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Abstract

We introduce Dynabench, an open-source plat-
form for dynamic dataset creation and model
benchmarking. Dynabench runs in a web
browser and supports human-and-model-in-
the-loop dataset creation: annotators seek to
create examples that a target model will mis-
classify, but that another person will not. In
this paper, we argue that Dynabench addresses
a critical need in our community: contempo-
rary models quickly achieve outstanding per-
formance on benchmark tasks but nonethe-
less fail on simple challenge examples and
falter in real-world scenarios. =~ With Dyn-
abench, dataset creation, model development,
and model assessment can directly inform
each other, leading to more robust and infor-
mative benchmarks. We report on four ini-
tial NLP tasks, illustrating these concepts and
highlighting the promise of the platform, and
address potential objections to dynamic bench-
marking as a new standard for the field.

1 Introduction

While it used to take decades for machine learning
models to surpass estimates of human performance
on benchmark tasks, that milestone is now rou-
tinely reached within just a few years for newer
datasets (see Figure 1). As with the rest of Al, NLP
has advanced rapidly thanks to improvements in
computational power, as well as algorithmic break-
throughs, ranging from attention mechanisms (Bah-
danau et al., 2014; Luong et al., 2015), to Trans-
formers (Vaswani et al., 2017), to pre-trained lan-
guage models (Howard and Ruder, 2018; Devlin
et al., 2019; Liu et al., 2019b; Radford et al., 2019;
Brown et al., 2020). Equally important has been the
rise of benchmarks that support the development of
ambitious new data-driven models and that encour-
age apples-to-apples model comparisons. Bench-
marks provide a north star goal for researchers, and
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Figure 1: Benchmark saturation over time for popular
benchmarks, normalized with initial performance at mi-
nus one and human performance at zero.

are part of the reason we can confidently say we
have made great strides in our field.

In light of these developments, one might be
forgiven for thinking that NLP has created mod-
els with human-like language capabilities. Prac-
titioners know that, despite our progress, we are
actually far from this goal. Models that achieve
super-human performance on benchmark tasks (ac-
cording to the narrow criteria used to define hu-
man performance) nonetheless fail on simple chal-
lenge examples and falter in real-world scenarios.
A substantial part of the problem is that our bench-
mark tasks are not adequate proxies for the so-
phisticated and wide-ranging capabilities we are
targeting: they contain inadvertent and unwanted
statistical and social biases that make them artifi-
cially easy and misaligned with our true goals.

We believe the time is ripe to radically rethink
benchmarking. In this paper, which both takes a
position and seeks to offer a partial solution, we
introduce Dynabench, an open-source, web-based
research platform for dynamic data collection and
model benchmarking. The guiding hypothesis be-
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hind Dynabench is that we can make even faster
progress if we evaluate models and collect data
dynamically, with humans and models in the loop,
rather than the traditional static way.

Concretely, Dynabench hosts tasks for which
we dynamically collect data against state-of-the-
art models in the loop, over multiple rounds. The
stronger the models are and the fewer weaknesses
they have, the lower their error rate will be when in-
teracting with humans, giving us a concrete metric—
i.e., how well do Al systems perform when inter-
acting with humans? This reveals the shortcomings
of state-of-the-art models, and it yields valuable
training and assessment data which the community
can use to develop even stronger models.

In this paper, we first document the background
that led us to propose this platform. We then de-
scribe the platform in technical detail, report on
findings for four initial tasks, and address possible
objections. We finish with a discussion of future
plans and next steps.

2 Background

Progress in NLP has traditionally been measured
through a selection of task-level datasets that grad-
ually became accepted benchmarks (Marcus et al.,
1993; Pradhan et al., 2012). Recent well-known
examples include the Stanford Sentiment Tree-
bank (Socher et al., 2013), SQuAD (Rajpurkar
et al., 2016, 2018), SNLI (Bowman et al., 2015),
and MultiNLI (Williams et al., 2018). More
recently, multi-task benchmarks such as SentE-
val (Conneau and Kiela, 2018), DecaNLP (McCann
etal., 2018), GLUE (Wang et al., 2018), and Super-
GLUE (Wang et al., 2019) were proposed with the
aim of measuring general progress across several
tasks. When the GLUE dataset was introduced,
“solving GLUE” was deemed “beyond the capabil-
ity of current transfer learning methods” (Wang
et al., 2018). However, GLUE saturated within a
year and its successor, SuperGLUE, already has
models rather than humans at the top of its leader-
board. These are remarkable achievements, but
there is an extensive body of evidence indicating
that these models do not in fact have the human-
level natural language capabilities one might be
lead to believe.

2.1 Challenge Sets and Adversarial Settings

Whether our models have learned to solve tasks
in robust and generalizable ways has been a topic

of much recent interest. Challenging test sets have
shown that many state-of-the-art NLP models strug-
gle with compositionality (Nie et al., 2019; Kim
and Linzen, 2020; Yu and Ettinger, 2020; White
et al., 2020), and find it difficult to pass the myriad
stress tests for social (Rudinger et al., 2018; May
et al., 2019; Nangia et al., 2020) and/or linguistic
competencies (Geiger et al., 2018; Naik et al., 2018;
Glockner et al., 2018; White et al., 2018; Warstadt
et al., 2019; Gauthier et al., 2020; Hossain et al.,
2020; Jeretic et al., 2020; Lewis et al., 2020; Saha
et al., 2020; Schuster et al., 2020; Sugawara et al.,
2020; Warstadt et al., 2020). Yet, challenge sets
may suffer from performance instability (Liu et al.,
2019a; Rozen et al., 2019; Zhou et al., 2020) and
often lack sufficient statistical power (Card et al.,
2020), suggesting that, although they may be valu-
able assessment tools, they are not sufficient for
ensuring that our models have achieved the learn-
ing targets we set for them.

Models are susceptible to adversarial attacks,
and despite impressive task-level performance,
state-of-the-art systems still struggle to learn robust
representations of linguistic knowledge (Ettinger
et al., 2017), as also shown by work analyzing
model diagnostics (Ettinger, 2020; Ribeiro et al.,
2020). For example, question answering models
can be fooled by simply adding a relevant sentence
to the passage (Jia and Liang, 2017).

Text classification models have been shown to be
sensitive to single input character change (Ebrahimi
et al., 2018b) and first-order logic inconsisten-
cies (Minervini and Riedel, 2018). Similarly, ma-
chine translation systems have been found suscepti-
ble to character-level perturbations (Ebrahimi et al.,
2018a) and synthetic and natural noise (Belinkov
and Bisk, 2018; Khayrallah and Koehn, 2018). Nat-
ural language inference models can be fooled by
simple syntactic heuristics or hypothesis-only bi-
ases (Gururangan et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018; Belinkov et al., 2019; McCoy et al.,
2019). Dialogue models may ignore perturbations
of dialogue history (Sankar et al., 2019). More
generally, Wallace et al. (2019) find universal ad-
versarial perturbations forcing targeted model er-
rors across a range of tasks. Recent work has also
focused on evaluating model diagnostics through
counterfactual augmentation (Kaushik et al., 2020),
decision boundary analysis (Gardner et al., 2020;
Swayamdipta et al., 2020), and behavioural test-
ing (Ribeiro et al., 2020).
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2.2 Adpversarial Training and Testing

Research progress has traditionally been driven by
a cyclical process of resource collection and ar-
chitectural improvements. Similar to Dynabench,
recent work seeks to embrace this phenomenon, ad-
dressing many of the previously mentioned issues
through an iterative human-and-model-in-the-loop
annotation process (Yang et al., 2017; Dinan et al.,
2019; Chen et al., 2019; Bartolo et al., 2020; Nie
et al., 2020), to find “unknown unknowns” (Atten-
berg et al., 2015) or in a never-ending or life-long
learning setting (Silver et al., 2013; Mitchell et al.,
2018). The Adversarial NLI (ANLI) dataset (Nie
et al., 2020), for example, was collected with an
adversarial setting over multiple rounds to yield
“a ‘moving post’ dynamic target for NLU systems,
rather than a static benchmark that will eventually
saturate”. In its few-shot learning mode, GPT-3
barely shows “signs of life” (Brown et al., 2020)
(i.e., it is barely above random) on ANLI, which
is evidence that we are still far away from human
performance on that task.

2.3 Other Related Work

While crowdsourcing has been a boon for large-
scale NLP dataset creation (Snow et al., 2008;
Munro et al., 2010), we ultimately want NLP sys-
tems to handle “natural” data (Kwiatkowski et al.,
2019) and be “ecologically valid” (de Vries et al.,
2020). Ethayarajh and Jurafsky (2020) analyze the
distinction between what leaderboards incentivize
and “what is useful in practice” through the lens of
microeconomics. A natural setting for exploring
these ideas might be dialogue (Hancock et al., 2019;
Shuster et al., 2020). Other works have pointed
out misalignments between maximum-likelihood
training on i.i.d. train/test splits and human lan-
guage (Linzen, 2020; Stiennon et al., 2020).

We think there is widespread agreement that
something has to change about our standard eval-
uation paradigm and that we need to explore al-
ternatives. The persistent misalignment between
benchmark performance and performance on chal-
lenge and adversarial test sets reveals that standard
evaluation paradigms overstate the ability of our
models to perform the tasks we have set for them.
Dynabench offers one path forward from here, by
allowing researchers to combine model develop-
ment with the stress-testing that needs to be done
to achieve true robustness and generalization.

3 Dynabench

Dynabench is a platform that encompasses different
tasks. Data for each task is collected over multiple
rounds, each starting from the current state of the
art. In every round, we have one or more target
models “in the loop.” These models interact with
humans, be they expert linguists or crowdworkers,
who are in a position to identify models’ shortcom-
ings by providing examples for an optional context.
Examples that models get wrong, or struggle with,
can be validated by other humans to ensure their
correctness. The data collected through this pro-
cess can be used to evaluate state-of-the-art models,
and to train even stronger ones, hopefully creat-
ing a virtuous cycle that helps drive progress in
the field. Figure 2 provides a sense of what the
example creation interface looks like.

As alarge-scale collaborative effort, the platform
is meant to be a platform technology for human-
and-model-in-the-loop evaluation that belongs to
the entire community. In the current iteration, the
platform is set up for dynamic adversarial data col-
lection, where humans can attempt to find model-
fooling examples. This design choice is due to the
fact that the average case, as measured by maxi-
mum likelihood training on i.i.d. datasets, is much
less interesting than the worst (i.e., adversarial)
case, which is what we want our systems to be able
to handle if they are put in critical systems where
they interact with humans in real-world settings.

However, Dynabench is not limited to the adver-
sarial setting, and one can imagine scenarios where
humans are rewarded not for fooling a model or
ensemble of models, but for finding examples that
models, even if they are right, are very uncertain
about, perhaps in an active learning setting. Sim-
ilarly, the paradigm is perfectly compatible with
collaborative settings that utilize human feedback,
or even negotiation. The crucial aspect of this pro-
posal is the fact that models and humans interact
live “in the loop” for evaluation and data collection.

One of the aims of this platform is to put expert
linguists center stage. Creating model-fooling ex-
amples is not as easy as it used to be, and finding
interesting examples is rapidly becoming a less triv-
ial task. In ANLI, the verified model error rate for
crowd workers in the later rounds went below 1-in-
10 (Nie et al., 2020), while in “Beat the AI”’, human
performance decreased while time per valid adver-
sarial example went up with stronger models in the
loop (Bartolo et al., 2020). For expert linguists, we
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@%h About Tasks ~

SENTIMENT ANALYSIS

Find examples that fool the model

E® Your goal: enter a negative ¥  statement that fools the model into predicting positive.

Please pretend you a reviewing a place, product, book or movie.

This year's NAACL was very different because of Covid

Model prediction: positive
Well done! You fooled the model.

Optionally, provide an explanation for your example:

93.79%

Draft. Click out of input box to save.

[Covid is clearly not a good thing

[The madel probably doesn't know what Covid is

l

Model Inspector

#s This year 's NA AC L was very different because of Cov id #/s

The model inspector shows the layer integrated gradients for the input token layer of the model.

D Retract | W Flag = Q Inspect

This year's NAACL was very different because of Covid

Live Mode l

Switch to next context

Figure 2: The Dynabench example creation interface for sentiment analysis with illustrative example.

expect the model error to be much higher, but if
the platform actually lives up to its virtuous cycle
promise, that error rate will go down quickly. Thus,
we predict that linguists with expertise in explor-
ing the decision boundaries of machine learning
models will become essential.

While we are primarily motivated by evaluating
progress, both ANLI and “Beat the AI”” show that
models can overcome some of their existing blind
spots through adversarial training. They also find
that best model performance is still quite far from
that of humans, suggesting that while the collected
data appears to lie closer to the model decision
boundaries, there still exist adversarial examples
beyond the remit of current model capabilities.

3.1 Features and Implementation Details

Dynabench offers low-latency, real-time feedback
on the behavior of state-of-the-art NLP models.
The technology stack is based on PyTorch (Paszke
et al., 2019), with models served via TorchServe.!

"https://pytorch.org/serve

The platform not only displays prediction probabil-
ities, but through an “inspect model” functionality,
allows the user to examine the token-level layer
integrated gradients (Sundararajan et al., 2017), ob-
tained via the Captum interpretability library.?

For each example, we allow the user to explain
what the correct label is, as well as why they think
it fooled a model if the model got it wrong; or why
the model might have been fooled if it wasn’t. All
collected model-fooling (or, depending on the task,
even non-model-fooling) examples are verified by
other humans to ensure their validity.

Task owners can collect examples through the
web interface, by engaging with the community, or
through Mephisto,> which makes it easy to connect,
e.g., Mechanical Turk workers to the exact same
backend. All collected data will be open sourced,
in an anonymized fashion.

In its current mode, Dynabench could be de-

https://captum.ai/
*https://github.com/facebookresearch/
Mephisto
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scribed as a fairly conservative departure from the
status quo. It is being used to develop datasets
that support the same metrics that drive exist-
ing benchmarks. The crucial change is that the
datasets are now dynamically created, allowing for
more kinds of evaluation—e.g., tracking progress
through rounds and across different conditions.

3.2 Initial Tasks

We have selected four official tasks as a starting
point, which we believe represent an appropri-
ate cross-section of the field at this point in time.
Natural Language Inference (NLI) and Question
Answering (QA) are canonical tasks in the field.
Sentiment analysis is a task that some consider
“solved” (and is definitely treated as such, with
all kinds of ethically problematic repercussions),
which we show is not the case. Hate speech is
very important as it can inflict harm on people, yet
classifying it remains challenging for NLP.

Natural language inference. Built upon the se-
mantic foundation of natural logic (Sdnchez Valen-
cia, 1991, i.a.) and hailing back much further (van
Benthem, 2008), NLI is one of the quintessential
natural language understanding tasks. NLI, also
known as ‘recognizing textual entailment’ (Dagan
et al., 2006), is often formulated as a 3-way classi-
fication problem where the input is a context sen-
tence paired with a hypothesis, and the output is a
label (entailment, contradiction, or neutral) indicat-
ing the relation between the pair.

We build on the ANLI dataset (Nie et al., 2020)
and its three rounds to seed the Dynabench NLI
task. During the ANLI data collection process, the
annotators were presented with a context (extracted
from a pre-selected corpus) and a desired target la-
bel, and asked to provide a hypothesis that fools the
target model adversary into misclassifying the ex-
ample. If the target model is fooled, the annotator
was invited to speculate about why, or motivate why
their example was right. The target model of the
first round (R1) was a single BERT-Large model
fine-tuned on SNLI and MNLI, while the target
model of the second and third rounds (R2, R3) was
an ensemble of RoOBERTa-Large models fine-tuned
on SNLI, MNLI, FEVER (Thorne et al., 2018) re-
cast as NLI, and all of the ANLI data collected
prior to the corresponding round. The contexts for
Round 1 and Round 2 were Wikipedia passages
curated in Yang et al. (2018) and the contexts for
Round 3 were from various domains. Results indi-

cate that state-of-the-art models (which can obtain
90%-+ accuracy on SNLI and MNLI) cannot exceed
50% accuracy on rounds 2 and 3.

With the launch of Dynabench, we have started
collection of a fourth round, which has several in-
novations: not only do we select candidate contexts
from a more diverse set of Wikipedia featured arti-
cles but we also use an ensemble of two different
models with different architectures as target adver-
saries to increase diversity and robustness. More-
over, the ensemble of adversaries will help mitigate
issues with creating a dataset whose distribution is
too closely aligned to a particular target model or
architecture. Additionally, we are collecting two
types of natural language explanations: why an ex-
ample is correct and why a target model might be
wrong. We hope that disentangling this informa-
tion will yield an additional layer of interpretability
and yield models that are as least as explainable as
they are robust.

Question answering. The QA task takes the
same format as SQuADI1.1 (Rajpurkar et al., 2016),
i.e., given a context and a question, extract an an-
swer from the context as a continuous span of
text. The first round of adversarial QA (AQA) data
comes from “Beat the AI” (Bartolo et al., 2020).
During annotation, crowd workers were presented
with a context sourced from Wikipedia, identical to
those in SQuADI1.1, and asked to write a question
and select an answer. The annotated answer was
compared to the model prediction using a word-
overlap F; threshold and, if sufficiently different,
considered to have fooled the model. The target
models in round 1 were BiDAF (Seo et al., 2017),
BERT-Large, and RoBERTa-Large.

The model in the loop for the current round is
RoBERTa trained on the examples from the first
round combined with SQuADI1.1. Despite the
super-human performance achieved on SQuAD1.1,
machine performance is still far from humans on
the current leaderboard. In the current phase, we
seek to collect rich and diverse examples, focusing
on improving model robustness through generative
data augmentation, to provide more challenging
model adversaries in this constrained task setting.
We should emphasize that we don’t consider this
task structure representative of the broader defi-
nition even of closed-domain QA, and are look-
ing to expand this to include unanswerable ques-
tions (Rajpurkar et al., 2018), longer and more com-
plex passages, Yes/No questions and multi-span

4114



answers (Kwiatkowski et al., 2019), and numbers,
dates and spans from the question (Dua et al., 2019)
as model performance progresses.

Sentiment analysis. The sentiment analysis
project is a multi-pronged effort to create a dy-
namic benchmark for sentiment analysis and to
evaluate some of the core hypotheses behind Dyn-
abench. Potts et al. (2020) provide an initial report
and the first two rounds of this dataset.

The task is structured as a 3-way classification
problem: positive, negative, and neutral. The mo-
tivation for using a simple positive/negative di-
chotomy is to show that there are still very challeng-
ing phenomena in this traditional sentiment space.
The neutral category was added to avoid (and
helped trained models avoid) the false presuppo-
sition that every text conveys sentiment informa-
tion (Pang and Lee, 2008). In future iterations,
we plan to consider additional dimensions of senti-
ment and emotional expression (Alm et al., 2005;
Neviarouskaya et al., 2010; Wiebe et al., 2005; Liu
et al., 2003; Sudhof et al., 2014).

In this first phase, we examined the question of
how best to elicit examples from workers that are
diverse, creative, and naturalistic. In the “prompt”
condition, we provide workers with an actual sen-
tence from an existing product or service review
and ask them to edit it so that it fools the model.
In the “no prompt” condition, workers try to write
original sentences that fool the model. We find
that the “prompt” condition is superior: workers
generally make substantial edits, and the resulting
sentences are more linguistically diverse than those
in the “no prompt” condition.

In a parallel effort, we also collected and vali-
dated hard sentiment examples from existing cor-
pora, which will enable another set of comparisons
that will help us to refine the Dynabench protocols
and interfaces. We plan for the dataset to con-
tinue to grow, probably mixing attested examples
with those created on Dynabench with the help of
prompts. With these diverse rounds, we can ad-
dress a wide range of question pertaining to dataset
artifacts, domain transfer, and overall robustness of
sentiment analysis systems.

Hate speech detection. The hate speech task
classifies whether a statement expresses hate
against a protected characteristic or not. Detect-
ing hate is notoriously difficult given the important
role played by context and speaker (Leader May-

nard and Benesch, 2016) and the variety of ways
in which hate can be expressed (Waseem et al.,
2017). Few high-quality, varied and large training
datasets are available for training hate detection
systems (Vidgen and Derczynski, 2020; Poletto
et al., 2020; Vidgen et al., 2019).

We organised four rounds of data collection and
model training, with preliminary results reported in
Vidgen et al. (2020). In each round, annotators are
tasked with entering content that tricks the model
into giving an incorrect classification. The content
is created by the annotators and as such is synthetic
in nature. At the end of each round the model is
retrained and the process is repeated. For the first
round, we trained a RoOBERTa model on 470,000
hateful and abusive statements*. For subsequent
rounds the model was trained on the original data
plus content from the prior rounds. Due to the
complexity of online hate, we hired and trained
analysts rather than paying for crowd-sourced an-
notations. Each analyst was given training, support,
and feedback throughout their work.

In all rounds annotators provided a label for
whether content is hateful or not. In rounds 2,
3 and 4, they also gave labels for the target (i.e.,
which group has been attacked) and type of state-
ment (e.g., derogatory remarks, dehumanization,
or threatening language). These granular labels
help to investigate model errors and improve per-
formance, as well as directing the identification of
new data for future entry. For approximately half
of entries in rounds 2, 3 and 4, annotators created
“perturbations” where the text is minimally adjusted
so as to flip the label (Gardner et al., 2020; Kaushik
et al., 2020). This helps to identify decision bound-
aries within the model, and minimizes the risk of
overfitting given the small pool of annotators.

Over the four rounds, content becomes increas-
ingly adversarial (shown by the fact that target mod-
els have lower performance on later rounds’ data)
and models improve (shown by the fact that the
model error rate declines and the later rounds’ mod-
els have the highest accuracy on each round). We
externally validate performance using the HATE-
CHECK suite of diagnostic tests from Rottger et al.
(2020). We show substantial improvement over
the four rounds, and our final round target model
achieves 94% on HATECHECK, outperforming the
models presented by the original authors.

*Derived from https://hatespeechdata.com, in
anonymized form.

4115


https://hatespeechdata.com

Task Rounds Examples vMER
NLI 4 170,294  33.24%
QA 2 36,406 33.74%
Sentiment 3 19,975 35.00%
Hate speech 4 41,255 43.90%

Table 1: Statistics for the initial four official tasks.

3.3 Dynabenchmarking NLP

Table 1 shows an overview of the current situation
for the four tasks. Some tasks are further along
in their data collection efforts than others. As we
can see, the validated model error rate (VMER; the
number of human-validated model errors divided
by the total number of examples—note that the
error rates are not necessarily comparable across
tasks, since the interfaces and in-the-loop models
are not identical) is still very high across all tasks,
clearly demonstrating that NLP is far from solved.

4 Caveats and Objections

There are several obvious and valid objections one
can raise. We do not have all the answers, but we
can try to address some common concerns.

Won’t this lead to unnatural distributions and
distributional shift? Yes, thatis a real risk. First,
we acknowledge that crowdsourced texts are likely
to have unnatural qualities: the setting itself is ar-
tificial from the perspective of genuine communi-
cation, and crowdworkers are not representative
of the general population. Dynabench could exac-
erbate this, but it also has features that can help
alleviate it. For instance, as we discussed earlier,
the sentiment analysis project is using naturalistic
prompt sentences to try to help workers create more
diverse and naturalistic data.

Second, if we rely solely on dynamic adversarial
collection, then we increase the risks of creating un-
natural datasets. For instance, Bartolo et al. (2020)
show that training solely on adversarially-collected
data for QA was detrimental to performance on
non-adversarially collected data. However, they
also show that models are capable of simultane-
ously learning both distributions when trained on
the combined data, retaining if not slightly im-
proving performance on the original distribution
(of course, this may not hold if we have many
more examples of one particular kind). Ideally, we
would combine adversarially collected data with

non-adversarial—preferably naturally collected—
data, so as to capture both the average and worst
case scenarios in our evaluation.

Finally, we note that Dynabench could enable
the community to explore the kinds of distribu-
tional shift that are characteristic of natural lan-
guages. Words and phrases change their meanings
over time, between different domains, and even be-
tween different interlocutors. Dynabench could be
a tool for studying such shifts and finding models
that can succeed on such phenomena.

What if annotators “‘overfit” on models? A po-
tential risk is cyclical “progress,” where improved
models forget things that were relevant in earlier
rounds because annotators focus too much on a par-
ticular weakness. Continual learning is an exciting
research direction here: we should try to under-
stand distributional shift better, as well as how to
characterize how data shifts over time might im-
pact learning, and how any adverse effects might
be overcome. Because of how most of us have
been trained, it is natural to assume that the last
round is automatically the best evaluation round,
but that does not mean that it should be the only
round: in fact, most likely, the best way to eval-
uate progress is to evaluate on all rounds as well
as any high-quality static test set that exists, possi-
bly with a recency-based discount factor. To make
an analogy with software testing, similar to check-
lists (Ribeiro et al., 2020), it would be a bad idea
to throw away old tests just because you’ve written
some new ones. As long as we factor in previous
rounds, Dynabench’s dynamic nature offers a way
out from forgetting and cyclical issues: any model
biases will be fixed in the limit by annotators ex-
ploiting vulnerabilities.

Another risk is that the data distribution might
be too heavily dependent on the target model in
the loop. When this becomes an issue, it can be
mitigated by using ensembles of many different ar-
chitectures in the loop, for example the top current
state-of-the-art ones, with multiple seeds.’

How do we account for future, not-yet-in-the-
loop models? Obviously, we can’t—so this is a
very valid criticism. However, we can assume that
an ensemble of model architectures is a reasonable
approximation, if and only if the models are not
too bad at their task. This latter point is crucial: we

5 ANLI does not show dramatically different results across

models, suggesting that this is not necessarily a big problem
yet, but it shows in R2 and R3 that ensembles are possible.
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take the stance that models by now, especially in
aggregate, are probably good enough to be reason-
ably close enough to the decision boundaries—but
it is definitely true that we have no guarantees that
this is the case.

How do we compare results if the benchmark
keeps changing? This is probably the main hur-
dle from a community adoption standpoint. But
if we consider, e.g., the multiple iterations of Se-
mEval or WMT datasets over the years, we’ve al-
ready been handling this quite well—we accept
that a model’s BLEU score on WMT16 is not com-
parable to WMT 14. That is, it is perfectly natural
for benchmark datasets to evolve as the community
makes progress. The only thing Dynabench does
differently is that it anticipates dataset saturation
and embraces the loop so that we can make faster
and more sustained progress.

What about generative tasks? For now Dyn-
abench focuses on classification or span extraction
tasks where it is relatively straightforward to es-
tablish whether a model was wrong. If instead
the evaluation metric is something like ROUGE or
BLEU and we are interested in generation, we need
a way to discretize an answer to determine correct-
ness, since we wouldn’t have ground truth annota-
tions; which makes determining whether a model
was successfully fooled less straightforward. How-
ever, we could discretize generation by re-framing
it as multiple choice with hard negatives, or simply
by asking the annotator if the generation is good
enough. In short, going beyond classification will
require further research, but is definitely doable.

Do we need models in the loop for good data?
The potential usefulness of adversarial examples
can be explained at least in part by the fact that hav-
ing an annotation partner (so far, a model) simply
provides better incentives for generating quality an-
notation. Having the model in the loop is obviously
useful for evaluation, but it’s less clear if the resul-
tant data is necessarily also useful in general for
training. So far, there is evidence that adversarially
collected data provides performance gains irrespec-
tive of the model in the loop (Nie et al., 2020;
Dinan et al., 2019; Bartolo et al., 2020). For ex-
ample, ANLI shows that replacing equal amounts
of “normally collected” SNLI and MNLI training
data with ANLI data improves model performance,
especially when training size is small (Nie et al.,
2020), suggesting higher data efficiency. How-

ever, it has also been found that model-in-the-loop
counterfactually-augmented training data does not
necessarily lead to better generalization (Huang
et al., 2020). Given the distributional shift induced
by adversarial settings, it would probably be wisest
to combine adversarially collected data with non-
adversarial data during training (ANLI takes this
approach), and to also test models in both scenarios.
To get the most useful training and testing data, it
seems the focus should be on collecting adversarial
data with the best available model(s), preferably
with a wide range of expertise, as that will likely
be beneficial to future models also. That said, we
expect this to be both task and model dependent.
Much more research is required, and we encourage
the community to explore these topics.

Is it expensive? Dynamic benchmarking is in-
deed expensive, but it is worth putting the numbers
in context, as all data collection efforts are expen-
sive when done at the scale of our current bench-
mark tasks. For instance, SNLI has 20K examples
that were separately validated, and each one of
these examples cost approximately $0.50 to obtain
and validate (personal communication with SNLI
authors). Similarly, the 40K validated examples in
MultiNLI cost $0.64 each (p.c., MultiNLI authors).
By comparison, the average cost of creation and
validation for ANLI examples is closer to $1.00
(p.c., ANLI authors). This is a substantial increase
at scale. However, dynamic adversarial datasets
may also last longer as benchmarks. If true, then
the increased costs could turn out to be a bargain.

We should acknowledge, though, that dynamic
benchmarks will tend to be more expensive than
regular benchmarks for comparable tasks, because
not every annotation attempt will be model-fooling
and validation is required. Such expenses are likely
to increase through successive rounds, as the mod-
els become more robust to workers’ adversarial
attacks. The research bet is that each example
obtained this way is actually worth more to the
community and thus worth the expense.

In addition, we hope that language enthusiasts
and other non-crowdworker model breakers will
appreciate the honor that comes with being high up
on the user leaderboard for breaking models. We
are working on making the tool useful for educa-
tion, as well as gamifying the interface to make it
(even) more fun to try to fool models, as a “game
with a purpose” (Von Ahn and Dabbish, 2008), for
example through the ability to earn badges.
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5 Conclusion and Outlook

We introduced Dynabench, a research platform for
dynamic benchmarking. Dynabench opens up ex-
citing new research directions, such as investigat-
ing the effects of ensembles in the loop, distribu-
tional shift characterisation, exploring annotator
efficiency, investigating the effects of annotator ex-
pertise, and improving model robustness to targeted
adversarial attacks in an interactive setting. It also
facilitates further study in dynamic data collection,
and more general cross-task analyses of human-
and-machine interaction. The current iteration of
the platform is only just the beginning of a longer
journey. In the immediate future, we aim to achieve
the following goals:

Anyone can run a task. Having created a tool
that allows for human-in-the-loop model evaluation
and data collection, we aim to make it possible for
anyone to run their own task. To get started, only
three things are needed: a target model, a (set of)
context(s), and a pool of annotators.

Multilinguality and multimodality. As of now,
Dynabench is text-only and focuses on English, but
we hope to change that soon.

Live model evaluation. Model evaluation
should not be about one single number on some
test set. If models are uploaded through a standard
interface, they can be scored automatically along
many dimensions. We would be able to capture
not only accuracy, for example, but also usage of
computational resources, inference time, fairness,
and many other relevant dimensions. This will in
turn enable dynamic leaderboards, for example
based on utility (Ethayarajh and Jurafsky, 2020).
This would also allow for backward-compatible
comparisons, not having to worry about the
benchmark changing, and automatically putting
new state of the art models in the loop, addressing
some of the main objections.

One can easily imagine a future where, in order
to fulfill reproducibility requirements, authors do
not only link to their open source codebase but also
to their model inference point so others can “talk
with” their model. This will help drive progress, as
it will allow others to examine models’ capabilities
and identify failures to address with newer even
better models. If we cannot always democratize
the training of state-of-the-art AI models, at the
very least we can democratize their evaluation.
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