Abstract
Automatic Speech Recognition (ASR) technology presents the possibility for medical professionals to document patient record, diagnosis, postoperative care, patrol records, and etc. that are now done manually. However, earlier research aimed on Chinese medical speech corpus (ChiMeS) has two shortcomings: first is the lack of punctuation, resulting in reduced readability of the output transcript, and second is the poor recognition error rate, affecting its application put to the fields. Accordingly, the contributions of this paper consist of: (1) A punctuated Chinese medical corpus psChiMeS-14 newly annotated from ChiMeS-14, which is the collection of 516 anonymized medical record readouts of 867 minutes long, recorded by 15 professional nursing staff from Taipei Hospital of the Ministry of Health and Welfare. psChiMeS-14 is manually punctuated with: colons, commas, and periods, ready for general end-to-end ASR models. (2) A self-attention based speech recognition solution by conformer networks. Trained by and tested on psChiMeS-14 corpus, the solutions deliver state-of-the-art recognition performance: CER (character error rate) 10.5%, and KER (Keyword error rate) of 13.10%, respectively, which is contrasted to the 15.70% CER and the 22.50% KER by an earlier reported Joint CTC/Attention architecture.