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Abstract

As AI reaches wider adoption, designing sys-
tems that are explainable and interpretable be-
comes a critical necessity. In particular, when
it comes to dialogue systems, their reasoning
must be transparent and must comply with hu-
man intuitions in order for them to be inte-
grated seamlessly into day-to-day collabora-
tive human-machine activities. Here, we de-
scribe our ongoing work on a (general pur-
pose) dialogue system equipped with a spatial
specialist with explanatory capabilities. We ap-
plied this system to a particular task of char-
acterizing spatial configurations of blocks in a
simple physical Blocks World (BW) domain
using natural locative expressions, as well as
generating justifications for the proposed spa-
tial descriptions by indicating the factors that
the system used to arrive at a particular conclu-
sion.

1 Introduction

While black box models like GPT-3 (Brown et al.,
2020) demonstrate impressive performance on a va-
riety of isolated benchmarks, they are still subject
to significant drawbacks (Marcus, 2018). In partic-
ular, as AI systems reach wider adoption, explain-
ability and interpretability become critical features.
It is our belief that, instead of focusing exclusively
on bigger datasets and models, or cross-modal
learning, a somewhat different approach is required,
viz., replacement of “tabula rasa” black boxes with
architectures that utilize structured representations
based around general reasoning, while in a form
still amenable to deep learning techniques.

Below, we describe our ongoing work on a sys-
tem composed of a general-purpose dialogue man-
ager and a spatial specialist module, capable of
generating spatial descriptions of configurations in
the physical Blocks World domain and supplying
justifications of its spatial descriptions. The domain

contains several uniquely named blocks placed on
a table, where a user can ask questions about rel-
ative block locations (e.g., “Is the A block to the
right of the B block?”) and request clarifications
on why particular relations hold. Models for spa-
tial prepositions used by the spatial specialist are
probabilistic predicates computed hierarchically, in
a tree-like fashion, as a combination of more primi-
tive relations. These primitive relations in the tree
hierarchy can be retrieved to provide an explana-
tion for system’s outputs. For example, assume that
when asked about the location of the block A, the
system generates a response of the form “the block
A is next to the block B”. If queried as to why the
system arrived at that particular judgment, the spa-
tial specialist retrieves the underlying component
relations from which “next to” is composed (prox-
imity and similar elevation) and returns the relevant
relations to the dialogue manager that generates a
human-readable response.

2 Related Work

Recent years have seen a push towards explainable
AI (Otte, 2013; Samek and Müller, 2019). While
classical symbolic AI systems are typically both
explainable and interpretable by design, with re-
gard to explainability in a pure neural network set-
ting, many recent efforts have been concentrated
around modular neural network architectures (An-
dreas et al., 2016; Hu et al., 2018; Gupta et al.,
2019) and architectures that directly generate the
explanations for their own operation (Andreas et al.,
2017). The former is concerned, in general, with
building a network out of specified blocks (mod-
ules) trained to perform particular operation (e.g.,
finding, filtering, counting, etc.) on the input or
process a certain aspect of the task (e.g., recogniz-
ing a category vs. recognizing a property such as
color, etc.) Explanations of the model’s outputs
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then are derived from clear-cut understanding of
the purpose of each module and their interconnec-
tions. The latter uses various additional blocks to
generate explanations, e.g., in the form of plain
English text, based directly on the model’s inner
state.

Our approach to spatial preposition modeling is
inspired by the criteria that have been discussed in
linguistically oriented studies (Garrod et al., 1999;
Herskovits, 1985; Tyler and Evans, 2003). Stud-
ies of human judgements of spatial relations show
that overly formal qualitative models with sharp
boundaries generally cannot do justice to the us-
age of locative expressions in natural settings. Our
models are implemented along the same general
lines as those in (Platonov and Schubert, 2018) and
(Richard-Bollans et al., 2020b,a). These studies
model prepositions as constructed from more ba-
sic physico-geometrical primitives. Modern neural
work on spatial relation-learning in the BW domain
is exemplified by (Bisk et al., 2018).

3 Blocks World System and Eta Dialogue
Manager

Fig. 1a, 1b depict our physical blocks world (con-
sisting of a square table with several cubical blocks,
two Kinect sensors and a display) and the system’s
software architecture. The blocks are color-coded
as green, red, or blue, and marked with corporate
logos which serve as unique identifiers. The system
uses audio-visual I/O: the block tracking module
periodically updates the block positioning informa-
tion by reading from the Kinect cameras and an
interactive avatar, David, is used for communica-
tion. The block arrangement is modeled as a 3D
scene in Blender, which acts as system’s “mental
image” of the state of the world, and all the spatial
predicates are computed based on this 3D scene.

The Eta dialogue manager (DM) is responsible
for semantic parsing and dialogue control. Eta is
designed to follow a modifiable dialogue schema,
the contents of which are formulas in episodic logic
(Schubert and Hwang, 2000) with open variables
describing successive steps (events) expected in the
course of the interaction. These are either realized
directly as instantiated actions, or expanded into
sub-schemas. 1

In order to instantiate schema steps and inter-
pret user inputs, the DM uses hierarchical pattern

1Intended actions obviated by earlier events may be
deleted.

(a) Blocks world setup

(b) Dialogue pipeline

Figure 1: System overview.

transduction, similarly to the mechanism used by
the LISSA system (Razavi et al., 2017) to extract
context-independent gist clauses given the prior ut-
terance. Transduction hierarchies specify patterns
at their nodes to be matched to input, with terminal
nodes providing result templates, or specifying a
subschema. The pattern templates look for particu-
lar words or word features (including “wildcards”
matching any word sequence of some length). Eta
uses gist clause extraction for tidying-up the user’s
utterance, and then derives an unscoped logical
form (ULF) (Kim and Schubert, 2019) (a prelim-
inary form of the episodic logic syntax of the di-
alogue schema) from the tidied-up input. ULF
differs from similar semantic representations, e.g.,
AMR, in that it is close to the surface form of En-
glish, type-consistent, and covers a rich set of phe-
nomena. To derive ULFs, we introduced semantic
composition into the transduction trees. The re-
sulting parser is quite efficient and accurate for the
domain at hand. The input is recursively broken
into constituents, such as a VP segment, until a lex-
ical subroutine supplies ULFs for individual words,
which are propagated back up and composed into
larger expressions by the “calling” node. The effi-
ciency and accuracy of the approach lies in the fact
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that hierarchical pattern matching can segment ut-
terances into meaningful parts, so that backtracking
is rarely necessary. An example of a transduction
tree being used for parsing a historical question
into ULF is shown and described in Figure 2. As
can be seen from this example, the resulting ULF
retains much of the surface structure, but uses se-
mantic typing and adds operators to indicate tense,
inversion, and other linguistic phenomena. Eta also
has a limited coreference module utilizing syntactic
constraints, recency, and other heuristics.

Figure 2: An example ULF parse, with the input shown
in red, a ULF parse tree shown in green, and the fi-
nal query ULF shown in blue. The subclauses of a
ULF formula are composed by hierarchical pattern-
transduction trees (each consisting of a number of pat-
terns to match to a section of the input, together with
a composition node), with the help of a lexical subrou-
tine to handle leaf nodes. Edges in the parse tree are
labelled with the pattern-transduction tree that handles
the corresponding subclause (typically responsible for
a particular syntactic category).

Once the final ULF formula is obtained, the dia-
logue manager queries the spatial specialist mod-
ule with the formula, and receives a list of relevant
preposition factors (in ULF form). The dialogue
manager uses a natural language generation (NLG)
module to substitute these prepositions into the
query ULF before using general linguistic rules
to convert this to an answer ULF, which is then
mapped to English to produce a verbal explanation.

4 The Spatial Specialist

The spatial specialist contains a family of models
for spatial prepositions. Each such model is imple-

mented as a probabilistic predicate, computed hier-
archically as a combination of more primitive rela-
tions that we call factors. These factors typically
encode more basic relations that affect whether a
particular spatial preposition holds. They are usu-
ally either different senses of the same preposition
or they co-occur with the preposition in most/all
configurations that license the usage of that prepo-
sition. The set of factors covers various geometric
and structural properties, including distances be-
tween objects, direction from one object to another,
support relations, physical contact, part structure,
etc. The factors are combined according to one
of several rules, such as multiplying two or more
factors, finding the maximum, or taking a linear
combination, in order to produce the final value for
the preposition.

Some range of sense ambiguity is taken into
account by considering different coordinate frames.
In particular, for projective relations, such as to
the right/left of, one can consider deictic, extrinsic
and intrinsic senses. The deictic sense is computed
based on the viewer’s coordinate frame. Here, one
object is considered to be in the given relation to
another, if its projection onto the viewer’s visual
plane is in that relation (e.g., to the right of) to the
projection of the latter object. The extrinsic sense
is based on the global coordinate system imposed
by the world, i.e., front-right axes of the table. The
intrinsic sense is determined based on the intrinsic
coordinate system of the ground object, i.e., A is
intrinsically to the right of B if it is on the right side
of B. Note that this sense is absent in the blocks
world setting since blocks do not have intrinsic
orientations, but it is added to support generality
of the spatial models. For objects that do not have
intrinsic orientations, the factor for the intrinsic
sense of the relation is set to 0. When dealing with
multiple senses, the model selects the one with the
maximal value as an output.

5 Factor Extraction for Justification of
Model’s Judgments

The tree-of-factors implementation of spatial mod-
els allows backwards-generated justifications spa-
tial judgments. Since factors represent higher-level
semantic concepts, they can readily be translated
into natural language. The tree of factors computed
during the forward computation phase is preserved
and is traversed in the backward direction start-
ing from the root that represents the value of the
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preposition. The mechanism for factor retrieval is
as follows. If the combination rule for the current
node is a product, then if the node value is greater
than 0.5, return all the child nodes; otherwise, re-
turn the child node with the smallest value. If the
combination rule for the children is a weighted lin-
ear combination of factor values, then if the current
node value is greater than 0.5, return the highest
contributing factor node or nodes (total contribu-
tion includes their value and weight); otherwise,
return the value of the node with the largest weight.
Finally, if the combination rule is the max opera-
tion, then if the current node value is greater than
0.5, return the child node with maximum value;
otherwise return all the child nodes.

As an example of the operation of the expla-
nation procedure, consider the simplified factor
network for to the right of in Fig. 3.

Figure 3: An example of an explanation procedure.

The numbers in the nodes are the respective val-
ues of the factors that the node computes. As-
sume that the system is being asked whether A
is to the right of B. Assume further that the final
output value is right of = 0.72, which corresponds
to “yes”. Now, if the user inquires why the sys-
tem arrived at that conclusion, the following pro-
cess unfolds. The node for the final score for to
the right of takes the maximum over three values:
deictic right of deic, intrinsic right of intr and ex-
trinsic right of extr. Since the maximum is taken,
one of those nodes must be equal to the final value.
Hence, the explanatory routine returns the corre-
sponding node and its value (right of intr, 0.72).
The corresponding interpretation will be (after the
dialogue manager generates a response) “A is to
the right of B because A is located on the right side

of B, according to B’s orientation”. If asked further
as to why the intrinsic relation holds, the system
will analyze the intrinsic score’s contributing fac-
tors, namely Fdir (directional factor that defines the
“right-side” region for an object) and Fdd (distance
decay, measuring how far apart the objects are).
Since the combination rule used is multiplication
and the value of the current node (intrinsic right) is
0.72 (i.e., relation holds), it follows that both fac-
tors must hold as well. The system will return the
list of the nodes and their values, i.e., [(Fdir, 0.9),
(Fdd, 0.8)] as a result. The straightforward interpre-
tation of the latter would be “A is on the right side
of B, because it is located in the general rightward
direction w.r.t. to B and it is close enough”. This
process can continue until leaf nodes are reached,
which do not admit further decomposition and are
treated as primitives. Alternatively, let Fdd = 0.4
(A is too far from B). This low value will propagate
downstream and affect the right of intr and the final
right of scores. The system then will supply a neg-
ative answer to the original question. If queried, it
will return the list of all senses [(right ofdeic, 0.48),
...] which has a straightforward interpretation of “A
is not to the right of B because none of the senses
apply”. If queried why, say, the intrinsic sense
does not apply, the system returns the lowest-value
node contributing to the intrinsic sense node, i.e.,
[(Fdd, 0.4)], which translates into “A is too far from
B to be on its right side”.

6 Conclusion

We described our work in progress concerning a
dialogue system incorporating a spatial specialist
with spatial semantic models that are based on clear
and intuitively-grounded criteria, capable of gener-
ating justifications of spatial judgements produced
by the system. The spatial subsystem incorporates
hierarchical representations of spatial prepositions,
constructed using so-called factors - intermediate
simpler relations correlating with the occurrences
of the prepositions. The explanation system scans
the tree of these factors and retrieves the most rel-
evant ones for the given situation. The configura-
tion is inherently interpretable due to factors corre-
sponding to intuitive criteria that seem to underlie
the natural usage of prepositions.
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