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Abstract

We propose TRACIE, a novel temporal rea-
soning dataset that evaluates the degree to
which systems understand implicit events—
events that are not mentioned explicitly in nat-
ural language text but can be inferred from
it. This introduces a new challenge in tem-
poral reasoning research, where prior work
has focused on explicitly mentioned events.
Human readers can infer implicit events via
commonsense reasoning, resulting in a more
comprehensive understanding of the situation
and, consequently, better reasoning about time.
We find, however, that state-of-the-art mod-
els struggle when predicting temporal relation-
ships between implicit and explicit events. To
address this, we propose a neuro-symbolic
temporal reasoning model, SYMTIME, which
exploits distant supervision signals from large-
scale text and uses temporal rules to combine
start times and durations to infer end times.
SYMTIME outperforms strong baseline sys-
tems on TRACIE by 5%, and by 11% in a
zero prior knowledge training setting. Our ap-
proach also generalizes to other temporal rea-
soning tasks, as evidenced by a gain of 1%-9%
on MATRES, an explicit event benchmark.

1 Introduction

Understanding temporal relations between events
in narrative text is a crucial part of text understand-
ing. When reading a story, a human can construct
a latent timeline about events’ start and end times,
similar to the one shown in Fig. 1 about an auto-
mobile accident. This timeline not only contains
the placements of explicitly mentioned events (e.g.,
ride a bicycle), but also accounts for implicit events
(e.g., Farrah was distracted so she looked away).
Such a latent timeline explains the dynamics be-
tween events; for example, the possible chain of
events between ride and recovered in this context

∗Most of the work was done when the third author was
employed at the Allen Institute for AI and the first author was
an intern there.

Farrah was driving home from school. A person was 
riding a bicycle in front of her. Farrah looked away for a 
second. She didn't notice that he stopped. She tried to 
brake but it was too late. The person recovered soon.

Context Story

Latent 
Timeline

ride

stopped

get hit

injuredA person

drive

hittry regret

get home

distracted 

explicit events      implicit events     not-inferrable   

distracted starts before try ✅ entailment
distracted ends after try ❌ contradiction

recovered

Tracie Instance

Farrah

…. many others

starts
starts

look

Figure 1: A story, its latent timeline, and example TRA-
CIE instances from it. For simplicity, events are short-
ened to single verbs and the timeline is exaggerated.

contains get hit and injured. The ability to construct
such a timeline is essential for understanding the
causal dynamics of a situation. Without it, NLP sys-
tems cannot truly understand situations and reliably
solve tasks such as temporal question-answering,
causal inference, and scheduling assistance.

To better evaluate this ability, we introduce a
new dataset called TRACIE (TempoRAl Closure
InfErence) that focuses on temporal relations on
implicit events in short stories. Our dataset con-
tains high-quality annotations of both start and end
time queries that test a system’s understanding of
the full temporal closure (i.e., both start and end
time) of events. As a task that requires consider-
able commonsense knowledge, we follow Zhou
et al. (2020) in minimizing the size of the training
set, therefore making TRACIE mainly an evalua-
tion set. The final TRACIE dataset contains a total
of 5.4k human-curated instances, provided in a
(multi-premise) textual entailment (TE) format, as
illustrated at the bottom of Fig 1. A Pre-trained lan-
guage model such as T5-Large (Raffel et al., 2020)
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fine-tuned on our new dataset achieves a modest
binary prediction accuracy of 67.9%.1 Consistent
with other studies on temporal reasoning (Zhou
et al., 2020), these results reveal serious limitations
in existing pre-trained language models.

To build models better capable of understanding
time with minimal direct training data, we propose
a novel distant supervision technique that improves
generalization by extracting temporal patterns in
large-scale free text as part of an additional pre-
training step. In contrast to other attempts at ex-
tracting temporal data through patterns at a sen-
tence level (Gusev et al., 2011; Zhou et al., 2020),
we extract over large windows of text such as para-
graphs. This allows for capturing global infor-
mation related to multiple events and extracting
signals that do not appear in small-window local
contexts. The resulting model, PTNTIME (Pattern-
Time), achieves a 76.6% accuracy on TRACIE, a
9% gain over using standard T5-Large. We also
show the applicability of PTNTIME on a standard
temporal reasoning benchmark involving only ex-
plicit events, MATRES (Ning et al., 2018b), with a
9 point gain in a low-resource setting.

We achieve further improvements by coupling
PTNTIME with a duration model from Zhou et al.
(2020) to create a neural-symbolic reasoning model
called SYMTIME. The key idea in SYMTIME is to
decompose the computation of temporal relations
to the predictions of relative distances between start
times and those of durations. For example, in Fig 1,
we can decide that distracted likely ends before try
starts because the duration of distracted is likely
to be shorter than the distance between the two
start times. This allows for better prediction on
the end time, which rarely appears in the natural
text and has been previously shown to be difficult
to annotate (Ning et al., 2018b). Such a symbolic
computation involves a logical combination of the
individual models in a way that formalizes part
of the Allen interval algebra (Allen, 1983). This
model, which supports a wider range of temporal
computation and can be used with and without task-
specific supervision, achieves a final accuracy of
78.9% on TRACIE’s binary classification metric.
We also show that SYMTIME is more robust to
different distributions of the training data, demon-
strating the benefits of using a temporal model with
a transparent reasoning process.

1The same model achieves 77.4% on MATRES (Ning
et al., 2018b) with a similar amount of training instances. All
TRACIE numbers reported in this section are from Table 2.

In summary, we make the following 3 contri-
butions: (1) a temporal relation dataset TRACIE

focusing on implicit events (§3); (2) a distant su-
pervision process for temporal understanding of
implicit events (§4); and (3) a reasoning model
that makes end-time comparisons using predictions
of start-time distances and durations (§5). Finally,
we demonstrate the effectiveness of our models
on TRACIE, as well as the applicability of our ap-
proach to an existing temporal benchmark (§6).

2 Related Work

Temporal reasoning has received much attention in
the NLP community, and to date, there are many
datasets that focus on temporal ordering (Puste-
jovsky et al., 2003; Bethard et al., 2007; Cassidy
et al., 2014; Reimers et al., 2016; O’Gorman et al.,
2016; Ning et al., 2018b, 2020b), and other tem-
poral knowledge (Pan et al., 2006; Zhou et al.,
2019). We focus here on modeling implicit events,
which has received relatively little attention. Mul-
tiple systems have been proposed as part of re-
search into temporal ordering (Do et al., 2012;
Moens and Leeuwenberg, 2017; Leeuwenberg and
Moens, 2018; Meng and Rumshisky, 2018; Ning
et al., 2018c; Han et al., 2019), duration predic-
tion (Vashishtha et al., 2019) and other tasks. Our
decision to use a textual entailment style follows re-
cent work on natural language inference (Williams
et al., 2017; Nie et al., 2020; Bhagavatula et al.,
2020), which tends to not focus on time (for recent
work on temporal NLI, see Vashishtha et al. (2020)).
Many have used distant supervision for temporal
reasoning (Gusev et al., 2011; Ning et al., 2018a;
Zhou et al., 2020). Comparatively, our work cap-
tures longer-range dependencies in narrative text
(for related ideas, see Ammanabrolu et al. (2021)).

We are inspired by structural predictions and con-
straints that combat the sparsity of temporal knowl-
edge (Ning et al., 2017; Do et al., 2012), as well
as neural module networks (Andreas et al., 2016;
Gupta et al., 2019) and other decomposition-based
approaches (Talmor and Berant, 2018; Khashabi
et al., 2018; Li et al., 2019; Wolfson et al., 2020;
Khot et al., 2021). In particular, we build neural-
symbolic transformer models that operationalize
some of the classical interval-based computations
used in earlier work on temporal reasoning (Allen,
1983; Gerevini and Schubert, 1995) (for related
ideas, compare with Leeuwenberg and Moens
(2018); Vashishtha et al. (2019)).
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Context Story (Premise) Hypothesis Inference Label
Tom needed to get braces. He was afraid of them. The dentist
assured him everything would be fine. Tom had them on for a
while. Once removed he felt it was worth it.

Tom avoids foods he can’t eat
with braces starts before
the braces are removed.

entailment

We were all watching Spongebob as a family. It is a kid’s show
but all really enjoyed it. This one episode was especially funny
for the adults. It has humor in it that is funny for kids and
adults. It is something we can all watch...

The adults laughed at the jokes
ends before we watch
Spongebob as a family

contradiction

I was throwing the baseball with my son. He threw one past me
that landed in the lake. I reached in to get the ball. I lost my
balance and fell in. I got the ball and a bath all in one shot!

The ball was in the boys hand
starts after he reached for
the ball

contradiction

Figure 2: Example TRACIE instances. The comparator l ∈{starts,ends} and relation r ∈{before,after}
in each hypothesis are highlighted, in addition to the corresponding explicit event from the story.

This work is broadly related to works on causal
dynamics (Pearl, 2009). The nature of combined
temporal and causal focuses is also related to pro-
cedural text modeling (Tandon et al., 2018, 2020).

3 The TRACIE Dataset

In this section, we introduce the TRACIE dataset.2

3.1 Task Overview and Dataset Construction

The goal of TRACIE is to test a system’s ability
to compare start and end times of non-extractive
implicit event phrases instead of extractive triggers
from the context. Such tests in TRACIE take the
form of multi-premise textual entailment (TE) (Lai
et al., 2017). Each TRACIE instance contains 1)
a context story (or premise) consisting of a se-
quence of explicit narrative events; 2) an implicit
event in the form of a natural language phrase that
is unmentioned but has some role in the story; 3)
a comparator of either {starts,ends}; 4) an
explicit event also in the form of a phrase, and 5)
a temporal relation of either {before,after}
that marks the relationship in the dimension defined
by the comparator between the implicit-event and
the explicit-event. With these 4 components, we
are able to generate TE-style instances, using the
context story as the premise and temporal queries
about pair-wise relations between implicit and ex-
plicit events as hypotheses. For example, in the first
positive instance shown in Fig. 1, “distracted” is the
implicit-event, “starts” is the comparator, “try” is
explicit-event and “before” is the temporal-relation.
They form a positive hypothesis “distracted starts
before try.”3 We flip the temporal-relation (i.e., “be-
fore” to “after” and vice versa) to create negative

2We release TRACIE and its leaderboard at https://
leaderboard.allenai.org/tracie

3All event phrases are shortened to triggers here for sim-
plicity. See Fig. 2 for actual phrases.

Illustration Allen’s Relation Tracie’s Relation

Precedes, Meets
Starts Before
Ends Before

Overlaps, Finished-by, 
Contains, Starts, Equals, 

Started-by

Starts Before
Ends After

During, Finishes, 
Overlapped-by, Met-by, 

Preceded-by

Starts After
Ends After

Figure 3: TRACIE’s label definition and its relation to
Allen’s interval algebra, with a graph illustration be-
tween an implicit event and an explicit event.

(contradiction) instances, as shown in the second
example instance in Fig. 1.

Since the start times of explicit-events are more
obvious to human annotators, we use them as refer-
ence points and compare the implicit-event’s start
or end time with them (depending on the compara-
tor), according to the label definitions shown in
Fig. 3. In rare cases where two time points are the
same (e.g., hit and get hit start at the same time in
Fig.1), we use the causal relation to decide the or-
der, so that hit starts before get hit. Such instances
are created through a multi-stage annotation pro-
cess as detailed (in respective order) below. All
steps are implemented with the CrowdAQ platform
(Ning et al., 2020a) with qualification exams.

Implicit Event Generation We randomly sam-
ple short stories from the ROCStories dataset
(Mostafazadeh et al., 2016). For each story, one
annotator writes 5 implicit event phrases that are
not explicitly mentioned by the given story, but are
inferable and relevant. The annotator additionally
rewrites two explicit events closest to the implicit
event’s start and end time, respectively. With these
two events, we can build two TRACIE instances
(minus the temporal-relation) per implicit event,
which accounts for 10 instances in total per story.

https://leaderboard.allenai.org/tracie
https://leaderboard.allenai.org/tracie
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Automatic Instance Generation We use Al-
lenNLP (Gardner et al., 2018) to extract all verbs
and relevant arguments with its semantic role la-
beling (SRL) model. With all the verbs and their
arguments, we construct a pool of explicit events in
the form of short phrases. For each implicit event,
we randomly select two {explicit-event, compara-
tor} pairs from the pool and build 10 additional
instances (without temporal-relation).

Label Collection For each of the 20 instances
per story, we annotate the temporal-relation with
four different annotators. Annotators follow the
label definition in §3.1 to produce four temporal-
relations for each instance. We use the majority
agreement as the final label and filter out unagree-
able instances. Two authors additionally verify the
instances with ambiguous verbs (e.g., “have”) and
corrected 5% of the end-time instances.

3.2 Splits and Analysis
We split the data under the independent and iden-
tically distributed (i.i.d.) assumption based on sto-
ries, with a 20/80 train/test ratio. We use a small
training set, following Zhou et al. (2019), as we
believe temporal relations involve much common-
sense knowledge. As we later show in §6.3, it is in-
feasible to collect a large enough human-annotated
training set to capture all the knowledge needed to
tackle this problem completely, and a system must
acquire knowledge from external resources. As a
result, we use a small training set just to define the
task, and at the same time, use an extensive testing
set for more robust evaluation.

The authors conduct a human upper-bound anal-
ysis on 100 randomly sampled instances, following
the procedure in Zhou et al. (2020). There is a 94%
agreement and a 98% resolved accuracy,4 suggest-
ing that TRACIE has a high annotation quality.

4 Pattern-Based Pre-Training

As argued in §3.2, we believe that it is more effi-
cient to build a model that learns the prior knowl-
edge needed for the task with distant signals and
only subsequently learns the task definition through
a small training set. This section describes how we
collect the distant signals related to events’ start-
time comparisons and pre-train a novel temporally-
aware transformer model called PTNTIME. While
PTNTIME will be used for fine-tuning directly on

4This is obtained after the authors discuss and resolve any
disagreements before comparing with the annotated labels.

TRACIE, it will also form the basis of a more gen-
eral temporal reasoning model called SYMTIME

that we describe in §5.

4.1 Distant Supervision Collection

We describe the sources of distant supervision sig-
nals with the goal of understanding the relative
order between two events’ start times as well as the
relative distance between them.

I went to the park on January 1st. I was very hungry 
after some hiking. Luckily, I purchased a lot of food 
before I went to the park. I enjoyed the trip and wrote 
an online review about the trip on the 10th.

[I purchased food, I went to the park.]: before

[I went to the park, I wrote a review]: before, weeks

text

within-sentence

cross-sentence

Figure 4: Extraction for start-time comparisons applied
to an example paragraph.

Within-Sentence Extraction We collect start
time comparisons between pairs of events heuristi-
cally from free-text using “before/after" keywords
(following much prior work in temporal model-
ing and extraction (Do et al., 2012)). We use Al-
lenNLP’s SRL model to process each input sen-
tence and find verbs with a temporal argument that
starts with either “before” or “after”, and contains
at least another verb. If there are multiple verbs in
the temporal argument, we take the one with the
largest number of tokens as arguments. We match
the two extracted verbs with the relation indicated
by the first word of either “before” or “after”. As
the example in Fig. 4 shows, the extractor identifies
that purchase food is before go to park as indicated
by the “before” keyword mentioned in the text. We
acquire 2.8 million instances from the May 2020
Wikipedia dump using this process.

Cross-Sentence Extraction The data collected
from the within-sentence patterns does not reveal
the relative distance between two start times. In ad-
dition, because writers often save trivial inferences
for efficiency, certain event pairs rarely co-occur
within a small textual window, making one event of-
ten implicit to the other one in these pairs. To better
collect such signals, we employ a cross-sentence
extraction that finds direct temporal expressions of
hours and dates. Because these temporal expres-
sions (e.g., 2021-01-01) are globally comparable,
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the compared events can be anywhere in a docu-
ment. Therefore, this process collects more super-
vision signals about time-point comparisons and
their relative distance on event pairs with trivial
causal relations. We apply the SRL model and find
all temporal arguments and their associated verbs.
We find the exact temporal values by filling unmen-
tioned elements of a temporal expression with the
nearest previous mention (e.g., we add “January”
to the expression of “the 10th” in Fig. 4.) These
extractions have high precision, as the SRL model
does well on identifying temporal arguments.

We then construct supervision instances under
the assumption that the extracted temporal expres-
sions describe the start times of the associated verbs
(e.g., went started on January 1st in Fig. 4) . Each
instance comprises an event pair, a temporal rela-
tion, and an estimation on the temporal difference
between the two start times. Each event is a phrase
constructed by taking all relevant arguments of the
predicate verb in the SRL parses. We represent
the differences between the two start times as one
of seven coarse temporal units: {≤minutes, hours,
days, weeks, months, years, ≥decades}. For ex-
ample, we get go to park is weeks before write
review as shown in Fig. 4. In addition to the event
pairs, we randomly sample sentences within the
paragraph to use as the context that better defines
the events. We collect 700k instances from this
cross-sentence extraction process from Wikipedia.

Language Model (LM) Pre-Training Data We
couple the specialized temporal pre-training data
described above with additional paragraphs that are
used to perform conventional language model pre-
training using the original denoising task proposed
in Raffel et al. (2020). This is done to maintain part
of the original language model’s semantics and to
avoid overfitting. We use the Gutenberg Dataset
(Lahiri, 2014) as the source and collect 1 million
paragraphs for this purpose.

Data Format We then format the within / cross-
sentence extraction data to consistent instances that
have input sequences of event:[EventA] starts

[Relation][EventB].story:[Paragraph] and
output sequences of answer:[Label][Distance].
Here [EventA] represents the tokens that describe
the first event; [EventB] represents the ones that
describe the second event; and [Paragraph] repre-
sents the tokens of the context, which is non-empty
only for cross-sentence extractions. [Relation]

is either before or after, and [Label] is either
positive or negative. When the label is positive,
the relation will be the gold relation extracted from
the text; when it is negative, the relation will be
the inverse of the extracted relation. We randomly
make 50% of the instances negative. [Distance]
is one of the 7 coarse temporal units represented
with a set of blank tokens [extra_id_N]. We leave
it to be blank for the within-sentence extractions so
that the objective function will not include it in loss
computations. The LM pre-training data follows
the original format in Raffel et al. (2020).

4.2 Pattern-Based Temporal Model
(PTNTIME)

We use a pre-trained sequence-to-sequence model
as our base model and additionally pre-train this
model using the data collected in §4.1 (for mod-
eling details, see §6.1). We call the resulting
model PTNTIME. As a result of this additional
pre-training step, PTNTIME serves as new set of
temporally-aware model weights that can be used
in place of existing pre-trained models and fine-
tuned on TRACIE. As we describe next, we also
use PTNTIME to build a modular temporal reason-
ing model called SYMTIME that attempts to go
beyond a standard language modeling approach
and improve start and end point prediction.

5 Symbolic Temporal Reasoning Model
(SYMTIME)

To address the challenge of predicting event end
times for which it is difficult to obtain high-quality
direct or distant supervision, we introduce a new
reasoning model called SYMTIME in this section.
This model makes end-time comparisons by sym-
bolically combining start time distance and dura-
tion from separate predictions based on some of
the components introduced in the previous section.
Different from Leeuwenberg and Moens (2018)
and Vashishtha et al. (2019), our model does not
rely on explicit annotations on timepoints, but only
relative comparisons between them.

5.1 Formulation

As described in §3.1, hypotheses in TRACIE make
pair-wise comparisons between two events e1 and
e2 using a comparator l from {starts,ends}
and a query-relation r from {before,after}
based on a provided story context. We associate
each ej with a latent start time startj and an end
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comparator l relation rl(e1, e2)=

ends

{
before if end1 < start2
after otherwise

starts

{
before if start1 < start2
after otherwise

Figure 5: Decomposition of the relation functions that
solve TRACIE instances (equal timepoints ignored).

time endj , as well as, for convenience, a duration
durationj = endj − startj . Under this for-
mulation, a symbolic approach to solving TRACIE

involves computing the relation functions rl shown
in Figure 5. For example, given exact numeric val-
ues end1 and start2, as one would assume in a
classical interval-based approach to temporal rea-
soning (Allen, 1983)5, determining if the first event
ends before the second involves simply computing
whether end1 is less than start2.

Given that the exact values of start and end times
are latent, we use the intervals to do the same com-
parisons, as they are more context-invariant. For
example, we do not need the exact date to know
that lunch starts before dinner in the same day, be-
cause there is a typical distribution of the relative
distance between the two start times. Based on this
idea, we build a neural-symbolic model that learns
approximations of these simple functions in Fig. 5
in a differentiable way. Specifically, we use indi-
vidual neural modules that make predictions about
event intervals via distance and duration functions
dist(ei, ej) and dur(ej), respectively.

To understand this decomposition, we define the
distance and duration functions computed by these
two modules as dist(ei, ej) = starti − startj
and dur(ej) = durationj . By exploiting the
rule that an end point endj can be computed as
endj = startj + durationj , we can, for exam-
ple, decompose the relation rends(e1, e2) = before
(i.e., e1 ends before e2) in terms of our two modules
as follows via simple algebraic manipulation:

rends(e1, e2) = before
⇔ end1 < start2

⇔ start1 + duration1 < start2

⇔
(
start1 − start2

)
+ duration1 < 0

⇔ dist(e1, e2) + dur(e1) < 0

5In the Allen algebra, the values endx and starty corre-
spond to the right and left end points x+, y− in the intervals
(x−, x+), (y−, y+). Likewise, our durationx corresponds
to the value (x+ − x−).

Event A Event B

Query on A’s Duration Query on A and B’s Distance

encoder

decoder
dur()

encoder

decoder
dist()

v d p

cTv cTd g(p)x+ = pred

g(x)=tanh(x2-x1)

Duration of A Start of A – Start of B

Figure 6: A schematic overview of SYMTIME to com-
pare event A’s end time with event B’s start time via
modular predictions about A’s duration and distance
from B and their symbolic combination (bottom).

Hence, we have reduced the computation of the
relation ends before to a symbolic computation
over two numeric intervals. Conversely, we
have rends(e1, e2) = after ⇔ dist(e1, e2) +
dur(e1) > 0,6 For the starts comparator, we have
rstarts(e1, e2) = before ⇔ dist(e1, e2) < 0 and
vice versa for the after relation.

In what follows, we describe how we approxi-
mate the values of the two functions via individual
neural modules (see illustration in Fig. 6).

5.2 Duration Estimation

To obtain a model to estimate dur(·), we pre-train
a sequence-to-sequence model with the duration
data from Zhou et al. (2020), which is similarly col-
lected from pattern-based extraction. The data con-
tains over 1 million events with their corresponding
duration values. We map each instance to an in-
put sequence event:[Event]story:[Story] and
a corresponding output sequence answer:[Value],
where [Event] represents the tokens of an event
with the trigger verb marked by a special token to
its left, [Story] represents down-sampled tokens
from the context, and [Value] is one of the 7 unit
labels as described in §4.1 (i.e., { ≤minutes, hours,
days, weeks, months, years, ≥decades }).

5.3 Computation and Learning

We use the output from PTNTIME to approximate
the function dist(·). Following the sequence for-
mulation of PTNTIME in §4, we replace [EventA]

with the textual description of e1, [EventB] with

6We note that one drawback of this inference rule is that it
does not predict causal relations and, therefore, cannot handle
instances where end1 = start2 as our label definitions
describe in §3.1. We leave this problem for future research.
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the textual description of e2, and [Paragraph]

with the context (premise), and fix [Relation]

to be before. By taking the values of the vocabu-
lary indices corresponding to “positive” and “neg-
ative” from the logits of [Label] and applying a
softmax operation, we get Pbefore and Pafter. These
are the probability of e1 starting before and after
e2, respectively, and are used to define the vector
p = [Pbefore, Pafter]. Similarly, we apply softmax
to the logits of [Distance] over the 7 words rep-
resenting the temporal units to obtain 7 values that
approximate the probabilities of the distance be-
tween two events’ start times being closest to each
temporal unit. We place the 7 values in temporal
units’ increasing order in vector d. To represent
|start1−start2| with a single value, we dot prod-
uct the probabilities with an incremental constant
vector c = [0, 1, 2, 3, 4, 5, 6]. To get the direction,
we apply the tanh function to the difference be-
tween the probabilities in p.7 As a result, we have:

dist(·) = start1 − start2

= cTd ∗ tanh(INTmax ∗ (p2 − p1))
(1)

We use the pre-trained model in §5.2 to approx-
imate the function dur(·). Because the model is
pre-trained with markers to the left of trigger verbs,
we run a part-of-speech tagger on input phrases and
add a marker to the left of the first verb. We apply
softmax to the logit values of [Value] over the 7
temporal unit words and get, as above, 7 values
representing the probabilities of the input event’s
duration being closest to each unit. We form v by
placing these values at the temporal unit’s increas-
ing order. With the same constant vector, we have:

dur(·) = duration1 = cTv (2)

For hypotheses with comparator starts, we
use PTNTIME and its sequence-to-sequence ob-
jective to learn (i.e., we take the input hypothe-
sis and context as is and use [Label] directly as
the prediction). For hypotheses where the com-
parator is ends, we use the inference process in
§5.1 and the computation process described above
to construct logits = [pred,−pred],pred =
dist(e1, e2) + dur(e1) as detailed in Fig. 6. We
find the gold-temporal-relation in each training in-
stance and compute a two-class cross-entropy loss
with logits. The PTNTIME that predicts starts

7To ensure that tanh returns a value close to 1 or -1, we
multiply the distance by a big number denoted as INTmax.

hypotheses shares weights with the one used in
computing logits. The final model SYMTIME can
also be used to predict TRACIE instances without
any task-specific supervision as the two functions
are initialized with distant supervision.

6 Experiments

In this section, we detail our experimental setup
(§6.1-6.2) and report our main results (§6.3-6.5).8

6.1 Baselines and Systems

We use T5-Large implemented by Wolf et al. (2019)
as our base sequence-to-sequence model for both
PTNTIME and the duration model in §5.2 as it
provides for faster iterations. We use early stop-
ping, batch size of 32 and other default parameters.
PTNTIME converges after 45k steps (∼1.4M in-
stances) and the duration model converges after
80k steps (∼2.6M instances). We use these pre-
trained weights in SYMTIME as well as SYMTIME-
ZEROSHOT which uses no TRACIE supervision.

We compare with our proposed models with a
host of baselines based on the same pre-trained lan-
guage model, including BaseLM: T5-Large, and
BaseLM-MATRES: T5-Large fine-tuned on 20k
MATRES training data. We also compare with
other architectures/models, including BiLSTM as
used in Williams et al. (2017), Roberta-Large
(Liu et al., 2019) and T5-3B. All models and base-
lines follow a standard TE setup and default param-
eters. We report a 3-run average and each model is
run until convergence.

6.2 Metrics and Settings

We measure system performance on TRACIE sep-
arately for start-time hypotheses and end-time hy-
potheses. We also employ a story-wide exact match
metric, which is the percentage of stories with all
its related hypotheses answered correctly.

In addition to TRACIE’s standard i.i.d. split, we
propose a pruned version of the training set with
balanced prior distributions. For example, in the
i.i.d. training set, 70% of the examples with the
comparator ends and relation after are positive.
We randomly remove instances from the majority
classes to produce a uniform-prior training set such
that a model can no longer rely on such prior distri-
butions. We believe this setting better evaluates a
system’s true understanding of the task.

8We release the systems for reproduction at http://
cogcomp.org/page/publication_view/937

http://cogcomp.org/page/publication_view/937
http://cogcomp.org/page/publication_view/937
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System Start End All Story

Majority 57.3 69.8 64.1 18.1
BiLSTM 53.7 63.5 59.1 10.9
Roberta-Large 78.5 78.3 78.4 26.1
T5-3B 79.4 77.4 78.3 26.9

BaseLM (T5-large) 75.5 75.4 75.4 22.6
BaseLM-MATRES 76.7 76.3 76.5 25.3
PTNTIME (ours) 81.4 77.5 79.3 31.0
SYMTIME (ours) 82.1 79.4 80.6 32.0

SYMTIME-ZEROSHOT 77.0 73.1 74.9 21.6

Table 1: Performance on TRACIE, best numbers in
bold. BaseLM is T5-large; Story is the percentage of
story-wide exact match; Majority is based on the com-
parator and temporal-relation distribution; Zeroshot
uses no TRACIE instance as supervision.

System Start End All ∆All

Random 50.0 50.0 50.0 -14.1
BiLSTM 50.5 51.2 50.9 -8.2
Roberta-Large 75.1 68.1 71.3 -7.1
T5-3B 72.8 68.6 70.5 -7.8

BaseLM (T5-large) 68.1 67.8 67.9 -7.5
BaseLM-MATRES 76.3 69.9 72.8 -3.7
PTNTIME (ours) 80.6 73.2 76.6 -2.7
SYMTIME (ours) 81.2 77.0 78.9 -1.7

SYMTIME-ZEROSHOT 77.0 73.1 74.9 0.0

Table 2: Performance on TRACIE uniform-prior train-
ing setting. ∆All compares the difference with Table 1;
Majority is equivalent to random guessing.

6.3 Main Results

Table 1 shows system performance on TRACIE’s
i.i.d. setting. We observe that PTNTIME improves
on all metrics over the base language model, with
6% on start-time comparisons and 8% on story-
wide exact match. It also outperforms BaseLM-
MATRES, suggesting that distant supervision is
more efficient than extensive human annotation.

With a symbolic end-time inference, SYMTIME

further improves on all metrics, with 7%, 4%, and
9% gains over the base language model on start
time, end time and story-wide exact match, respec-
tively. SYMTIME can further improve the perfor-
mance on start-time hypotheses over PTNTIME

even though they use the same model to predict
start-time queries. This is because PTNTIME is not
designed to understand end time from pre-training,
and fine-tuning on such data hurts its representation
in general. This illustrates the benefits of models
using explicit and sensible reasoning processes.

Table 2 compares systems in the uniform-prior
training setting. Compared to the setting in Table 1,

System OT-NS OT OT-MS PT

Wang et al. (2020) 85.9 - - -
BaseLM 86.0 87.5 77.4 69.0
SYMTIME 87.3 89.6 86.1 75.1

Table 3: Performance on MATRES. Wang et al. (2020)
is not strictly comparable with the rest.

a system cannot exploit prior knowledge about the
label distribution when making predictions. Given
this, we see that all baselines produce a much lower
performance, e.g., the BiLSTM, which is a model
that lacks much of the pre-requisite knowledge for
reasoning, suddenly performs near random chance.
Compared to the baseline models, PTNTIME only
drops 2.7%, suggesting that it is more invariant
to evaluation settings and better understands tem-
poral common sense. SYMTIME has the smallest
drop among all models (1.7%) because of its ex-
plicit reasoning process on end-time hypotheses.
SYMTIME-ZEROSHOT does not use any TRACIE

training examples, so it has the same performance
in the uniform-prior setting which outperforms all
supervised baselines including T5-3B.

6.4 Extrinsic Evaluation

To show that our model is not limited to the TRA-
CIE dataset and is general in temporal relation
reasoning, we also evaluate on MATRES (Ning
et al., 2018b), a temporal relation dataset focused
on comparing explicit events’ start times. We train
and evaluate only the instances with a label of ei-
ther “before” or “after”, which accounts for about
80% of all instances. We compare the performance
of SYMTIME9 with BaseLM. We report four re-
sults - OT-NS (original test, no story): train and
test with only the sentences containing the trig-
ger verbs; OT: train and test with the entire doc-
ument (down-sampled to be below the maximum
sequence length) as an auxiliary input; OT-MS
(original test, minimal supervision): train with
1.2k (6%) training instances; PT (perturbed test):
train with the complete training set and test on a
perturbed test set from Gardner et al. (2020). In
OT-NS, we also report a SOTA system from Wang
et al. (2020) under the same two-label10 setting.

Table 3 shows the performance of our model and
the baselines. We see that our model is consistently

9This is virtually the same as using PTNTIME as MATRES
does not evaluate duration nor end times.

10Wang et al. (2020) is trained with two additional labels.
We constraint the output space to only “before” and “after” us-
ing argmax, but this process makes it not directly comparable.
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Sys. BaseLM PTNTIME SYMTIME Human

Acc. 52.6 72.2 75.3 82.5

Table 4: Performance on no-story TRACIE under the
uniform-prior training setting.

Sys. PTNTIME cross-sentence within-sentence

Acc. 80.6 79.9 63.7

Table 5: Comparison of pre-training data sources on
TRACIE’s start time prediction accuracy, under the
uniform-prior training setting.

better than BaseLM, and at the same time, compa-
rable to Wang et al. (2020). Our model benefits
more from input contexts, and only drops 4% in
the OT-MS setting with minimal supervision (from
89.6 to 86.1), comparing to the 10% drop from
T5-Large. This shows the effectiveness of our dis-
tant signals in §4.1, which are also designed to
encourage contextual understandings.

6.5 Ablation Studies and Analysis
To better understand the improvements from our
models, we conduct several ablation studies.

Table 4 shows the results on TRACIE where the
story is not provided as part of the inputs to sys-
tems (a no-story setting). While such a setting
bares some resemblance to the partial-input base-
lines often employed in TE (Poliak et al., 2018), in
our setting, it is often possible to predict temporal
relations in the absence of stories because of strong
commonsense priors. Indeed, we estimate that 65%
of the instances can be correctly predicted from the
hypotheses alone, based on expert analysis in § 3.2.
This suggests a 82.5% human upper-bound11 in
this no-story setting. Hence, such a setting partly
evaluates a model’s ability to incorporate common-
sense priors when making decisions.

We see that BaseLM is close to random chance,
whereas PTNTIME and SYMTIME improve 20%
and 22% respectively. This suggests that our
models better understand temporal common sense
through the distant supervision on both start times
and duration. On the other hand, we observe much
smaller drops in our model’s performances in this
no-story setting. This suggests that our models do
not improve as much on the 35% instances that
require multi-hop timeline constructions over more
than two events, motivating future work.

Table 5 compares the two pre-training sources
11We assume that the remaining 35% non-predictable in-

stances are decided by random guessing.

described in §4.1 by individually pre-training two
models with only within-sentence or cross-sentence
extracted data. We see that the cross-sentence ex-
traction brings the most performance gain on TRA-
CIE’s start-time binary metric under the uniform-
prior training setting. This suggests that the global
extraction rule is able to introduce new knowledge
that is not seen in localized language model pre-
training. Combining the within-sentence data fur-
ther improves the performance.

Through analysis on the interval predictions
made by SYMTIME, we notice a tendency for the
model to predict “after” for end-time instances, pos-
sibly due to overly-estimated durations: a byprod-
uct of natural biases in text. Given the weak signal
used to learn such intervals and these potential bi-
ases, this is not altogether surprising. We leave the
task of learning more robust and faithful interval
representations for future work.

7 Conclusion

We introduce a challenging dataset TRACIE, to eval-
uate systems’ temporal understanding of implicit
events. We propose a distant supervision process
that improves language models’ understanding of
start times of both explicit and implicit events. We
further combine this process with a distantly su-
pervised model that estimates events’ duration to
compare event end times, under the explicit rule
that end times are start times plus durations. We
show that our model improves over TRACIE and
MATRES, suggesting the effectiveness of high-
precision pre-training and symbolic temporal rea-
soning. Despite these advances, TRACIE continues
to be a challenging task for future work on general
temporal reasoning.
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