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Abstract
Recent works have shown that supervised
models often exploit data artifacts to achieve
good test scores while their performance
severely degrades on samples outside their
training distribution. Contrast sets (Gardner
et al., 2020) quantify this phenomenon by per-
turbing test samples in a minimal way such
that the output label is modified. While most
contrast sets were created manually, requir-
ing intensive annotation effort, we present a
novel method which leverages rich semantic
input representation to automatically gener-
ate contrast sets for the visual question an-
swering task. Our method computes the an-
swer of perturbed questions, thus vastly re-
ducing annotation cost and enabling thorough
evaluation of models’ performance on vari-
ous semantic aspects (e.g., spatial or rela-
tional reasoning). We demonstrate the ef-
fectiveness of our approach on the popular
GQA dataset (Hudson and Manning, 2019)
and its semantic scene graph image represen-
tation. We find that, despite GQA’s composi-
tionality and carefully balanced label distribu-
tion, two strong models drop 13–17% in accu-
racy on our automatically-constructed contrast
set compared to the original validation set. Fi-
nally, we show that our method can be applied
to the training set to mitigate the degradation
in performance, opening the door to more ro-
bust models.1

1 Introduction

NLP benchmarks typically evaluate in-distribution
generalization, where test sets are drawn i.i.d from
a distribution similar to the training set. Recent
works showed that high performance on test sets
sampled in this manner is often achieved by ex-
ploiting systematic gaps, annotation artifacts, lex-
ical cues and other heuristics, rather than learn-
ing meaningful task-related signal. As a result,

1Our contrast sets and code are available at
https://github.com/yonatanbitton/
AutoGenOfContrastSetsFromSceneGraphs.

Figure 1: Illustration of our approach based on an ex-
ample from the GQA dataset. Top: QA pairs and an
image annotated with bounding boxes from the scene
graph. Bottom: relations among the objects in the
scene graph. First line at the top is the original QA
pair, while the following 3 lines show our pertubated
questions: replacing a single element in the question
(a fence) with other options (a wall, men, an elephant),
leading to a change in the output label. For each QA
pair, the LXMERT predicted output is shown.

the out-of-domain performance of these models is
often severely deteriorated (Jia and Liang, 2017;
Ribeiro et al., 2018; Gururangan et al., 2018; Geva
et al., 2019; McCoy et al., 2019; Feng et al., 2019;
Stanovsky et al., 2019). Recently, Kaushik et al.
(2019) and Gardner et al. (2020) introduced the
contrast sets approach to probe out-of-domain gen-
eralization. Contrast sets are constructed via min-
imal modifications to test inputs, such that their
label is modified. For example, in Fig. 1, replac-
ing “a fence” with “a wall”, changes the answer

https://github.com/yonatanbitton/AutoGenOfContrastSetsFromSceneGraphs
https://github.com/yonatanbitton/AutoGenOfContrastSetsFromSceneGraphs
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from “Yes” to “No”. Since such perturbations in-
troduce minimal additional semantic complexity,
robust models are expected to perform similarly
on the test and contrast sets. However, a range of
NLP models severely degrade in performance on
contrast sets, hinting that they do not generalize
well (Gardner et al., 2020). Except two recent ex-
ceptions for textual datasets (Li et al., 2020; Rosen-
man et al., 2020), contrast sets have so far been
built manually, requiring extensive human effort
and expertise.

In this work, we propose a method for automatic
generation of large contrast sets for visual question
answering (VQA). We experiment with the GQA
dataset (Hudson and Manning, 2019). GQA in-
cludes semantic scene graphs (Krishna et al., 2017)
representing the spatial relations between objects
in the image, as exemplified in Fig. 1. The scene
graphs, along with functional programs that repre-
sent the questions, are used to balance the dataset,
thus aiming to mitigate spurious dataset correla-
tions. We leverage the GQA scene graphs to create
contrast sets, by automatically computing the an-
swers to question perturbations, e.g., verifying that
there is no wall near the puddle in Fig. 1.

We create automatic contrast sets for 29K sam-
ples or ≈22% of the validation set. We manually
verify the correctness of 1,106 of these samples on
Mechanical Turk. Following, we evaluate two lead-
ing models, LXMERT (Tan and Bansal, 2019) and
MAC (Hudson and Manning, 2019) on our contrast
sets, and find a 13–17% reduction in performance
compared to the original validation set. Finally, we
show that our automatic method for contrast set
construction can be used to improve performance
by employing it during training. We augment the
GQA training set with automatically constructed
training contrast sets (adding 80K samples to the
existing 943K in GQA), and observe that when
trained with it, both LXMERT and MAC improve
by about 14% on the contrast sets, while maintain-
ing their original validation performance.

Our key contributions are: (1) We present an au-
tomatic method for creating contrast sets for VQA
datasets with structured input representations; (2)
We automatically create contrast sets for GQA, and
find that for two strong models, performance on the
contrast sets is lower than on the original validation
set; and (3) We apply our method to augment the
training data, improving both models’ performance
on the contrast sets.

2 Automatic Contrast Set Construction

To construct automatic contrast sets for GQA we
first identify a large subset of questions requiring
specific reasoning skills (§2.1). Using the scene
graph representation, we perturb each question in a
manner which changes its gold answer (§2.2). Fi-
nally, we validate the automatic process via crowd-
sourcing (§2.3).

2.1 Identifying Recurring Patterns in GQA

The questions in the GQA dataset present a diverse
set of modelling challenges, as exemplified in Ta-
ble 1, including object identification and grounding,
spatial reasoning and color identification. Follow-
ing the contrast set approach, we create perturba-
tions testing whether models are capable of solving
questions which require this skill set, but that di-
verge from their training distribution.

To achieve this, we identify commonly recurring
question templates which specifically require such
skills. For example, to answer the question “Are
there any cats near the boat?” a model needs to
identify objects in the image (cats, boat), link them
to the question, and identify their relative position.

We identify six question templates, testing vari-
ous skills (Table 1). We abstract each question tem-
plate with a regular expression which identifies the
question types as well as the physical objects, their
attributes (e.g., colors), and spatial relations. Over-
all, these regular expressions match 29K questions
in the validation set (≈22%), and 80K questions in
the training set (≈8%).

2.2 Perturbing Questions with Scene Graphs

We design a perturbation method which guaran-
tees a change in the gold answer for each question
template. For example, looking at Fig. 2, for the
question template are there X near the Y? (e.g., “Is
there any fence near the players?”), we replace ei-
ther X or Y with a probable distractor (e.g.„ replace
“fence” with “trees”).

We use the scene graph to ensure that the answer
to the question is indeed changed. In our exam-
ple, this would entail grounding “players” in the
question to the scene graph (either via exact match
or several other heuristics such as hard-coded lists
of synonyms or co-hyponyms), locating its neigh-
bors, and verifying that none of them are “trees.”
We then apply heuristics to fix syntax (e.g., chang-
ing from singular to plural determiner, see Ap-
pendix A.3), and verify that the perturbed sample
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Question template Tested attributes Example

On which side is the X? Relational (left vs. right) On which side is the dishwasher? → On which side are the dishes?

What color is the X? Color identification What color is the cat?→What color is the jacket?

Do you see X or Y? Compositions Do you see laptops or cameras?→ Do you see headphones or cameras?

Are there X near the Y?
Spatial, relational

Are there any cats near the boat? → Is there any bush near the boat?
Is the X Rel the Y? Is the boy to the right of the man? → Is the boy to the left of the man?
Is the X Rel the Y? Is the boy to the right of the man? → Is the zebra to the right of the man?

Table 1: Question templates with original question examples, and generated perturbations modifying the answer.
Italic text indicates variables, bold text indicates the perturbed atoms.

does not already exist in GQA. The specific per-
turbation is performed per question template. In
question templates with two objects (X and Y), we
replace X with X’, such that X’ is correlated with
Y in other GQA scene graphs. In question tem-
plates with a single object X, we replace X with a
textually-similar X’. For example in the first row
in Table 1 we replace dishwasher with dishes. Our
perturbation code is publicly available.

This process may yield an arbitrarily large num-
ber of contrasting samples per question, as there
are many candidates for replacing objects partici-
pating in questions. We report experiments with up
to 1, 3 and 5 contrasting samples per question.

Illustrating the perturbation process. Looking
at Fig. 1, we see the scene-graph information: ob-
jects have bounding-boxes around them in the im-
age (e.g., zebra); Objects have attributes (wood
is an attribute of the fence object); and there are
relationships between the objects (the puddle is to
the right of the zebra, and it is near the fence). The
original (question, answer) pair is (“is there a fence
near the puddle?”, “Yes”). We first identify the
question template by regular expressions: “Is there
X near the Y”, and isolate X=fence, Y=puddle. The
answer is “Yes”, so we know that X is indeed near
Y. We then use the existing information given in the
scene-graph. We search for X’ that is not near Y.
To achieve this, we sample a random object (wall),
and verify that it doesn’t exist in the set of scene-
graph objects. This results in a perturbed example
“Is there a wall near the puddle?”, and now the
ground truth is computed to be “No”. Consider a
different example: (“Is the puddle to the left of the
zebra?”, “Yes”). We identify the question template
“Is the X Rel the Y”, where X=puddle, Rel=to the
left, Y=zebra. The answer is “Yes”. Now we can
easily change Rel’=to the right, resulting in the
(question, answer) pair (“Is the puddle to the right

of the zebra?”, “No”).
We highlight the following: (1) This process is

done entirely automatically (we validate it in Sec-
tion 2.3); (2) The answer is deterministic given
the information in the scene-graph; (3) We do not
produce unanswerable questions. If we couldn’t
find an alternative atom for which the presupposi-
tions hold, we do not create the perturbed (question,
answer) pair; (4) Grounding objects from the ques-
tion to the scene-graph can be tricky. It can involve
exact match, number match (dogs in the question,
and dog in the scene-graph), hyponyms (animal
in the question, and dog in the scene-graph), and
synonyms (motorbike in the question, and motor-
cycle in the scene-graph). The details are in the
published code; (5) The only difference between
the original and the perturbed instance is a single
atom: an object, relationship, or attribute.

2.3 Validating Perturbed Instances
To verify the correctness of our automatic process,
we sampled 553 images, each one with an original
and perturbed QA pair for a total of 1,106 instances
(≈4% of the validation contrast pairs). The (im-
age, question) pairs were answered independently
by human annotators on Amazon Mechanical Turk
(see Fig. 3 in Appendix A.4), oblivious to whether
the question originated from GQA or from our auto-
matic contrast set. We found that the workers were
able to correctly answer 72.3% of the perturbed
questions, slightly lower than their performance on
the original questions (76.6%).2 We observed high
agreement between annotators (κ = 0.679).

Our analysis shows that the human performance
difference between the perturbed questions and the
original questions can be attributed to the scene

2The GQA paper reports higher human accuracy (around
90%) on their original questions. We attribute this difference
to the selection of a subset of questions that match our tem-
plates, which are potentially more ambiguous than average
GQA questions (see Section 3).
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The bat the batter is holding has what color? Brown→
The helmet has what color? Blue

Is there any fence near the players? Yes→
Are there any trees near the players? No

Do you see either bakers or photographers? No→
Do you see either spectators or photographers? Yes

Is the catcher to the right of an umpire? No→
Is the catcher to the right of a batter? Yes

Is the catcher to the right of an umpire? No→
Is the catcher to the left of an umpire? Yes

Figure 2: GQA image (left) with example perturbations for different question templates (right). Each perturbation
aims to change the label in a predetermined manner, e.g., from “yes” to “no”.

Model Training set Original Augmented

MAC
Baseline 64.9% 51.5%

Augmented 64.4% 68.4%

LXMERT
Baseline 83.9% 67.2%

Augmented 82.6% 77.2%

Table 2: Model accuracy on the original validation set
and on our generated contrast sets with maximum of 5
augmentations. Baseline refers to the original models,
augmented refers to the models trained with our aug-
mented training contrast sets.

graph annotation errors in the GQA dataset: 3.5%
of the 4% difference is caused by a discrepancy
between image and scene graph (objects appearing
in the image and not in the graph, and vice versa).
Examples are available in Fig. 5 in Appendix A.5.

3 Experiments

We experiment with two top-performing GQA
models, MAC (Hudson and Manning, 2018) and
LXMERT (Tan and Bansal, 2019),3 to test their
generalization on our automatic contrast sets, lead-
ing to various key observations.

Models struggle with our contrast set. Table 2
shows that despite GQA’s emphasis on dataset
balance and compositionality, both MAC and
LXMERT degraded on the contrast set: MAC
64.9%→ 51.5% and LXMERT 83.9%→ 67.2%,
compared to only 4% degradation in human perfor-
mance. Full breakdown of the results by template
is shown in Table 3. As expected, question tem-
plates that reference two objects (X and Y ) result
in larger performance drop compared to those con-
taining a single object (X). Questions about colors

3MAC and LXMERT are the top two models in the GQA
leaderboard with a public implementation as of the time
of submission: https://github.com/airsplay/
lxmert and https://github.com/stanfordnlp/
mac-network/.

MAC LXMERT

Original Aug. Original Aug.
On which side is the X? 68% 57% 94% 81%
What color is the X? 49% 49% 69% 62%
Are there X near the Y? 85% 66% 98% 79%
Do you see X or Y? 88% 53% 95% 65%
Is the X Rel the Y? 85% 44% 96% 69%
Is the X Rel the Y? 71% 38% 93% 55%
Overall 65% 52% 84% 67%

Table 3: Model accuracy on the original and augmented
validation set by question template for a maximum 5
augmentations per instance.

had the smallest performance drop, potentially be-
cause the models performance on such multi-class,
subjective questions is relatively low to begin with.

Training on perturbed set leads to more robust
models. Previous works tried to mitigate spuri-
ous datasets biases by explicitly balancing labels
during dataset construction (Goyal et al., 2017; Zhu
et al., 2016; Zhang et al., 2016) or using adversarial
filtering (Zellers et al., 2018, 2019). In this work we
take an inoculation approach (Liu et al., 2019) and
augment the original GQA training set with con-
trast training data, resulting in a total of 1,023,607
training samples. We retrain both models on the
augmented training data, and observe in Table 2
that their performance on the contrast set almost
matches that of the original validation set, with no
loss (MAC) or only minor loss (LXMERT) to orig-
inal validation accuracy.4 These results indicate
that the perturbed training set is a valuable signal,
which helps models recognize more patterns.

Contrast Consistency. Our method can be used
to generate many augmented questions by simply
sampling more items for replacement (Section 2).

4To verify that this is not the result of training on more
data, we repeated this experiment, removing the same amount
of original training instances (so the final dataset size is the
same as the original one), and observed very similar results.

https://eval.ai/web/challenges/challenge-page/225/leaderboard/733
https://eval.ai/web/challenges/challenge-page/225/leaderboard/733
https://github.com/airsplay/lxmert
https://github.com/airsplay/lxmert
https://github.com/stanfordnlp/mac-network/
https://github.com/stanfordnlp/mac-network/
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Augmentations
per instance Contrast sets Acc. Consistency

1 11,263 66% 63.4%
3 23,236 67% 51.1%
5 28,968 67% 46.1%

Table 4: Accuracy and consistency results for the
LXMERT model on different contrast set sizes.

This allows us to measure the contrast consistency
(Gardner et al., 2020) of our contrast set, defined
as the percentage of the contrast sets for which
a model’s predictions are correct for all exam-
ples in the set (including the original example).
For example, in Fig. 1 the set size is 4, and only
2/4 predictions are correct. We experiment with
1, 3, and 5 augmentations per question with the
LXMERT model trained on the original GQA train-
ing set. Our results (Table 4) show that sampling
more objects leads to similar accuracy levels for
the LXMERT model, indicating that quality of our
contrast sets does not depend on the specific selec-
tion of replacements. However, we observe that
consistency drops fast as the size of the contrast
sets per QA instance grows, indicating that model
success on a specific instance does not mean it can
generalize robustly to perturbations.

4 Discussion and Conclusion

Our results suggest that both MAC and LXMERT
under-perform when tested out of distribution. A
remaining question is whether this is due to model
architecture or dataset design. Bogin et al. (2020)
claim that both of these models are prone to fail
on compositional generalization because they do
not decompose the problem into smaller sub-tasks.
Our results support this claim. On the other hand,
it is possible that a different dataset could prevent
these models from finding shortcuts. Is there a
dataset that can prevent all shortcuts? Our auto-
matic method for creating contrast sets allows us
to ask those questions, while we believe that future
work in better training mechanisms, as suggested
in Bogin et al. (2020) and Jin et al. (2020), could
help in making more robust models.

We proposed an automatic method for creating
contrast sets for VQA datasets that use annotated
scene graphs. We created contrast sets for the GQA
dataset, which is designed to be compositional, bal-
anced, and robust against statistical biases. We
observed a large performance drop between the
original and augmented sets. As our contrast sets

can be generated cheaply, we further augmented
the GQA training data with additional perturbed
questions, and showed that this improves models’
performance on the contrast set. Our proposed
method can be extended to other VQA datasets.
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A Appendix

Ethical Considerations

We created contrast sets automatically, and verified
their correctness via the crowdsourcing annotation
of a sample of roughly 1K instances. Section 2.3
describes the annotation process on Amazon Me-
chanical Turk. The images and original questions
were sampled from the public GQA dataset (Hud-
son and Manning, 2019), in the English language.
Fig. 3 in Appendix A.4 provides example of the
annotation task. Overall, the crowdsourcing task re-
sulted in ≈6 hours of work, which paid an average
of 11USD per hour per annotator.

Reproducibility The augmentations were per-
formed with a MacBook Pro laptop. Augmenta-
tions for the validation data takes < 1 hour per
question template, and for the training data < 3
hours per question template. Overall process, < 24
hours.

The experiments have been performed with
the public implementations of MAC (Hudson
and Manning, 2018) and LXMERT (Tan
and Bansal, 2019), models: https:
//github.com/airsplay/lxmert,
https://github.com/stanfordnlp/
mac-network/. The configurations were
modified to not include the validation set in the
training process. The experiments were performed
with a Linux virtual machine with a NVIDIA’s
Tesla V100 GPU. The training took ∼1-2 days in
each model. Validation took ∼ 30 minutes.

A.1 Generated Contrast Sets Statistics
Table 5 reports the basic statistics of automatic
contrast sets generation method when applied on
the GQA validation dataset. It shows the overall
number of images and QA pairs that matched the
6 question types we identified. Tables 6 shows the
statistics per question type, indicating how produc-
tive each augmentation method is. Tables 7 and
8 shows the same statistics for the GQA Training
dataset.

# Aug. QA pairs

Max 1 Max 3 Max 5
# Images 10,696 10,696 10,696
# QA pairs 132,062 132,062 132,062

# Aug. QA pairs 12,962 26,189 32,802
# Aug. images 6,166 6,166 6,166

% Aug. images 57.6% 57.6% 57.6%
% Aug. QA pairs 9.8% 19.8% 24.8%

Table 5: Validation data augmentation statistics

Question template # Aug. QA pairs

Max 1 Max 3 Max 5

On which side is the X? 2,516 4,889 5,617
What color is the X? 4,608 10,424 12,414
Are there X near the Y? 382 867 1,320
Do you see X or Y? 1,506 4,514 7,516
Is the X Rel the Y? 766 1,314 1,392
Is the X Rel the Y? 1,417 1,416 1,416

Table 6: Augmentation statistics per question template
for the validation data

A.2 Models Performance Breakdown by
Question Type and Number of
Augmentations

Table 3 shows the breakdown of the performance
of the MAC and LXMERT models per question
type, on both the original GQA validation set and
on the augmented contrast sets on validation.

The LXMERT model has two stages of training:
pre-training on several datasets (which includes
GQA training and validation data) and fine-tuning.
To avoid inflating results on the validation data, we
re-trained the pre-training stage without the GQA
data, and fine-tuned on the training sets. Table 2.
We discovered lower performance on the original
set (-∼5%) with both models, but the same im-
provement on the augmented set (+∼10).

https://github.com/airsplay/lxmert
https://github.com/airsplay/lxmert
https://github.com/stanfordnlp/mac-network/
https://github.com/stanfordnlp/mac-network/
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# Images 72,140
# QA pairs 943,000

# Aug. QA pairs 89,936
# Aug. images 43,463

% Aug. images 60.2%
% Aug. QA pairs 9.5%

Table 7: Training data augmentation statistics

A.3 Linguistic Heuristics for Questions
Generation

For each question type, we select an object in the
image scene graph, and update the question by
substituting the reference to this object by another
object. When substituting one object by another,
we need to adjust the question to keep it fluent. Ta-
ble 10 shows the specific linguistic rules we verify
when performing this substitution.

A.4 Annotation Task for Verifying Generated
Contrast Sets

Fig. 3 shows the annotation task that is shown to
Turkers to validate the QA pairs generated by our
method.

Figure 3: Example of the annotation task at the Ama-
zon Mechanical Turk website
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Question template # Aug. QA pairs # Aug. images % Aug. questions

On which side is the X? 17,935 16,224 2.2%
What color is the X? 32,744 27,704 4.1%
Are there X near the Y? 2,682 2,323 0.3%
Do you see X or Y? 10,666 9,704 1.1%
Is the X Rel the Y? 6,302 5,479 0.6%
Is the X Rel the Y? 9,938 8,007 1.1%

Table 8: Augmentation statistics per question template for the training data

Original Dataset Aug. dataset

Max 1 Max 3 Max 5

Size MAC LXMERT MAC LXMERT Size MAC LXMERT Size MAC LXMERT

On which side is the X? 2,538 68% 94% 56% 79% 4,927 57% 80% 5,662 57% 81%
What color is the X? 4,654 49% 69% 48% 62% 10,506 49% 62% 12,498 49% 62%
Are there X near the Y? 382 85% 98% 72% 84% 867 69% 80% 1,320 66% 79%
Do you see X or Y? 1,506 88% 95% 53% 63% 4,205 53% 64% 6,679 53% 65%
Is the X Rel the Y? 766 85% 96% 42% 67% 1,314 44% 69% 1,392 44% 69%
Is the X Rel the Y? 1,417 71% 93% 38% 55% 1,417 38% 55% 1,417 38% 55%
Overall 11,263 65% 84% 50% 66% 23,236 51% 67% 28,968 52% 67%

Table 9: Model accuracy by question template and maximum number of augmentations.
Italic text indicates variables, bold text indicates the perturbed atoms.

A.5 Examples
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Linguistic rule Explanation Examples

Singular vs. plural
If the noun is singular and countable:

add “a” or “an”
If needed, replace “Are” and “Is”

“a fence”, “men”
“a boy”, “an elephant”

Definite vs. indefinite
Do not change definite articles

to indefinite articles, and vice versa

”is there any fence near the boy”
suggests that there is a boy in the scene graph,

which is not always correct

General vs. specific
Meaning can be changed

When replacing to general
or specific terms

“Cats in the image” =>“Animals in the image”,
“Animals not in the image” =>“cats not in the image”,

The opposite directions not necessarily holds

Countable vs. uncountable
If the noun is uncountable,

do not add “a” or “an”
“A cat”, “water”

Table 10: Partial linguistic rules to notice using our method.

Figure 4:

Original QA Augmented QA

On which side is the blanket? Right On which side is the ornament? Left

What color is the teddy bear to the right of the pillow? Brown What color is the christmas lights? Yellow

Is there a couch near the blanket? Yes Is there a cat near the blanket? No

Do you see a pillow or couch there? Yes Do you see a dress or a carpet there? No

If the pillow to the left of a cat? No Is the pillow to the left of a teddy bear? Yes

Is the pillow to the left of a cat? No No aug. - No relation between (pillow, cat)
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(a) First case example - multiple objects
Augmented question: On which side of the photo
are the bananas?
Expected answer: right
“bananas” are annotated in green text color in the
right side of the image, but it also appears in addi-
tional locations

(b) Second case example - missing annotation
Augmented question: Do you see either a brown
chair or couch in this picture?
Expected answer: No
We can see a couch in the left side of the image
which is not annotated in the scene graph

(c) Third case example - incorrect annotation
Augmented question: Do you see either any win-
dows or fences?
Expected answer: Yes
We can see an incorrect annotation of “windows”
on the person shirt in azure text color.

Figure 5: Scene graph annotation mistakes


