
Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research

in Phonetics, Phonology, and Morphology,

August 5, 2021. ©2021 Association for Computational Linguistics

pages 148–153

148

CLUZH at SIGMORPHON 2021 Shared Task on Multilingual
Grapheme-to-Phoneme Conversion: Variations on a Baseline

Simon Clematide and Peter Makarov
Department of Computational Linguistics

University of Zurich, Switzerland
simon.clematide@cl.uzh.ch makarov@cl.uzh.ch

Abstract

This paper describes the submission by the
team from the Department of Computational
Linguistics, Zurich University, to the Mul-
tilingual Grapheme-to-Phoneme Conversion
(G2P) Task 1 of the SIGMORPHON 2021
challenge in the low and medium settings. The
submission is a variation of our 2020 G2P
system, which serves as the baseline for this
year’s challenge. The system is a neural trans-
ducer that operates over explicit edit actions
and is trained with imitation learning. For this
challenge, we experimented with the follow-
ing changes: a) emitting phoneme segments in-
stead of single character phonemes, b) input
character dropout, c) a mogrifier LSTM de-
coder (Melis et al., 2019), d) enriching the de-
coder input with the currently attended input
character, e) parallel BiLSTM encoders, and
f) an adaptive batch size scheduler. In the low
setting, our best ensemble improved over the
baseline, however, in the medium setting, the
baseline was stronger on average, although for
certain languages improvements could be ob-
served.

1 Introduction

The SIGMORPHON Grapheme-to-Phoneme Con-
version task consists of mapping a sequence of
characters in some language into a sequence of
whitespace delimited International Phonetic Alpha-
bet (IPA) symbols, which represent the pronunci-
ation of this input character sequence (not neces-
sarily a phonemic transcription, despite the name
of the task) according to the language-specific con-
ventions used in the English Wiktionary.1 The data
was collected and post-processed by the WikiPron
project (Lee et al., 2020). Post-processing removes
stress and syllable markers and applies IPA seg-
mentation for combining and modifier diacritics as

1https://en.wiktionary.org/

Lang. Grapheme Phoneme Wiktionary
ice persóna pʰ ɛ r̥ s o uː n a /ˈpʰɛr̥.souːna/
fra williams w i l j a m z /wi.ljamz/
bul засичайки z ɐ s t͡ʃ ʃ ə j k ̡i /zɐˈsitʃəjk i̡/
kor 검출 k ɘː m t͡ɕʰ u ɭ [ˈkʌ̹(ː)mt͡ɕʰuɭ]

Figure 1: Examples of the original G2P shared task data
from four different languages and their pronunciation
entries in Wiktionary.

well as contour information. See Figure 1 for the
post-processed shared task entries and the original
entries from the Wiktionary pronunciation section.
For more information, we refer the reader to the
shared task overview paper (Ashby et al., 2021).

In the low and medium data setting, the 2021
SIGMORPHON multilingual G2P challenge fea-
tures ten different languages from various phyloge-
netic families and written in different scripts. The
low setting comes with 800 training, 100 develop-
ment and 100 test examples. In the medium setting,
the data splits are 10 times larger. Although it is
permitted to use external resources for the medium
setting, all our models used exclusively the official
training material.

Our system is a neural transducer with pointer
network-like monotonic hard attention (Aharoni
and Goldberg, 2017) that operates over explicit
character edit actions and is trained with imita-
tion learning (Daumé III et al., 2009; Ross et al.,
2011; Chang et al., 2015). It is an adaptation of
our type-level morphological inflection generation
system that proved its data efficiency and perfor-
mance in the SIGMORPHON 2018 shared task
(Makarov and Clematide, 2018). G2P shares many
similarities with traditional morphological string
transduction: The changes are mostly local and of-
ten simple depending on how close the spelling
of a language reflects pronunciation. For most lan-
guages, a substantial part of the work is actually

https://en.wiktionary.org/

149

p(#)

Σ : ε / p(DEL(Σ)) ε : Ω / p(INS(Ω))

Σ : Ω / p(SUB(Σ, Ω))

Figure 2: Stochastic edit distance (Ristad and Yianilos,
1998): A memoryless probabilistic FST. Σ and Ω stand
for any input and output symbol, respectively. Transi-
tion weights are to the right of the slash and p(#) is
the final weight.

applying character-by-character substitutions. An
extreme case is Georgian, which features an al-
most deterministic one-to-one mapping between
graphemes and IPA segments that can be learned
almost perfectly from little training data.2

The main goal of our submission was to test
whether our last year’s system, which is the base-
line for this year’s G2P challenge, already exhausts
the potential of its architecture, or whether changes
to the output representation (IPA segments vs. IPA
Unicode codepoints; input character dropout), to
the LSTM decoder (the mogrifier steps and the
additional input of the attended character), to the
BiLSTM encoder (parallel encoders), or to other
hyper-parameter settings (adaptive batch size) can
improve the results without replacing the LSTM-
based encoder/decoder setup by a Transformer-
based architecture (see e.g. Wu et al. (2021) for
Transformer-based state-of-the-art results).

2 Model description

The model defines a conditional distribution
over substitution, insertion and deletion edits
pθ(a | x) =

∏|a|
j=1 pθ(aj | a<j ,x), where x =

x1 . . . x|x| is an input sequence of graphemes and
a = a1 . . . a|a| is an edit action sequence. The
output sequence of IPA symbols y is determin-
istically computed from x and a. The model is
equipped with an LSTM decoder and a bidirec-
tional LSTM encoder (Graves and Schmidhuber,
2005). At each decoding step j, the model attends
to a single grapheme xi. The attention steps mono-
tonically through the input sequence, steered by the
edits that consume input (e.g. a deletion shifts the
attention to the next grapheme xi+1).

2Even a reduced training set of only 100 items allows a
single model to achieve over 90% accuracy on the Georgian
test set.

The imitation learning algorithm relies on an
expert policy for suggesting intuitive and appro-
priate character substitution, insertion and deletion
actions. For instance, for the data sample кит 7→
/kjit/ (Russian: “whale”), we would like the fol-
lowing most natural edit sequence to attain the low-
est cost: SUBS[k], INS[j], SUBS[i], SUBS[t]. The cost
function for these actions is estimated by fitting
a Stochastic Edit Distance (SED) model (Ristad
and Yianilos, 1998) on the training data, which
is a memoryless weighted finite-state transducer
shown in Figure 2. The resulting SED model is
integrated into the expert policy, the SED policy,
that uses Viterbi decoding to compute optimal edit
action sequences for any point in the action search
space: Given a transducer configuration of partially
processed input, find the best edit actions to gen-
erate the remaining target sequence suffix. Dur-
ing training, an aggressive exploration schedule
psampling(i) = 1

1+exp(i) where i is the training
epoch number, exposes the model to configurations
sampled by executing edit actions from the model.
For an extended description of the SED policy and
IL training, we refer the reader to the last year’s
system description paper (Makarov and Clematide,
2020).

2.1 Changes to the baseline model

This section describes the changes that we imple-
mented in our submissions.

IPA segments vs. IPA Unicode characters:
Emitting IPA segments in one action (includ-
ing its whitespace delimiter), e.g., for the Rus-
sian example from above SUBS[kj•],3 instead
of producing the same output by three actions
SUBS[k], INS[j], INS[•] reduces the number of ac-
tion predictions (and potential errors) considerably,
which is beneficial. On the other hand, this might
lead to larger action vocabularies and sparse train-
ing distributions. Therefore, we experimented with
character (CHAR) and IPA segment (SEG) edit ac-
tions in our submission. Table 1 shows statistics
on the resulting vocabulary sizes if CHAR or SEG

actions are used. Some caution is needed though
because some segments might only appear once in
the training data, e.g. English has an IPA segment
s:: that only appears in the word “psst”.

Input character dropout: To prevent the model
from memorizing the training set and to force it to
learn about syllable contexts, we randomly replace

3• denotes whitespace symbol.

150

S Language NFD< SEG CNFC CNFD

L ady 0.5% 67 37 37
L gre 4.3% 33 33 33
L ice 30.3% 60 36 36
L ita 0.8% 32 29 29
L khm 0.5% 47 36 34
L lav 12.4% 73 51 36
L mlt latn 9.0% 41 29 29
L rum 0.3% 45 31 31
L slv 4.3% 48 38 30
L wel sw 2.4% 43 37 37
M arm e 0.0% 54 31 31
M bul 3.5% 46 34 34
M dut 0.8% 49 39 39
M fre 0.1% 39 36 36
M geo 0.0% 33 27 27
M hbs latn 3.7% 63 43 33
M hun 42.5% 66 37 37
M jpn hira 36.1% 64 42 39
M kor 99.8% 60 46 46
M vie hanoi 88.2% 49 44 44
H eng us 0.0% 124 83 80
Average 16.2% 54.1 39.0 37.0

Table 1: Statistics on Unicode normalization for low
(L), medium (M), and high (H) settings (column S).
Column NFD< specifies the percentage of training
items where NFD normalized graphemes had smaller
length difference to phonemes than in NFC normal-
ization. Column SEG gives the vocabulary size of IPA
segments (the counts are the same for NFC and NFD).
Column CNFC reports the phoneme vocabulary size in
NFC Unicode characters (CHAR) and CNFD in NFD.

an input character with the UNK symbol according
to a linearly decaying schedule.4

Mogrifier LSTM decoder: Mogrifier LSTMs
(Melis et al., 2019) iteratively and mutually up-
date the hidden state of a previous time step with
the current input before feeding the modified hid-
den state and input into a standard LSTM cell. On
language modeling tasks with smaller corpora, this
technique closed the gap between LSTM and Trans-
former models. We apply a standard mogrifier with
5 rounds of updates in our experiments. We expect
the mogrifier decoder to profit from IPA segmen-
tation because in this setup the decoder mogrifies
neighboring IPA phoneme segments and not space

4For all experiments, we start with a probability of 50%
for UNKing a character in a word and reduce this rate over 10
epochs to a minimal probability of 1%. Light experimentation
on a few languages led to this cautious setting, which might
leave room for further improvement.

and IPA characters.
Enriching the decoder input with the cur-

rently attended input character: The auto-
regressive decoder of the baseline system uses the
LSTM decoder output of the previous time step
and the BiLSTM encoded representation of the
currently attended input character as input. Intu-
itively, by feeding the input character embedding
directly into the decoder (as a kind of skip con-
nection), we want to liberate the BiLSTM encoder
from transporting the hard attention information
to the decoder, thereby motivating the sequence
encoder to focus more on the contextualization of
the input character.

Multiple parallel BiLSTM encoders: Convo-
lutional encoders typically use many convolutional
filters for representation learning and Transformer
encoders similarly feature multi-head attention. Us-
ing several LSTM encoders in parallel has been
proposed by Zhu et al. (2017) for language model-
ing and translation and was e.g. also successfully
used for named entity recognition (Žukov-Gregorič
et al., 2018). Technically, the same input is fed
though several smaller LSTMs, each with its own
parameter set, and then their output is concatenated
for each time step. The idea behind parallel LSTM
encoders is to provide a more robust ensemble-style
encoding with lower variance between models. For
our submission, there was not enough time to sys-
tematically tune the input and hidden state sizes as
well as the number of parallel LSTMs.

Adaptive batch size scheduler: We combine
the ideas of “Don’t Decay the Learning Rate, In-
crease the Batch Size” (Smith et al., 2017) and
cyclical learning schedules by dynamically enlarg-
ing or reducing the batch size according to develop-
ment set accuracy: Starting with a defined minimal
batch size m threshold, the batch size for the next
epoch is set to bm − 0.5c if the development set
performance improved, or bm+ 0.5c otherwise.5

If a predefined maximum batch size is reached,
the batch size is reset in one step to the minimum
threshold. The motivation for the reset comes from
empirical observations that going back to a small
batch size can help overcome local optima. With
larger training sets, we subsample the training sets
per epoch randomly in order to have a more dy-
namic behavior.6

5See also the recent discussion on learning rates and batch
sizes by Wu et al. (2021).

6The subsample size is set to 3,000 items per epoch in all
our experiments.

151

2.2 Unicode normalization
For some writing systems, e.g. for Korean or Viet-
namese, applying Unicode NFD normalization to
the input has a great impact on the input sequence
length and consequently on the G2P character cor-
respondences. The decomposition of diacritics and
other composing characters for all languages, as
performed in the baseline, has the disadvantage of
longer input sequences. We apply a simple heuris-
tic to decide on NFD normalization based on a
criterion for the minimum length distance between
graphemes and phonemes: If more than 50% of the
training grapheme sequences in NFD normalization
have a smaller length difference compared to the
phoneme sequence than their corresponding NFC
variants, then NFD normalization is applied. See
Table 1 for statistics, which indicate a preference
for NFD for only 2 languages.

3 Submission details

Modifications such as mogrifier LSTMs, additional
input character skip connections, or parallel en-
coders increase the number of model parameters
and make it difficult to compare the baseline system
directly with its variants. Additionally, we did not
have enough time before the submission to system-
atically explore and fine-tune for the best combina-
tion of model modifications and hyper-parameters.
In the end, after some light experimentation we had
to stick to settings that might not be optimal.

We train separate models for each language on
the official training data and use the development
set exclusively for model selection. As beam de-
coding for mogrifier models sometimes suffered
compared to greedy decoding, we built all ensem-
bles from greedy model prediction. Like the base-
line system (B), we train the SED model for 10
epochs, use one-layer LSTMs, hidden state dimen-
sion 200 for the decoder LSTMs and action embed-
ding dimension 100. For the low (L) and medium
(M) setting, we have the following specific hyper-
parameters:

• patience: 12 (B), 24 (L), 18 (M)
• maximal epochs: 60 (B), 80 (L/M)
• minimal batch size:7 3 (L), 5 (M)
• maximal batch size: 10 (L/M)
• character embedding dimension:8 100 (B),
7The baseline system’s batch size is 5.
8The motivation for lowering the character embedding

size comes from adding the input character to the mogrifier
decoder LSTM, which increases the parameter size for each
of the 5 update weight matrices.

50(L/M)
• LSTM encoder hidden state dimension: 200

(B), 300 (L/M) divided by 6 parallel encoders.

We submit 3 ensemble runs for the low setting:
CLUZH-1: 15 models with CHAR input,
CLUZH-2: 15 models with SEG input,
CLUZH-3: 30 models with CHAR or SEG input.

We submit 4 ensemble runs for the medium setting:
CLUZH-4: 5 models with CHAR input,
CLUZH-5: 10 models with SEG input,
CLUZH-6: 5 models with SEG input,
CLUZH-7: 15 models with CHAR or SEG input.

Due to a configuration error, medium results were
actually computed without two add-ons: mogrifier
LSTMs and the additional input character. In post-
submission experiments, we computed runs that
enabled these features and report their results as
well (CLUZH-4m/5m).

4 Results and discussion

Table 2 shows a comparison of results for the low
setting. We report the development and test set
average word error rate (WER) performance to
illustrate the sometimes dramatic differences be-
tween these sets (e.g. Greek). Both runs containing
CHAR action emitting models (CLUZH-1, CLUZH-
3) have second best results (the best system reaches
24.1). The SEG models with IPA segmentation ac-
tions excel on some languages (Adyghe, Latvian),
but fail badly on Slovene and Maltese. Only for
Romanian and Italian, we see an improvement for
the 30-strong mixed ensemble. The expectation
that the size difference between the SEG and CHAR

vocabulary correlates with language-specific per-
formance differences cannot be confirmed given
the numbers in Table 1. E.g. Latvian features 73
different IPA segments but only 51 IPA characters,
still, the SEG variant shows only 49% WER.

Table 3 shows a comparison of results for the
medium setting. We report selected development
and test set average performance to illustrate that
also in this larger setting, the expectation of a
slightly higher development set performance does
not always hold (e.g. Korean or Japanese). On the
other hand, Bulgarian and Dutch have a sharp in-
crease in errors on the test set compared to the de-
velopment set. The comparison between runs with
the mogrifier LSTM decoder and the attended char-
acter input (CLUZH-Nm) or without (C-N) suggest
that these changes are not beneficial. In the medium
setting, C-4 (CHAR) and C-6 (SEG) can be directly

152

CLUZH-1 (CHAR) CLUZH-2 (SEG) C-3 OUR BASELINE BSL Other
AVERAGE E AVERAGE E E AVERAGE E E

LNG dev test sd test dev test sd test test dev test sd test test test
ady 25.0 27.8 3.3 24 25.6 26.2 1.8 22 22 26 25.2 2.8 21 22 22
gre 6.5 22.2 2.3 20 5.1 22.8 2.8 22 20 5 26.0 3.3 25 21 21
ice 14.8 12.4 2.4 10 16.1 14.5 2.2 12 10 21 15.8 2.1 12 12 11
ita 24.5 27.0 2.2 23 24.4 26.3 3.2 24 21 25 22.7 3.5 19 19 20
khm 39.8 38.2 3.4 32 40.3 36.9 2.2 33 32 39 40.4 2.5 34 34 28
lav 47.2 53.7 2.8 53 46.9 55.3 3.7 49 49 44 56.5 2.2 54 55 49
mlt 17.0 18.0 2.4 12 19.7 21.2 2.9 16 14 23 21.8 5.1 17 19 18
rum 11.1 13.7 1.8 13 10.3 14.1 1.0 13 12 11 12.5 2.1 10 10 10
slv 46.4 56.4 2.7 50 48 60.2 3.4 59 55 44 54.2 2.1 51 49 47
wel 18.0 14.9 3.5 10 15.6 15.7 1.8 13 12 19 14.8 2.0 12 10 12
AVG 25.0 28.4 2.7 24.7 25.2 29.3 2.5 26.3 24.7 25.7 29.0 2.8 25.5 25.1 23.8

Table 2: Overview of the dev and test results in the low setting. C-3 is CLUZH-3 ensemble. OUR BASELINE
shows the results for our own run of the baseline configuration. They are different from the official baseline results
(BSL) due to different random seeds. Column sd always reports the test set standard deviation. E means ensemble
results.

C-4 CLUZH-4m (CHAR) C-5 CLUZH-5m (SEG) C-5l C-6 C-7 OUR BASELINE BSL
E5 AVERAGE E5 E10 AVERAGE E10 E10 E5 E15 AVERAGE E10 E10

LNG test dev test sd test test dev test sd test test test test dev test sd test test
arm 7.1 5.4 7.9 0.7 6.4 6.6 5.1 7.2 0.5 6.2 7.1 6.6 6.4 5.8 7.8 0.7 6.5 7.0
bul 20.1 12.2 20.4 2.0 19.9 19.2 11.9 23.3 2.1 22.4 16.2 18.8 19.7 12.5 19.7 1.7 19.3 18.3
dut 15.0 13.1 18.3 1.2 14.8 14.9 12.4 16.8 0.6 14.6 14.5 15.6 14.7 13.1 17.7 1.3 14.3 14.7
fre 7.5 8.4 9.7 0.6 8.2 7.5 8.5 9.5 0.7 8.1 8.1 7.5 7.6 8.9 9.1 0.5 7.8 8.5
geo .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
hbs 38.4 43.2 44.5 1.1 39.1 35.6 42.4 44.3 1.5 36.8 35.7 37.0 35.3 39.1 38.9 1.2 33.6 32.1
hun 1.5 1.8 1.8 0.1 1.6 1.2 1.7 1.5 0.3 1.0 0.9 1.0 1.0 1.7 2.0 0.3 1.8 1.8
jpn 5.9 6.9 6.8 0.2 5.5 5.3 6.8 6.5 0.3 5.4 5.2 5.5 5.0 6.8 6.4 0.5 5.5 5.2
kor 16.2 21.3 18.6 0.7 17.4 16.9 19.6 18.3 0.8 16.2 16.1 17.2 16.3 20.4 18.9 0.8 16.5 16.3
vie 2.3 1.2 2.4 0.1 2.3 2.0 1.2 2.1 0.1 2.1 2.2 2.1 2.0 1.4 2.5 0.2 2.4 2.5
AVG 11.4 11.4 13.0 0.7 11.5 10.9 11.0 12.9 0.7 11.3 10.6 11.1 10.8 11.0 12.3 0.7 10.8 10.6

Table 3: Overview of the development and test results in the medium setting. C-N is CLUZH-N ensemble. CLUZH-
Nm runs use the mogrifier decoder and additional input character in decoder (these are post-submisson runs). C-5l
uses larger parameterization and reaches WER 10.60 (BSL: 10.64). OUR BASELINE shows the results for our
own run of the baseline configuration. Boldface indicates best performance in official shared task runs; underline
marks the best performance in post-submission configurations. Column sd always reports the test set standard
deviation. En means n-strong ensemble results.

compared because they feature the same ensem-
ble size: The results suggest that IPA segmentation
(SEG) for higher resource settings (and the specific
medium languages) seems to be slightly better than
CHAR. C-5l is a post-submission run with a larger
parametrization.9 This post-submission ensemble
outperforms the baseline system by a small mar-
gin, but still struggles with Serbo-Croatian (hbs)
compared to the official baseline results.

In a post-submission experiment on the high set-
ting, we built a large10 5-strong SEG-based ensem-

9Three parallel encoders with 200 hidden units each; char-
acter embedding dimension of 200; no mogrifier; no input
character added to the decoder.

10Character embedding dimension: 200; action embedding
dimension: 100; 10 parallel encoders with hidden state dimen-

ble. It achieves an impressive low word error rate
of 38.7 compared to the official baseline (41.94)
and the best other submission (37.43).

Future work: Performance variance between
different runs of our LSTM-based architecture
makes it difficult to reliably assess the actual useful-
ness of the small architectural changes; extensive
experimentation, e.g. in the spirit of Reimers and
Gurevych (2017), is needed for that. One should
also investigate the impact of the official data set
splits: The observed differences between the de-
velopment set and test set performance in the low

sion 100; decoder hidden state dimension: 500; minimal batch
size: 5; maximal batch size: 20; epochs: 200 (subsampled to
3,000 items); patience: 24; no mogrifier; no input character
added to the decoder.

153

setting for Slovene or Greek are extreme. Cross-
validation experiments might help assess the true
difficulty of the WikiPron datasets.

5 Conclusion

This paper presents the approach taken by the
CLUZH team to solving the SIGMORPHON 2021
Multilingual Grapheme-to-Phoneme Conversion
challenge. Our submission for the low and medium
settings is based on our successful SIGMORPHON
2020 system, which is a majority-vote ensemble
of neural transducers trained with imitation learn-
ing. We add several modifications to the existing
LSTM architecture and experiment with IPA seg-
ment vs. IPA character action predictions. For the
low setting languages, our IPA character-based run
outperforms the baseline and ranks second overall.
The average performance of segment-based action
edits suffers from performance outliers for certain
languages. For the medium setting languages, we
note small improvements on some languages, but
the overall performance is lower than the baseline.
Using a mogrifier LSTM decoder and enriching
the encoder input with the currently attended in-
put character did not improve performance in the
medium setting. Post-submission experiments sug-
gest that network capacity for the submitted sys-
tems was too small. A post-submission run for the
high-setting shows considerable improvement over
the baseline.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In ACL.

Lucas F.E Ashby, Travis M. Bartley, Simon Clematide,
Luca Del Signore, Cameron Gibson, Kyle Gorman,
Yeonju Lee-Sikka, Peter Makarov, Aidan Malanoski,
Sean Miller, Omar Ortiz, Reuben Raff, Arundhati
Sengupta, Bora Seo, Yulia Spektor, and Winnie Yan.
2021. Results of the Second SIGMORPHON 2021
Shared Task on Multilingual Grapheme-to-Phoneme
Conversion. In Proceedings of 18th SIGMORPHON
Workshop on Computational Research in Phonetics,
Phonology, and Morphology.

Kai-Wei Chang, Akshay Krishnamurthy, Hal Daumé,
III, and John Langford. 2015. Learning to search
better than your teacher. In PMLR, volume 37 of
Proceedings of Machine Learning Research.

Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based structured prediction. Machine
learning, 75(3).

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5).

Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth Garza,
Yeonju Lee-Sikka, Sean Miller, Alan Wong, Arya D.
McCarthy, and Kyle Gorman. 2020. Massively mul-
tilingual pronunciation modeling with WikiPron. In
LREC.

Peter Makarov and Simon Clematide. 2018. Imitation
learning for neural morphological string transduc-
tion. In EMNLP.

Peter Makarov and Simon Clematide. 2020. CLUZH
at SIGMORPHON 2020 shared task on multilingual
grapheme-to-phoneme conversion. In Proceedings
of the 17th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology.

Gábor Melis, Tomás Kociský, and Phil Blunsom. 2019.
Mogrifier LSTM. CoRR, abs/1909.01792.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
EMNLP.

Eric Sven Ristad and Peter N Yianilos. 1998. Learning
string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5).

Stephane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In
PMLR, volume 15 of Proceedings of Machine Learn-
ing Research.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. 2017. Don’t decay the learning rate, increase the
batch size. CoRR, abs/1711.00489.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021.
Applying the transformer to character-level transduc-
tion. In EACL.

Danhao Zhu, Si Shen, Xin-Yu Dai, and Jiajun Chen.
2017. Going wider: Recurrent neural network with
parallel cells. CoRR, abs/1705.01346.

Andrej Žukov-Gregorič, Yoram Bachrach, and Sam
Coope. 2018. Named entity recognition with par-
allel recurrent neural networks. In ACL.

http://proceedings.mlr.press/v37/changb15.html
http://proceedings.mlr.press/v37/changb15.html
https://www.aclweb.org/anthology/2020.lrec-1.521
https://www.aclweb.org/anthology/2020.lrec-1.521
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
https://doi.org/10.18653/v1/2020.sigmorphon-1.19
http://arxiv.org/abs/1909.01792
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
https://www.aclweb.org/anthology/2021.eacl-main.163
https://www.aclweb.org/anthology/2021.eacl-main.163
http://arxiv.org/abs/1705.01346
http://arxiv.org/abs/1705.01346
https://doi.org/10.18653/v1/P18-2012
https://doi.org/10.18653/v1/P18-2012

