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Abstract

The paper presents a novel discourse-based ap-
proach to argument quality assessment defined
as a graph classification task, where the depth
of reasoning (argumentation) is evident from
the number and type of detected discourse
units and relations between them. We success-
fully applied state-of-the-art discourse parsers
and machine learning models to reconstruct
argument graphs with the identified and clas-
sified discourse units as nodes and relations
between them as edges. Then Graph Neural
Networks were trained to predict the argument
quality assessing its acceptability, relevance,
sufficiency and overall cogency. The obtained
accuracy ranges from 74.5% to 85.0% and in-
dicates that discourse-based argument struc-
tures reflect qualitative properties of natural
language arguments. The results open many
interesting prospects for future research in the
field of argumentation mining.

1 Introduction

Argumentation modelling and mining are steadily
gaining attention of the broad natural language pro-
cessing and engineering community. In many stud-
ies and applications, assessment of the argument
quality plays an important role. The ability to con-
struct good arguments and engage in argumenta-
tive discussions is assessed by argumentation sys-
tems focusing on training hypothetical reasoning,
creating and structuring arguments (Ashley et al.,
2007), preventing opinion manipulation, detecting
inconsistent arguments in online discussions and
addressing different standpoints, attacking or sup-
porting claims with evidence (DebateGraph1 and
TruthMapping2) as well as on the use of multi-
modal rhetorical devices (Petukhova et al., 2017a).
Assessment of argument quality, its organization,

1http://debategraph.org/
2https://www.truthmapping.com/

clarity, adherence and strength, are approached by
several authors as sub-tasks in the evaluation of
written essays (Stab and Gurevych, 2014; Persing
and Ng, 2015; Wachsmuth et al., 2016; Stab and
Gurevych, 2017). Online content is searched to
filter or weight the validity of statements and fac-
toids (Rowe and Butters, 2009), to identify fake
news and false claims (Popat et al., 2018) and
to detect opinion manipulation (Cambria et al.,
2010). While the acceptability of an argument in
the presence of other supporting or attacking argu-
ments has been addressed (Dung, 1995; Cayrol and
Lagasquie-Schiex, 2005), ‘local’ argument quality
still deserves our attention – an argument built on a
certain set of conditions, is logically strong, rhetor-
ically convincing, socially undistorted by virtue of
its intrinsic properties.

In this paper, we present a novel approach to
assessing the structural strength and inferential
weakness of arguments as merits of argument co-
gency. The approach relies on the discourse-based
reconstruction of argumentation schemes. For this,
we apply state-of-the-art discourse parsers and
machine learning models to reconstruct argument
graphs where the identified discourse units are rep-
resented as nodes and the classified discourse re-
lations between them as edges. A Graph Neural
Network (GNN) model is built to predict the quality
(low vs high) of the reconstructed argument graphs
in terms of argument acceptability, relevance, suffi-
ciency and overall cogency.

The paper is structured as follows. Section 2
defines the conceptual framework within which
the study is performed. We provide the defini-
tion of an argument and elaborate on its internal
structure. In Section 3, we survey related work on
argument quality assessment. Section 4 presents
the argument graph reconstruction approach. The
performed GNN-based quality assessment exper-
iments are discussed and results are reported in

http://debategraph.org/
https://www.truthmapping.com/
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Section 5. Section 6 summarises our findings and
outlines directions for future research.

2 Argument and Its Structure

An argument may be considered as an atomic en-
tity without an internal structure. For instance, an
argument is defined as an overall position held by
a person towards an idea or attitude, e.g. a stance
in ‘favour’ or ‘against’ a certain motion (Soma-
sundaran and Wiebe, 2009). A structured argu-
mentation model is an essential element for the
tasks aiming at understanding and emulating of hu-
man inference, investigating patterns of reasoning,
focusing at extraction and validity assessment of
arguments. A simple argument structure is then
defined as consisting of a claim that is supported
by evidence(s) (Mochales and Moens, 2011; Aha-
roni et al., 2014). A claim is an assertion that an
argument aims to prove, i.e. a claim is a conclusion
whose merit must be established. Evidence com-
prises propositions which give reasons or grounds
for drawing the conclusion.

This general argument definition has been trans-
lated into several discourse-based schemes for
analysing and evaluating natural language argu-
ments (Teufel, 1999; Palau and Moens, 2009). An
argument is modelled as a group of Argumentative
Discourse Units (ADUs) – text segments corre-
sponding to propositions that are argumentatively
relevant and have their own argumentative function
(Peldszus and Stede, 2013). An EDU can function
as a claim, as an evidence or as a conclusion. An
ADU can be identified as a collection of several Ele-
mentary Discourse Units (EDUs) which correspond
to clauses in written discourse and to dialogue acts
in spoken discourse (Petukhova et al., 2016). Dis-
course relations such as Justification, Motivation,
Cause, and Exemplification can be used to identify
how propositions are related to each other, inferring
the type of support that is expressed. A claim may
be summarized or re-stated in a conclusion. Fig-
ure 1 depicts a general discourse-based argument
structure.

ADUs reflect different ways to provide support
for a claim, i.e. links between them express the
level of support that evidence provides to the claim
and the level of their sufficiency to draw a valid con-
clusion. Figure 2 provides an example of an argu-
ment. EDUs (solid-line rectangles) are combined
by means of discourse relations into ADUs (dotted-
line rectangles) which are connected to each other

 

evidence 

Re-state 
Statement  

Result 

Cause 

Exemplify 

Elaborate 
Motivate 

Conclude 

Summarize 

claim  conclusion  

Justify, etc. 

Figure 1: Argument structure observed in spoken de-
bate arguments, adapted from Petukhova et al. (2017a).
Solid-line rectangles represent EDUs and dotted-line
rectangles represent ADUs.

by support links. Evidence may either together
(linked support, e.g. Evidence 2.1 and 2.2 ) or inde-
pendently (multiple support, e.g. Evidence 1, 2 and
4) support a conclusion. A premise may provide
support for another premise and indirectly support
a conclusion (serial support, e.g. Evidence 3 and
2). A special form of lending support to a claim is
that of providing examples (example support, e.g.
Evidences 4.1 and 4.2).3

3 Related Work

Clear properties of a good argument and successful
argumentation are not easy to define. Wachsmuth
et al. (2017) proposed a unified taxonomy of argu-
mentation quality assessment that resulted from an
extensive analysis of numerous existing approaches.
The assessment comprises three quality dimen-
sions: cogency, effectiveness and reasonableness.
Argument quality assessment aims at answering the
question how logical, persuasive or convincing the
given argument is, and how rhetorically appealing
it is for the targeted audience.

Evaluation of argument cogency is based on the
truthfulness and logical coherence of arguments.
An argument is cogent if it has acceptable premises
that are relevant and sufficient to support the con-
clusion (Johnson and Blair, 2006; Govier, 2013).
A premise is acceptable if it is rationally worthy of
being believed to be true (Wachsmuth et al., 2017).
According to Govier (2013), a premise is locally ac-
ceptable if it is supported by a cogent sub-argument
or another cogent argument; it is a matter of com-
mon knowledge, testimony or expert view (appeal
to authority). A statement A is positively relevant
to another statement B if and only if the truth of A
counts in favour of the truth of B. This means that

3For a discussion on other types of support links we refer
to Palau and Moens (2009) and Peldszus and Stede (2013).
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Figure 2: Argument example from Dagstuhl-15512 ArgQuality Corpus (Wachsmuth et al., 2017) annotated with
core ISO 24617-8 core discourse relations (Bunt and Prasad, 2016) and support links observed.

A provides some evidence for B, or some reason
to believe that B is true. An argument is locally
sufficient if all premises together provide sufficient
reasons to accept the conclusion. The precondi-
tions of the argument sufficiency are rooted in its
local acceptability and its local relevance (Govier,
2013). The local sufficiency of an argument is of-
ten called inferential sufficiency and it holds if one
of the following logical patterns is applicable: de-
ductive entailment, conductive support, inductive
support and analogy.

Argument quality is found to correlate with the
argument’s actual persuasive success. Persuasion
is defined as a process of encouraging people to
do or believe something through argument. Here,
many factors are relevant, including psychological
effects of argument memorisation, replication and
reviewing (Kumkale and Albarracı́n, 2004). Cer-
tain argumentation patterns are acknowledged as
more persuasive than others, however they may
differ in different domains. Hornikx (2008) ex-
perimentally investigated lay people’s expectations
about the persuasiveness of anecdotal, statistical,
causal, and expert evidence, and compared these ex-
pectations with the actual persuasiveness of these
evidence types. Van Eemeren and Grootendorst
(2004) defined symptomatic (sign), comparison
(resemblance) and causal (consequence) argumen-
tation, and specified what argumentative patterns
are more suitable/persuasive for what communica-
tive types in various domains. For persuasive es-
says, different quality dimensions of argumentation
were studied such as essay’s organization (Persing

et al., 2010), thesis clarity (Persing and Ng, 2013),
prompt adherence (Persing and Ng, 2014) and ar-
gument strength (Persing and Ng, 2015). These
studies exploit a complex feature-rich approach to
predict a score for each essay based on its content
or style along with all of these categories. The
study of Persing and Ng (2017) looks at the argu-
ment persuasiveness from a different point of view:
it does not try to estimate how persuasive an argu-
ment is but attempts to explain why an argument is
experienced as unpersuasive. Research has also tar-
geted various interactive aspects, e.g. capturing the
interactions between participants on argument level
(Ji et al., 2018) and providing feedback regarding
the argument persuasiveness (Ke et al., 2018).

Many studies explore the aspect of argument
convincingness4 . In contrast to cogency, which
is based on the truthfulness and logical coher-
ence of arguments, convincingness is related to
subjective perception by the audience (Wei et al.,
2016). Experiments were performed to detect more
convincing arguments (Habernal and Gurevych,
2016; Simpson and Gurevych, 2018) and evidence
(Gleize et al., 2019).

The rhetorical force of an argument should not
be underestimated. Due to the use of powerful
rhetorical devices, even a not very cogent argument
may be perceived as convincing (Petukhova et al.,
2017b; Hirschberg, 2002). People generally asso-
ciate certain speech, personality and interaction fea-
tures with what they think is a persuasive argument.

4It should be noted here that persuasiveness and convinc-
ingness of an argument are terms that are often used inter-
changeably.
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Figure 3: Argument graph reconstruction pipeline.

More broadly, the persuasion literature of the last
decades has shown that an argument that has higher
perceived competence (e.g., evidence-based expert
knowledge) and/or higher warmth (e.g., more like-
able and trustworthy) is more convincing (Petty
and Cacioppo, 1986; Albarracı́n et al., 2019).

The study of Wachsmuth et al. (2016) suggests
an argument quality assessment approach that fo-
cuses solely on the argument structure, and de-
fines statistical patterns in the structure of essays
and define novel features that are evaluated in
argumentation-related essay scoring tasks. The
present study investigates the structural properties
of a cogent argument and assesses its inferential
strength, i.e. structures of inference (argumentation
schemes) predicted from the associated amount,
depth and type of evidence provided to the claim.

4 Argument Graph Reconstruction

We define argument graph reconstruction to in-
volve: (1) segmentation of a text into EDUs; (2)
discourse relation detection and classification be-
tween them; (3) identification and classification of
ADUs based on the classified discourse relations;
and (4) argument completion, i.e. reconstruction of
the implicit units to achieve a complete argument
structure, see Figure 3.

We performed joint and two-stage segmentation
and classification of EDUs. For the joint segmenta-
tion and classification, the full PDTB parser devel-
oped by Lin et al. (2010) was applied. We observed
that the parser failed to identify many EDU spans.5

Rather low overall F1 scores of 21.20% for exact
segment boundaries match and 5-class discourse
relation classification were achieved on the Penn
Discourse Tree Bank 1.0 corpus (PDTB 1.0, Prasad
et al. (2005)), see the right part of Table 1. However,
we observed, that in case of the correct span iden-
tification, relations classification was reasonably
accurate. Misclassified cases mostly belonged to
the implicit discourse relations as they were more

5The same observation was made by Hewett et al. (2019).

difficult to classify then the explicit ones, a well
known problem reported in the literature.

The two-stage segmentation and classification
was performed applying the BiLSTM-CRF based
segmentation model NeuralEDUSeg developed by
Wang et al. (2018) and the XLNet-large discourse
relations classification model by Yang et al. (2019).
A segmentation performance of 68.55% in terms of
F1 score was achieved when testing on the PDTB
1.0 and PDTB 2.0 datasets (PDTB 2.0, Prasad
et al. (2008)).6 For discourse relation recogni-
tion with the XLNet model designed by Yang et al.
(2019), we first carried out a binary classification
to establish whether any relation exists between
the identified units, i.e. discriminate between the
Rel class which includes any type of discourse
relations and NoRel types. The former com-
prises explicitly marked (Explicit), implicitly
marked (Implicit) and alternatively lexicalized
(AltLex) discourse relations, the later includes
EntRel relation which is not a discourse relation
between clauses but an entity-based coherence re-
lation. Subsequently, we performed five-class top-
level (L1) and ten-class fine-grained (L2) relations
classification. Table 4 in Appendix I provides an
overview of the PDTB discourse relation and their
distribution in the PDTB 1.0 and the newer PDTB
2.0 corpora.

Since class distributions were unbalanced in all
classification settings, re-sampling was performed:
up-sampling of the under-represented NoRel class
in binary classification by adding synthetic samples.
For this random EDUs from different textual units
were combined. In addition to this, down-sampling
of the majority classes in the multi-class settings
was performed. For the training and evaluation
procedures, we fine-tuned each encoder model fol-
lowing the suggestions of Mosbach et al. (2021)
and trained it for 10 epochs using a learning rate of

6PDTB 2.0 is the PDTB 1.0 corpus extended with annota-
tions of implicit relations for the entire corpus, senses of all
connectives and attribution of object type, scopal polarity and
determinacy. Thus, for the purpose of this study, differences
between PDTB 1.0 and PDTB 2.0 are not relevant.
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Joined segmentation & classification Two-stage segmentation & classification

PDTB 1.0 data PDTB 2.0 data Dagstuhl data

Full parsing EDU segmentation PDTB relation recognition EDU segmentation PDTB relation recognition

Scenario F1 (in %) Scenario F1 (in %) Scenario Accuracy (in %) Scenario F1 (in %) Scenario Accuracy (in %)

exact segment
match & 5-class

classification
21.20 exact

match
68.55

5-class 66.37 exact
match

47.94
5-class 60.22

10-class 53.64 10-class 50.48

Table 1: Performance overview on the joined EDU segmentation and 5-class discourse relation classification task
with Lin et al. (2010) parser in terms of F1 scores (in %) on the PDTB 1.0 corpus (left); and on the two-stage
segmentation and classification tasks performing EDU segmentation with the NeuralEDUSeg model (Wang et al.,
2018) in terms of F1 scores (in %) on the PDTB 2.0 corpus, and 5- and 10-class discourse relation classification
with the fine-tuned XLNet-large model (Yang et al., 2019) in terms of accuracy (in %) on the DagStuhl corpus
(right).

0.00001 and a batch-size of eight. Accuracy was
observed to drop with a higher number of classes
to learn from 66.37% (five classes) to 53.64% (ten
classes), see the middle part of Table 1.

To demonstrate the applicability of the approach
beyond PDTB, we applied the two-stage seg-
mentation and classification procedure and fine-
tuned models on the argumentative Dagstuhl15512
ArgQuality corpus which is a collection of 304 argu-
mentative texts annotated according to 15 argument
quality criteria (Wachsmuth et al., 2017). The out-
put was manually examined and corrected. Table
1 reports the performance of the NeuralEDUSeg
and XLNet-large models on the manually corrected
argumentative Dagstuhl corpus. The resulting
Dagstuhl corpus of argumentative units annotated
with discourse relations contains the same number
of 304 arguments as the original Dagstuhl15512
ArgQuality, but segmented into 2,222 EDU pairs.
The evaluated models showed a reasonable seg-
mentation, F1 score of 47.94% for exact segment
match, and discourse relation recognition (accuracy
ranging from 50.48% to 60.22%) performance on
argumentative discourse data.

We observed that some argument components,
often claims, are implicit, see also Wachsmuth et al.
(2017). Without the claim or conclusion, an argu-
ment structure is incomplete. Therefore, we recon-
structed a claim for every topic in the corpus, either
‘for’ or ‘against’ stance it may present. The recon-
structed claim is a simple sentence corresponding
to a single EDU, see Table 5 in Appendix II for
selected examples.

The identified Dagstuhl arguments are of dif-
ferent length and have various, often complex
discourse-based structures distinguishable through
diverse linking patterns and number of evidences

provided by an arguer to support a claim. Figure 4
provides an example of the identified discourse-
based argumentation scheme. The upper node
represents the claim Books are better than TV
which was supported by seven evidence statements,
six of them connected to the claim by means of
Contingency.Cause relation and one by Expan-
sion.Instantiation. Five of the evidence statements
correspond to one EDU, whereas the other two are
more complex and consist of two EDUs.

Finally, argument structures were represented as
graphs where the detected EDUs spans are repre-
sented as nodes and the classified discourse rela-
tions – as edges visualising number and level of
supporting evidence through links to the claim and
premises. 2,278 reconstructed arguments have 303
structures (argumentative schemes) specifying 172
unique reasoning patterns. Figure 6 in Appendix
III provides the most frequent examples of the re-
constructed discourse-based argument structures.

5 Argument Quality Assessment Using
Graph Neural Networks

Our main assumption is that arguments constructed
to follow certain patterns and containing particular
discourse relations are of higher quality, i.e. infer-
entially stronger, than others. Thus, the amount
and type of evidence matter. For example, a widely
used structure of debate arguments is known as
the ARE. ARE comprises a claim of an Argument
supported by a Reason and an Evidence, see also
Petukhova et al. (2016). Another commonly used
argument structuring technique is called chunking
(Johnson, 2009). Here, arguers generalise from a
claim (chunking up), provide a specific example
(chunking down) or draw analogies (chunking side-
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Figure 4: Example of a discourse-based argument structure identified in the Dagstuhl15512 ArgQuality corpus.

ways). Thus, an argument which contains Cause or
Instantiation relations making a claim to be justi-
fied and explained, is expected to be of high quality.
A large variety of identified discourse relations may
indicate that an argument is very elaborate. How-
ever, very lengthy arguments are often difficult to
comprehend and may be rhetorically less persua-
sive.

Particular structures can be important to compute
local sufficiency. For instance, conductive reason-
ing may be expressed by the number of first-level
evidence supporting the main claim independently
(multiple support) and together (linked support)
connected by means of Expansion relations. For
inductive support, Exemplification discourse rela-
tions can be analysed as evidence providing an
example support. Finally, the argumentation depth
can be relevant for the argument sufficiency assess-
ment and can be computed by looking at evidence
which is linked to other evidence statements pro-
viding a serial support. Obviously, not only linking
patterns but also evidence content would impact
the argument quality.

Arguments in the Dagstuhl15512 ArgQuality
corpus were annotated by seven independent anno-
tators across 15 quality dimensions including four
for argument cogency: acceptability, relevance, suf-
ficiency and overall cogency. Quality scores from
1 (low) to 3 (high) were assigned. A fair inter-
annotator agreement for all cogency dimensions

was reached ranging from .44 to .47 in terms of
Krippendorffs α (Wachsmuth et al., 2017). Distri-
bution of the annotated quality classes resulted in
a rather unbalanced training set, in particular for
the sufficiency dimension, therefore we combined
the minority class with the adjacent one defining
a binary classification task predicting arguments
of a lower and of a higher quality, see Table 2 for
distributions.

To assess the argument cogency, we employed a
Graph Neural Network (GNN) model which is able
to generalize over manifold structures. Errica et al.
(2019) presents an overview of GNNs models for
graph classification, e.g DGCNN, DiffPool, ECC,
GIN, GraphSAGE. However, none of these models
exploit edge features required for our application
so it incorporates discourse relation information.

5.1 Architecture Overview

For our experiments, we use the Graph Attention
Network (GAT) model by Veličković et al. (2018).
Initial inputs to the model include the node fea-
ture matrix X0 as presented in Figure 5 (left). The
matrix is fed to the GNN layer which is able to
handle binary edge features, i.e. in our case the
model can only handle the existence or absence
of a relation between two EDUs. The single-head
and multi-head attention mechanisms used within
the GNN layer are illustrated on Figure 5 (center
and right). As a result, a new node matrix X1 is
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overall training set validation set test set
class lower higher lower higher lower higher lower higher

cogency 143 (47.2%) 160 (52.8%) 114 (47.1%) 128 (52.9%) 14 (46.7%) 16 (53.3%) 14 (45.2%) 17 (54.8%)
acceptability 71 (23.5%) 232 (76.5%) 57 (23.6%) 185 (76.4%) 8 (26.7%) 22 (73.3%) 6 (19.4%) 25 (80.6%)
relevance 183 (60.4%) 120 (39.6%) 146 (60.3%) 96 (39.7%) 20 (66.7%) 10 (33.3%) 17 (54.8%) 14 (45.2%)
sufficiency 167 (55.1%) 136 (44.9%) 133 (55%) 109 (45%) 17 (56.7%) 13 (43.3%) 17 (54.8%) 14 (45.2%)

Table 2: Class distribution in the training, validation and test sets in the Dagstuhl15512 ArgQuality corpus.

Figure 5: Left: Our model architecture. Tensor X is a matrix representation of the node features of the graph
with dimensions NxF where N is the number of nodes and F is the number of features (Gong and Cheng, 2019).
Center: The attention mechanism employed by GAT layer (Veličković et al., 2018). Right: an illustration of
multi-head attention (with K = 3 heads) by node 1 on its neighbourhood (Veličković et al., 2018).

produced. The procedure is repeated for every sub-
sequent layer. Our network consists of three such
layers. For graph classification, an average pool-
ing layer is applied to the first dimension of XL,
i.e. the feature matrix is reduced to a single vector
representing the whole graph. Subsequently, the
fully connected layer is applied to the vector whose
outputs are used as logits for the final classification.

The model described above allows incorporat-
ing various features in the node feature matrix X0.
We experimented with three different settings. In
the first design, no node features were available.
Hence, that model predicts argument quality based
solely on the graph structure. In the second de-
sign, we encoded the texts corresponding to each
node using GloVe embeddings7 taking the mean
of all word embeddings of an EDU to obtain the
EDU representation. In the third setting, we used
BERT embeddings of an EDU as node features us-
ing the DistilBERT pre-trained model optimized
for Semantic Textual Similarity task (Reimers and
Gurevych, 2019). The vector dimensionality for
each of the settings described above was 300, 300
and 768 dimensions, respectively.

5.2 Experimental Results

We trained a model for each quality dimension (co-
gency, acceptability, relevance, sufficiency) varying
the number of epochs from 100 to 1000. Subse-

7http://nlp.stanford.edu/data/glove.
42B.300d.zip

quently, we determined the best training setting
based on the validation set accuracy. We observed
that the performance on quality dimensions apply-
ing different either GloVe or BERT node features
depends on the number of training epochs. Further-
more, we learned that the models with the GloVe
and BERT node features reduced loss much faster
than the models with uniform node features which
indicates a possible overfitting. Therefore, we ex-
perimented with dropout rates from 0.2 to 0.6 ap-
plying it to the output of the last hidden layer. Test
accuracy of BERT-based models improved for all
dimensions except for acceptability. 10 training
runs for each quality dimension showed that the
test accuracy for certain models did not vary much
with different dropout rates, the results were also
proven not to be statistically significant according
to the paired t-test. Table 3 reports the highest
mean test accuracy achieved across five runs.

All trained quality assessment models outper-
formed their corresponding baselines indicating
that the graph structure and node features incorpo-
rate useful information. Models generally were
proven to be resistant to class imbalance. Re-
sampling or weighted training and testing did not
result in better performance, which indicates that
more sophisticated methods are required to im-
prove results. Further findings suggest that there is
no ‘universal’ training setting for various quality di-
mensions: to achieve acceptable performance some
models require longer training and different sets

http://nlp.stanford.edu/data/glove.42B.300d.zip
http://nlp.stanford.edu/data/glove.42B.300d.zip
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quality dimension majority classifier uniform features GloVe features BERT features

cogency
accuracy 54.8 72.5 68.0 63.0
epochs 400 800 800
dropout - 0.2 0.4

acceptability
accuracy 80.6 85.0 84.5 85.0
epochs 300 600 600
dropout - 0.3 -

relevance
accuracy 54.8 69.5 74.5 74.0
epochs 300 200 1000
dropout - 0.2 0.5

sufficiency
accuracy 54.8 64.0 74.5 69.0
epochs 500 200 900
dropout - 0.4 0.6

Table 3: Classification accuracies on Dagstuhl15512 ArgQuality argument quality assessment applying a graph
classification model. The results are reported for each quality dimension (cogency, acceptability, relevance, suffi-
ciency) and using different node features (uniform, GloVe, BERT).

of node features. Surprisingly, sophisticated node
features do not always lead to a better model perfor-
mance. For instance, for the cogency dimension the
model without node features significantly outper-
formed the GloVe- and BERT-based models which
may suggest that the argument structure alone is
sufficient to accurately predict argument cogency.
This confirms our initial assumption. However,
we are cautious with this conclusion and empha-
sise that further experiments on larger datasets are
needed. Training on such small training (242 in-
stances), validation (30 instances) and test (30 in-
stances) sets is a challenging task causing oscilla-
tion in the validation and test accuracies. Model
instability was also caused, in our view, by a large
variety of graph structures which can possibly be
resolved by graph pruning or graph unification.

6 Conclusions and Future Work

We presented an approach to the assessment of
argument quality, in particular its cogency, eval-
uating the structural strength of the argumenta-
tion schemes applied by an arguer. Argumentation
schemes were represented as graphs reconstructed
by applying the NeuralEDUSeg model developed
by Wang et al. (2018) to segment a text into elemen-
tary discourse units and the fine-tuned XLNet-large
model of Yang et al. (2019) to classify discourse
relations between the identified units. Both seg-
mentation and classification models showed rea-
sonable performance in processing argumentative
texts: F1 scores of 47.94% on the segmentation
task were achieved; discourse relation classifica-
tion accuracy ranges from 50.48% to 60.22% de-
pending on the classification scenario (5- vs 10-
class discourse relation classification). Parsed ar-
gumentative texts subsequently were used to recon-
struct discourse-based argumentation structures as

graphs of varying complexity reflecting reasoning
patterns that emulate human inferencing. Given a
graph structure, the argument acceptability, rele-
vance, sufficiency and overall cogency were pre-
dicted. The trained models incorporated not only
linking structures but also claim and evidence con-
tent as node features computed from GloVe and
BERT embeddings. We tentatively concluded that
overall argument cogency may be predicted based
on the argument structure alone without computing
sophisticated node text-based features. To ensure
that this observation is not an artefact of our data,
it needs to be tested on a larger argument set from
various domains.

Limitations of the presented study call for fur-
ther improvements. The next major step is to in-
corporate edge features which contain important
information about the type of relations between
claim and evidence units. Further, we intend to
explore new discourse processing tools and exper-
iment with mapping between different discourse
analysis frameworks, e.g. Rhetorical Structure The-
ory (RST, Mann and Thompson (1988) and ISO
24617-8 DR-Core (ISO, 2016). Additional argu-
mentative corpora will be explored as well as the
assessment of the other quality dimensions.
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Appendix I: PDTB discourse relation tagsets and corpus distribution

binary L1 top-level relations L2 fine-grained relations # Instances

Rel

Expansion

Conjunction 8763

15116

35136

Restatement 3326

Instantiation 1735

List 627

Alternative 531

Expansion 118

Exception 16

Comparison

Contrast 5947

7958
Concession 1425

Comparison 553

Pragmatic contrast 21

Pragmatic concession 12

Contingency

Cause 6203

7710
Condition 1359

Pragmatic cause 78

Pragmatic condition 68

Contingency 2

Temporal
Asynchronous 2739

4352Synchrony 1607

Temporal 6

NoRel NoRel 5464 5464 5464

Table 4: The PDTB binary, top-level (L1) and fine-grained (L2) discourse relations and their distribution in PDTB
1.0 and 2.0 datasets. L2 relations marked italics were used for 10-class classification with XLNet.

Appendix II: Implicit Claim Reconstruction

Topic Claim

Ban of plastic bottles The consumption of water bottles should not be banned.
The consumption of water bottles should be allowed only in the case of
emergency.

Christianity or atheism I choose atheism over Christianity and do not believe in God.
I choose Christianity over atheism and do believe in God.

Evolution vs. creation The world was created by God.
The evolution is the beginning of life.

Personal pursuit or advancing
the common good?

Advancing the common good is better than personal pursuit.
Personal pursuit is better than advancing the common good.

Should physical education be mandatory
in schools?

Physical education should not be mandatory in schools.
Physical education should be mandatory in schools.

Is TV better than books? Books are better than TV.
TV is better than books.

Table 5: Examples of the claims reconstructed based on the corresponding Dagstuhl15512 ArgQuality topics.

Appendix III: Argument Graphs Examples
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(a) 50% of patterns (b) 15.6% of patterns (c) 7.8% of patterns

(d) 6.3% of patterns (e) 4.7% of patterns (f) 1.6% of patterns

(g) 1.6% of patterns (h) 1.6% of patterns (i) 1.6% of patterns

(j) 1.6% of patterns (k) 1.6% of patterns (l) 1.6% of patterns

(m) 1.6% of patterns (n) 1.6% of patterns (o) 1.6% of patterns

Figure 6: Examples of the unique discourse-based argument schemes reconstructed from the Dagstuhl15512
ArgQuality corpus and their relative frequencies (in %).


