical preliminaries
For a natural number n, we let [n] = {1,...,n}. A
ranked alphabet Σ is a finite set of symbols, each one
of which has a rank assigned by the function r :Σ→N.
We write Σ(n) to denote {σ∈Σ |r(σ)=n}, and σ(n)

indicates that σ has rank n.
Given a ranked alphabet Σ and a set A, TΣ(A) is

the set of all trees over Σ indexed byA. The symbols
in Σ are possible labels for nodes in the tree, indexed
by elements in A. The set TΣ of Σ-trees contains
all σ∈Σ(0) and all terms σ(n)(t1,...,tn) (n≥0) such
that t1, ... , tn ∈ TΣ. Given a term m(n)(s1, ... ,sn)
where each si is a subtree with root di, we callm the
mother of the daughters d1,...,dn (1≤ i≤n). If two
distinct nodes have the same mother, they are siblings.
Essentially, the rank of a symbol denotes the finite
number of daughters that it can take. Elements ofA
are considered as additional symbols of rank 0.
Example 1. Given Σ :=

{
a(0),b(0),c(2),d(2)

}
, TΣ is

an infinite set. The symbol a(0) means that a is
a terminal node without daughters, while c(2) is a
non-terminal node with two daughters. For example,
consider the tree below.

d

c

b b

d

b a

This tree corresponds to the term d(c(b,b),d(b,a)),
contained in TΣ. y



16

As is standard in defining meta-rules, we introduce
X as a countably infinite set of variable symbols
(X ∩ Σ = X) to be used as place-holders in the
definitions of transduction rules over trees.

4.4 Multi bottom-up tree transducers
We assume that the starting point of the prosodic pro-
cess is a plain syntactic tree. Thus, in order to derive
the correct prosodic encoding, we need to propagate
information about levels of coordination embedding
and about associativity. We adopt a bottom-up ap-
proach, and characterize this process in terms of multi
bottom-up tree transducers (MBOT; Engelfriet et al.,
1980; Lilin, 1981; Maletti, 2011). Essentially, MBOTs
generalize traditional bottom–up tree transducers in
that they allow states to pass more than one output sub-
tree up to subsequent transducer operations (Gildea,
2012). In other words, each MBOT rule potentially
specifies several parts of the output tree. This is high-
lighted by the fact that the transducer states (q∈Q) can
have rank greater than one — i.e. they can have more
than one daughter, where the additional daughters are
used to hold subtrees in memory. We follow Fülöp
et al. (2004) in presenting the semantics of MBOTs.

Definition 1 (MBOT). A multi bottom-up tree trans-
ducer (MBOT) is a tuple M = (Q,Σ,∆,root,qf ,R),
where Q, Σ∪∆, {root}, {qf} are pairwise disjoint,
such that:

• Q is a ranked alphabet withQ(0) =∅, called the
set of states

• Σ and ∆ are ranked input and output alphabets,
respectively

• root is a unary symbol, called the root symbol
• qf is a unary symbol called the final state

R is a finite set of rules of two forms:

• σ(q1(x1,1,...,x1,n1),...,qk(xk,1,...,xk,nk
))

→q0(t1,...,tn0)

where k ≥ 0, σ ∈ Σ(k), for every
i ∈ [k] ∪ {0}, qi ∈ Q(ni) for some ni ≥ 1, for
every j∈ [n0],tj∈T∆({xi,j|i∈ [k],j∈ [ni]}).

• root(q(x1,...,xn))→qf(t)

where n≥1,q∈Q(n), and t∈T∆(Xn). y

The derivational relation induced byM is a binary re-
lation⇒M over the set TΣ∪∆∪Q∪{root,qf} defined as
follows. For every ϕ,ψ∈TΣ∪∆∪Q∪{root,qf}, ϕ⇒M ψ
iff there is a tree β ∈ TΣ∪∆∪Q∪{root,qf}(X1) s.t. x1

occurs exactly once in β and either there is a rule

• σ(q1(x1,1,...,x1,n1),...,qk(xk,1,...,xk,nk
))→ r

inR

and there are trees Ti,j ∈ TΣ for every
i ∈ [k] and j ∈ [ni], s.t. ϕ =
β[σ(q1(t1,1, ... , t1,n1), ... , qk(tk,1, ... , tk,nk

))], and
ψ=β[r[xi,j←ti,j|i∈ [k],j∈ [ni]]]; or there is a rule

• root(q(x1,...,xn))→qf(t) inR

and there are trees ti∈T∆ for every i∈ [n] s.t. ϕ=
β[root(q(t1,...,tn))], and ψ=β[qf(t[t1,...,tn])]. The
tree transformation computed byM is the relation:

τM ={(s,t)∈TΣ×T∆ | root(s)⇒∗M qf(t)}

Intuitively, tree transductions are performed by
rewriting a local tree fragment as specified by one
of the rules in R. For instance, a rule can replace
a subtree, or copy it to a different position. Rules
apply bottom–up from the leaves of the input tree,
and terminate in an accepting state qf .

4.5 MBOT for recursive prosody
We want a transducer which captures Wagner
(2010)’s bottom-up cyclic procedure. Consider now
the MBOT Mpros = (Q,Σ,∆, root, qf , R), with
Q= {q∗,qc}, σc ∈{and,or}(Σ, σ∈Σ−{and,or},
and Σ = ∆. We use qc to indicate that Mpros has
verified that a branch contains a coordination (so σc),
with q∗ assigned to any other branch. As mentioned,
we use $ to mark prosodic boundaries in the trees
instead of |. The set of rulesR is as follows.

Rule 1 rewrites a terminal symbol σ as itself. The
MBOT for that branch transitions to q∗(σ).

σ→q∗(σ) (1)

Rule 2 applies to a subtree headed by
σc∈{and,or}, with only terminal symbols as daugh-
ters: σc(q∗(x),q∗(y)). It inserts a prosodic boundary
$ between the daughters x,y. The boundary $ is also
copied as a daughter of the mother qc, as record of
the fact that we have seen one coordination level.

σc(q∗(x),q∗(y))→qc(σc(x,$,y),$) (2)

We illustrate this in Figure 1 with a coordination
of two items, representing the mapping: [B and A]
→ B | and A. We also assume that sentence-initial
boundaries are vacuously interpreted.

We now consider cases where a coordination is
the mother not just of terminal nodes, but of other
coordinated phrases. Rule 3 handles the case in which
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and

B A

(1)
and

q∗

B

q∗

A

and

q∗

B

q∗

A

(2)

qc

and

B $ A

$

Figure 1: Example of the application of rules (1) and (2).
The numerical label on the arrow indicates which rule
was applied in order to rewrite the tree on the left as the
tree on the right.

the right sibling of the mother was also headed by
a coordination (as encoded by σc having qc as one
of its daughters). Here, qc is the result of a previous
rule application (e.g. rule 2) and it has two subtrees
itself: qc(w,y). Although we do not have access to
the internal labels of x, y, and w, by the format of the
previous rules we know that the right daughter of qc
(i.e. y) is the one that contains the strength informa-
tion. Then, rule 3 has three things to do. It increments
y by one boundary: $(y). It places $(y) in between
the two subtrees x and w. And, it copies $(y) as the
daughter of the new qc state in order to propagate
$(y) to the next embedding level (see Figure 2).

σc(q∗(x),qc(w,y))→qc(σc(x,$(y),w),$(y)) (3)

and

C qc

and

B $ A

$
(3)

qc

and

C $

$

and

B $ A

$

$

Figure 2: Example of the application of rule (3). For ease
of readability, we omit q∗ states over terminal nodes.

Rule 4 applies once all coordinate phrases up to the
root have been rewritten. It simply rewrites the root
as the final accepting state. It gets rid of the daughter
of qc that contains the strength markers, since there
is no need to propagate them any further.

root(qc(x,y))→qf(x) (4)

As the examples so far should have clarified,
Mpros as currently defined readily handles cases

where the embedding of the coordination is strictly
right branching, with the bulk of the work done via
rule 3. However, while these rules work well for
instances in which a coordination is always the right
daughter of a node, they cannot deal with cases in
which the coordination branches left, or alternates
between the two. This is easily fixed by introducing
variants to rule 3, which consider the position of
the coordination as marked by qc. Importantly, the
position of the copy of the boundary branch is not
altered, and it is always kept as the rightmost sibling
of qc. What changes is the relative position of the w
and x subbranches in the output (see Figure 3).

σc(qc(w,y),q∗(x))→qc(σc(w,$(y),x),$(y)) (5)

and

qc

and

B $ A

$

C

(5)

qc

and

and

B $ A

$

$

C

$

$

Figure 3: Left branching example as in rule (5).

Following the same logic, rule 6 handles cases like
[[A and B] and [C and D]], in which both daughters
of a coordination are headed by a coordination
themselves (see Figure 4).

σc(qc(x,z),qc(y,w))→qc($(x),σc(z,$(x),w)) (6)

and

qc

and

A $ B

$

$

qc

and

C $ D

$

$

(6)

qc

and

and

A $ B

$

$

and

C $ D

$

$

$

Figure 4: Example of the application of rule (6).

Finally, we need to take care of the flat prosody
or associativity issue. The MBOT Mpros as outlined
so far increases the depth of the boundary branch at
each level of embedding. Because we are adopting
binary branching trees, the current set of rules is
trivially unable to encode cases like [A and B and
C]. We follow Wagner’s assumption that semantic
information on the syntactic tree guides the prosody
cycles. Representationally, we mark this by using
specific labels on the internal nodes of the tree. We
assume that the flat constituent interpretation is
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Input Apply rule (2) Apply rule (3) Apply rule (3) Apply rule (4)

and

D and

C and

B A

and

D and

C qc

and

B $ A

$

and

D qc

and

C $

$

and

B $ A

$

$

qc

and

D $

$

$

and

C $

$

and

B $ A

$

$

$

and

D $

$

$

and

C $

$

and

B $ A

Figure 5: Walk-through of the transduction defined byMpros . For ease of readability, and to highlight how qc propagates
embedding information about the coordination, q∗ and qf states are omitted.

obtained by marking internal nodes as non-cyclic,
introducing the alphabet symbol σn:

σn(q∗(x),qc(w,y)→qc(σc(x,y,w),y) (7)

Essentially, rule 7 tells us that when a coordination
node is marked as σn,Mpros just propagates the level
of prosodic strength that it currently has registered (in
y), without increments (see Figure 6). This rule can be
trivially adjusted to deal with branching differences,
as done for rules 3 and 5.

andn

C qc

and

B $ A

$
(7)

qc

andn

C $ and

B $ A

$

Figure 6: Application of rule (7) for flat prosody.

A full, step by step Mpros transduction is shown
in Figure 5. Taken together, the recursive prosodic
patterns are fully characterized by Mpros when it is
adjusted with a set of rules to deal with alternating
branching and flat associativity. The tree transducer
generates tree representations where each level of
embedding is marked by a branch, which carries
information about the prosodic strength for that level.
As outlined in Section 4.2, this final representation
may then be fed to a modified string yield function
for dependency tree languages.

Dependency trees allowed us to present a transducer
with rules that are relatively easy to read. But, as men-
tioned before, this choice does not affect our general
result. Under the standard assumption that the distance
between the head of a phrase and its maximal projec-
tion is bounded,Mpros can be extended to phrase struc-

ture trees, by virtue of the bottom-up strategy being
intrinsically equipped with finite look-ahead. A switch
to phrase structure trees may prove useful for future
work on the interaction of prosody and movement.

5 Generating recursive prosody

The previous section characterized recursive prosody
over trees with a non-linear, deterministic MBOT.
This is a nice result, as MBOTs are generally well-
understood in terms of their algorithmic properties.
Moreover, this result is in line with past work explor-
ing the connections of MBOTs, tree languages, and
the complexity of movement and copying operations
in syntax (Kobele, 2006; Kobele et al., 2007, a.o.).

We can now ask what the complexity of this
approach is. MBOTs generate output string languages
that are potentially parallel multiple context-free
languages (PMCFL; Seki et al., 1991, 1993; Gildea,
2012; Maletti, 2014; Fülöp et al., 2005). Since this
class of string languages is more powerful than
context-free, the corresponding tree language is not
a regular tree language (Gécseg and Steinby, 1997).
This is not surprising, as MBOTs can be understood
as an extension of synchronous tree substitution
grammars (Maletti, 2014).

Notably, independently of our specific MBOT solu-
tion, prosody as defined in this paper generates at least
some output string languages that lack the constant
growth property — hence, that are PMCFLs. Consider
as input a regular tree language of left-branching
coordinationate phrases, where each level is simply of
the form and(X, Mary). Then−th level of embedding
from the top extends the string yield by n+2 symbols.
This immediately implies no constant growth, and
thus no semi-linearity (Weir, 1988; Joshi et al., 1990).

Interestingly though, the prosody MBOT devel-
oped here is fairly limited in its expressivity as the
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transducer states themselves do almost no work,
and most of the transduction rules in Mpros rely
on the ability to store the prosody strength branch.
Hence, the specific MBOT in this paper might turn
out to belong to a relatively weak subclass of tree
transductions with copying, perhaps a variant of input
strictly local tree transductions (cf. Ikawa et al., 2020;
Ji and Heinz, 2020), or a transducer variant of sensing
tree automata (cf. Fülöp et al., 2004; Kobele et al.,
2007; Maletti, 2011, 2014; Graf and De Santo, 2019).
Since all of those have recently been used in the
formal study of syntax, they are natural candidates
for a computational model of prosody, and their sensi-
tivity to minor representational difference might also
illuminate what aspects of syntactic representation
affect the complexity of prosodic processes.

Finally, one might worry that the mathematical
complexity is a confound of the representation we use,
rather than a genuine property of the phenomenon.
However, a representation of prosodic strength is
necessary and cannot be reduced further for two
reasons. First, strength cannot be reduced to syntactic
boundaries because a single prosodic edge ( may
correspond to |k for any k≥1. As discussed in depth
by Wagner (2005, 2010), one cannot simply convert
a syntactic tree into a prosodic tree by replacing the
labels of nonterminal nodes. Second, strength also
cannot be reduced to different categories of prosodic
constituents — e.g. assuming that | is a prosodic
phrase while || is an intonational phrase. As argued
in depth in (Wagner, 2005, 2010), these different
constituent types do not map neatly to prosodic
strength. Instead, these boundaries all encode relative
strengths of prosodic phrase boundaries.

6 Conclusion

This paper formalizes the computation of unbounded
recursive prosodic structures in coordination. Their
computation cannot be done by string-based finite-
state transducers. They instead need more expressive
grammars. To our knowledge, this paper is one of
the few (if only) formal results on how prosodic
phonology at the sentence-level is computationally
more expressive than phonology at the word-level.

As discussed above, recent work in prosodic
phonology relies on the assumption that prosodic
structure can be recursive. However, because such
work usually uses bounded-recursion, such phenom-
ena are computationally regular. Departing from this
stance, this paper focused on the prosodic phenomena
reported in Wagner (2005) as a core case study,

because of the following fundamental properties:

• The syntax has unbounded recursion.
• The prosody has unbounded recursion.
• All recursive prosodic constituents have the

same prosodic label (= a prosodic phrase).
• The recursive prosodic constituents have

acoustic cues marking different strengths.
• There is an algorithm which explicitly assigns

the recursive prosodic constituents to these
different strengths.

In this paper, we focused on explicitly generating
the prosodic strengths at each recursive prosodic
levels, putting aside the mathematically simpler task
of converting a recursive syntactic tree into a recursive
prosodic tree (Elfner, 2015; Bennett and Elfner,
2019) — which is a process essentially analogous to
a relabeling of the nonterminal nodes of the syntactic
tree, without care for the prosodic strength. The
mapping studied in this paper has been conjectured in
the past to be computationally more expressive than
regular languages or functions (Yu and Stabler, 2017).
Here, we formally verified that hypothesis.

An open question then is to find other empirical
phenomena which also have the above properties.
One potential area of investigation is the assignment
of relative prominence relations in English compound
prosody (Chomsky and Halle, 1968). However, En-
glish compound prosody is a highly controversial area.
It is unclear what is the current consensus on an exact
algorithm for these compounds, especially one that
utilizes recursion and is not based on impressionistic
judgments (Liberman and Prince, 1977; Gussenhoven,
2011). In this sense, the mathematical results in this
paper highlight the importance of representational
commitments and of explicit assumptions in the study
of prosodic expressivity. Our paper might then help
identify crucial issues in future theoretical and em-
pirical investigations of the syntax-prosody interface.
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Zoltán Fülöp, Armin Kühnemann, and Heiko Vogler.
2004. A bottom-up characterization of deterministic
top-down tree transducers with regular look-ahead.
Information Processing Letters, 91(2):57–67.
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