
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 7–15
August 5, 2021. ©2021 Association for Computational Linguistics

7

Apple Core-dination: Linguistic Feedback and Learning in a
Speech-to-Action Shared World Game

Susann Boy∗

Saarland University
AriaRay Brown

Saarland University
{susannb,ariaray,morganw}@coli.uni-saarland.de

Morgan Wixted
Saarland University

Introduction. We investigate the question of
how adaptive feedback from a virtual agent im-
pacts the linguistic input of the user in a shared
world game environment. To do so, we carry out
an exploratory pilot study to observe how individ-
ualized linguistic feedback affects the user’s in-
structional speech input. We introduce a speech-
controlled game, Apple Core-dination, in which an
agent learns complex tasks using a base knowledge
of simple actions.

Apple Core-dination is a shared-world language
building game that situates the user and agent in a
common virtual space. The agent is equipped with
a learning mechanism for mapping new commands
to sequences of simple actions, as well as the abil-
ity to incorporate user input into written responses.
To build a framework for mapping new language
and actions to existing knowledge, our game adopts
concepts from the semantic parsing model of Artzi
and Zettlemoyer (2013), which makes use of sit-
uated cues and common constructs found in in-
structional language. We seed the knowledge of
the agent by providing an initial lexicon of text-
to-action mappings for basic movements and com-
municative functionalities. The agent repeatedly
shares its internal knowledge state by responding
to what it knows and does not know about language
meaning and the shared environment.

Our paper focuses on the linguistic feedback
loop in order to analyze the nature of user input.
Feedback from the agent is provided in the form of
visual movement and written linguistic responses.
Particular attention is given to incorporating user
input into agent responses and updating the speech-
to-action mappings based on commands provided
by the user. Since the portrayal of an agent can
affect how the user perceives its emotional intelli-
gence (Chita-Tegmark et al., 2019) and trustwor-

∗* All authors have equal contribution.

thiness (Fan et al., 2017), we consider visual cues
that may also contribute to the user’s choice of
language when interacting. The focus of build-
ing agent knowledge is based on enriching the
mappings of linguistic input to sequences of sim-
ple actions for a given user session. Our system
also gives the user control over the mechanism of
speech input by providing multiple key-press ac-
tivated speech-to-text models. Through our pilot
study, we analyze task success and compare the
lexical features of user input. Results show varia-
tion in input length and lexical variety across users,
suggesting a correlation between the two that can
be studied further.

Background. Cooperative language building
games allow the user and agent to jointly accom-
plish a shared task through language collaboration.
Previous research in cooperative language build-
ing games has shown that success can be achieved
through accommodation between the user and the
agent, where both user and agent adapt their com-
munication to adjust to the communicative needs
of the other. The interaction can result in user lan-
guage becoming “more consistent, less verbose,
and more precise” as users adapt to the perceived
abilities of the computer (Wang et al., 2016). Ac-
commodation of user language supports findings in
human-human interaction in which speakers tend
to infer the linguistic and situational awareness of
their interlocutors (Pickering and Garrod, 2004).
Even low effort from the computer agent to cooper-
ate with the user can lead users to believe common
ground is established (Chai et al., 2014). Perceived
common ground, or a common understanding of
the shared environment, can be achieved through
the goal of a shared task along with the agent’s ef-
fort to make apparent its internal knowledge state.

Speech-to-Action Shared World Game. Apple
Core-dination embodies the computer in a person-



8

ified agent that prompts the user to teach it new
tasks through learning and cooperative interaction.
The agent’s internal knowledge of its progress is
shared through linguistic and action-based feed-
back. We use the player’s own speech (the input) to
customize agent responses (the output). The result-
ing system allows us to analyze how individualized
feedback affects the nature of user input. Game
implementation code is available on GitHub1

Game Environment. The game begins with an
introduction in which the user first learns to interact
with the agent by naming it through speech. The
goal of the game is to complete a set of tasks framed
as complex actions. The user teaches the agent to
achieve the given tasks through multi-step speech
commands that build upon basic actions already
known by the agent. A mid-session view of the
game screen is shown in Figure 1. Additional game
views are offered in Appendix A.

Figure 1: The game interface. The tasks are displayed
on the right side and at the bottom appears the agent’s
feedback while executing a command.

The basic actions of the agent can be triggered by
uttering corresponding commands. Basic actions
include simple movement functions in all four di-
rections (left, right, up, down), general movement
(move), object destinations (e.g. tree, bridge, it-
self), repetition of previous actions, greeting the
user, and reacting to positive and negative feedback
such as good job or no, not that.

The agent can store new learned commands into
its knowledge base via the yes function triggered
by the word yes. Upon completion of a task, the
yes function is silently called in order to add the
the relevant task instructions to the agent’s learned
commands. A subsequent utterance of the learned
task instruction (e.g. climb the tree) will directly
access the climb tree function. Although the

1https://github.com/ariabee/applecore

Figure 2: Description of the game loop. The user gives
speech input which is transcribed by a speech-to-text
model. The transcribed instruction is then interpreted
by the agent and feedback is generated. If the instruc-
tion is in the agent’s knowledge base, an action is exe-
cuted. The game checks if the action led to the comple-
tion of a task and then waits for the next instruction.

agent can move to the location of objects in its
knowledge base, it does not contain action func-
tions to interact with the objects. While executing
a command, the agent gives a response in the form
of text feedback on the screen and movement to a
destination when applicable.

Speech-to-Text. Our speech-to-text system pro-
vides users with the ability to play our game using
their voice. We currently have two systems imple-
mented: Google Cloud Speech API (Zhang, 2017)
and SpeechBrain’s pre-trained automatic speech
recognition (ASR) model (Ravanelli et al., 2021).
With both of these models, we can experiment to
see the interactions between the users and the abil-
ity to choose between different speech recognition
systems.

Our speech-to-text pipeline is as follows: our
users give speech input by pressing and holding a
key (M or SPACE) that accesses the speech-to-text
model. The input is recorded using Python’s speech
recognition library (Zhang, 2017) and transcribed
using the selected model. A single .wav file is
saved locally and rewritten for each utterance that
uses the SpeechBrain model.

Agent Knowledge and Language Parsing. The
agent embodies the language knowledge and learn-
ing mechanism of the game. The agent has access
to a knowledge base, a transcript that serves as
long-term memory, interpretation methods for pars-
ing linguistic input, and internal properties that act
as working memory. The agent’s knowledge also
contains hidden actions, or functions represent-
ing the complex game tasks. These functions are
hidden in the sense that the agent cannot initially
access them through their corresponding instruc-
tions. Figure 3 is referenced for explanation.

The knowledge base contains a lexicon of
known words mapped to action functions, a dic-
tionary of learned phrases that fills as the game



9

Figure 3: Model of the agent knowledge and language
processing mechanism in Apple Core-dination.

progresses, a list of actions mapping indices to ac-
tion functions, and the individual action functions
which represent basic actions. Each piece of lan-
guage that the agent recognizes is mapped to the
related action functions. Knowledge also holds
the hidden actions that represent the given com-
plex tasks that the agent cannot yet access through
mapped language, e.g. the tasks climb the tree,
cross the bridge, and find red flowers.

The transcript serves the role of long-term
memory, in case the agent needs to reference a
previous instruction, action sequence, or response.
The transcript updates and saves to a structured data
file in every game loop. The file contains informa-
tion about which of the two speech-to-text models
was accessed, which instruction the user has given
to the agent (output of the speech-to-text model),
the response of the agent, and what sequence of
actions was executed after the command. We track
the progression of the game by storing whether the
performed actions led to the completion of a task.

The agent has the ability to map both new and
recognized utterances to actions. The function for
confirmation and learning links the previous com-
mand to a successful sequence of actions performed
by the agent. When an instruction is given, the
agent parses and composes the utterance into an
executable action sequence, or list of indexed ac-
tion functions. Each function of the event is then
executed during the game loop. Successfully com-
pleting a task will map the original task command
to the hidden task function, adding the phrase-
to-action mapping to the agent’s learned phrases.

Henceforth, input containing the task command
will trigger the learned task function.

We implement a simplified parsing mechanism
to compose input strings into meaningful combina-
tions of mapped action functions. Parsing involves
first searching for learned phrases, followed by
checking the remaining string for recognized words
that exist in the lexicon. Known words and phrases
along with their corresponding actions are stored in
the agent’s working memory. The list of actions
is then composed into a list of single actions and
combined based on semantic meaning. The com-
pleted sequence is stored in an action queue. Each
action contributes to building the agent’s response
by returning a string based on the input that trig-
gered the action. Once the response is composed,
each action in the queue is executed one at a time
in the game loop.

Linguistic Feedback. When a user gives an in-
struction (e.g. walk there to the left), part of the
utterance is incorporated into the response of the
agent (e.g. walking somewhere going left). Feed-
back from the agent then becomes input for the user,
while also informing the user about the nature of
the agent’s knowledge, or what it does or does not
know about language meaning and its surrounding
environment.

The nature of individualized feedback is depen-
dent on each basic action function. The part of
the utterance that triggered each action is sent
as an argument when processing the function for
response-only output. Constructed feedback from
each mapped utterance is concatenated to form
the agent’s response. For instructions containing
learned phrases, the entire learned string is returned
as feedback. For example, the instruction hop up to
the tree will initially result in the response, going
up going to the tree. When the phrase is learned,
the agent will respond instead with the recognized
learned phrase hop up to the tree that maps to mov-
ing up and to the position of the tree. An example
instruction with resulting linguistic feedback is pro-
vided in Appendix B.

The agent also provides feedback for fully
unrecognized input; e.g. climb the tall plant
would result in the agent response: how do
I climb the tall plant?, where the unrecognized
phrase is incorporated into agent feedback. Upon
learning this new command, the agent would re-
spond: yes, I learned to climb the tall plant.



10

Pilot Study. We tested our game in an ex-
ploratory pilot study of five English-speaking vol-
unteers who were only instructed to play the game
but not obligated to complete all tasks in the game.
Participants were given instructions for using each
speech-to-test system, but not directed to use either
or both. We evaluate the interaction between agent
and user with the agent’s long-term memory, the
transcript. The transcript files include information
about which key they pressed to give an instruction,
the instruction transcribed by the speech-to-text
model, the actions triggered by the command, the
linguistic feedback given by the agent and whether
the command led to the completion of a task.

In completed transcripts, the instructions were
manually annotated by one of the authors as clean
if the speech-to-text model correctly transcribed
the instruction. Only cleaned instructions were
used for analysis, as incorrect model output does
not indicate a successful interaction between user
and agent. However, if the intended action was
triggered even though one or more words were tran-
scribed wrongly, the instruction was still marked as
clean. The users were asked to anonymously send
us or upload their transcript files. We gathered 219
commands in total, of which 182 were annotated
as clean transcriptions.

Our main interest is how the user interacts with
the agent. The usage of two speech-to-text models
enables us to evaluate their performance based on
the preference of the users.

Results. We examine two lexical factors of the
instructions: quantity and quality of the command.
Quantity in this context refers to the length of the
phrase (how many words were used), and quality
is a measure of how large the user’s vocabulary is
(how many different words were used). Table 1
shows relevant statistics regarding the instructions
by each user.

Instruction lengths and vocabulary size were ob-
tained from the cleaned transcripts (only utterances
that the speech-to-text model transcribed correctly).
We found that the range of the instruction length
is quite wide (one to 11 words), but the average
instruction length of 3.7 words suggests that users
tend to use single short commands. The agent can
perform multiple actions, but the players rarely
made use of this. This observation is in agree-
ment with studies by Marge et al. (2020). The
quality of a user’s instructions is defined by their
vocabulary size, which was determined by count-

User1 User2 User3 User4 User5 average
instruction length

(min-max) 1-5 1-7 3-11 1-5 1-11 1.4-7.8

average
instruction length 3.1 3.3 5.8 2.3 3.8 3.7

vocab size 28 53 38 20 38 35.4
M key

(clean output) 44 (27) 0 0 4 (1) 0 9.6

SPACE bar
(clean output) 4 (3) 52 (47) 19 (19) 46 (42) 50 (43) 34.2

Table 1: Relevant interaction data between each user
and the agent: Shortest and longest instruction, av-
erage instruction length, vocabulary size (number of
unique words) and number of times M (SpeechBrain)
or SPACE (Google Speech) was pressed (and how
many times the speech was transcribed well).

Task User1 User2 User3 User4 User5 average
Go to the tree 1 2 2 5 2 2.4
Climb the tree 9 2 5.5
Cross the bridge 10 7 21 12.7
Find red flowers 7 15 11

Table 2: Instructions needed by each user until a task
was completed.

ing the number of unique words uttered by each
user. The average vocabulary size is 35.4 words.
User 4, who uttered the shortest instructions on
average, also has the smallest vocabulary size (20
words), and User 2 has the largest vocabulary (53
words), but their instruction length is below aver-
age. Future work will more precisely examine the
interaction between quality and quantity of user
input and whether it corresponds to agent feedback
or individual participant differences.

The linguistic feedback helped the players to
communicate successfully with the agent. They
often repeated their previous command when the
speech-to-text model did not correctly transcribe
their utterance.

Table 2 shows how many instructions the users
uttered until a task was completed. The first task
(go to the tree) can be completed with one com-
mand since the agent has it already in its knowledge
base. This task acts as positive reinforcement for
the user to continue completing tasks and marks
a common point across users where utterances be-
come more task-directed. It was also the only task
that all users completed: User 1 achieved it after
one command, User 4 needed five commands. Only
a single player completed all four tasks, which
could mean that it is not clear how to complete
some of the tasks or that the game is not engaging
enough.

We used multiple speech-to-text models to eval-
uate which model was preferred by our users in
terms of user interaction. Table 1 shows that the



11

SPACE bar was pressed more often than the M key,
meaning that the Google model was accessed more
often. Only User 1 used the M key in the major-
ity of speech commands to the agent and three out
of the five users did not use the second model at
all. This could be due to preferred usability (the
SPACE bar is easier to press than the M key), that
one model produces cleaner and faster transcrip-
tions compared to the other model, or simply that
users forget there is a second model option.

Transcription accuracy from either model can
affect feedback, user-agent interaction, and game
progression in several cases of interest. In one
example, the Google model transcribed the instruc-
tion go up as *co-op, which resulted in the response
how do I co-op? and no movement from the agent.
For User 1 who accessed both models, the Speech-
Brain model transcribed the instruction go left as
go *lift, which resulted in the response of going
somewhere, since the agent recognized only the
word go from its knowledge base. Both examples
exhibit failed instructions from transcription errors,
since the input did not lead to successful parsing of
the intended actions. However, only the former re-
veals the incorrect transcription. In the latter case,
the user is not notified that left was absent from
the feedback because it was transcribed as lift. In
cases of misalignment due to transcription error,
the user could attempt to clarify the command, if
simple clarification seems possible, or opt for a
new speech-to-text model altogether. For future
experiments, we will encourage users to try either
system to see if they have a preference, especially
when it is clear that a command was not properly
interpreted.

Future Work. Results from user-agent interac-
tions in the pilot study inform improvements that
can be made to the game environment. These in-
clude expanding the agent’s baseline knowledge,
increasing the complexity in agent parsing abili-
ties, and more finely incorporating user input into
feedback responses. More grammatically formed
feedback for learned phrases could be processed
with the addition of a semantic parser. The re-
sponse for a learned phrase dance left and slide
right would appear more realistic and sophisticated
if it occurred from the agent in the gerund verb
form as dancing left and sliding right.

We plan to carry out a larger comparative study
of user input in Apple Core-dination. Players will
be divided into two groups: one where the agent

gives individualized linguistic feedback and one
where it gives action-only feedback. By providing
a clear choice of speech-to-text models, we can bet-
ter assess the interaction between model accuracy,
agent response, and user behavior to determine
whether the user’s preference for a model becomes
a factor in resolving agent understanding.

Our current results show variation in quantity
and quality of input across users, which will be in-
vestigated further. The user’s language adjustment
over time may also vary when the agent responses
are shown to increasingly accommodate user input.
Individualized linguistic feedback should better in-
form the user of how the agent processes input and
adapts to new knowledge from the user. It should
also allow users to speak to the agent through pre-
ferred utterances, and help them to resolve commu-
nication errors when they struggle to complete a
task.

Acknowledgments. We would like to thank the
anonymous reviewers for their valuable feedback.
We also thank our anonymous participants for their
help, and Dr. Lucia Donatelli for her insightful
comments and suggestions throughout.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Joyce Y. Chai, Lanbo She, Rui Fang, Spencer Ottarson,
Cody Littley, Changsong Liu, and Kenneth Hanson.
2014. Collaborative effort towards common ground
in situated human-robot dialogue. HRI ’14, page
33–40, New York, NY, USA. Association for Com-
puting Machinery.

M. Chita-Tegmark, M. Lohani, and M. Scheutz. 2019.
Gender effects in perceptions of robots and humans
with varying emotional intelligence. In 2019 14th
ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 230–238.

Lisa Fan, Matthias Scheutz, Monika Lohani, Marissa
McCoy, and Charlene Stokes. 2017. Do we need
emotionally intelligent articial agents? first results
of human perceptions of emotional intelligence in
humans compared to robots. In Proceedings of the
Seventeenth International Conference on Intelligent
Virtual Agents.

Matthew Marge, Felix Gervits, Gordon Briggs,
Matthias Scheutz, and Antonio Roque. 2020. Let’s
do that first! a comparative analysis of instruction-
giving in human-human and human-robot situated

https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1145/2559636.2559677
https://doi.org/10.1145/2559636.2559677
https://doi.org/10.1109/HRI.2019.8673222
https://doi.org/10.1109/HRI.2019.8673222
http://semdial.org/anthology/Z20-Marge_semdial_0006.pdf
http://semdial.org/anthology/Z20-Marge_semdial_0006.pdf
http://semdial.org/anthology/Z20-Marge_semdial_0006.pdf


12

dialogue. In Proceedings of the 24th Workshop on
the Semantics and Pragmatics of Dialogue - Full
Papers, Virtually at Brandeis, Waltham, New Jersey.
SEMDIAL.

Martin J. Pickering and Simon Garrod. 2004. Toward
a mechanistic psychology of dialogue. Behavioral
and Brain Sciences, 27(2):169–190.

Mirco Ravanelli, Titouan Parcollet, Aku Rouhe, Pe-
ter Plantinga, Elena Rastorgueva, Loren Lugosch,
Nauman Dawalatabad, Chou Ju-Chieh, Abdel Heba,
Francois Grondin, William Aris, Chien-Feng Liao,
Samuele Cornell, Sung-Lin Yeh, Hwidong Na, Yan
Gao, Szu-Wei Fu, Cem Subakan, Renato De Mori,
and Yoshua Bengio. 2021. Speechbrain. https:
//github.com/speechbrain/speechbrain.

Sida I. Wang, Percy Liang, and Christopher D. Man-
ning. 2016. Learning language games through in-
teraction. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2368–2378, Berlin,
Germany. Association for Computational Linguis-
tics.

Anthony Zhang. 2017. Speech recognition (version
3.8).

http://semdial.org/anthology/Z20-Marge_semdial_0006.pdf
https://doi.org/10.1017/S0140525X04000056
https://doi.org/10.1017/S0140525X04000056
https://github.com/speechbrain/speechbrain
https://github.com/speechbrain/speechbrain
https://doi.org/10.18653/v1/P16-1224
https://doi.org/10.18653/v1/P16-1224
https://github.com/Uberi/speech_recognition#readme
https://github.com/Uberi/speech_recognition#readme


13

A Example User-Agent Interaction.

Hello!

Can you �nd 

the tree?

Great job!

Figure 1: Example interaction.

1



14

B Example Instruction Processing.

Figure 2: Agent processing of the instruction walk to the left.

2



15

C Transcripts.

Figure 3: Transcript file of a completed game.

3


