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Abstract
The quality of the translations generated by Machine Translation (MT) systems has highly
improved through the years, but we are still far away to obtain fully automatic high-quality
translations. To generate them, translators use Computer-Assisted Translation (CAT) tools,
among which we find the Interactive-Predictive Machine Translation (IPMT) systems. This
paper uses bandit feedback as the principal and only information needed to generate new pre-
dictions that correct the previous translations. Furthermore, the application of bandit feedback
reduces the number of words that the translator needs to type in an IPMT session. In conclu-
sion, this technique saves valuable time, and effort for translators. Moreover, its performance
improves improves with the future advances in MT, so we recommend its application in the
actuals IPMT systems.

1 Introduction

In recent years there had been a large number of advances in the Machine Translation (MT)
field that has led to a significant improvement in the quality of the translations. Currently, even
with all the new advances, the MT systems are still not able to generate perfect ready to use
translations (Toral, 2020). Indeed, MT systems usually require human post-editing in order to
achieve perfect translations.

The Computer-Assisted Translation (CAT) tools aim to generate high-quality translations
using the knowledge and experience of professional translators while reducing the effort that
they need to do. There is a large variety of CAT tools approaches, among which we focus on
the Interactive-Predictive Machine Translation (IPMT) systems.

Some of the recent projects in this field are TransType (Langlais et al., 2000; Esteban
et al., 2004; Cubel et al., 2003), Matecat (Federico et al., 2014), CasMacat (Alabau et al.,
2014, 2013; Sanchis-Trilles et al., 2014) and MMPE (Herbig et al., 2020). They aim to create
a workbench with an array of innovative features that were not available in other tools when
they started. IPMT is one of the main paradigms that include these projects, where an expert
translator provides feedback to the system, typically using the keyboard and mouse, to generate
new predictions that correct previous errors.

There are two main IPMT approaches, both use usually the keyboard and mouse as the
main feedback interface, but the validation process changes between prefix (Foster et al., 1997)
and segments (Peris et al., 2017; Domingo et al., 2017). In this project, we use the validation by
prefix approach. Figure 1 illustrates a conventional IPMT session. Initially, the user is provided
with a source sentence x to be translated. At iteration 0, the IPMT system generates the first
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SOURCE (x): Una versión traducida de un texto.
REFERENCE (y): A translated version of a text.

ITER-0 (p)
(ŝh)

( )
A written version of a story.

ITER-1

(p)
(st)
(k)
(ŝh)

A
written version of a story.
translated

version of a text.

ITER-2

( p)
(st)
(k)
(ŝh)

A translated version of a text.
( )
(#)

( )
FINAL (p ≡ y) A translated version of a text.

Figure 1: Example of a conventional IPMT session to translate a sentence from Spanish to
English. Non-validated hypotheses are displayed in italics, and accepted prefixes are printed in
normal font.

hypothesis ŝh. At the next iteration, the user moves the cursor to the first error of the sentence,
validanting the prefix p, and corrects the next word typing k. With this new information, the
IPMT system searches the suffix ŝh with the highest probability for the validated prefix p. This
process continues until the whole sentence is validated and the user introduces the special token
‘#’.

IPMT aims to reduce the effort that the experts have to made in their translation sessions
while preserving high-quality translations. Indeed, in Figure 1, the user has translated correctly
the source sentence performing only three actions. Normally, in a regular post-editing system,
the translator would have needed to perform five actions: two mouse movements, two word
strokes, and the sentence validation.

In this paper, we reduce the effort done by the user taking into account bandit feedback.
The system only needs the error position to correct the sentence, information that can be pro-
vided by the user easily with an interface like a mouse. For this reason, and to simplify, we
are going to suppose that the feedback is provided with the mouse, although any other interface
capable to provide a sentence position or make a click could be useful.

2 Related Work

The reduction of the effort needed in the translation process is a problem that has been thor-
oughly studied, resulting in a large variety of approaches. Some projects have investigated
which information and display are more useful to the users, like showing the word alignment
information (Brown et al., 1993), setting a maximum length for the predictions displayed (Al-
abau et al., 2012) or just using touch-based actions (Wang et al., 2020).

Other approaches reduce the effort that the user has to do more directly: using confidence
measures to reduce the number of words to check (González-Rubio et al., 2010), autocompleting
the predictions typed by the user (Barrachina et al., 2009), or adding new input information
to the system reduces the human effort of generating a new prediction (Sanchis-Trilles et al.,
2008a).

There are also projects like Lam et al. (2018, 2019) that investigated how to reduce the
human effort in an IPMT system using Reinforcement Learning. This technique lets them use
new kinds of feedback to the system that they use as a reward to adjust the parameters of the
model and obtain better translations.
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In the paper, we take the approach introduced by Sanchis-Trilles et al. (2008a,b), demon-
strating that with only the error position, the Interactive-Predictive Statistical Machine Trans-
lation (IPSMT) systems are capable of correct their translations. We apply and implement this
technique on an Interactive-Predictive Neural Machine Translation (IPNMT) system, obtaining
a higher reduction in the human effort.

3 Interactive-Predictive Neural MT

In this section, we see briefly the IPNMT framework. First of all, we have to see the general
framework of the Neural Machine Translation (NMT) models that we use to understand how the
translations are created and how we later add human feedback to the equation. This framework
was introduced by Castaño and Casacuberta (1997) and has demonstrated its power in the last
years (Cho et al., 2014; Klein et al., 2017). Given a sentence xJ

1 = x1, ..., xJ from the source
language X , to find the sentence ŷÎ1 = ŷ1, ..., ŷÎ from the target language Y , that has the highest
probability of being the translation of xJ

1 , the fundamental equation of the statistical approach
to NMT would be:

ŷÎ1 = arg max
I,yI

1

Pr(yI1 | xJ
1 ) ≈ arg max

I,yI
1

I∏
i=1

p(yi | yi−1
1 , xJ

1 ; Θ̂) (1)

where Pr(yi|yi−1
1 , xJ

1 ) and p(yi|yi−1
1 , xJ

1 ), are the probability distribution and the proba-
bility that assigns the neural model to the next word given the source sentence and the previous
words so far. Θ̂ are the parameters of the neural model which are obtained from trying to
minimize the minus log-likelihood on a set of parallel corpus (Shen et al., 2016).

The IPNMT framework adds the feedback generated by the human to Equation (1) to help
with the translation process. When the expert translator finds an error in position p, moves
the cursor and types the correct word, producing the feedback fp

1 = f1, ..., fp where fp is the
word that the user has typed to correct the error. We add the feedback with the last generated
hypothesis to Equation (1):

ŷÎ1 = arg max
I,yI

1

Pr(yI1 | xJ
1 , ȳ

Ī
1 , f

p
1 ) = arg max

I,yI
1

I∏
i=1

Pr(yi | yi−1
1 , xJ

1 , ȳ
Ī
1 , f

p
1 ) (2)

subject to
1 ≤ i < p fi = yi = ȳi

fp = yp 6= ȳp

where ȳĪ1 = ȳ1, ..., ȳĪ is the previous hypothesis, fp
1 is the feedback provided, and p is the

length of the feedback. With the constraints 1 ≤ i < p fi = yi = ȳi and fp = yp 6= ȳp, we
assure that the feedback that the expert has provided appears in the hypothesis generated by the
system. As the user corrects and validates the translation from left to right, this equation can be
seen as obtaining the most probable suffix for the prefix provided.

4 Enriching User-Machine Interaction

Until now, the only interface that we have explored to IPMT is the combination of keyboard and
mouse. The IPMT system provides a translation, and the user corrects it by placing the cursor
before the first error and typing the correct word.

In this paper, we retake the work introduced by Sanchis-Trilles et al. (2008a). We use
the mouse as an interface for the user-machine interaction to provide the IPMT system the
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information about the position of the first error. First of all, we have to consider the two different
classes of actions that can be performed with the mouse, non-explicit Mouse Actions (MAs) and
interaction-explicit MAs.

4.1 Non-Explicit MA
In conventional IPMT systems, before the user types any word, he has to move the cursor to the
position where he wants to make the correction. With the cursor movement, the user is already
providing valuable information to the system that we can use. He validates all the previous
words and tags the next as incorrect. Just with this information, the system can generate a
new hypothesis, in which the prefix remains unaltered, and the suffix changes for the following
hypothesis with the higher probability that starts by a different word. This action does not
suppose an extra cost for the translator, it is automatically performed when the mouse already
needs to be moved to perform a correction. This process does not assure that the new suffix
is correct but in the worst scenario, the user behaves as in a conventional IPMT system. In
Equation (2) we calculate the best hypothesis using the feedback that the user provides to the
system fp

1 = f1, ..., fp where fp is the word that the user types to correct the error. In this new
situation, the user does not provide the correct word in position p, but we know that it has to
be different from the used in the previous hypothesis yp. This situation can be expressed as
follows:

ŷÎ1 = arg max
I,yI

1

Pr(yI1 | xJ
1 , ȳ

Ī
1 , f

p
1 ) = arg max

I,yI
1

I∏
i=1

Pr(yi | yi−1
1 , xJ

1 , ȳ
Ī
1 , f

p
1 ) (3)

subject to
1 ≤ i < p fi = yi = ȳi

yp : ∃ ypŷÎp+1

ypŷ
Î
p+1 = arg max

I′,y′p,y
′I
p+1

y′p 6=ȳp

Pr(y′p, y
′I′
p+1 | xJ

1 , y
p−1
1 ) (4)

where yp is the word that the system is trying to correct. To assure that the new word at
position p from the suffix is different from the one used in the previous hypothesis yp we add
the constraint y′p 6= ȳp to Equation (4) that is responsible for the generation of new suffixes.

ypŷ
Î
p+1 is the suffix with the highest probability given the source sentence and the prefix that

the user has validated.

4.2 Interaction-Explicit MA
The non-explicit MAs does not suppose an extra cost for the translator. In a conventional IPMT
system, the user needs to move the cursor to the correct position in order to change a word.
Once the user has moved the cursor to the correct position and the system has performed a
non-explicit MA, if the translation still has an error in the same position the user can perform an
interaction-explicit MA. This kind of MA needs that the user explicitly executes the action of
asking for a new suffix, for this reason, the interaction-explicit MAs suppose a little extra cost
that can save the user the effort of typing the correct word. In the end, is the user who has to
decide which kind of action performs depending on his experience.

In this project, we have used the mouse as an interface to provide to the system the position
of the error, and the action of performing an interaction-explicit MA. Note that the interface used
could be different, e.g. using a touch screen, or typing some special key such as F1 or Tab.
However, it is explained with the mouse because we found it more intuitive and understandable.
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SOURCE (x): Escriba aqu4́ la traducción.
REFERENCE (y): Write the translation here.

ITER-0 ( p)
(ŝh)

( )
‖ Write there the translation.

ITER-1
( p)
(st)
(ŝh)

Write
‖ there the translation.

here the translation.

ITER-2
( p)
(st)
(ŝh)

Write
‖ here the translation.

the translation here.

ITER-3

( p)
(st)
(k)
(ŝh)

Write the translation here.
( )
(#)

( )
FINAL (p ≡ y) Write the translation here.

Figure 2: Example of an IPMT session with non-explicit and interaction-explicit MAs. At
iteration 0, the user moves the cursor before ‘there’, and the system provides a new suffix. At
iteration 1, before manually correcting the word, the user performs an interactive-explicit MA.
At iteration 3, the user validates the translation. Non-validated hypotheses are displayed in
italics, and accepted prefixes are in normal font. The MAs are indicated by the symbol ‘‖’.

Each time we perform an MA for the same position p, we obtain a new word that we do
not want to get in the new suffix. The following equation solves this problem by keeping track
of the k previous hypotheses, where k is the number of MAs performed in the same position:

ŷÎ1 = arg max
I,yI

1

Pr(yI1 | xJ
1 , ȳ

Ī
1 , f

p
1 , k) = arg max

I,yI
1

I∏
i=1

Pr(yi | yi−1
1 , xJ

1 , ȳ
Ī
1 , f

p
1 , k) (5)

subject to
1 ≤ i < p fi = yi = ȳi

yp : ∃ y(k)
p ŷÎp+1

y(k)
p ŷÎp+1 = arg max

I′,y′p,y
′I
p+1

y′p /∈{ȳp,y
(1)
p ,...,y(k−1)

p }

Pr(y′p, y
′I′
p+1 | xJ

1 , y
p−1
1 ) (6)

where y
(k)
p is the word that occupies the position p of the new hypothesis when the user

performs the kth MA. y(l)
p l < k are the words that have been generated before the user performs

the kth MA, and ȳ is the first hypothesis generated before performing any MA in position p.
We can see an example of a conventional IPMT session where the user performs a non-

explicit MA and an interactive-explicit MA in Figure 2. At iteration 0 the system provides
to the user the translation, and the cursor stays at the start of the sentence. At iteration 1 the
user moves the cursor to the first error, validating the prefix (p) and performing a non-explicit
MA. The system automatically generates a new suffix ŝh that the user has to check in the next
iterations. At iteration 2, the translation is still incorrect and the user decides to perform an
interactive-explicit MA to correct it. The system generates a new suffix that can not start with
the words ‘there’ or ‘here’. Finally, at iteration 3, the user does not see any error and validates
all the sentence.
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5 Experimental Setup

5.1 System Evaluation
In this article, we report our results using different metrics to measure the human effort per-
formed in an IPMT session, differentiating between the keystrokes and the mouse actions per-
formed. We report the effort done by the user in Word Stroke Ratio (WSR), Mouse Action
Ratio (MAR), character MAR (cMAR), and useful MAR (uMAR) that gives us a reference of
the mouse actions performed and the quality of them.

WSR, introduced by Tomás and Casacuberta (2006), is computed as the number of words
that the user needs to type to generate the reference translation, normalized by the total num-
ber of words in the sentence. In this context, a word stroke is interpreted as a single action.
Moreover, it is assumed to have a constant cost.

MAR, cMAR and uMAR were introduced by Sanchis-Trilles et al. (2008b) when they first
considered the mouse actions as significant information to IPMT systems. MAR is computed as
the number of MAs that the user needs to perform in order to generate the reference translation,
normalized by the total number of words in the sentence. The cMAR is calculated normalizing
by the total number of characters. Non-explicit and Interaction-explicit MAs have the same
cost.

Lastly, uMAR indicates the amount of MAs that are useful to achieve the translation that
the user has in mind i.e. the MAs that actually ending changing correctly the first word of the
suffix. Formally, uMAR is defined as follows:

uMAR =
MAC− nWSC

MAC
(7)

where Mouse Action Count (MAC) is the total number of MAs performed, Word Stroke
Count (WSC) is the number of words typed and n is the maximum amount of MA allowed
before the user types in a word. Note that in order to perform a word-stroke the user previously
must have performed n MAs, so in Equation (7), we are removing from the total count of MAs
those that were not useful and did not help to find the correct word.

5.2 Corpora
We conduct our experiments on the domain Europarl (Koehn, 2005). The Europarl corpus is
built from the Proceedings of the European Parliament, which exists in all official languages
of the European Union, and is publicly available on the internet. We use the pair of languages
Deutch-English (De-En), Spanish-English (Es-En) and French-English (Fr-En) in both direc-
tions in all our experiments. Their characteristics are described in Table 1. All the corpora
have been cleaned, lower-cased and tokenized using the scripts included in the toolkit Moses,
developed by Koehn et al. (2007). Once we have them tokenized, we have applied the subword
subdivision BPE, described in Sennrich et al. (2016), with a maximum of 32000 merges.

De-En Es-En Fr-En

Tr
ai

ni
ng

Sentences 751K 730K 688K
Avg. Length 20 21 21 20 22 20
Run. Words 15M 16M 15M 15M 15M 14M
Vocabulary 195K 65K 102K 64K 80K 61K

D
ev

. Sentences 2000 2000 2000
Avg. Length 27 29 30 29 33 29
Run. Words 55K 59K 60K 59K 67K 59K

Te
st

Sentences 2000 2000 2000
Avg. Length 27 29 30 29 33 29
Run. Words 54K 58K 67K 58K 66K 58K

Table 1: Characteristics of the Europarl corpus. K and M stands for thousands and millions.
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5.3 User Simulation
Our experiments have not used real humans to translate the source sentences interactively be-
cause it would have been costly and slow. Instead, we have simulated the expected behaviour
of professional translators.

When the simulated user receives a new prediction from the IPMT system, they search
for the first error of the translation, comparing the words and position from the hypothesis and
the reference. Then, when the user has found an error, they perform a non-explicit MA if the
mouse is not in the correct position or an interaction-explicit MA. The simulated user performs
a maximum of n MAs for the same position, where n is a value set at the start of the experiment.
If the error is not corrected once the user performs all the possible actions, they type the correct
word looking at the reference. We repeat this process until the simulated user translates all the
sentence correctly.

5.4 Model Architecture
We built our NMT models using NMT-Keras (Álvaro Peris and Casacuberta, 2018). We have
tested the experiments using a Recurrent Neural Network (RNN) and a Transformer. All the
systems used Adam (Kingma and Ba, 2017) as the learning algorithm, with a learning rate of
0.0002. We clipped the L2 norm of the gradient to 5. The batch size was set to 30 and the beam
size to 6.

The RNN-based NMT system used was an encoder-decoder architecture with an attention
model (Chorowski et al., 2015) and LSTM cells (Hochreiter and Schmidhuber, 1997). The
dimensions of the encoder, decoder, attention model and word embeddings were set to 512. We
used a single hidden layer of the encoder and the decoder.

The Transformer (Vaswani et al., 2017) model used a word embedding and dimension size
of 512. The hidden and output dimensions of the feed-forward layers were set to 2048 and 512.
Each multi-head attention layer had 8 heads, and we stacked 6 layers of encoder and decoder.

Table 2 shows the translation performance in terms of BLEU of RNN-based and Trans-
former neural models.

BLEU (↑)
RNN Transformer

De-En 27.8 28.8
En-De 21.8 19.2
Es-En 32.1 32.1
En-Es 31.7 31.4
Fr-En 30.9 31.1
En-Fr 33.0 32.3

Table 2: Translation quality for the Europarl task in terms of BLEU for RNN and Transformer.

5.5 Experimental Results
The results of both models are displayed in Tables 3 and 4. There, we compare the results
obtained from a conventional IPMT system, with the addition to the system of the non-explicit
MAs, and the interaction-explicit MAs with a maximum of 4 explicit actions per position. By
just adding the non-explicit MAs to the system, on average, the user reduces his effort by
27.45%. The models are good enough that the correct word is the second most probably from
the error position. And if we take account of the interactive-explicit MAs, the reduction is
55.9%. Note how with the non-explicit MAs the MAR values remains almost identical because
the non-explicit MAs does not suppose an extra cost. The differences in values are special cases
where the system predicted a correct sentence different to the obtained by typing the correct
word.
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baseline non-explicit interaction-explicit
MAR

(↓)
WSR

(↓)
MAR

(↓)
WSR

(↓)
WSR rel.

(↑)
MAR

(↓)
WSR

(↓)
WSR rel.

(↑)
De-En 44.2 42.2 46.0 31.0* 26.5 145.8 19.2* 54.6
En-De 46.9 45.0 49.0 34.0* 24.3 162.0 22.7* 49.6
Es-En 41.0 38.7 42.6 27.6 28.6 131.2 16.9 56.4
En-Es 41.2 39.3 43.1 28.8 26.9 136.2 17.9 54.5
Fr-En 42.0 39.6 43.6 28.7* 27.6 135.9 17.6* 55.5
En-Fr 38.4 36.5 40.0 26.2 28.2 123.1 15.5 57.5

Table 3: Experimental results with RNN in the Europarl corpus when considering non-explicit
and interaction-explicit MAs. Systems significantly differents from the Transformers systems
are indicated with a *.

baseline non-explicit interaction-explicit
MAR

(↓)
WSR

(↓)
MAR

(↓)
WSR

(↓)
WSR rel.

(↑)
MAR

(↓)
WSR

(↓)
WSR rel.

(↑)
De-En 42.5 40.5 44.3 29.1* 28.2 136.7 17.5* 56.7
En-De 49.7 47.8 51.8 36.2* 24.3 173.1 24.5* 48.8
Es-En 40.5 38.2 42.2 27.0 29.3 127.9 16.3 57.4
En-Es 41.4 39.6 43.3 28.7 27.6 135.9 17.8 55.1
Fr-En 41.2 38.9 42.9 27.3* 29.9 129.6 16.4* 58.0
En-Fr 38.1 36.2 39.7 25.7 29.0 121.2 15.3 57.7

Table 4: Experimental results with Transformer in the Europarl corpus when considering non-
explicit and interaction-explicit MAs. Systems significantly differents from the RNN systems
are indicated with a *.

We have realized an ANOVA (ANalysis Of VAriance) with a confidence of the 95% com-
paring for each pair of languages the results obtained from the RNN and the Transformer to see
if the models are statistically the same or not. The results are displayed in Tables 3 and 4, where
we tagged with an asterisk the results that we have statistical significance that they are different.

Figure 3 shows the uMAR results versus the WSR obtainer for each maximum value of
MAs up to five with the RNN and Transformer models. Each time that we increase the max-
imum number of MAs the number of errors fixed without typing the correct word is lower. If
we look at the uMAR values obtained at each iteration we can understand how the reduction
has worked. The uMAR values do not have a high variance, the value remains more or less the
same for both models while increasing the maximum number of MAs, 35. Each time that we
have increased the maximum number of MAs the 35% of the errors that were not corrected with
the previous maximum are corrected now. Knowing how the uMAR value evolves, helps the
human translator to choose between performing an interaction-explicit MA or typing directly
the correct word.

5.6 Comparison Results
In the last years, this same approach was explored on Interactive-Predictive Statistical Machine
Translation (IPSMT) systems and was tested in the Europarl corpora (Sanchis-Trilles et al.,
2008b). In this section, we compare the results obtained in their project with the Statistical
Machine Translation (SMT) models versus ours results with NMT models. We compare their
results only with the Transformer because both models have obtained very similar results.

In Figure 4, we can see the comparison results obtained in the Europarl corpus with the
SMT and NMT models. Taking into account the results obtained with a maximum of 5 MAs, the
SMT models get a WSR relative improvement around 24%, while the NMT models obtained a
relative improvement around 57%. From the uMAR results, we can see that in the SMT models
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Figure 3: WSR when considering up to five maximum MAs versus uMAR with RNN and
Transfromer in the Europarl corpus.

the percentage of uMAR goes from 6% to 12%, causing a lower WSR relative improvement.
Meanwhile, the NMT model maintains the percentage of uMAR around 35%.

Looking at these two results we can see how the NMT models are more likely to fix an
error correctly than the SMT models. Although the human interaction was simulated the same
for both projects, the uMAR score that gives us the percentage of useful MAR is very different,
so we can conclude that the NMT models produce better corrections with the information that
we are providing.

6 Conclusions and Future Work

6.1 Conclusions

In this paper, we have implemented the use of bandit feedback to generate new predictions
preserving the validated prefix. We have tested RNN and Transformer models with the Europarl
corpus, and both models obtained very similar results. Both models have improved the baseline,
proving that this kind of input information is useful and can reduce drastically the effort needed
to correct a translation. Moreover, as the non-explicit MAs do not suppose an extra cost for the
translator there are no cons to implement this approach on actual IPMT systems.

Additionally, we have compared our results with a previous work that used this same ap-
proach on SMT models, and the WSR relative improvement obtained in our experiments is
greater. Proving that the NMT models obtain better results with this kind of interaction and
feedback provided than the SMT models.

6.2 Future Work

In all the experiments that we have performed the user has been simulated following some basic
rules. As future work, we need to test the use of mouse actions with an application where we
can study the results of real humans that need to adapt to this new kind of input.
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Figure 4: Comparison results with the Europarl Corpus considering up to five maximum MAs.
The left column shows WSR versus MAR and in the right column shows WSR versus uMAR.
Our results (up) and Sanchis-Trilles et al. (2008b) results (down)
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