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Abstract

Many recent approaches towards neural infor-
mation retrieval mitigate their computational
costs by using a multi-stage ranking pipeline.
In the first stage, a number of potentially rel-
evant candidates are retrieved using an effi-
cient retrieval model such as BM25. Although
BM25 has proven decent performance as a
first-stage ranker, it tends to miss relevant pas-
sages. In this context we propose CoRT, a
simple neural first-stage ranking model that
leverages contextual representations from pre-
trained language models such as BERT to com-
plement term-based ranking functions while
causing no significant delay at query time. Us-
ing the MS MARCO dataset, we show that
CoRT significantly increases the candidate re-
call by complementing BM25 with missing
candidates. Consequently, we find subsequent
re-rankers achieve superior results with less
candidates. We further demonstrate that pas-
sage retrieval using CoRT can be realized with
surprisingly low latencies.

1 Introduction

The successful development of neural ranking
models over the past few years has rapidly ad-
vanced state-of-the-art performance in information
retrieval (Guo et al., 2020; Craswell et al., 2020).
One key aspect of the success is the exploitation of
query-document interactions based on token repre-
sentations from self-supervised language models
(LMs) (Devlin et al., 2019; Radford et al., 2019;
Pennington et al., 2014). Due to high computa-
tional effort, however, these interaction-focused
approaches are limited to re-ranking scenarios and
thus they depend on the effectiveness of first-stage
ranking models for candidate retrieval. Term-based
retrieval models such as BM25 have proven decent
performance in this task, but tend to miss relevant
passages. In this context, we propose COmple-
mentary Rankings from Transformers (CoRT), a
simple neural first-stage ranking model that lever-

ages contextual representations from transformer-
based language models (Vaswani et al., 2017; De-
vlin et al., 2019) to complement term-based first-
stage rankings. CoRT optimizes an underlying
text encoder towards representations that reflect
relevance through vector similarity. The model
is trained to act complementary to term-based re-
trieval by using passages from BM25 rankings as
negative examples. We study the characteristics
of CoRT with four types of experiments based on
the MS MARCO dataset. First, we measure vari-
ous ranking metrics and compare the results with
first-stage ranking baselines and competitors. In
course of this, we demonstrate the portion of rel-
evant candidates that are added by CoRT. Sec-
ond, we combine the candidates from CoRT and
BM25 with a state-of-the-art re-ranker based on
BERT (Nogueira and Cho, 2019) and investigate
how many candidates are needed to saturate the
ranking quality. Third, we train CoRT with var-
ious representation sizes and measure its impact
on the first-stage ranking quality. Fourth, we mea-
sure the retrieval latencies of CoRT with two re-
trieval modalities: a distributed exhaustive search
on four GPUs and an approximate search based on
a graph-based nearest-neighbor index with pruning
heuristics (Iwasaki and Miyazaki, 2018). Finally,
we build an exemplary end-to-end ranking pipeline
using our first-stage ranking to demonstrate its ef-
ficiency. Our contribution is a first-stage ranking
framework with the potential to improve end-to-
end ranking pipelines by adding candidates that
term-based retrieval models typically miss. With
this it is possible to reduce the total number of
re-ranking candidates without hurting end-to-end
ranking quality. As a secondary contribution, we
provide an open-source implementation1 that en-
ables other researchers to reproduce our results and
test CoRT on other datasets.

1https://github.com/lavis-nlp/CoRT

https://github.com/lavis-nlp/CoRT
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2 Background and Related Work

In this section we describe key concepts of neural
ranking and refer to related work. We then present
neural first-stage ranking approaches that allow
direct comparison with our results.

2.1 Key Concepts of Neural Ranking

According to Guo et al. (2016), Neural ranking ap-
proaches can be categorized into two types of mod-
els depending on the architecture. Representation-
focused approaches (Huang et al., 2013; Shen et al.,
2014; Zamani et al., 2018) produce representations
for queries and documents to predict relevancy
scores using a simple distance or similarity mea-
sure. In this context, exploiting local interactions
between neighboring terms is a commonly used
technique (Shen et al., 2014; Zamani et al., 2018).
Models of the interaction-focused type exploit in-
teractions between query and document terms (Guo
et al., 2016; Xiong et al., 2017; Dai et al., 2018;
Nogueira and Cho, 2019). Although this leads to
superior ranking quality (Guo et al., 2016, 2020;
Qiao et al., 2019), it is computationally much more
intensive, since a given query has to be processed
together with each potentially relevant document.
Hence, this type of neural ranking model is only ap-
plicable in a ranking pipeline, where limited num-
bers of documents are given as potentially relevant
candidates. These candidates are selected by an
efficient retrieval model that is able to retrieve doc-
uments directly from the corpus in a reasonable
amount of time. The multi-stage ranking technique
is also known as cascade ranking and optimizing
the configuration of such a pipeline towards max-
imized efficiency and effectiveness has been ex-
tensively studied in the past (Wang et al., 2011;
Chen et al., 2017). Many interaction-focused neu-
ral ranking models employ a dedicated layer to
explicitly perform a matching between query and
document terms (Guo et al., 2016; Xiong et al.,
2017; Dai et al., 2018). Another approach is using
the attention mechanism (Vaswani et al., 2017), or
more specifically, a pretrained transformer encoder
such as BERT (Devlin et al., 2019) to exploit both
local and query-document interactions (Nogueira
and Cho, 2019; Qiao et al., 2019). Recently, some
hybrid approaches have been proposed that com-
bine typical representation-focused techniques with
interaction-focused approaches to reduce computa-
tional cost: Gao et al. (2020) propose a model ar-
chitecture comprising three modules for document

understanding, query understanding and relevance
judging respectively. The understanding modules
produce token-level representations, which can
be cached as usual in representation-focused ap-
proaches. The relevance judging module uses those
cached representations to apply query-document
interactions more quickly. Each module is a stack
of transformer layers (Vaswani et al., 2017), ini-
tialized with weights from BERT. In a related ap-
proach, MacAvaney et al. (2020) investigate the re-
lationship between different numbers of dedicated
layers of BERT for query-document interactions
and measure the resulting speedup that is due to
token representation caching, as well as its impact
on the end-to-end ranking quality. Khattab and Za-
haria (2020) propose a related approach, namely
ColBERT. The model architecture incorporates an
inexpensive max-similarity mechanism to perform
token-level query-document interactions. The au-
thors propose to store token representations in an
Approximate Nearest Neighbor (ANN) index to
quickly retrieve only those documents that have
token representations in the proximity to those of
the query. Thus, ColBERT can be described as an
end-to-end ranking approach that brings its own
first-stage retrieval mechanism allowing to perform
end-to-end ranking in a reasonable amount of time.

2.2 Neural First-stage Ranking

Now we discuss neural ranking approaches that
can be used to retrieve passages or documents di-
rectly from an entire corpus in a reasonable amount
of time and thus qualify for first-stage ranking.
Many proposed methods make use of existing in-
frastructure for sparse bag-of-words retrieval or at
least inverted indexing (Manning et al., 2008). Za-
mani et al. (2018) propose SNRM, a representation-
focused approach with sparse representations that
can be used with an inverted index as if each feature
dimensions corresponds to a term in a bag-of-words
representation. SNRM uses pretrained GloVe Word
Embeddings (Pennington et al., 2014) to model
soft-matched n-grams which are encoded in sparse
representations. Nogueira et al. (2019) predict
queries for given documents to expand those docu-
ments by corresponding query terms. In their first
work, known as doc2query, they used a sequence-
to-sequence (seq2seq) transformer model (Vaswani
et al., 2017). In a subsequent work, Nogueira and
Lin (2019) reported large effectiveness gains for
their follow-up model docTTTTTquery by replac-
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ing the seq2seq model with T5 (Raffel et al., 2020).
Another approach aims at predicting optimal doc-
ument term weights as a function of the term’s
context. DeepCT, proposed by Dai and Callan
(2020), utilizes BERT to predict these context-
aware weights based on associated queries in the
training data.

Inverted indexing is only applicable to sparse
representations. Representation-focused models
using dense representations can instead employ an
ANN index, which heuristically prunes documents
that are unlikely to be in the top-k proximity of
the query representation to realize low response
latencies (Boytsov et al., 2016; Gysel et al., 2018).
Karpukhin et al. (2020) recently used this technique
in combination with a fine-tuned BERT encoder for
open question answering.

3 Proposed Approach

We describe a first-stage ranking model that acts
as a complementary ranker to existing term-based
retrieval models such as BM25. To achieve this,
we make use of a transformer-based pretrained lan-
guage model and its inherent ability to make use of
token-level local interactions. Its complementary
behavior is further supported by negative sampling
from BM25 rankings.

3.1 Architecture

The model architecture of CoRT, illustrated in Fig-
ure 1, follows the idea of a Siamese Neural Network
(Bromley et al., 1993). Passages and queries are en-
coded using an identical model with shared weights
except for one detail: The passage encoder ψα and
the query encoder ψβ use different segment embed-
dings (Devlin et al., 2019). CoRT computes rele-
vance scores as angular similarity between query
and passage representations while training a pair-
wise ranking objective.

3.2 Encoding

CoRT can incorporate any BERT-like encoder as
underlying text encoder. Here, we use a pretrained
ALBERT (Lan et al., 2020) encoder for its smaller
model size, the tougher sentence coherence pre-
training and increased first-stage ranking quality
throughout our early-stage experiments compared
to BERT. The tokenizer of ALBERT is a Word-
Piece tokenizer (Wu et al., 2016) including the spe-
cial tokens [CLS] and [SEP] known from BERT.
From the text encoder we seek a single representa-

Figure 1: CoRT’s model architecture and pair-wise
learning objective (simplified).

tion vector for the whole passage or query, which
we call context representation. From ALBERT we
take the [CLS] embedding of the last layer for
this purpose. We denote the context representation
obtained from the underlying encoder for an arbi-
trary string s with τ(s) ∈ Rh where h is the output
representation size.

ALBERT’s language modeling approach in-
volves sentence coherence prediction for which
segment embeddings are used to signal different
input segments. Although we only feed single seg-
ments to the encoder, i.e. a query or a passage, we
use segment embeddings which allow the model
to encode queries differently from passages. The
segment embeddings EA and EB (illustrated in
Figure 1) are part of the context encoder func-
tions τα and τβ for passages and queries respec-
tively. The context representation is further pro-
jected to the desired representation size e using a
linear layer followed by a tanh activation function.
Thus, the complete passage encoder function is
ψα(s) := tanh(Wτα(s) + b) where W ∈ Rh×e
and b ∈ Re are parameters of the linear layer. The
query encoder ψβ is defined analogous.

3.3 Training

Training CoRT corresponds to updating the pa-
rameters of the encoder ψ towards representations
that reflect relevance between queries and passages
through vector similarity. Each training sample is
a triple comprising a query q, a positive passage d+

and a negative passage d−. While positive passages
are taken from relevance assessments, negative pas-
sages are sampled from term-based rankings (i.e.
BM25) to support the complementary property of
CoRT. The relevance score for a query-passage
pair (q, d) is calculated using the angular cosine
similarity function2:

2Similar to Cer et al. (2018), we found angular similarity
performs better than cosine similarity.
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sim(q, d) := 1− arccos

(
ψβ(q) · ψα(d)
||ψβ(q)|| ||ψα(d)||

)
/π

As illustrated in Figure 1, the training objective
is to score the positive example d+ by at least the
margin µ higher than the negative one d−. As
part of our loss function, we use the triplet margin
objective:

l(q, d+, d−) := max(0, sim(q, d−)− sim(q, d+) + µ)

Inspired by Song et al. (2016), we aim to take
full advantage of the whole training batch. For
each query, each passage in the batch is used as a
negative example, except for the given positive pas-
sage. Thus, we define our batch-wise loss function
as follows:

L :=
∑

1≤i≤n

 ∑
1≤j≤n

l(qi, d
+
i , d

−
j ) +

∑
1≤k≤n, k 6=i

l(qi, d
+
i , d

+
k )


qi, d+i and d−i denote the triple of the ith sam-

ple in the batch and n the number of samples per
batch. We found this technique to make the training
process more robust against exploding gradients.
Otherwise we need to employ gradient clipping
(Zhang et al., 2020) to stabilize the training pro-
cess. Also, it positively affects first-stage ranking
results3.

3.4 Indexing and Retrieval
For retrieval with CoRT, each passage must be en-
coded by the passage encoder ψα. Subsequent nor-
malization of each vector allows us to use the dot
product as a proxy score function for sim, which
is sufficient to form rankings accurately. Given a
query q, we calculate its representation ψβ(q) and
the dot product with each normalized passage vec-
tor. From those, the k highest scores are selected
and sorted to form the CoRT ranking. This pro-
cedure can be implemented heavily parallelized
using GPU matrix operations. Alternatively, the
passage representations can be indexed in an ANN
index to avoid exhaustive similarity search. In
contrast to the first-stage ranking of Khattab and
Zaharia (2020) and MacAvaney et al. (2020), we

3We achieve 2.0 p.p. higher MRR@10 compared to the
plain triplet margin loss on the MS MARCO passage task.

only index one representation per passage rather
than one per token. Finally, we combine the re-
sulting ranking of CoRT with the respective BM25
ranking by interleaving the positions beginning
with CoRT to create a single merged ranking of
equal length. During this process, each passage
that was already added by the other ranking is omit-
ted. For example, merging two ranking lists begin-
ning with [a, b, c, d, . . . ] and [e, c, f, a, . . . ] would
result in [a, e, b, c, �c, f, d, �a, . . . ]. The interleaving
procedure stops as soon as the desired ranking size
has been reached. The result is a compound rank-
ing of CoRT and BM25, which we denote with
CoRTBM25.

4 Experiments

We present four experiments studying the ranking
quality and recall of CoRT, the connection between
the number of candidates and re-ranking effective-
ness, the impact of the representation size e, and
CoRT’s retrieval latencies. Finally, we outline a
competitive end-to-end ranking setup with CoRT
and a BERT-based re-ranker.

4.1 Datasets

4.1.1 MS MARCO Passage Retrieval
The Microsoft Machine Reading Comprehension
(Nguyen et al., 2016) dataset for passage ranking
was introduced in 2018. It provides a benchmark
for passage retrieval with real-world queries and
passages gathered from Microsoft’s Bing search.
The MS MARCO passage ranking task comprises
8.8M passages sampled from web pages and about
1M queries that are formulated as questions. The
objective is to rank those passages high that were
labeled as relevant to answer the respective ques-
tion. The annotations, however, are sparse. There
are 530k positive relevance labels distributed over
808k queries in the training set, whereby most
queries are associated to one passage. The vali-
dation and evaluation sets, dev and eval, com-
prise 101k queries each. An official subset of dev,
called dev.small comprises 6980 queries and
7437 relevance labels and is often used for publicly
reported evaluations. We follow this convention
and use dev.small for testing. The creators sug-
gest to use the mean reciprocal rank cut at the
tenth position (MRR@10) as primary evaluation
measure. Additionally, we measure NDCG@20
(Manning et al., 2008) as less punishing ranking
quality measure and the recall at various positions
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Table 1: First-stage ranking results on the MS MARCO dev.small set. The asterisk (*) denotes merged rankings
using an instance of CoRT that was not specifically trained to complement the corresponding term-based ranker.

MS MARCO MRR NDCG RECALL
Passage (dev.small) @10 @20 @50 @100 @200 @500 @1000

BM25 18.7 25.8 59.2 67.0 73.8 81.2 85.7
doc2query 21.5 - - - - - 89.3
DeepCT 24.3 32.1 68.5 75.2 81.0 87.3 90.9
docTTTTTquery 27.7 36.5 75.6 81.9 86.9 91.6 94.7

CoRT 27.1 34.0 66.4 73.1 78.6 84.4 88.0
CoRTBM25 27.4 35.9 74.3 81.6 87.3 92.5 94.9
CoRTDeepCT* 28.3 36.8 75.6 82.3 87.6 92.5 94.9
CoRTDocTTTTTquery* 28.8 38.0 78.5 85.3 90.0 94.4 96.5

to indicate how many relevant passages a re-ranker
would miss if the number of candidates is reduced.

4.1.2 TREC 2019 DL Passage Retrieval
The passage retrieval section of the TREC 2019
Deep Learning Track (Craswell et al., 2020) pro-
vides on average 215 manual relevance assessments
per query for a set of 43 MS MARCO queries. Each
assessment corresponds to a rating on a scale from
0 (not relevant) to 3 (perfectly relevant). We adopt
the evaluation metrics MRR (uncut), NDCG@10
and MAP from the official TREC overview. In con-
trast to the original MS MARCO benchmark, this
evaluation set provides dense annotations, but only
for few queries.

4.2 First-Stage Ranking
We train CoRT as described in Section 3.3 while
using a representation size of e = 768. In this
section we discuss the first-stage ranking results of
our model using the datasets and their associated
metrics described in Section 4.1.

4.2.1 MS MARCO Passage Retrieval
The results of CoRT and its baselines on the MS
MARCO passage retrieval task (dev.small) are
reported in Table 1. Next to BM25 as a base-
line, we include DeepCT (Dai and Callan, 2020),
doc2query (Nogueira et al., 2019) and its suc-
cessor docTTTTTquery (Nogueira and Lin, 2019).
All three are recent first-stage rankers with aver-
age retrieval latencies below 100ms per query on
the MS MARCO passage corpus. The metrics
MRR@10 and NDCG@20 reveal a quite decent
ranking quality for the standalone CoRT ranker.
Since CoRT’s primary use is candidate retrieval
rather than standalone ranking, we pay particular
attention to the recall at various cuts. From the
perspective of BM25, the absolute increase of re-
call due to merging with CoRT ranges between

Table 2: First-stage ranking results on the TREC 2019
DL passage task.

TREC DL MRR NDCG MAP RECALL
2019 @1000 @10 @1000 @500

BM25 68.5 49.7 29.0 69.4
CoRT 84.3 60.0 29.7 58.3
CoRTBM25 86.2 59.7 35.1 76.9

15.1 (RECALL@50) and 9.2 (RECALL@1000),
which we consider the complementary portion of
CoRT. Greater increases of recall can be noticed
for lower cuts, which is particular useful when re-
ranking is performed with low numbers of can-
didates. The top-200 candidates from CoRTBM25
comprise higher recall than the top-1000 candi-
dates from BM25. The metrics for DeepCT and
docTTTTTquery have been calculated using pub-
lished top-1000 rankings from the respective au-
thors. Thus, we were able to merge those rank-
ings with CoRT. However, the used instance of
CoRT was trained on BM25 and not on the exter-
nal ranker.

4.2.2 TREC 2019 DL Passage Retrieval

Although we consider the relevance assessments
from TREC 2019 DL to be dense, we found 112
unlabeled passages among the 43 top-10 CoRT
rankings while the assessments for the BM25 rank-
ings are complete. This means there are, on aver-
age, 2.6 unlabeled passages in the top-10 CoRT
rankings, which might make this evaluation some-
what unfavourable for CoRT and explain the drop
in recall. Still, Table 2 shows superior results for
CoRT compared to BM25 in terms of ranking qual-
ity (MRR, NDCG and MAP). Merging CoRT with
BM25 slightly increases MRR and NDCG, while a
decent gain in terms of recall can be noticed. We
can not report any results for DeepCT or docTTTT-
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Tquery, since only rankings for the MS MARCO
dev.small set are available online from the re-
spective authors.

4.3 Candidate Re-ranking

We re-rank candidates from both BM25 and
CoRTBM25 to study the impact of the candidates on
a subsequent interaction-focused re-ranking. By
varying the numbers of candidates, we investigate
at which point adding more candidates becomes
ineffective.

4.3.1 Re-ranking Model

Similar to (Nogueira and Cho, 2019), we use a
simple binary classifier based on BERT. The query-
passage pair (q, p) is concatenated to one token
sequence of two segments. This sequence is pro-
cessed by the BERT encoder while the [CLS]
embedding of the last layer, which we denote with
φ(q, p), is projected to a single classification logit.
We then apply the sigmoid activation function σ
to obtain the relevance confidence for query q and
passage p. This procedure can be formalized as
ζ(q, p) = σ(W ′φ(q, p) + b′) where W ′ ∈ Rh×1
and b′ ∈ R are the parameters of a linear layer with
a single output activation. To form a ranking at in-
ference time, we sort the candidates by the model’s
confidence. Following (Nogueira and Cho, 2019),
this model is trained using a point-wise objective.
We sample query-passage pairs, each associated
with a binary relevance label y ∈ {0, 1} and mini-
mize the binary cross-entropy loss:

l′(q, p, y) = y·log ζ(q, p)+(1−y)·log (1−ζ(q, p))

4.3.2 Re-ranking Results

As illustrated in figure 2, using CoRTBM25 as first-
stage ranking appears to result in superior end-to-
end ranking quality in terms of MRR@10. This
is especially true, if low numbers of candidates
are used. We also notice earlier saturation4 of
MRR@10 for CoRTBM25, which is illustrated in
Figure 2. Only 64 candidates from CoRTBM25 are
sufficient to achieve top results with this re-ranker.
In contrast, 256 candidates from BM25 are needed
to reach the point of saturation, which translates in
quadrupled re-ranking time.

4In our definition, saturation is reached, when doubling
the number of candidates results in less than 0.5% increase of
the respective metric

8 16 32 64 128 256 512 1000
Number of Re-ranking Candidates
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CoRTBM25 + BERT
BM25 + BERT
Saturation Point

Figure 2: Re-ranking quality by number of candidates
for BM25 (black) and CoRTBM25 (red) on the MS
MARCO passage task. Dashed lines indicate effective-
ness saturation (<0.5% increase).

4.4 Impact of Representation Size

As described in Section 3.2, CoRT projects the con-
text representation of the underlying encoder τ to
an arbitrary representation size e. This size deter-
mines the size of the final index and also influences
the retrieval latency. The total size of the encoded
corpus is easy to calculate. For example, with e =
128 and the MS MARCO corpus, the index size
(without overhead) amounts 8.8M documents×
128floats/document × 4bytes/float ≈ 4.5 ×
109bytes ≈ 4.2GB. Thus, e is proportional to the
total size and reducing e to 64 would halve the
memory footprint. If e is small, however, it is more
difficult to attain the training objective. Thus, e can
be used for a trade-off between ranking quality and
computational effort / resource cost. We investigate
the relation between the representation size e and
the ranking quality by conducting identical training
runs with different numbers for e. The results in
Table 3 show that MRR@10 already saturates at
e = 128. Interestingly, even with an representation
size of e = 32, CoRT outperforms BM25 in terms
of MRR@10 and nDCG@20 by a big margin.

Table 3: First-stage ranking results for various repre-
sentation sizes.

MRR nDCG RECALL
e @10 @20 @200 @1k

CoRT

32 23.6 29.8 70.6 81.8
64 25.6 32.3 75.6 85.7
128 26.8 33.4 77.2 87.1
256 26.8 33.6 78.2 87.8
768 27.1 34.0 78.6 88.0

CoRTBM25

32 25.2 33.5 85.2 93.7
64 26.6 34.9 86.2 94.4
128 27.4 35.7 87.0 94.8
256 27.2 35.6 87.0 94.9
768 27.4 36.0 87.3 94.9
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4.5 Latency Measurements

We propose two methods for the deployment of
CoRT. The first exhaustively calculates similar-
ity scores using multiple GPUs while the second
incorporates an Approximate Nearest Neighbor in-
dex (ANN). We measure retrieval latencies of those
methods and compare them with BM25 as repre-
sentative for term-based retrieval models based on
inverted indexing. We conduct the latency mea-
surement based on the top-1000 retrieval for the
dev.small split of the MS MARCO passage
corpus. Since some approaches profit from batch
computing, we also measure the latency for batches
of 32 queries. As representation size, we have cho-
sen e = 128, since it is the smallest representation
size investigated in Section 4.4 that does not hurt
the ranking quality of CoRTBM25.

4.5.1 Lucene BM25 Baseline

As retrieval latency baseline, we use a Lucene in-
dex generated by the Anserini toolkit (Yang et al.,
2017). Please note, this is not perfectly representa-
tive for sparse bag-of-words retrieval: Retrieval la-
tency can be reduced due to index pruning without
significantly hurting retrieval quality (Mackenzie
et al., 2020). The retrieval was performed on a
machine with an Intel Core i9-9900KS processor
(16 logical cores, 8 physical) and enough memory
to hold the whole corpus. Single queries were pro-
cessed using the single-threaded search function,
while batch-wise search has been performed with
16 threads.

4.5.2 Retrieval using multiple GPUs

Multiple GPUs can be used to deploy CoRT for
fast large-scale ranking. We propose to uniformly
distribute the vector representations of the corpus
on the available GPUs. Each GPU ranks its own
partition of the corpus as described in Section 3.4.
Afterwards, the results for each partition are aggre-
gated by selecting the top-k candidates with highest
scores.

4.5.3 Retrieval using ANN

Since CoRT operates on vector similarities, it can
make use of ANN search. We measure the retrieval
latency and the loss of recall, which occurs due
to the pruning heuristics. We use a graph-based
index optimized with the ONNG method (Iwasaki
and Miyazaki, 2018). An implementation of this
method is publicly available as part of the NGT

Table 4: Retrieval latencies averaged over 6980 queries
of the dev.small split.

MS MARCO RECALL LATENCY (ms)
Passage (dev.small) @200 Single Batch32

BM25 (anserini) 73.8 38 290

CoRT (e = 128)
Query Encoding

- Single GPU - 8 17
Retrieval

- Single GPU 77.2 68 164
- Quad GPU 77.2 17 35
- ANNε = 0.01 76.6 4 -
- ANNε = 0.1 76.9 17 -
- ANNε = 0.4 77.2 71 -

CoRTBM25 Total
- Quad-GPU 87.0 ∼63 ∼342
- ANNε = 0.1 86.9 ∼63 -
- ANNε = 0.01 86.8 ∼50 -

Library5. To adjust the trade-off between retrieval
latency and accuracy of the index, we alter the
search range coefficient ε. We always retrieve 1000
candidates from the ANN index, even if we use a
smaller number of candidates in a ranking pipeline.

4.5.4 Latency Measurements
The latency measurements are reported in Table
4. For CoRT the total retrieval latency per query
consists of two factors: Query encoding and re-
trieval. The query encoding has to be performed
by the query encoder ψβ , which we highly rec-
ommend to run on a GPU. The latency of the re-
trieval depends on the retrieval methods described
above. Employing multiple GPUs appears to re-
duce retrieval latency on a linear scale: The ex-
haustive search using four GPUs takes 17ms for a
single query, while a single GPU takes four times
as long. The total retrieval time per query sums
up to 17 + 8 = 25ms for the quad GPU setting,
which is below the BM25 baseline. It is worth
noting, that batch-wise processing results in a sub-
stantial efficiency increase: Retrieval for 32 queries
at once only takes about twice as long as a single
query. This can be useful if multiple queries queue
up while the system is busy. The tested BM25
index (Anserini), on the other side, seems to suf-
fer from multiprocessing overhead or some sort of
bottleneck. The latencies for the ANN index has
been measured with three different values for the
search range coefficient ε. While this significantly
affects the retrieval latency, only slight differences
regarding the quality of the first-stage ranking are

5https://github.com/yahoojapan/NGT

https://github.com/yahoojapan/NGT
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observed. Latencies for CoRTBM25 comprise la-
tencies from BM25, CoRT’s query encoding and
the corresponding retrieval method. For simplic-
ity, we assume sequential processing of all three
components, although BM25 could be processed
in parallel.

4.6 End-to-end Retrieval

Intrigued by the remarkable ratio of retrieval la-
tency and ranking quality of ColBERT’s full-
ranking approach (Khattab and Zaharia, 2020), we
used our above findings to create a competitive end-
to-end ranking setup. We suggest to re-rank the
top-64 candidates from CoRTBM25 with e = 128,
retrieved by an ANN index (ε = 0.1). The end-
to-end latency comprises 8ms for query encoding,
17ms for CoRT retrieval based on ONNG, 38ms
for BM25 retrieval, and 192ms for re-ranking. Al-
though the BM25 candidates could be retrieved
in parallel, we report sequential processing laten-
cies. As shown in Table 5, we outperform Col-
BERT’s end-to-end ranking performance in terms
of MRR@10 and retrieval latency. It is worth not-
ing that the "RTX 2080 Ti" we used for latency mea-
surements is less powerful than the "Tesla V100"
Khattab and Zaharia (2020) used for their mea-
surements. CoRT’s representations for the MS
MARCO corpus only weight 4.3GB when e is set
to 128, or 7.0GB when indexed in an ONNG in-
dex. The size of the query encoder only amounts
about 50MB, which is due to ALBERT’s parameter
sharing. To compile the full CoRTBM25 candidates,
the corresponding BM25 index is needed, which
amounts 2.2 GB on disk. Although more memory
is needed to deploy and operate both indexes, this
is by far less than the 154GB footprint reported by
Khattab and Zaharia (2020) for ColBERT’s end-to-
end approach.

Table 5: Measured end-to-end ranking quality and la-
tency. * ColBERT’s latency was measured with differ-
ent hardware

MS MARCO MRR LATENCY
Passage (dev.small) @10 (ms)

ColBERTL2 (Khattab and
Zaharia, 2020)

36.0 458*

CoRTBM25 (ANNε = 0.1,
top-64) + BERT Re-ranking

38.4 255

5 Conclusion

In this paper, we propose CoRT, a framework and
neural first-stage ranking model that leverages con-
textual representations from transformer-based lan-
guage models to complement term-based ranking
functions. As a result, we observe decently in-
creased recall measures and improved end-to-end
ranking quality on the MS MARCO passage task.
Also, we are able to decrease the number of candi-
dates for re-ranking without hurting the final per-
formance. Our further experiments reveal sweet
spots for CoRT’s representation size and the num-
ber of re-ranking candidates. We presented two de-
ployment strategies for CoRT and measured their
performances in terms of efficiency and effective-
ness. Finally, we demonstrate CoRT can be used
with a simple BERT-based re-ranker to create a
competitive ranking pipeline.
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A Appendix: Implementation Details

A.1 Hardware & Software
We use up to four NVIDIA GTX 2080 TI graphic
cards in combination with 128GB DDR4 RAM
and an Intel Core i9-9900KS processor. We use
PyTorch (Paszke et al., 2019) and HuggingFace’s
Transformers (Wolf et al., 2019) as deep learning
libraries. BM25 rankings are generated using the
Anserini toolkit (Yang et al., 2017).

A.2 CoRT Training
We train CoRT based on the pretrained ALBERT
model "albert-base-v2", which is the light-
est available version in HuggingFace’s repository6.
Each model is trained for 10 epochs, where each
epoch includes all queries that are associated to
at least one relevant document plus one randomly
sampled positive and one negative passage. Neg-
ative examples are sampled from unlabeled pas-
sages of top-100 BM25 rankings. There, we
exclude the first 8 ranks to reduce the probabil-
ity of drawing actual relevant passages and thus
give contradictory signals less often. We find this
slightly increases CoRT’s ranking quality. As usual
for BERT-based models we use the ADAM opti-
mizer with weight decay fix (Loshchilov and Hut-
ter, 2019) and the default parameters β1 = 0.9,
β2 = 0.999, eps = 10−6, a weight decay rate
of λ = 0.1 and a linearly decreasing learning
rate schedule starting with lr = 2 × 10−5 after

2.000 warm-up steps. We train mini-batches of
size n = 6 samples (triples) while accumulating
the gradients of 100 mini-batches before perform-
ing one update step. The triplet margin is set to
µ = 0.1, which has been tuned within the range of
[0.01, 0.2].

A.3 Re-ranker Training

Our BERT re-ranking experiment utilizes the pre-
trained "bert-base-uncased" model, hosted
by HuggingFace. We use equal optimizer settings
than for CoRT except for the learning rate, which
we empirically set to 5×10−5. We use a batch-size
of 8 and accumulate the gradients of 16 batches.

B Appendix: Retrieval Examples

Table 6 shows top-1 retrieval examples of CoRT
and BM25. The first query exemplifies the advan-
tage of local interactions in the query encoder. We
hypothesize, the query could be interpreted as a
question about the density of aluminum although
the term density was not included. The second
query is an example, where BM25 works well due
to favorable keywords in the passage. Although
CoRT’s top result is not labeled, it clearly is rel-
evant to the query. Since the passage misses the
keyword "insane", it is difficult to retrieve for a
term-based model. We hypothesize, due to the
terms "hallucinations" and "paranoia", CoRT is
able to match the contexts in this example.

Table 6: Retrieval Examples with highlighted keywords. Ranks beyond the top-1000 are denoted with "n/a".

Query Sample Passage Label Rank
BM25 CoRT

how much
does
aluminum
weigh

Question and answer. how much does a western 14 ft.aluminum boat weigh? what
is the weight difference between a 12 ft. and 14 ft. aluminum boat. 12 ft aluminum
boat with no gear or anything would probably weigh about 115-150 lbs, 14 ft
aluminum boat with no gear or anything would probably weigh about 250-300 lbs.

n/a 1 n/a

Quick Answer. One cubic inch of aluminum weighs 1.56 ounces. The metal sinks
in water, but it is still relatively lightweight. The density of aluminum is 2.7 grams
per milliliter. Aluminum is used as a metal foil, a conductor of electricity and in the
construction of airplane fuselages.

True 735 1

how many
days of no
sleep until
insane

Although there are many articles stating one can be declared legally insane if... How
long must you go without sleep to be declared legally insane Each state would have
different laws regarding the requirements of declaring... Is it true that after three
days of complete sleep deprivation you are considered legally insane? Not after 3
days but any longer will.

True 1 n/a

The longest recorded time a human has ever gone without sleep is 18 days, 21
hours, and 40 minutes, which resulted in hallucinations, paranoia, etc. However
most people can only last 4-6 days without stimulants, and about 7-10 days before
the body will be unable to function and long term damage can be caused.

n/a n/a 1

6https://huggingface.co/transformers/pretrained_models.html

https://huggingface.co/transformers/pretrained_models.html

