
INLG 2021

The 14th International Conference
on Natural Language Generation

Proceedings of the Conference

20-24 September 2021
Aberdeen, Scotland, UK

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-51-0

ii

Preface

We are pleased to present the Proceedings of the 14th International Natural Language Generation
Conference (INLG 2021). Due to the COVID-19 pandemic, this year the conference was primarily
held online on 20-23 September 2021.

INLG 2021 was organised by the University of Aberdeen. The event took place under the auspices of the
Special Interest Group on Natural Language Generation (SIGGEN) of the Association for Computational
Linguistics (ACL).

The INLG conference is the main international forum for the discussion of all aspects of Natural
Language Generation (NLG), including applications, evaluation, models, and resources.

The conference started on 20 Sept with a tutorial by David M. Howcroft on Crowdsourcing Experiments
and Platforms.

The main conference took place over three days (21-23 Sep). We received 76 submissions (excluding
Generation Challenges), of which 23 were accepted as long papers, 7 as short papers, and 1 as a demo
paper.

Generation challenges is a set of shared tasks which are presented at INLG. This year results of 2
challenges were presented:

• Shared Task on Evaluating Accuracy in Generated Texts

• The ReproGen Shared Task on Reproducibility of Human Evaluations in NLG

The proceedings include a summary paper for each challenge, and 8 short papers describing submissions
to the challenges. We also received 5 proposals for 5 new challenges for 2022, 4 of which were accepted
and are included as short papers in the proceedings.

We were very grateful to our two keynote speakers:

• Tim Bickmore (Northeastern University, USA), who spoke on Health Counseling Dialogue
Systems: Promise and Peril

• Natalie Schluter (Google Brain and IT University Copenhagen, Denmark), who spoke on Fresh
Eyes on the Tough Problem of Automatic Summarisation

We are also grateful to the four members of our panel on What Users Want from Real-World NLG:

• Adam Sam (Monok)

• Ross Turner (Arria)

• Robert Weißgraeber (Ax Semantics)

• Michelle Zhou (Juji)

iii

INLG would not have been possible without the generous financial support we received from our
sponsors:

• ADAPT Centre

• Arria NLG

• Ax Semantics

• Google

• Hugging Face

We would also like to thank Abbey Conference Management for their hard work on delivering INLG
2021 online. Finally would also like to extend our gratitude to all speakers, (area) chairs and reviewers
for their excellent work.

Anya Belz
Angela Fan
Ehud Reiter
Yaji Sripada

INLG 2021 Programme Chairs

iv

Programme Chairs:
Anya Belz (ADAPT, Dublin City University, Ireland)
Angela Fan (Facebook, France)
Ehud Reiter (University of Aberdeen, Scotland, UK)
Yaji Sripada (University of Aberdeen, Scotland, UK)

Workshop Chair:
Emiel van Miltenburg (Tilburg University, Netherlands)

Publication Chair:
David M. Howcroft (Edinburgh Napier University, Scotland, UK)

Generation Challenge Chair:
Samira Shaikh (University of North Carolina Charlotte, USA)

Website:
Miruna Clinciu (Heriot-Watt University, Scotland, UK)

Local Organization Committee:
Ehud Reiter (University of Aberdeen, Scotland, UK)
Yaji Sripada (University of Aberdeen, Scotland, UK)

Invited Speakers:
Tim Bickmore (Northeastern University, USA)
Natalie Schluter (Google Brain and IT University Copenhagen, Denmark)

Panel Members:
Adam Sam (Monok)
Ross Turner (Arria)
Robert Weißgraeber (Ax Semantics)
Michelle Zhou (Juji)

Area Chairs:
Joan Byamugisha (IBM South Africa)
Ondřej Dušek (Charles University)
Thiago Castro Ferreira (Universidade Federal de Minas Gerais)

v

Albert Gatt (University of Malta)
Dimitra Gkatzia (Edinburgh Napier University)
Saad Mahamood (Trivago)
Lara Martin (University of Pennsylvania)
Shrimai Prabhumoye (Carnegie Mellon)
Natalie Schluter (University of Copenhagen)
Samira Shaikh (University of North Carolina Charlotte)
Sina Zarrieß (Friedrich Schiller Universität Jena)
Xingxing Zhang (Microsoft China)

Program Committee:
Malihe Alikhani (University of Pittsburgh)
Jose Alonso (University of Santiago de Compostela)
Jun Araki (Bosch Research)
Vidhisha Balachandran (Carnegie Mellon University)
David Bamutura (Chalmers University of Technology)
Jennifer Biggs (Defence Science and Technology Group)
Nadjet Bouayad-Agha (NLP Consultant)
Daniel Braun (TU Munich)
Gordon Briggs (U.S. Naval Research Laboratory)
Alberto Bugarín-Diz (University of Santiago de Compostela)
Jan Buys (University of Cape Town)
Michele Cafagna (University of Malta)
Guanyi Chen (Utrecht University)
Yagmur Gizem Cinar (Naver Labs Europe)
Elizabeth Clark (University of Washington)
Brian Davis (Dublin City University)
Rodrigo de Oliveira (Arria NLG)
Nina Dethlefs (University of Hull)
Martin Dominguez (Universidad Nacional de Cordoba)
Yuheng Du (Amazon)
Pablo Duboue (NLP Consultant)
Macarena Espinilla Estévez (University of Jaén)
Farhood Farahnak (Concordia University)
Cristina Garbacea (University of Michigan)
Lorenzo Gatti (Human Media Interaction, University of Twente)
Pablo Gervás (Universidad Complutense de Madrid)
Dimitra Gkatzia (Edinburgh Napier University)
Martijn Goudbeek (Tilburg University)
Ting Han (National Institute of Advanced Industrial Science and Technology)
Aki Härmä (Philips Research)
Sadid A. Hasan (CVS Health)
Raquel Hervas (University Complutense of Madrid)
Daphne Ippolito (University of Pennsylvana)
Amy Isard (University of Hamburg)
Takumi Ito (Tohoku University)
Harsh Jhamtani (Carnegie Mellon University)
Aditya Joshi (CSIRO)
Da Ju (Facebook)

vi

Mihir Kale (Google)
Emiel Krahmer (Tilburg University)
Tatsuki Kuribayashi (Tohoku University)
Cyril Labbe (Université Grenoble Alpes)
Gerasimos Lampouras (Huawei Noah’s Ark Lab)
Maurice Langner (Ruhr-Universität Bochum)
Lin Li (Qinghai Normal University)
Tianyu Liu (Peking University)
Elena Lloret (University of Alicante)
Saad Mahamood (Trivago)
Zola Mahlaza (University of Cape Town)
Aleksandre Maskharashvili (Ohio State University)
David McDonald (SIFT)
Antonio Valerio Miceli Barone (The University of Edinburgh)
Simon Mille (Pompeu Fabra University)
Diego Moussallem (Paderborn Univerisity)
Ryo Nagata (Konan University)
Daniel Paiva (Arria NLG)
Pablo Pérez De Angelis (TuQuejaSuma)
Paul Piwek (The Open University)
François Portet (Université Grenoble Alpes)
Sashank Santhanam (University of North Carolina Charlotte)
Lei Shu (University of Illinois at Chicago)
Marco Antonio Sobrevilla Cabezudo (Universidade de São Paulo)
Balaji Vasan Srinivasan (Adobe Research)
Somayajulu Sripada (University of Aberdeen)
Kristina Striegnitz (Union College)
Shahbaz Syed (Leipzig University)
Hiroya Takamura (Tokyo Institute of Technology)
Marc Tanti (University of Malta)
Mariët Theune (University of Twente)
Craig Thomson (University of Aberdeen)
Ross Turner (Arria NLG)
Kees van Deemter (Utrecht University)
Keith VanderLinden (Calvin College)
Stephen Wan (CSIRO)
Di Wang (Carnegie Mellon University)
Qingyun Wang (University of Illinois at Urbana-Champaign)
Robert Weißgraeber (Ax Semantics)
Michael White (Ohio State University)
Qiongkai Xu (The Australian National University)
Xinnuo Xu (Heriot-Watt University)
Jin-ge Yao (Peking University)
Zhirui Zhang (University of Science and Technology of China)
Yinhe Zheng (Alibaba)
Qingyu Zhou (Tencent)
Yanyan Zou (JD)
Ingrid Zukerman (Monash University)

vii

Table of Contents

Conference Papers

Generating Diverse Descriptions from Semantic Graphs
Jiuzhou Han, Daniel Beck and Trevor Cohn . 1

Neural Methodius Revisited: Do Discourse Relations Help with Pre-Trained Models Too?
Aleksandre Maskharashvili, Symon Stevens-Guille, Xintong Li and Michael White 12

Exploring Input Representation Granularity for Generating Questions Satisfying Question-Answer Con-
gruence

Madeeswaran Kannan, Haemanth Santhi Ponnusamy, Kordula De Kuthy, Lukas Stein and Detmar
Meurers . 22

Towards Zero-Shot Multilingual Synthetic Question and Answer Generation for Cross-Lingual Reading
Comprehension

Siamak Shakeri, Noah Constant, Mihir Kale and Linting Xue . 33

Chefbot: A Novel Framework for the Generation of Commonsense-enhanced Responses for Task-based
Dialogue Systems

Carl Strathearn and Dimitra Gkatzia . 44

Predicting Antonyms in Context using BERT
Ayana Niwa, Keisuke Nishiguchi and Naoaki Okazaki . 46

Examining Covert Gender Bias: A Case Study in Turkish and English Machine Translation Models
Chloe Ciora, Nur Iren and Malihe Alikhani . 53

WeaSuL: Weakly Supervised Dialogue Policy Learning: Reward Estimation for Multi-turn Dialogue
Anant Khandelwal . 62

Multi-Sentence Knowledge Selection in Open-Domain Dialogue
Mihail Eric, Nicole Chartier, Behnam Hedayatnia, Karthik Gopalakrishnan, Pankaj Rajan, Yang

Liu and Dilek Hakkani-Tur . 74

Self-Training for Compositional Neural NLG in Task-Oriented Dialogue
Xintong Li, Symon Stevens-Guille, Aleksandre Maskharashvili and Michael White 85

Generating Racing Game Commentary from Vision, Language, and Structured Data
Tatsuya Ishigaki, Goran Topic, Yumi Hamazono, Hiroshi Noji, Ichiro Kobayashi, Yusuke Miyao

and Hiroya Takamura . 96

Explaining Decision-Tree Predictions by Addressing Potential Conflicts between Predictions and Plau-
sible Expectations

Sameen Maruf, Ingrid Zukerman, Ehud Reiter and Gholamreza Haffari . 107

Formulating Neural Sentence Ordering as the Asymmetric Traveling Salesman Problem
Vishal Keswani and Harsh Jhamtani . 121

Underreporting of errors in NLG output, and what to do about it
Emiel van Miltenburg, Miruna Clinciu, Ondřej Dušek, Dimitra Gkatzia, Stephanie Inglis, Leo Lep-

pänen, Saad Mahamood, Emma Manning, Stephanie Schoch, Craig Thomson and Luou Wen 133

ix

What can Neural Referential Form Selectors Learn?
Guanyi Chen, Fahime Same and Kees van Deemter . 147

HI-CMLM: Improve CMLM with Hybrid Decoder Input
Minghan Wang, GUO Jiaxin, Yuxia Wang, Yimeng Chen, Su Chang, Daimeng Wei, Min Zhang,

Shimin Tao and Hao Yang . 160

Using BERT for choosing classifiers in Mandarin
Jani Järnfors, Guanyi Chen, Kees van Deemter and Rint Sybesma . 165

Enriching the E2E dataset
Thiago Castro Ferreira, Helena Vaz, Brian Davis and Adriana Pagano . 170

Goal-Oriented Script Construction
Qing Lyu, Li Zhang and Chris Callison-Burch . 177

Single Example Can Improve Zero-Shot Data Generation
Pavel Burnyshev, Valentin Malykh, Andrey Bout, Ekaterina Artemova and Irina Piontkovskaya194

SAPPHIRE: Approaches for Enhanced Concept-to-Text Generation
Steven Feng, Jessica Huynh, Chaitanya Prasad Narisetty, Eduard Hovy and Varun Gangal205

Contextualizing Variation in Text Style Transfer Datasets
Stephanie Schoch, Wanyu Du and Yangfeng Ji . 216

Generation Challenge Papers

Generation Challenges: Results of the Accuracy Evaluation Shared Task
Craig Thomson and Ehud Reiter . 230

The ReproGen Shared Task on Reproducibility of Human Evaluations in NLG: Overview and Results
Anya Belz, Anastasia Shimorina, Shubham Agarwal and Ehud Reiter . 239

Text-in-Context: Token-Level Error Detection for Table-to-Text Generation
Zdeněk Kasner, Simon Mille and Ondřej Dušek . 249

Shared Task in Evaluating Accuracy: Leveraging Pre-Annotations in the Validation Process
Nicolas Garneau and Luc Lamontagne . 256

Automatic Verification of Data Summaries
Rayhane Rezgui, Mohammed Saeed and Paolo Papotti . 261

Grounding NBA Matchup Summaries
Tadashi Nomoto . 266

Reproducing a Comparison of Hedged and Non-hedged NLG Texts
Saad Mahamood. .272

Another PASS: A Reproduction Study of the Human Evaluation of a Football Report Generation System
Simon Mille, Thiago Castro Ferreira, Anya Belz and Brian Davis .276

A Reproduction Study of an Annotation-based Human Evaluation of MT Outputs
Maja Popović and Anya Belz . 283

x

TUDA-Reproducibility @ ReproGen: Replicability of Human Evaluation of Text-to-Text and Concept-
to-Text Generation

Christian Richter, Yanran Chen and Steffen Eger . 291

DialogSum Challenge: Summarizing Real-Life Scenario Dialogues
Yulong Chen, Yang Liu and Yue Zhang . 298

Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed Hinglish Text
Vivek Srivastava and Mayank Singh . 304

Shared Task on Feedback Comment Generation for Language Learners
Ryo Nagata, Masato Hagiwara, Kazuaki Hanawa, Masato Mita, Artem Chernodub and Olena Na-

horna . 310

The SelectGen Challenge: Finding the Best Training Samples for Few-Shot Neural Text Generation
Ernie Chang, Xiaoyu Shen, Alex Marin and Vera Demberg . 315

Conference Papers (continued)

Affective Decoding for Empathetic Response Generation
Chengkun Zeng, Guanyi Chen, Chenghua Lin, Ruizhe Li and Zhi Chen . 321

Controllable Sentence Simplification with a Unified Text-to-Text Transfer Transformer
Kim Cheng SHEANG and Horacio Saggion . 331

SEPRG: Sentiment aware Emotion controlled Personalized Response Generation
Mauajama Firdaus, Umang Jain, Asif Ekbal and Pushpak Bhattacharyya . 343

Biomedical Data-to-Text Generation via Fine-Tuning Transformers
Ruslan Yermakov, Nicholas Drago and Angelo Ziletti . 354

Decoding, Fast and Slow: A Case Study on Balancing Trade-Offs in Incremental, Character-level Prag-
matic Reasoning

Sina Zarrieß, Hendrik Buschmeier, Ting Han and Simeon Schüz . 361

GraphPlan: Story Generation by Planning with Event Graph
Hong Chen, Raphael Shu, Hiroya Takamura and Hideki Nakayama . 367

BERT-based distractor generation for Swedish reading comprehension questions using a small-scale
dataset

Dmytro Kalpakchi and Johan Boye . 377

Exploring Structural Encoding for Data-to-Text Generation
Joy Mahapatra and Utpal Garain . 394

Attention Is Indeed All You Need: Semantically Attention-Guided Decoding for Data-to-Text NLG
Juraj Juraska and Marilyn Walker . 405

xi

Conference Program

Monday, 20 September 2021

Big Science Workshop (co-located event)

14:00–16:00 Tutorial: Crowdsourcing Experiments & Platforms
David M. Howcroft (Edinburgh Napier University)

Tuesday, 21 September 2021

Opening Plenary

12:00–12:10 Welcome to INLG 2021

12:10–13:00 Invited Talk: Fresh Eyes on the Tough Problem of Automatic Summarisation
Natalie Schluter (Google Brain ; ITU Copenhagen)

13:20–14:40 Oral Session 1: Models & Questions

Generating Diverse Descriptions from Semantic Graphs
Jiuzhou Han, Daniel Beck and Trevor Cohn

Neural Methodius Revisited: Do Discourse Relations Help with Pre-Trained Mod-
els Too?
Aleksandre Maskharashvili, Symon Stevens-Guille, Xintong Li and Michael White

Exploring Input Representation Granularity for Generating Questions Satisfying
Question-Answer Congruence
Madeeswaran Kannan, Haemanth Santhi Ponnusamy, Kordula De Kuthy, Lukas
Stein and Detmar Meurers

Towards Zero-Shot Multilingual Synthetic Question and Answer Generation for
Cross-Lingual Reading Comprehension
Siamak Shakeri, Noah Constant, Mihir Kale and Linting Xue

xiii

Tuesday, 21 September 2021 (continued)

14:40–15:40 Mid-afternoon Break

15:40–16:40 Poster Session 1

Chefbot: A Novel Framework for the Generation of Commonsense-enhanced Re-
sponses for Task-based Dialogue Systems
Carl Strathearn and Dimitra Gkatzia

Predicting Antonyms in Context using BERT
Ayana Niwa, Keisuke Nishiguchi and Naoaki Okazaki

Examining Covert Gender Bias: A Case Study in Turkish and English Machine
Translation Models
Chloe Ciora, Nur Iren and Malihe Alikhani

WeaSuL: Weakly Supervised Dialogue Policy Learning: Reward Estimation for
Multi-turn Dialogue
Anant Khandelwal

Multi-Sentence Knowledge Selection in Open-Domain Dialogue
Mihail Eric, Nicole Chartier, Behnam Hedayatnia, Karthik Gopalakrishnan, Pankaj
Rajan, Yang Liu and Dilek Hakkani-Tur

Self-Training for Compositional Neural NLG in Task-Oriented Dialogue
Xintong Li, Symon Stevens-Guille, Aleksandre Maskharashvili and Michael White

Generating Racing Game Commentary from Vision, Language, and Structured Data
Tatsuya Ishigaki, Goran Topic, Yumi Hamazono, Hiroshi Noji, Ichiro Kobayashi,
Yusuke Miyao and Hiroya Takamura

xiv

Tuesday, 21 September 2021 (continued)

17:00–18:00 Birds of a Feather Sessions

18:00–19:00 Social Hour

Wednesday, 22 September 2021

12:00–13:20 Oral Session 2: NLG Tasks, Evaluation, & Explanation

Explaining Decision-Tree Predictions by Addressing Potential Conflicts between
Predictions and Plausible Expectations
Sameen Maruf, Ingrid Zukerman, Ehud Reiter and Gholamreza Haffari

Formulating Neural Sentence Ordering as the Asymmetric Traveling Salesman
Problem
Vishal Keswani and Harsh Jhamtani

Underreporting of errors in NLG output, and what to do about it
Emiel van Miltenburg, Miruna Clinciu, Ondřej Dušek, Dimitra Gkatzia, Stephanie
Inglis, Leo Leppänen, Saad Mahamood, Emma Manning, Stephanie Schoch, Craig
Thomson and Luou Wen

What can Neural Referential Form Selectors Learn?
Guanyi Chen, Fahime Same and Kees van Deemter

13:40–14:40 Poster Session 2

HI-CMLM: Improve CMLM with Hybrid Decoder Input
Minghan Wang, GUO Jiaxin, Yuxia Wang, Yimeng Chen, Su Chang, Daimeng Wei,
Min Zhang, Shimin Tao and Hao Yang

Using BERT for choosing classifiers in Mandarin
Jani Järnfors, Guanyi Chen, Kees van Deemter and Rint Sybesma

Enriching the E2E dataset
Thiago Castro Ferreira, Helena Vaz, Brian Davis and Adriana Pagano

Goal-Oriented Script Construction
Qing Lyu, Li Zhang and Chris Callison-Burch

xv

Wednesday, 22 September 2021 (continued)

Single Example Can Improve Zero-Shot Data Generation
Pavel Burnyshev, Valentin Malykh, Andrey Bout, Ekaterina Artemova and Irina
Piontkovskaya

SAPPHIRE: Approaches for Enhanced Concept-to-Text Generation
Steven Feng, Jessica Huynh, Chaitanya Prasad Narisetty, Eduard Hovy and Varun
Gangal

Contextualizing Variation in Text Style Transfer Datasets
Stephanie Schoch, Wanyu Du and Yangfeng Ji

14:40–15:40 Mid-afternoon Break

15:40–16:20 Generation Challenges: Results

Generation Challenges: Results of the Accuracy Evaluation Shared Task
Craig Thomson and Ehud Reiter

The ReproGen Shared Task on Reproducibility of Human Evaluations in NLG:
Overview and Results
Anya Belz, Anastasia Shimorina, Shubham Agarwal and Ehud Reiter

16:30–17:10 Generation Challenges: Posters from the Accuracy Shared Task and Repro-
Gen

Text-in-Context: Token-Level Error Detection for Table-to-Text Generation
Zdeněk Kasner, Simon Mille and Ondřej Dušek

Shared Task in Evaluating Accuracy: Leveraging Pre-Annotations in the Validation
Process
Nicolas Garneau and Luc Lamontagne

Automatic Verification of Data Summaries
Rayhane Rezgui, Mohammed Saeed and Paolo Papotti

Grounding NBA Matchup Summaries
Tadashi Nomoto

xvi

Wednesday, 22 September 2021 (continued)

Reproducing a Comparison of Hedged and Non-hedged NLG Texts
Saad Mahamood

Another PASS: A Reproduction Study of the Human Evaluation of a Football Report
Generation System
Simon Mille, Thiago Castro Ferreira, Anya Belz and Brian Davis

A Reproduction Study of an Annotation-based Human Evaluation of MT Outputs
Maja Popović and Anya Belz

TUDA-Reproducibility @ ReproGen: Replicability of Human Evaluation of Text-to-
Text and Concept-to-Text Generation
Christian Richter, Yanran Chen and Steffen Eger

17:20–18:00 Generation Challenges: New Challenges

DialogSum Challenge: Summarizing Real-Life Scenario Dialogues
Yulong Chen, Yang Liu and Yue Zhang

Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed
Hinglish Text
Vivek Srivastava and Mayank Singh

Shared Task on Feedback Comment Generation for Language Learners
Ryo Nagata, Masato Hagiwara, Kazuaki Hanawa, Masato Mita, Artem Chernodub
and Olena Nahorna

The SelectGen Challenge: Finding the Best Training Samples for Few-Shot Neural
Text Generation
Ernie Chang, Xiaoyu Shen, Alex Marin and Vera Demberg

xvii

Wednesday, 22 September 2021 (continued)

18:00–19:00 SIGGEN Business Meeting

Thursday, 23 September 2021

12:00–13:00 Oral Session 3: Emotions & User Adaptation

Affective Decoding for Empathetic Response Generation
Chengkun Zeng, Guanyi Chen, Chenghua Lin, Ruizhe Li and Zhi Chen

Controllable Sentence Simplification with a Unified Text-to-Text Transfer Trans-
former
Kim Cheng SHEANG and Horacio Saggion

SEPRG: Sentiment aware Emotion controlled Personalized Response Generation
Mauajama Firdaus, Umang Jain, Asif Ekbal and Pushpak Bhattacharyya

13:20–14:40 Panel Discussion

Adam Sam (Monok), Ross Turner (Arria), Robert Weißgraber (Ax Semantics), &
Michelle Zhou (Juji)

14:40–15:40 Mid-afternoon Break

xviii

Thursday, 23 September 2021 (continued)

15:40–16:40 Poster Session 3

Biomedical Data-to-Text Generation via Fine-Tuning Transformers
Ruslan Yermakov, Nicholas Drago and Angelo Ziletti

Decoding, Fast and Slow: A Case Study on Balancing Trade-Offs in Incremental,
Character-level Pragmatic Reasoning
Sina Zarrieß, Hendrik Buschmeier, Ting Han and Simeon Schüz

GraphPlan: Story Generation by Planning with Event Graph
Hong Chen, Raphael Shu, Hiroya Takamura and Hideki Nakayama

BERT-based distractor generation for Swedish reading comprehension questions
using a small-scale dataset
Dmytro Kalpakchi and Johan Boye

Exploring Structural Encoding for Data-to-Text Generation
Joy Mahapatra and Utpal Garain

Attention Is Indeed All You Need: Semantically Attention-Guided Decoding for
Data-to-Text NLG
Juraj Juraska and Marilyn Walker

Closing Plenary

17:00–17:50 Invited Talk: Health Counseling Dialogue Systems: Promise and Peril
Tim Bickmore (Northeastern University)

17:50–18:00 Closing Remarks

xix

Friday, 24 September 2021

Excursion to Dunottar Castle

xx

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 1–11,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Generating Diverse Descriptions from Semantic Graphs

Jiuzhou Han Daniel Beck Trevor Cohn
School of Computing and Information Systems

The University of Melbourne, Australia
jiuzhouh@foxmail.com, {d.beck,trevor.cohn}@unimelb.edu.au

Abstract

Text generation from semantic graphs is tra-
ditionally performed with deterministic meth-
ods, which generate a unique description given
an input graph. However, the generation prob-
lem admits a range of acceptable textual out-
puts, exhibiting lexical, syntactic and seman-
tic variation. To address this disconnect, we
present two main contributions. First, we pro-
pose a stochastic graph-to-text model, incorpo-
rating a latent variable in an encoder-decoder
model, and its use in an ensemble. Second, to
assess the diversity of the generated sentences,
we propose a new automatic evaluation met-
ric which jointly evaluates output diversity and
quality in a multi-reference setting. We eval-
uate the models on WebNLG datasets in En-
glish and Russian, and show an ensemble of
stochastic models produces diverse sets of gen-
erated sentences, while retaining similar qual-
ity to state-of-the-art models.

1 Introduction

Semantic graphs are an integral part of knowledge
bases that integrate and store information in a struc-
tured and machine-accessible way (van Harmelen
et al., 2008). They are usually limited to specific do-
mains, describing concepts, entities and their rela-
tionships in the real world. Generating descriptions
from semantic graphs is an important application
of Natural Language Generation (NLG) and can be
framed in a graph-to-text transduction approach.

In recent years, approaches to graph-to-text
generation can be broadly categorised into two
groups. The first uses a sequence-to-sequence
model (Trisedya et al., 2018; Konstas et al., 2017;
Ferreira et al., 2019): the key step in this ap-
proach is to linearise the input graph to a sequence.
Sequence-to-sequence models have been proved
to be effective for tasks like question answering
(Yin et al., 2016), text summarisation (Nallapati

et al., 2016), and constituency parsing (Vinyals
et al., 2015). However, when dealing with graph in-
puts, this method does not take full advantage of the
graph structure. Another approach is to handle the
graph directly, using a graph-to-sequence model
(Ribeiro et al., 2020; Beck et al., 2018; Zhao et al.,
2020). This approach has been recently widely
adopted as it shows better performance for generat-
ing text from graphs (Xu et al., 2018).

The models used in previous work are determin-
istic: given the same input graph, they will always
generate the same text (assuming a deterministic
decoding algorithm is used). However, it is widely
known that many graphs admit multiple valid de-
scriptions. This is evidenced by the presence of
multiple references in datasets such as WebNLG
(Gardent et al., 2017a,b) and it is a common phe-
nomenon in other generation tasks such as machine
translation and image captioning. In this work,
we propose to use models that generate sets of de-
scriptions instead of a single one. In particular, we
develop stochastic models with latent variables that
capture diversity aspects of semantic graph descrip-
tions, such as lexical and syntactic variability. We
also propose a novel evaluation methodology that
combines quality and diversity into a single score,
in order to address caveats of previously proposed
diversity metrics. Our findings show that stochastic
models perform favourably when generating sets
of descriptions, without sacrificing the quality of
state-of-the-art architectures.

2 Related Work

Graph-to-sequence Models Standard graph-to-
sequence models have two main components: a
graph encoder and a sequence decoder. The en-
coder learns the hidden representation of the input
graph and the decoder generates text based on this
representation. Different graph-to-sequence mod-

1

els vary mainly in the graph encoders.
Marcheggiani and Perez-Beltrachini (2018) pro-

posed an encoder based on Graph Convolutional
Networks (Kipf and Welling, 2017, GCNs), which
directly exploit the input structure. Similar to Con-
volutional Neural Networks (LeCun et al., 1998),
GCN layers can be stacked, resulting in represen-
tations that take into account non-adjacent, long-
distance neighbours. Beck et al. (2018) used Gated
Graph Neural Networks (Li et al., 2016) by ex-
tending networks on graph architectures with gat-
ing mechanisms, similar to Gated Recurrent Units
(Cho et al., 2014, GRUs). Koncel-Kedziorski et al.
(2019) proposed Graph Transformer Encoder by
extending Transformers (Vaswani et al., 2017) to
graph-structured inputs, based on the Graph Atten-
tion Network (Velickovic et al., 2017, GAT) archi-
tecture. This graph encoder generates node embed-
dings by attending over its neighbours through a
self-attention strategy. Ribeiro et al. (2020) pro-
pose new models to encode an input graph with
both global and local node contexts. To combine
these two node representations together, they make
a comparison between a cascaded architecture and
a parallel architecture.

Latent Variable Models Within neural net-
works, a standard approach for generative models
with latent variables is the Variational Autoencoder
(VAE) (Kingma and Welling, 2014). The genera-
tive process is represented as: pθ(x, z) = pθ(x |
z)pθ(z), where pθ(z) is the prior from which the
latent variable is drawn, pθ(x | z) is the likelihood
of data point x conditioned on the latent variable z,
typically calculated using a deep non-linear neural
network, and θ denotes the model parameters.

Bowman et al. (2016) proposed a pioneering vari-
ational autoencoder for text generation to explicitly
learn the global features using a continuous latent
variable. They adapt the VAE to text data using
an LSTM (Hochreiter and Schmidhuber, 1997) for
both the encoder and the decoder, using a Gaussian
prior to build a sequence autoencoder. This archi-
tecture can be extended to conditional tasks (when
there is an input guiding the generation). Zhang
et al. (2016) proposed an end-to-end variational
model for Neural Machine Translation (NMT), us-
ing a continuous latent variable to capture the se-
mantics in source sentences and guide the transla-
tion process. Schulz et al. (2018) proposed a more
expressive word-level machine translation model
incorporating a chain of latent variables, modelling

lexical and syntactic variation in parallel corpora.

Diversity in Neural Networks and Generation
Variational latent variable models are commonly
employed when there is a need for generating di-
verse outputs. This is achieved by sampling from
the latent variable every time a new output is re-
quired. One can also use a standard deterministic
model and sample from the decoder distributions
instead but this tends to decrease the quality of the
generated outputs. Here we review a few common
techniques to address this issue.

Dropout (Srivastava et al., 2014) is a regularisa-
tion method used to prevent overfitting in neural
networks. At training time, it masks random pa-
rameters in the network at every iteration. Dropout
can also be employed in the testing phase, during
generation. This idea was first proposed by Gal
and Ghahramani (2016) and it is also called Monte
Carlo (MC) dropout. Because MC dropout disables
neurons randomly, the network will have different
outputs every generation, which can make a deter-
ministic model generate different outputs.

Another technique to generate diverse outputs is
ensemble learning. Typically, they are employed
to prevent overfitting but they can also be used to
generate diverse outputs. The idea is for each indi-
vidual model in the ensemble to generate its own
output. This approach can be very useful as each
model tends to provide different optimal solutions
in the network parameter space. This property has
shown to benefit uncertainty estimation in deep
learning (Lakshminarayanan et al., 2017). It can
also be used both with deterministic and stochastic
models, a property we exploit in our experiments.

3 Stochastic Graph-to-Sequence Model

In this section we introduce the proposed approach
to generate diverse descriptions from semantic
graphs. We start from the state-of-the-art model
of Ribeiro et al. (2020), which is a deterministic
graph-to-sequence architecture. Then we incor-
porate a latent variable and a variational training
procedure to this model, in order to turn the model
stochastic. This latent variable aims at capturing
linguistic variations in the descriptions and is re-
sponsible for increasing the diversity at generation
time. The architecture is shown in Figure 1.

3.1 Graph Encoder and Text Decoder
The encoder is similar to Ribeiro et al. (2020), con-
sisting of a global and a local subencoder. The

2

√

Node Embeddings

Global Encoder

Local Encoder
N x

q"(z|x)

p$(z)

Word Embeddings

Prediction:
		𝑦',𝑦), … , 𝑦+

Transformer
Decoder

Target:
		𝑦',𝑦), … , 𝑦,

		Loss01

		h3

Graph Encoder

Inference Model

Text Decoder

		Loss45

Source: x =

Figure 1: Proposed stochastic graph-to-sequence model architecture.

global encoder considers a wide range of contexts
but it ignores the graph topology by considering
each node as if it were connected to all the other
nodes in the graph. The local encoder learns the
hidden representation of each node on the basis of
its neighbour nodes, which exploits the graph struc-
ture effectively. Combining both global and local
node aggregations, this encoder can learn better
contextualised node embeddings. The global en-
coding strategy is mainly based on the Transformer
architecture (Vaswani et al., 2017), using a self-
attention mechanism to calculate node representa-
tions of all nodes in the graph. The local encoding
strategy adopts a modified version of Graph Atten-
tion Network (Velickovic et al., 2017) by adding
relational weights to calculate the local node repre-
sentations.

The decoder is also based on a transformer ar-
chitecture. In our model, the input of the decoder
is the contextualised node embeddings hx concate-
nated with the hidden state of the latent variable hz ,
which can be represented as [hx;hz]. Following
Ribeiro et al. (2020), we also use beam search with
length penalty (Wu et al., 2016) to encourage the
model to generate longer sentences.

3.2 Inference Model

Here is where we introduce a latent Gaussian vari-
able z, which together with the input graph x,
guides the generation process. With this, the condi-

tional probability of sentence y given x is

p(y|x) =
∫

z
p(y|z, x)p(z|x)dz.

The posterior inference in this model is in-
tractable. Following previous work (Bowman et al.,
2016; Kingma and Welling, 2014), we employ
neural networks to fit the posterior distribution,
to make the inference tractable. We regard the
posterior as a diagonal GaussianN

(
µ, diag

(
σ2
))

.
The mean µ and variance σ2 are parameterised
with feed-forward neural networks (FFNNs), using
the reparametrisation trick (Bowman et al., 2016;
Kingma and Welling, 2014) of the Gaussian vari-
ables. It reparameterises the latent variable z as a
function of mean µ and variance σ:

z = µ+ σ � ε ε ∼ N (0, I),

where ε is a standard Gaussian variable which
plays the role of introducing noises, and � denotes
element-wise multiplication. The reparametrisa-
tion trick enables back-propagation in optimisation
process with Stochastic Gradient Descent (SGD).
Then we transform the latent variable z into its
hidden state hz through another FFNN.

The training objective encourages the model to
keep its posterior distributions q(z | x) close to
a prior p(z) that is a standard Gaussian N (µ =
0, σ = 1). The loss function of the stochastic
conditional model can be defined as

L(φ, θ;x,y) = −Ez∼qφ(z|x) [log pθ (y | z,x)]
+ KL (qφ (z | x) ‖p(z)) .

3

The first term is the expected negative log-
likelihood of data which is called reconstruction
loss or cross-entropy loss. It forces the model to
learn to reconstruct the data. The second term is
the KL divergence which acts as a regulariser. By
minimising the KL term, we want to make the ap-
proximate posterior stay close to the prior. We use
SGD to optimise the loss function.

3.3 Optimisation
As shown above, the stochastic model objective
comprises two terms reconstruction and KL regu-
larisation. The KL divergence term will be non-
zero and the cross-entropy term will be relatively
small if the model encodes task-relevant informa-
tion in the latent variable z. A difficulty of training
is that the KL term tends to zero, causing the model
to ignore z. This makes the model deterministic.
This phenomenon is also known as the KL collapse
or KL vanishing problem (Lucas et al., 2019). We
adopt the KL Threshold method (Pagnoni et al.,
2018) to alleviate this issue. In this approach, we
introduce a threshold ζ into the loss function to
control the KL term. A large KL term means the
latent variable learns much information. By setting
a threshold, we can force the model to take at least
a fixed KL regularisation cost. In our experiments,
we set the threshold ζ as 10. The new loss function
can be represented as

L(φ, θ;x,y) = −Ez∼qφ(z|x) [log pθ (y | z,x)]
+ max (KL (qφ (z | x) ‖p(z)) , ζ) .

4 Joint Evaluation of Diversity and
Quality

Addressing diversity in language generation is a
recent topic that attracted attention in particular
in image captioning. This led to the development
of metrics that aim at measuring the diversity of
a set of sentences, such as Self-BLEU (Zhu et al.,
2018). However, these metrics are based only on
the generated output space, ignoring the references
in the gold standard. This lead to spurious mea-
surements, such as unconditional language models
having excellent performance according to these
metrics, even though they have no practical use as
they ignore the input.

To address these caveats, we propose a new eval-
uation procedure that assesses diversity and quality
jointly. Our key insight (and assumption) is based
on using the reference set as a gold standard for

both aspects. Given a graph, the set of references
acts as the “end goal”, containing high-quality de-
scriptions with sufficient levels of diversity.1 We
call this procedure Multi-Score (MS).

The idea behind Multi-Score is shown pictorially
in Figure 2. In this example, we have a single in-
stance with three references and three predicted de-
scriptions generated by a model. Given a sentence-
level quality metric we can calculate it among all
possible pairs between each prediction and refer-
ence, obtaining a weighted bipartite graph. We
then solve the respective maximum matching prob-
lem for this bipartite graph and take the average
weight of the edges corresponding to the optimal
matching. We show the full procedure to calculate
Multi-Score in Algorithm 1.

Algorithm 1 Multi-Score procedure
function MULTI-SCORE(o: outputs, r: refer-
ences,M: sentence-level metric)

G← 0 . initialise graph
for i← 0 to len(o) do . fill graph

for j ← 0 to len(r) do
G(i, j)←M(o[i], r[j])

match← MAXMATCH(G) . stores edges
score← 0
for edge ∈match do

score← score + edge.weight
return score / len(match)

. returns average weight

For the example in Figure 2, the optimal match-
ing (shown in red) matches prediction 1 with output
2, prediction 2 with output 3 and prediction 3 with
output 1. From this, the resulting Multi-Score is:
(56+50+58)/3 = 54.67. The matching problem
MAXMATCH can be solved using the Hungarian
Algorithm (Kuhn, 2010) in O(n3) time, where n
is the number of nodes in the bipartite graph. This
makes the procedure efficient for reference set sizes
found in standard datasets.

As a metric, Multi-Score has a number of desir-
able properties:

• As long as the sentence-level metric has an up-
per bound (which is the case of most standard
automatic evaluation metrics), if the set of
predictions is exactly equal to the references,
then MS will give the maximum score.

1We discuss limitations of this assumption in Section 7.

4

Pred 1

Pred 3

Pred 2

Ref 1

Ref 3

Ref 2

54

62 58

56
38

24

40

50

28

Multi-Score: (56 + 50 + 58) / 3 = 54.67

Figure 2: An example of calculating Multi-Score. The
three “Pred” nodes on the left side represent three pre-
dicted descriptions while the three “Ref” nodes on
the right side represent three references. The weight
of each edge corresponds to the sentence-level qual-
ity score of this prediction-reference pair. The high-
lighted scores are the ones corresponding to the maxi-
mal matching, which are then used to calculate the MS
metric. Other scores are ignored.

• If the outputs are diverse but unrelated to the
references (as in an unconditional LM), MS
will penalise the output because the underly-
ing quality values will be low.

• If the outputs are high-quality but not diverse
(typical of an n-best list in a deterministic
model), MS will penalise the output due to
the assignment constraint. One of the outputs
will have a high-quality value but the others
will have a low-quality value because they will
be forced to match other references.

• Finally, MS can be used with any sentence-
level quality metric, making it easily adapt-
able to any developments in better quality met-
rics, as well as other generation tasks.

5 Experimental Settings

5.1 Dataset

We evaluate the models using datasets from the
WebNLG shared tasks (Gardent et al., 2017a,b).
The data is composed of data-text pairs where the
data is a set of RDF triples extracted from DBpedia
and the text is the verbalisation of these triples. For
each graph, there may be multiple descriptions. In
our experiments, we assume a reference set of size
3 for each input, as most graphs in both datasets
have three reference descriptions.

English WebNLG 2017 This dataset contains
18102 training, 872 development and 971 test data-
text pairs. Entities are classified into 15 distinct cat-
egories (Astronaut, University, Monument, Build-
ing, ComicsCharacter, Food, Airport, SportsTeam,
WrittenWork, Athlete, Artist, City, MeanOfTrans-
portation, CelestialBody, Politician).

Russian WebNLG 2020 The Russian dataset
comprises 16571 training, 790 development and
1102 test data-text pairs. This dataset has 9 dis-
tinct categories (Airport, Astronaut, Building, Ce-
lestialBody, ComicsCharacter, Food, Monument,
SportsTeam, and University).

5.2 Preprocessing
Levi Graph Transformation To decrease the
number of parameters and avoid parameter ex-
plosion, we follow previous work and use a Levi
Graph Transformation (Ribeiro et al., 2020; Beck
et al., 2018). This transformation creates new rela-
tion nodes from relational edges between entities,
which explicitly represents the relations between
an original node and its neighbour edges.

Byte Pair Encoding Following previous work
(Ribeiro et al., 2020), we employ Byte Pair En-
coding (BPE) to split entity words into frequent
characters or character sequences which are sub-
word units. After the BPE operations, some nodes
in the graph are split to subwords. Likewise, we
also split the target descriptions using BPE.

5.3 Models
All models are able to generate sets of descrip-
tions: we generate three sentences per graph as
this matches the number of available references.
For the proposed stochastic models, we generate
each sentence by sampling a new value for the la-
tent variable. For the deterministic models, we use
different decoding strategies to generate these sets.

Top-3 Beam Search Beam Search is the stan-
dard algorithm to obtain a sentence from determin-
istic models, by selecting the output with (approxi-
mate) highest probability. In Top-3 Beam Search,
we choose the top-3 generated sentences from the
final candidate list.

Total Random Sampling Random Sampling
(Ippolito et al., 2019) generates a sentence from
left to right sampling the next token from all pos-
sible candidates until the end-of-sequence symbol
is generated. Because each token is sampled from

5

the distribution over next tokens given the previous
ones, this method generates different outputs each
time it generates a new description.

Top-3 Random Sampling In this approach, we
still use Random Sampling but modify it slightly
while generating the next token. Instead of sam-
pling the next token from all possible candidates,
the model samples the next token from the top-3
most likely candidates (Ippolito et al., 2019).

MC Dropout We employ MC dropout to the de-
terministic model and keep the dropout rate in the
testing phase and training phase the same. It dis-
ables neurons randomly at decoding time, resulting
in different outputs at each generation.

Ensemble Finally, we create an ensemble of
three independently-trained deterministic models,
whereby we select the most likely sentence from
each model using Beam Search. These sentences
then form the output set from the ensemble. Since
this is a general strategy, we also apply it to the
stochastic model as another point of comparison in
our experiments.

6 Results

We assess each model on the test set of English and
Russian datasets respectively and report the quality
and diversity results. The quality evaluation scores
(BLEU: Papineni et al. (2002), CHRF++: Popovic
(2017)) are calculated based on the average score
of the three outputs. We report the original BLEU
and CHRF++ score to show the quality of the gen-
erated sentences from each model. The diversity
evaluation scores (Self-BLEU, Multi-Score) are
computed using the three outputs. As we describe
in Section 4, our proposed diversity evaluation met-
rics require a sentence-level quality evaluation met-
ric to compute the score of two sentences. We
adopt sentence-level BLEU and CHRF++ and re-
fer to their corresponding Multi-Score versions as
MS-BLEU and MS-CHRF.

Table 1 shows the quality results on both En-
glish and Russian datasets. As expected, the two
random sampling methods do not show good qual-
ity performance. For English data, our stochastic
models perform on par with previous work and
have comparable quality with deterministic models.
The trends for English and Russian data are similar
but Russian has lower scores in general.

The diversity scores of these two datasets are
shown in Table 2. Total random sampling has the

lowest Self-BLEU on two datasets, as expected,
but it also has the worst quality. On the other
hand, with our new metrics, the stochastic ensem-
ble model gives the best results on both English and
Russian datasets, showing high diversity without
compromising quality.

6.1 Error Analysis
To further assess the quality of the generated sen-
tences from each model, we perform a manual error
analysis in a subset of the English test data. We
randomly selected five input graphs, generating 15
sentences for each model (as we generate 3 sen-
tences for each graph). Given we analysed five
models, this gives a total of 75 sentences for our
analysis. We observed three common mistakes
from the outputs:

• Syntax/Spelling Mistake: There are gram-
mar mistakes or spelling mistakes.

• Lack of Information: The information in the
graph is not fully realised in the description.

• Information Redundancy: Some informa-
tion in the sentence is repeated.

We calculate the rates of each model making dif-
ferent types of mistakes and report the results in
Table 3. The results show that total random sam-
pling makes the most mistakes among all models
and most of them are syntax or spelling mistakes.
Top-3 random sampling and MC dropout make the
same percentage of total mistakes. The former
makes almost half of the total information redun-
dancy mistakes while the latter makes the most lack
of information mistakes. Top-3 beam search makes
fewer mistakes than the other three models and it
does not make information redundancy mistakes in
our evaluated test cases.

As for ensemble-based models, both determinis-
tic and stochastic ensembles make the fewest total
mistakes among all models. This is in line with
the results obtained from automatic quality metrics.
In particular, the deterministic ensemble does not
make any syntax or spelling mistakes in the evalu-
ated test cases. The stochastic ensemble also shows
good performance with regard to the quality of the
generated sentences, which has a low error rate for
all types of mistakes.

In general, the diverse outputs generated by our
proposed model tend to have comparable quality to
the outputs from the best baseline model. However,

6

English Russian
BLEU↑ CHRF++↑ BLEU↑ CHRF++↑

Deterministic Models
Top-3 beam search 62.69 74.48 52.50 64.76
Total random sampling 49.01 66.35 40.62 57.06
Top-3 random sampling 56.62 71.16 46.91 61.45
MC dropout 59.10 71.57 47.97 61.41
Ensemble 63.31 74.52 53.60 65.30

Stochastic Models
Single model 62.81 74.12 52.45 64.43
Ensemble 62.88 74.25 52.60 64.38

Previous Work
Melbourne (Gardent et al., 2017b) 54.52 70.72 - -
Adapt (Gardent et al., 2017b) 60.59 76.01 - -
CGE-LW (Ribeiro et al., 2020) 63.69 76.66 - -

Table 1: Quality evaluation results on the test sets of both English and Russian datasets. Note that models without
declaring decoding strategy use Beam Search. For reference, we also report results from previous work in the
English dataset. Boldface shows the best result for a column, and arrows indicate the direction of improvement,
i.e., ↑: higher is better.

English Russian
Self-B↓ MS-B↑ MS-C↑ Self-B↓ MS-B↑ MS-C↑

Deterministic Models
Top-3 beam search 86.72 46.65 71.45 76.50 38.23 61.58
Total random sampling 56.48 40.47 67.00 52.30 31.37 56.30
Top-3 random sampling 64.66 45.15 70.40 60.31 35.61 59.95
MC dropout 68.70 46.90 70.87 61.59 36.14 59.37
Ensemble 81.31 47.32 71.52 75.70 38.50 61.71

Stochastic Models
Single model 97.30 43.25 69.45 97.62 33.53 58.40
Ensemble 77.85 47.61 71.95 73.50 38.86 61.95

Table 2: Diversity evaluation results on the test sets of both English and Russian datasets. Self-B refers to Self-
BLEU while MS-B and MS-C refer to the proposed Multi-Score metric using sentence-level BLEU and CHRF++
as the underlying quality metric. Note that models without declaring decoding strategy use beam search decoding.

Models Syntax/Spelling
Mistake

Lack of
Information

Information
Redundancy Average

Deterministic Models
Total random sampling 0.54 0.18 0.20 0.33
Top-3 random sampling 0.18 0.14 0.49 0.22
MC dropout 0.18 0.32 0.20 0.22
Top-3 beam search 0.07 0.14 0.00 0.09
Ensemble 0.00 0.09 0.03 0.06
Stochastic Models
Ensemble 0.03 0.13 0.08 0.08

Table 3: Error analysis results, showing the rates of mistakes for each model.

7

Azerbaijan Artur Rasizade

Baku Turkish
Martyrs’ Memorial

leaderName

location

Baku
capital

National Assembly

leg
isla

ture

Ottoman Army soldiers
killed in the Battle of Baku

dedicatedTo

DM (MC dropout) 1: The Baku Turkish Martyrs’ Memorial, which is dedicated to the Ottoman Army soldiers killed
in the battle of Baku, is found in Azerbaijan. The capital of Azerbaijan is Baku and the leader is Artur Rasizade.
(missing: legislature information)
DM (MC dropout) 2: The Baku Turkish Martyrs’ Memorial, which is dedicated to the Ottoman Army soldiers killed
in the battle of Baku, is dedicated to the Ottoman Army soldiers killed in the country . .is.ledbyArturRasizade.
(missing: legislature information)
DM (MC dropout) 3: The Baku Turkish Martyrs’ Memorial is dedicated to the Ottoman Army soldiers killed in the
battle of Baku. It is dedicated to the Ottoman Army soldiers killed in the battle of Baku, the leader of Azerbaijan is
Artur Rasizade. (missing: legislature information)

SM (Ensemble) 1: The Baku Turkish Martyrs’ Memorial is dedicated to the Ottoman Army soldiers killed in the
battle of Baku. It is located in Azerbaijan whose capital is Baku and its leader is Artur Rasizade. The legislature
is the National Assembly.
SM (Ensemble) 2: Baku is the capital of Azerbaijan where the legislature is the National Assembly and the leader
is Artur Rasizade. The country is the location of the Baku Turkish Martyrs Memorial which is dedicated to the
Ottoman Army soldiers killed in the battle of Baku.
SM (Ensemble) 3: The Baku Turkish Martyrs’ Memorial is dedicated to the Ottoman Army soldiers killed in the
battle of Baku. It is located in Azerbaijan whose capital is Baku and its leader is Artur Rasizade, and its legislature
is the National Assembly.

Table 4: A WebNLG input graph and the outputs from a Deterministic Model (MC dropout) and a Stochastic
Model (Ensemble). Highlighted segments indicate mistakes:red,dottedlines represent Syntax/Spelling mistakes,
blue, solid lines corresponds to Lack of Information, and orange, dashed lines represent Information Redundancy.
Bold segments show examples of syntactic variations.

lack of information still remains a challenge for
some instances in this setting. Addressing this
problem is an avenue that we leave for future work.

6.2 Case Study

Table 4 shows an instance of a semantic graph from
which we collect three outputs from a determinis-
tic model (MC dropout) and a stochastic model
(Ensemble). The outputs from MC dropout con-
tain three types of mistakes and have low diver-
sity. While there is no mistake in the outputs of
the stochastic model, and the boldface illustrates
syntactic variation.

7 Conclusion and Future Work

In this work, we first propose stochastic graph-
to-text models to generate diverse sentences from
semantic graphs. This was implemented through
latent variable models that aim to capture linguistic
variation and ensembling techniques. Furthermore,
to solve the limitation of the existing diversity eval-

uation metrics, we also propose Multi-Score, a new
automatic evaluation metric assessing diversity and
quality jointly. It provides a general and effec-
tive way to assess the diversity of generated sen-
tences for any text generation task. We perform
experiments on English and Russian datasets and
results demonstrate the generated sentences from
the stochastic ensemble have both high diversity
and high quality.

Since Multi-Score is based on using the refer-
ence set as the gold standard, it has a limitation that
the variety of the reference sentences can largely
influence the metric. Datasets containing refer-
ence sentences with higher quality and diversity
will likely generate a more accurate Multi-Score
for the predicted sentences. In other words, Multi-
Score evaluates diversity implicitly through the ref-
erences, as opposed to explicit judgements of diver-
sity. However, explicit human evaluation requires
a formal definition of diversity which is difficult to
establish (as compared to quality judgements, for

8

instance). Nevertheless, addressing this challenge
could provide a pathway to reduce the need for
multiple references in evaluating diversity.

To the best of our knowledge this is the first work
that incorporates a latent variable within a graph-
to-sequence model. This in turn leads to many
promising research avenues to explore in future
work. Our analysis showed that the latent variable
mostly helps in syntactic variation but less in other
aspects such as semantics. Analysing the behaviour
of the latent variable when modelling linguistic in-
formation is an important avenue that will enhance
the understanding of stochastic models.

References
Daniel Beck, Gholamreza Haffari, and Trevor Cohn.

2018. Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2018, Melbourne, Australia,
July 15-20, 2018, Volume 1: Long Papers, pages
273–283. Association for Computational Linguis-
tics.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning,
CoNLL 2016, Berlin, Germany, August 11-12, 2016,
pages 10–21. ACL.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1724–1734.
ACL.

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg, and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 552–562. Association for Com-
putational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of the
33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-

24, 2016, volume 48 of JMLR Workshop and Con-
ference Proceedings, pages 1050–1059. JMLR.org.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for NLG micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancou-
ver, Canada, July 30 - August 4, Volume 1: Long Pa-
pers, pages 179–188. Association for Computational
Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The webnlg
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, INLG 2017, Santi-
ago de Compostela, Spain, September 4-7, 2017,
pages 124–133. Association for Computational Lin-
guistics.

Frank van Harmelen, Vladimir Lifschitz, and Bruce W.
Porter, editors. 2008. Handbook of Knowledge Rep-
resentation, volume 3 of Foundations of Artificial In-
telligence. Elsevier.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Daphne Ippolito, Reno Kriz, João Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Com-
parison of diverse decoding methods from condi-
tional language models. In Proceedings of the 57th
Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- Au-
gust 2, 2019, Volume 1: Long Papers, pages 3752–
3762. Association for Computational Linguistics.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text generation from knowledge graphs with graph
transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapo-
lis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 2284–2293. Association for
Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:

9

sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Vol-
ume 1: Long Papers, pages 146–157. Association
for Computational Linguistics.

Harold W. Kuhn. 2010. The hungarian method for the
assignment problem. In Michael Jünger, Thomas M.
Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni
Rinaldi, and Laurence A. Wolsey, editors, 50 Years
of Integer Programming 1958-2008 - From the Early
Years to the State-of-the-Art, pages 29–47. Springer.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In
Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 6402–6413.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard S. Zemel. 2016. Gated graph sequence
neural networks. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings.

James Lucas, George Tucker, Roger B. Grosse, and
Mohammad Norouzi. 2019. Understanding pos-
terior collapse in generative latent variable mod-
els. In Deep Generative Models for Highly Struc-
tured Data, ICLR 2019 Workshop, New Orleans,
Louisiana, United States, May 6, 2019. OpenRe-
view.net.

Diego Marcheggiani and Laura Perez-Beltrachini.
2018. Deep graph convolutional encoders for struc-
tured data to text generation. In Proceedings of
the 11th International Conference on Natural Lan-
guage Generation, Tilburg University, The Nether-
lands, November 5-8, 2018, pages 1–9. Association
for Computational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cı́cero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pages 280–290. ACL.

Artidoro Pagnoni, Kevin Liu, and Shangyan Li. 2018.
Conditional variational autoencoder for neural ma-
chine translation. CoRR, abs/1812.04405.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the

40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Maja Popovic. 2017. chrf++: words helping character
n-grams. In Proceedings of the Second Conference
on Machine Translation, WMT 2017, Copenhagen,
Denmark, September 7-8, 2017, pages 612–618. As-
sociation for Computational Linguistics.

Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent,
and Iryna Gurevych. 2020. Modeling global and
local node contexts for text generation from knowl-
edge graphs. Trans. Assoc. Comput. Linguistics,
8:589–604.

Philip Schulz, Wilker Aziz, and Trevor Cohn. 2018. A
stochastic decoder for neural machine translation. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume
1: Long Papers, pages 1243–1252. Association for
Computational Linguistics.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958.

Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang,
and Wei Wang. 2018. GTR-LSTM: A triple encoder
for sentence generation from RDF data. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 1627–1637. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Ben-
gio. 2017. Graph attention networks. CoRR,
abs/1710.10903.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neu-
ral Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 2773–2781.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,

10

Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
and Vadim Sheinin. 2018. Graph2seq: Graph to
sequence learning with attention-based neural net-
works. CoRR, abs/1804.00823.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang,
Hang Li, and Xiaoming Li. 2016. Neural generative
question answering. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016, pages 2972–2978. IJCAI/AAAI Press.

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and
Min Zhang. 2016. Variational neural machine trans-
lation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4,
2016, pages 521–530. The Association for Compu-
tational Linguistics.

Chao Zhao, Marilyn A. Walker, and Snigdha
Chaturvedi. 2020. Bridging the structural gap be-
tween encoding and decoding for data-to-text gener-
ation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 2481–2491.
Association for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy-
gen: A benchmarking platform for text generation
models. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-
12, 2018, pages 1097–1100. ACM.

11

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 12–23,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Neural Methodius Revisited:
Do Discourse Relations Help with Pre-Trained Models Too?

Aleksandre Maskharashvili, Xintong Li, Symon Jory Stevens-Guille and Michael White

Department of Linguistics
The Ohio State University

maskharashvili.1@osu.edu znculee@gmail.com

stevensguille.1@osu.edu mwhite@ling.osu.edu

Abstract

Recent developments in natural language gen-
eration (NLG) have bolstered arguments in fa-
vor of re-introducing explicit coding of dis-
course relations in the input to neural mod-
els. In the Methodius corpus, a meaning rep-
resentation (MR) is hierarchically structured
and includes discourse relations. Meanwhile
pre-trained language models have been shown
to implicitly encode rich linguistic knowledge
which provides an excellent resource for NLG.
By virtue of synthesizing these lines of re-
search, we conduct extensive experiments on
the benefits of using pre-trained models and
discourse relation information in MRs, focus-
ing on the improvement of discourse coher-
ence and correctness. We redesign the Method-
ius corpus; we also construct another Method-
ius corpus in which MRs are not hierarchically
structured but flat. We report experiments on
different versions of the corpora, which probe
when, where, and how pre-trained models ben-
efit from MRs with discourse relation informa-
tion in them. We conclude that discourse rela-
tions significantly improve NLG when data is
limited.

1 Introduction

The success of neural methods in numerous sub-
fields of NLP lead to recent development of neural
‘end-to-end’ (e2e) architectures in natural language
generation (NLG) (Dušek et al., 2020), where a di-
rect mapping from meaning representations (MRs)
to text is learned. While recent neural approaches
mostly map flat inputs to texts without representing
discourse level information explicitly within MRs,
Balakrishnan et al. (2019) argues that discourse
relations should be reintroduced into neural gener-
ation, echoing what has been long argued in more
traditional approaches to natural language process-
ing where discourse relations play one of the cen-
tral roles in natural language text understanding

and generation (Mann and Thompson, 1988; Reiter
and Dale, 2000; Lascarides and Asher, 2007).

To study whether discourse relations are benefi-
cial for neural NLG, Stevens-Guille et al. (2020)
proposed the Methodius corpus, which was devel-
oped as an experiment in recreating the classic rule-
based NLG system Methodius (Isard, 2016) using
a neural generator. In their corpus, the meaning
representation (MR) of a text is a tree that encodes
the overall discourse structure of the texts plus facts
related by discourse relations therein. They were
concerned with whether explicit encoding of dis-
course relations improves the quality of generated
texts by LSTM recurrent neural networks (Hochre-
iter and Schmidhuber, 1997). However, they left
open the question whether discourse relations are
helpful for pre-trained transformer-based (Vaswani
et al., 2017) language models (Lewis et al., 2020;
Raffel et al., 2019), which have recently shown
remarkable performance on NLG tasks. In this
work, we address that question using the T5-Large
implementation of Wolf et al. (2019).

A particularly attractive quality of pre-trained
models is their ability to generalize from limited
data. For example, Peng et al. (2020) proposed
to fine-tune a model pre-trained on a large NLG
corpus using a small amount of labeled data from
a specific domain to adapt the model to generate
texts in that domain. In a similar vein, when the
labeled data is limited, Arun et al. (2020) suggest
to use a large pre-trained model with self-training
and knowledge distillation to smaller, faster mod-
els. Kale and Rastogi (2020) argue that pre-trained
language models make it possible to transform a
sequence of semantically correct, but (possibly)
ungrammatical template-based texts into a natural
sounding, felicitous text of English. They find that
template-based textual input is beneficial to use
with pre-trained language models when the model
needs to generalize from relatively few examples.

12

Given these considerations, we cannot answer
the question whether it is helpful to include dis-
course relations in the input to a pre-trained model
for NLG without considering the form of the input,
the size of the training data, and the extent to which
the test data goes beyond what has been seen in
training. As such, we conduct experiments using
several versions of the Methodius corpus, where
these versions possess one or more of the following
properties: (a) discourse relations included in the
MR; (b) discourse relations excluded from the MR;
(c) tree-structured MR (a hierarchically structured
representation of the meaning); (d) flat, textual MR
(i.e., non hierarchically structured). We are further-
more concerned with how the linguistic knowledge
encoded in pre-trained language models interacts
with the different versions of the corpus. We want
to be able to scrutinize the structure of the outputs,
i.e., texts, too since our intention is to check the
models’ capabilities in realizing particular phenom-
ena. For these purposes, we conduct experiments
using the following setup: (1) Use various portions
of the labeled data. (2) Train zero-shot models
(with respect to certain discourse-related phenom-
ena) together with various few-shot models (with
respect to the same phenomena). (3) Test vari-
ous aspects of generated texts, both with respect
to discourse structure congruence and correctness
(factual information).

2 Re-lexicalized & Flat Versions of
Methodius

The Methodius system (Isard, 2016) uses discrete
rules to generate texts containing predefined sub-
texts, such as descriptions of exhibits and historical
facts about certain periods. To avoid data sparsity
and long sequences, Stevens-Guille et al. (2020)
delexicalize texts as they substitute certain parts
of text by tokens, which they dub special termi-
nals. We want to take advantage of pre-trained
language models, which are not exposed to these
tokens. Tokens should be substituted by text wher-
ever possible to ensure the input is consistent with
the texts the pre-trained models were trained on.
However, using some predefined morpho-syntactic
constructions and lexical items makes it more man-
ageable to check whether a model performs well
with respect to automatic checks. Moreover, if the
model experiences problems on such data, it sug-
gests the model would have problems with even
less homogeneous data.

Instead of training the models directly on the
Methodius corpus or texts harvested through crowd-
sourcing, we modify the Methodius corpus (i.e.,
MRs paired with texts) by substituting custom ho-
mogeneous texts for the Methodius corpus’s spe-
cial terminals. We substitute some predetermined
names for named entities in the Methodius corpus
to further homogenize the inputs. This procedure
deterministically rewrites the texts in the corpus of
Stevens-Guille et al. (2020) into pure English texts
and thus maintains the homogeneity of the Method-
ius corpus. The corresponding MRs are also rewrit-
ten into their lexicalized versions.1 Moreover, we
transform Rhetorical structure theory (Mann and
Thompson, 1988) style hierarchically structured
meaning representations of Methodius texts into a
flat, textual input by translating every fact and ev-
ery discourse relation into a sequence of sentences.
Figure 1 shows an MR from the Methodius corpus,
the corresponding text from the Methodius corpus,
and the new MR that we have substituted for the
Methodius corpus MR.

3 Models: RSTSTRUCT, FACTSTRUCT,
RSTT2T, and FACTT2T

We fine-tune T5-large (Raffel et al., 2019) on the
following types of labeled data:

• Input MRs from the Methodius corpus mod-
ified by the procedure described in the fore-
going (see Figure 1b). It contains discourse
relations. We dub the result RSTSTRUCT.

• Input MRs obtained by erasing discourse in-
formation from the inputs of RSTSTRUCT.
This amounts to deleting discourse relation
markers (SIMILARITY and CONTRAST) in the
inputs of RSTSTRUCT. We dub the result
FACTSTRUCT.

• Input MRs obtained by transforming the MRs
of RSTSTRUCT into flat, purely textual repre-
sentations (see Figure 1c).2 We dub the result
RSTT2T.

• Input MRs obtained by removing discourse in-
formation from RSTT2T MRs. This amounts
to deleting discourse relation markers (‘how-
ever’ and ‘likewise’) in the inputs of RSTT2T.
We dub the result FACTT2T.

1The code can be found at https://github.com/
aleksadre/methodiusNeuralINLG2021.

2We have defined a set of rules that transform hierarchi-
cally structured MRs into texts.

13

Figure 1: A Methodius MR, the re-lexicalized MR, and its flat, textual version, together with the surface realization

(a) Delexicalized meaning representation from Methodius corpus

[__content_plan
[__rst_elaboration
[__fact_type [__arg1 entity0] [__arg2 statue]]
[__rst_joint [__fact_made_of [__arg1 entity0] [__arg2 material_0]]

[__fact_exhibit_portrays [__arg1 entity0] [__arg2 god_0]]]]
[__rst_contrast
[__fact_creation_period compare_additive [__arg1 entity1]

[__arg2 historical_period_0]]
[__fact_creation_period [__arg1 entity0] [__arg2 historical_period_1]]]

[__optional_type [__arg1 entity1] [__arg2 vessel]]]

(b) Lexicalized meaning representation of the foregoing (we treat
tokens of the form ‘[xyz’ and ‘]’ as indivisible tokens in our
experiments)

[__content_plan
[__rst_elaboration
[__fact_type [__arg1 entity0] [__arg2 statue]]
[__rst_joint [__fact_made_of [__arg1 entity0] [__arg2 bronze]]

[__fact_exhibit_portrays [__arg1 entity0] [__arg2 apollo]]]]
[__rst_contrast
[__fact_creation_period compare_additive [__arg1 entity1]

[__arg2 classical period]]
[__fact_creation_period [__arg1 entity0] [__arg2 hellenistic period]]]

[__optional_type [__arg1 entity1] [__arg2 vessel]]]

(c) Flat, textual meaning representation

this statue is a statue. this statue is made of bronze. this statue portrays apollo.
the previously seen vessel was created in the classical period.
however this statue was created in the hellenistic period.

Text: This is a statue; it is made of bronze and it portrays Apollo. Unlike the vessel you recently saw, which was created during the classical period, this
statue was created during the hellenistic period.

Figure 2: Instances of constructions starting with SIMILARITY and CONTRAST, which are not included in zero-shot
data

(a) The Like Construction and the corresponding text

[__content_plan
[__rst_similarity

[__fact_original_location [__arg1 entity1] [__arg2 attica]]
[__fact_original_location [__arg1 entity0] [__arg2 attica]]]

[__fact_exhibit_story [__arg1 entity0] [__arg2 it was part of a collection dedicated to athena]]
[__fact_current_location [__arg1 entity0] [__arg2 the national archaeological museum]]
[__fact_exhibit_depicts [__arg1 entity0] [__arg2 the goddess athena]]
[__optional_type [__arg1 entity0] [__arg2 lekythos]]
[__optional_type [__arg1 entity1] [__arg2 kylix]]]

Text: Like the kylix you recently saw, this lekythos originates from Attica. It was part of a collection dedicated to Athena. This lekythos is located in
The National Archaeological Museum. It depicts the goddess Athena.

(b) The Unlike Construction and the corresponding text

[__content_plan
[__rst_contrast [__fact_original_location [__arg1 entityplural] [__arg2 attica]]
[__fact_original_location [__arg1 entity0] [__arg2 macedonia]]]

[__fact_exhibit_story [__arg1 entity0] [__arg2 it was part of a collection dedicated to athena]]
[__fact_current_location [__arg1 entity0] [__arg2 the national archaeological museum]]
[__fact_exhibit_depicts [__arg1 entity0] [__arg2 the goddess athena]]
[__optional_type [__arg1 entityplural] [__arg2 vessel]]
[__optional_type [__arg1 entity0] [__arg2 tetradrachm]]]

Text: Unlike the vessels you recently saw, which were originally from Attica, this tetradrachm originates from Macedonia. It was part of a collection
dedicated to Athena. Now this tetradrachm is exhibited in The National Archaeological Museum. It shows the goddess Athena.

14

We refer to models by the name of the data type
they are fine-tuned on.

Name Size 100% Tok. Av. SIM. CONTRA.
Training 4222 180 2892 777
Validation 417 181 290 76
Challenge Test 237 96 80 80
Standard Test 799 134 495 166

Table 1: Size of training, validation and test sets; aver-
age tokens per pair (MR,text); numbers of SIMILARITY
and CONTRAST relations in data sets.

In addition to using the whole dataset for train-
ing, we conduct experiments on (randomly se-
lected) 1%, 3%, 5%, 10%, 20%, and 50% portions
of the data. With 100% percent data, we train each
model three times, while for the sub portions of the
data set, we train the models five times each (each
time we select random dataset of that portion). This
lets us get an idea of the variance between different
runs of the same model.

We distinguish three further subtypes of data,
calling them zero-, few- and ten-shot data (which
we also denote by prefixes Z-, F-, and D-, respec-
tively). In zero-shot data, none of the MRs be-
ginning with SIMILARITY or CONTRAST, the sur-
face realization of which would start with ‘Like’ or
‘Unlike,’ are included in the training data. These
constructions are exemplified in Figure 2. When
constructing the few-shot data, the foregoing re-
striction on the form of the MRs is removed. But
in each portion of the few-shot training data, we
include only three examples of each construction.
When constructing the ten-shot data, ten instances
of each of the constructions that were introduced in
the few-shot data are included. Tying the number
of these constructions to the size of the dataset lets
us more effectively compare a model behavior with
and without these constructions.

4 Evaluation Methods

We adopt the double test set style from Stevens-
Guille et al. (2020). One test set is called Standard
and the other is called Challenge (see Table 1).
There are several differences between them. The
Standard test set examples are independently se-
lected, while the Challenge test set examples are
not. In the Challenge test, around 12% of the test
items have structure not observed in the training
set for zero-shot models.

4.1 Types of Errors

Discourse Relation Errors We are interested in
observing the performance of the models with re-
spect to generating coherent discourse relations.
While there are several discourse relations in the
Methodius corpus, we focus on CONTRAST and
SIMILARITY for several reasons. First, they are
interesting in terms of their meaning—they require
identifying whether properties or entities are co-
extensive or distinct, but can be inferred from the
facts alone. Second, there is a consistent method of
expressing them in the Methodius corpus outputs:
SIMILARITY is realized by like and CONTRAST is
realized by unlike.

Repetitions, Hallucinations, and Omissions
(RHOs) Given the way the revised Methodius
corpus is constructed, its texts follow certain pre-
determined lexical and morpho-syntactic patterns.
We use this property of the texts to measure the
performance of models with respect to the follow-
ing errors: hallucination of content; omission of
content; and repetitions of content. To be more
precise, for every test item we compare the model
output and the reference text by determining their
difference with respect to the special terminals, i.e.,
the content that is obtained by relexicalizing the
delexicalized content).

Lexical Hallucinations Since Methodius is de-
signed purposely to be homogeneous, it is useful to
measure how many novel strings pre-trained mod-
els come up with when fine-tuned on data that does
not contain these strings. For that, we count per test
set the lexical hallucinations, i.e., items produced
by the model which are not observed in the corpus.

Mistaken Role Identity (mistID) We some-
times observe a mismatch between the exhibit type
in the input and its realization in the output. For
instance, in Example (1), ‘imperial portrait’ and
‘vessel’ are swapped, i.e, their roles are misidenti-
fied. We consider this kind of error distinct from
the previous error types and refer to it by mistID.

(1) Ref: This is a vessel; it was created between 500 and 480
B.C. Unlike the imperial portraits you recently saw,
which were originally from Attica, this vessel was
originally from Acropolis.

Gen: This imperial portrait was created between 500 and
480 B.C. Unlike the vessels you recently saw, which
originate from Attica, this imperial portrait was
originally from Acropolis.

15

4.2 Statistical Significance: Stratified
Approximate Randomization

To compare various models, we use stratified
approximate randomization (AR; Noreen 1989),
which is a powerful and generic method of es-
tablishing significant differences between models.
One advantage of AR over more traditional paired
tests for NLP tasks is that it does not require in-
dependence of samples, which is usually violated
when we consider various runs of the same model
on the same test set (as the same test item gets
tested several times by the same model) (Clark
et al., 2011). In the present work, we rely on strat-
ified AR to identify whether differences between
the performance of various models over several
runs is significant. (The description of the strati-
fied AR algorithm is provided in Section A.1 of
Appendix A.)

5 Results

Below, we report results on the data portions 1%,
3%, 5%, 10%, 20%, and 50% of the few-shot mod-
els (results on the corresponding zero-shot data
models are provided in Appendix A.4). For 100%
data usage, we report results of zero-, few-, and
ten-shot models.

5.1 Data portions: 1%, 3%, and 5%

Discourse Relations: As Figure 3 indicates,
there are fewer errors in discourse relation real-
ization for T2T (RSTT2T and FACTT2T) models
compared to structure models (RSTSTRUCT and
FACTSTRUCT).

RHOs: Figure 4 shows the number of RHO mis-
takes the models make. T2T models make less
RHO mistakes compared to structure models. Also,
each of the models produces a large number of lexi-
cal hallucinations, but T2T are less prone to lexical
hallucinations compared to structured models as
RSTSTRUCT and FACTSTRUCT each produce on
average 100 lexical hallucinations at 1% and 50
lexical hallucinations at 3% and 5% data portion,
whereas T2T make only third of those lexical hallu-
cinations on each of the data portion (for full details
on various runs see Figure 9 in Appendix A). We
note that at the 1% portion of the data, the quality
of generated texts is unsatisfactory, even by T2T
models. This can be seen by automatic metrics, as
well as by eyeballing the generated texts. On 3%
and 5%, the quality gets slightly better for struc-

tured models and we see more rapid improvements
for T2T models.

Summary: RST vs. FACT The question
whether models with discourse relations (RST-
STRUCT and RSTT2T) perform better than ones
without discourse relations (FACTSTRUCT and
FACTT2T respectively) can be answered positively.
As for T2T models, we declare with high confi-
dence that RSTT2T outperforms FACTT2T in ev-
ery collected statistics. We are not however able
to say that for structured models, even though in
more than half of the comparisons RSTSTRUCT is
at least as good as FACTSTRUCT.

5.2 Data portions: 10%, 20%, and 50%

By using data portions 10%, 20%, and 50%, we see
many improvements in quality of texts compared
to 1%, 3%, and 5%. Also in this case (i.e. on the
data 10%, 20%, and 50%), T2T models show better
performance compared to structure models.

Discourse Relations: Figure 5 illustrates that
RSTT2T does better or at least as good as
FACTT2T. The same can be said about RST-
STRUCT and FACTSTRUCT, with the only excep-
tion of the case of the 10% data on the Challenge
set as FACTSTRUCT shows better results than RST-
STRUCT.

RHOs: In terms of RHO errors, RSTT2T to-
gether with FACTT2T are winners on either test
sets, as it is indicated by the results on Figure 6. In
addition, by measuring lexical hallucinations, we
conclude that the both RSTT2T and FACTT2T are
the least hallucinating models (the detailed statis-
tics is given on Figure 9 in Appendix A).

Summary: RST vs. FACT Again, RSTT2T
comes out as the winner among all models (vs.
RSTSTRUCT, FACTSTRUCT, and FACTT2T) by all
the evaluation metrics involved. It must be noted
though that as we reach 50%, we do not see signifi-
cant differences between RSTT2T and FACTT2T.
Also, RSTSTRUCT does better or at least as good
as FACTSTRUCT, except for one case.

5.3 100%: Zero, Few, and Ten shot

In 100% data, we see less difference among perfor-
mance of models as structured models show visible
improvement, catching up with T2T models. Be-
low, we compare models trained on zero-, few- and
ten-shot data.

16

1% 3% 5%
0

50

100

150

200

Data portions 1%, 3%, and 5%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns
:C

ha
lle

ng
e

Te
st

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T

∗>
∗>

∗<

∗>
1% 3% 5%

0

100

200

300

400

Data portions 1%, 3%, and 5%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns
:S

ta
nd

ar
d

Te
st

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T∗>

∗>
∗> ∗>

Figure 3: Few Shot Models: Discourse relation realization on the Challenge and Standard tests (A ∗> B or B ∗<
A indicate that the model A has significantly more errors than the model B, where the significance level is set to
0.05; we use this convention in all figures)

1% 3% 5%
0

200

400

600

800

Data portions 1%, 3%, and 5%

R
H

O
s:

C
ha

lle
ng

e
te

st

FACTSTRUCT

0

200

400

600

800

RSTSTRUCT

0

200

400

600

800
FACTT2T

0

200

400

600

800
RSTT2T

∗> ∗>

∗<

∗>
1% 3% 5%

0

1.000

2.000

3.000

Data portions 1%, 3%, and 5%

R
H

O
s:

St
an

da
rd

te
st

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T

∗> ∗>
∗<
∗>

Figure 4: Few Shot Models: RHOs on the Challenge and Standard tests

Discourse Relations: Few-shot models realize
discourse connectives on average better than zero-
shot models, even when deploying 100% of the
training data, which we see in Figure 2. On the
Challenge set, which contains the constructions
whose lookalikes are not contained at all in the zero-
shot training data, it is not unexpected that few-shot
models perform better. But, even on the Standard
test set, we see that few-shot models are better than
zero-shot. That being said, we can see that on one
of the runs a zero-shot model achieves one of the
best scores. We can say that few-shot models are
more consistent than zero-shot models; moreover,
they are beneficial when training models on small
data sets where models may not have enough data
to generalize over every possible phenomenon.

RHOs: In Figure 8, we see that RHOs are lower
than in cases of 50% data usage. But nevertheless,
they are present. Here as well, the best performing

Model Name Z-100 F-100 D-100 F-50 F-5
FACTSTRUCT 2 2 1 4 12
RSTSTRUCT 4 10 3 8 8
FACTT2T 3 0 0 7 0
RSTT2T 3 0 0 0 3

Table 2: Maximum of mistID errors of models on the
Challenge test set

models are T2T models. On the Challenge set,
few-shot and ten-shot models make less mistakes
than zero-shot models. This indeed is correlated
with the fact that few-shot and ten-shot models
perform better in terms of discourse relations: By
realizing discourse structure correctly, the model
needs to repeat or omit less information than by
making a mistake and then either repeating the
same information again or omitting it because it
does not fit into the structure it has been building.

We also found that 100% models make very few
lexical hallucinations (usually 0). However, we see
mistID errors in 100% models almost as many as

17

10% 20% 50%
0

20

40

Data portions 10%, 20%, and 50%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns
:C

ha
lle

ng
e

te
st

FACTSTRUCT

0

20

40

RSTSTRUCT

0

20

40
FACTT2T

0

20

40
RSTT2T∗<

∗> ∗>

10% 20% 50%
0

50

100

Data portions 10%, 20%, and 50%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns
:S

ta
nd

ar
d

te
st

FACTSTRUCT

0

50

100
RSTSTRUCT

0

50

100

FACTT2T

0

50

100

RSTT2T∗>

∗>
∗>
∗> ∗>

Figure 5: Few Shot Models: Discourse relation realization on the Challenge and Standard tests

10% 20% 50%
0

50

100

150

200

Data portions 10%, 20%, and 50%

R
H

O
s:

C
ha

lle
ng

e
te

st

FACTSTRUCT

0

50

100

150

200
RSTSTRUCT

0

50

100

150

200

FACTT2T

0

50

100

150

200

RSTT2T

∗>

10% 20% 50%
0

200

400

Data portions 10%, 20%, and 50%

R
H

O
s:

St
an

da
rd

te
st

FACTSTRUCT

0

200

400

RSTSTRUCT

0

200

400 FACTT2T

0

200

400 RSTT2T

∗>
∗>

∗>

Figure 6: Few Shot Models: RHOs on the Challenge and Standard tests

we see in models trained on small portions of data.
Table 2 shows that RSTSTRUCT models trained
on Z-100 and F-100 data do not have significant
improvements over the models trained on smaller
portions of data. It may also seem that a zero-shot
RSTSTRUCT model does better than a few-shot one.
We have closely examined those cases. The mistID
errors arise in those cases whose lookalikes have
not been seen by zero-shot models, i.e., the ones
similar to the cases shown in Figure 2b and Fig-
ure 2a. Zero-shot models either skip some of the
comparisons or do it differently—as shown in Ex-
ample (2), Z.a makes the comparison differently
from Ref, whereas Z.b skips it entirely. This is ap-
parently why zero-shot models do not produce as
many mistID errors. By contrast, few-shot models
are able to recognize those constructions (as they
have seen three of each in training) and try to real-
ize them, which they do quite successfully but in
so doing they may commit mistID errors, as shown
in Example (2), F.

(2) Ref: Like the kylix you recently saw, this lekythos origi-
nates from Attica. It was part of a collection dedi-
cated to Athena. Now this lekythos is exhibited in
The National Archaeological Museum. It shows the
goddess Athena.

F: Like the lekythos you recently saw, this kylix was
originally from Attica. It was part of a collection
dedicated to Athena. Now this kylix is exhibited in
The National Archaeological Museum. It shows the
goddess Athena.

Z.a: This lekythos originates from Attica. Like the kylix,
this lekythos was originally from Attica. It was part
of a collection dedicated to Athena. This lekythos is
currently in The National Archaeological Museum.
It depicts the goddess Athena.

Z.b: This is a lekythos and it was originally from Attica.
It was part of a collection dedicated to Athena. This
lekythos is currently in The National Archaeologi-
cal Museum. It depicts the goddess Athena.

This hypothesis can be checked by looking at ten-
shot model performance: They have fewer mistID
errors than few-shot models, presumably because
they are more comfortable with those constructions,
as they see them more than few-shot models. If we
look at F-50% models (see Table 2), they do not
do worse on mistIDs than F-100% models. That

18

Z-100% F-100% D-100%
0

20

40

Data portions Z-100%, F-100%, and D-100%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns
:C

ha
lle

ng
e

FACTSTRUCT

0

20

40

RSTSTRUCT

0

20

40
FACTT2T

0

20

40
RSTT2T

∗<
∗>

Z-100% F-100% D-100%
0

5

10

15

Data portions Z-100%, F-100%, and D-100%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns
:S

ta
nd

ar
d

FACTSTRUCT

0

5

10

15
RSTSTRUCT

0

5

10

15

FACTT2T

0

5

10

15

RSTT2T

∗>
∗>

Figure 7: 100% models, Zero-, Few-, and 10-Shot: Discourse relation realization on the Challenge and Standard
tests

Z-100% F-100% D-100%
0

20

40

Data portions Z-100%, F-100%, and D-100%

R
H

O
s:

C
ha

lle
ng

e

FACTSTRUCT

0

20

40

RSTSTRUCT

0

20

40
FACTT2T

0

20

40
RSTT2T

∗<

∗>

∗>

Z-100% F-100% D-100%
0

20

40

Data portions Z-100%, F-100%, and D-100%

R
H

O
s:

St
an

da
rd

te
st

FACTSTRUCT

0

20

40

RSTSTRUCT

0

20

40
FACTT2T

0

20

40
RSTT2T

∗>

Figure 8: 100% models, Zero-, Few-, and 10-Shot: RHOs on the Challenge and Standard tests

could perhaps be explained by the fact that with
F-50% models and D-100% models, both have the
same relative number of constructions of interest,
which means that 50% models have twice as high
concentration of those examples compared to the
corresponding 100% few-shot models.

Summary: RST vs. FACT At 100% data, all
models show more or less the same performance
according to the metrics we use. In terms of hal-
lucinations, we detected that only on Z-100 data,
FACTSTRUCT model was prone to hallucinating
‘large vessel.’ We also found that in D-100 data,
FACTSTRUCT has high variance, both in lexical
hallucinations and RHOs.

6 Discussion and Conclusion

The development of neural NLG led to an un-
derstandable focus on simpler phenomena; the
networks in currency at the time seemed to per-
form best on short, entity-focused texts. While

new methods frequently make progress by work-
ing on simple domains, we echo the conclusions
of Stevens-Guille et al. (2020) that neural methods
can and should address more complex, rhetorically
structured text, which they must if they are to pro-
duce genuinely coherent discourses (Prasad et al.,
2008). Our results here bolster those conclusions
and provide further evidence for the usefulness
of explicit discourse coding in the input to neural
systems, especially when data is limited in size.
In line with the contemporary wisdom concerning
pre-trained models, our results suggest that fine-
tuning such models when labeled data for specific
domains is limited improves the felicity of gener-
ated texts. While increases in available data do
always improve the quality of generated texts in
terms of grammatically and correctness, we see fast
and dramatic improvements when using text inputs,
with only more gradual increases in quality in the
case of structured input. But we stress that dis-

19

course relations are enormously helpful when the
dataset for the domain is limited: at lower levels of
data usage, RSTT2T consistently significantly out-
performs FACTT2T on every metric we use. Given
the benefits of explicitly encoding discourse rela-
tions in the input to the models reported here, we
conclude by recommending the continued develop-
ment of NLG corpora in which discourse relations
are present in the meaning representations.

For today, even though various corpora have
been designed for natural language generation pur-
poses, corpora with discourse structure information
are not available. Given our results showing the
benefits of having discourse information in the in-
put, we hope that more corpora will be designed
where discourse information is provided with the
help of discourse relations.

Acknowledgments

We thank Amy Isard for helping us with Methodius.
We are thankful to three anonymous reviewers for
their helpful comments. We also want to thank
The Ohio Super Computer Center (Center, 1987)
for their support as they provided us with needed
computational power. This research was supported
by a collaborative open science research agreement
between Facebook and The Ohio State University.
The last author is a paid consultant for Facebook.

References
Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini

Challa, Pinar Donmez, Peyman Heidari, Hakan Inan,
Shashank Jain, Anuj Kumar, Shawn Mei, Karthik
Mohan, and Michael White. 2020. Best practices
for data-efficient modeling in NLG:how to train
production-ready neural models with less data. In
Proceedings of the 28th International Conference on
Computational Linguistics: Industry Track, pages
64–77, Online. International Committee on Compu-
tational Linguistics.

Anusha Balakrishnan, Vera Demberg, Chandra Khatri,
Abhinav Rastogi, Donia Scott, Marilyn Walker, and
Michael White. 2019. Proceedings of the 1st work-
shop on discourse structure in neural nlg. In Pro-
ceedings of the 1st Workshop on Discourse Structure
in Neural NLG.

Ohio Supercomputer Center. 1987. Ohio supercom-
puter center.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and
Noah A. Smith. 2011. Better hypothesis testing for
statistical machine translation: Controlling for op-
timizer instability. In Proceedings of the 49th An-
nual Meeting of the Association for Computational

Linguistics: Human Language Technologies, pages
176–181, Portland, Oregon, USA. Association for
Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge.
Computer Speech & Language, 59:123–156.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Amy Isard. 2016. The methodius corpus of rhetori-
cal discourse structures and generated texts. In Pro-
ceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016),
pages 1732–1736, Portorož, Slovenia. European
Language Resources Association (ELRA).

Mihir Kale and Abhinav Rastogi. 2020. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520, Online. Association for Computa-
tional Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alex Lascarides and Nicholas Asher. 2007. Segmented
discourse representation theory: Dynamic semantics
with discourse structure. In H. Bunt and R. Muskens,
editors, Computing Meaning: Volume 3, pages 87–
124. Kluwer Academic Publishers.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text & Talk, 8(3):243 – 281.

Eric W. Noreen. 1989. Computer-intensive methods for
testing hypotheses : an introduction. Wiley, New
York.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for
task-oriented dialog.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The penn discourse treebank
2.0. In LREC. Citeseer.

20

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge university
press.

Symon Stevens-Guille, Aleksandre Maskharashvili,
Amy Isard, Xintong Li, and Michael White. 2020.
Neural NLG for methodius: From RST meaning rep-
resentations to texts. In Proceedings of the 13th In-
ternational Conference on Natural Language Gener-
ation, pages 306–315, Dublin, Ireland. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

A Appendix 0

A.1 Stratified Approximated Randomization
(AR)

The principle behind of Stratified Approximated
Randomization (AR) test can be explained as fol-
lows: Given that model A output on strata of
size n > 0 (e.g. a test item can be a stratum)
are a1 . . . an and model B outputs on the same n
strata are b1 . . . bn, the performance of the models
A and B can be considered significantly differ-
ent if by swapping ai with bi with probability 0.5
would result in a sequence a

′
1 . . . a

′
n (i.e., for every

i ∈ {1..n}, a′
i is ai with probability 0.5 or bi with

probability 0.5) and a sequence b
′
1 . . . b

′
n (where,

for every i ∈ {1..n}, b′i is ai with probability 0.5
or bi with probability 0.5) usually differ less from
each other than the original sequences a1 . . . an
and b1 . . . bn differ from each other.

One may take in the role of ai (where i ∈
{1..n}), not just single output of a model, but a
set of outputs obtained by several different runs
of the same model. That is, we can have ai =
{r11, r2i , . . . , rki } where k ≥ 2 and rli is the output
of the l-th run of the model A on the stratum i. Be-
low, we assume that each rli has a numerical value.
This allows us to compare two models A and B,
each run k times with their respective outputs.

We first compute the expectation (mean) of the
sample a1 . . . an by taking mean of each set ai =
{r11, r2i , . . . , rki } and then calculating their mean.
We denote it bymA. We do the same for the sample
b1 . . . bn and denote their mean by mB . Let dm =
|mA −mB|.

Now we define the following procedure: Con-
struct a

′
1 . . . a

′
n and b

′
1 . . . b

′
n by swapping ai =

{r11, r2i , . . . , rki } with bi = {r11, f2i , . . . , fki }.
Calculate the mean of a

′
1 . . . a

′
n and the mean of

b
′
1 . . . b

′
n, denote them by m

′
A and m

′
B respectively.

Compute d
′
m = |m′

A −m
′
B|. We perform this pro-

cedure multiple times, sayN . If out ofN cases, for
p-percent (usually p is 5) or less cases we find that
d
′
m ≥ dm, we say that model A and B are signif-

icantly different with significance at p%. (Below,
in our experiments we take N = 1000 and p = 5,
which is usually considered to be a sufficient mar-
gin of significance.)

A.2 Lexical Hallucinations
Figure 9 shows numbers of lexical hallucinations
various models make.

A.3 mistID Statistics
Figure 10, Figure 11, and Figure 12 show mistID er-
rors on various runs and models trained on various
data portions.

A.4 Zero-shot Results on Discourse Relation
Realization

We report performance of the zero-shot models in
terms of generating discourse relations relations on
Figures 13, Figures 14, Figures 15, and Figures 16.

B Reproducibility Details

We use the pretrained T5-Large HuggingFace trans-
former model (Wolf et al., 2019). There are total
737683456 trainable parameters in this model. The
T5 models are fine-tuned using cross entropy loss
without label smoothing. The learning rate is con-
stantly 2 × 10−5 and the batch size is 8 samples.
The optimizer is Adam (Kingma and Ba, 2014)
where β1 = 0.9, β2 = 0.999, ε = 1 × 10−8, and
the weight decay is 0. The best checkpoint is se-
lected by validation with patience of 10 training
epochs. For every experiment, the computing in-
frastructure we used is an NVIDIA V100 GPU
and an Intel(R) Xeon(R) Platinum 8268 CPU @
2.90GHz CPU.

21

1% 3% 5%
0

50

100

Data portions 1%, 3%, and 5%

L
ex

ic
al

H
al

lu
ci

na
tio

ns

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T

10% 20% 50%
0

20

40

60

Data portions 10%, 20%, and 50%

L
ex

ic
al

H
al

lu
ci

na
tio

ns

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T

Figure 9: Few Shot Models: Lexical hallucinations combined on the Challenge and Standard tests (no significance
tests were performed on lexical hallucinations as they were counted per test set, not per example)

1% 3% 5%
0

5

10

15

Data portions 1%, 3%, and 5%

m
is

tI
D

E
rr

or
s

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T

Figure 10: Few Shot Models: mistID errors on the
Challange set

10% 20% 50%
0

10

20

Data portions 10%, 20%, and 50%

m
is

tI
D

E
rr

or
s

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T

Figure 11: Few Shot Models: mistID errors on the
Challenge set

Z-100% F-100% D-100%
0

5

10

15

Data portions Z-100%, F-100%, and D-100%

m
is

tI
D

E
rr

or
s

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T

Figure 12: 100% Models: mistID errors on the Chal-
lenge test

1% 3% 5%
0

50

100

150

200

Data portions 1%, 3%, and 5%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns

FACTSTRUCT RSTSTRUCT

FACTT2T RSTT2T

Figure 13: Zero-shot Models: Discourse relation real-
ization on the Challenge test set

22

1% 3% 5%
0

100

200

300

400

Data portions 1%, 3%, and 5%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns
FACTSTRUCT RSTSTRUCT

FACTT2TRSTT2T

Figure 14: Zero-shot Models: Discourse relation real-
ization on the Standard test set

10% 20% 50%
0

20

40

Data portions 10%, 20%, and 50%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns

FACTSTRUCT RSTSTRUCT

FACTT2TRSTT2T

Figure 15: Zero-shot Models: Discourse relation real-
ization on the Challenge test set

10% 20% 50%
0

50

100

Data portions 10%, 20%, and 50%

E
rr

or
s

in
D

is
co

ur
se

R
el

at
io

ns

FACTSTRUCT RSTSTRUCT

FACTT2TRSTT2T

Figure 16: Zero-shot Models: Discourse relation real-
ization on the Standard test set

23

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 24–34,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Exploring Input Representation Granularity for Generating
Questions Satisfying Question-Answer Congruence

Madeeswaran Kannan, Haemanth Santhi Ponnusamy,
Kordula De Kuthy, Lukas Stein, Detmar Meurers

University of Tübingen
{mkannan,hsp,kdk,lstein,dm}@sfs.uni-tuebingen.de

Abstract

In question generation, the question produced
has to be well-formed and meaningfully re-
lated to the answer serving as input. Neural
generation methods have predominantly lever-
aged the distributional semantics of words
as representations of meaning and generated
questions one word at a time. In this paper, we
explore the viability of form-based and more
fine-grained encodings such as character or
subword representations for question genera-
tion.

We start from the typical seq2seq architec-
ture using word embeddings presented by De
Kuthy et al. (2020), who generate questions
from text so that the answer given in the input
text matches not just in meaning but also in
form, satisfying question-answer congruence.
We show that models trained on character and
subword representations substantially outper-
form the published results based on word em-
beddings, and they do so with fewer parame-
ters.

Our approach eliminates two important prob-
lems of the word-based approach: the en-
coding of rare or out-of-vocabulary words
and the incorrect replacement of words with
semantically-related ones. The character-
based model substantially improves on the
published results, both in terms of BLEU
scores and regarding the quality of the gener-
ated question. Going beyond the specific task,
this result adds to the evidence weighing differ-
ent form- and meaning-based representations
for natural language processing tasks.

1 Introduction

Question generation (QG) is a challenging NLP
task, where both language form and meaning play
a vital role in the production of questions that have
to be well-formed and meaningfully related to the
envisaged answer. Neural models have been shown

to be very promising for QG, with most recent ap-
proaches formulating the task as a sequence learn-
ing problem with the goal of mapping a sentence
onto a question (e.g., Zhao et al., 2018; Chan and
Fan, 2019; Xie et al., 2020). The research typically
targets QG in the context of Question Answering,
where the task is to generate a question that is re-
lated to the information in a given paragraph. The
QA task ensures a general functional link between
the question and the meaning of the passage that
answers it. The datasets designed for such question
answering/generation provide paragraph-level con-
texts for each question that span multiple sentences
or even multiple passages. Note that the question
here is related to the information expressed in the
text passage, not to the way in which this informa-
tion is structured and expressed in the text.

Consider the example from the SQuAD dataset
shown in Figure 1. The first question pertains to
the first sentence of the passage. While the con-
cept gravity mentioned in that sentence is needed
to answer the question, the question cannot be an-
swered using the first sentence as such. For the
second question, the information needed to answer
the question is expressed in a sentence that is more
in line with the question, but still falls short of the
so-called question-answer congruence (Stechow,
1990; Sugawara, 2016) required for the sentence to
serve as a direct answer to the question.

Context:
In meteorology, precipitation is any product of the condensation of
atmospheric water vapor that falls under gravity. The main forms of
precipitation include drizzle, rain, sleet, snow, graupel and hail.

Q1: What causes precipitation to fall? gravity

Q2: What is another main form of precipitation besides drizzle, rain,
snow, sleet and hail? graupel

Figure 1: Example question-answer pairs from the
SQuAD dataset (Rajpurkar et al., 2016)

Complementing QG in the prominent QA con-
text, there are other strands of QG research that aim

24

at generating questions that can be answered by a
sentence as given in the text, putting a premium
on question-answer congruence. This includes QG
work in the educational application domain, where
the perspective of the question is supposed to re-
flect the perspective of the author of a given text
passage that the student is supposed to learn about
(Heilman and Smith, 2010; Heilman, 2011; Rus
et al., 2012). Recent work under this perspective in-
cludes Stasaski et al. (2021), who propose a neural
question generation architecture for the generation
of cause-and-effect questions. They extract cause
and effect relations from text, which are then used
as answers for the neural question generation, aim-
ing at direct question-answer congruence.

A second strand of work for which the relation
between the question and the answer sentence as
expressed in the text plays a crucial role is the
research interested in discourse. An early exam-
ple of research investigating the role of discourse
structure for question generation is Agarwal et al.
(2011). They identify discourse relations in a text
as cues motivating the generation of a question
and then formulate questions that can be answered
by the sentences with those discourse relations,
while ensuring direct question answer congruence.
In a related vein, approaches making use of so-
called Questions under Discussion (QuDs) to iden-
tify the information structure of a sentence in a
given discourse also rely on such a direct relation-
ship between question and answer. In a recent
paper pursuing this perspective, De Kuthy et al.
(2020) show that a seq2seq based neural approach
can successfully generate meaningful, well-formed
questions that can function as Questions under Dis-
cussions in a formal theory of discourse. Similarly,
Pyatkin et al. (2020) showed that using question-
answer pairs obtained through crowdsourcing can
be used reliably to annotate discourse. Based on
their crowdsourced data, they train a pipeline of
neural models to directly generate such question-
answer pairs from text. The overall goal of ques-
tion generation supporting discourse analysis is to
generate a question for every sentence in a text to
explicitly characterize the evolving discourse.

Viewed from the perspective of question gener-
ation for tasks requiring question-answer congru-
ence, the QG task in essence consists of two steps:
(i) replace the answer phrase in the source sentence
with a matching question word and (ii) transform
the rest of the sentence into a well-formed question.

All the words that the generated question consists
of are already given, so only the question word that
matches the answer phrase needs to be generated
anew. The sentence-question pair in example (1)
taken from De Kuthy et al. (2020) illustrates this.

(1) A: Auch
also

Otto
Otto

Graf
Graf

Lambsdorf
Lambsdorf

ist
is

gegen
against

zweierlei
double

Wahlrecht.
voting rights
Otto Graf Lambsdorf is also against double voting

rights.

Q: Wogegen
what against

ist
is

auch
also

Otto
Otto

Graf
Graf

Lambsdorf?
Lambsdorf

What is Otto Graf Lambsdorf against, too?

Except for the answer phrase gegen zweierlei
Wahlrecht (’against double voting rights’), all
words from the source sentence reappear in the gen-
erated question, including the named entity Otto
Graf Lambsdorf. The only new material in the ques-
tion is the question word wogegen (’what against’).

While the text thus includes all the language
needed to successfully generate the question, for
seq2seq-based approaches based on word embed-
dings, the challenge arises that words present in
the source sentence which do not appear in the
material the embeddings were trained on are not
adequately represented. As admitted in De Kuthy
et al. (2020), unknown and rare words are therefore
a problem and cannot be correctly generated in the
question. Rare words are often replaced by seman-
tically related words that are inappropriate in the
given context.

In this paper, we explore an alternative: char-
acters and subwords as form-based and more fine-
grained representations of both the input and out-
put of the question generation task. We will show
that this avoids the unknown/rare word problem
and results in a substantial improvement both in
a quantitative BLEU evaluation and in terms of a
qualitative analysis of the questions. Going beyond
the particular QG task, our results contribute to the
general endeavour of exploring the best choices of
form or meaning-based input and output represen-
tations for neural approaches for a range of NLP
tasks depending on their characteristics.

2 Related Work

Traditional question generation approaches that
leveraged syntactic structures and linguistic fea-
tures (Liu et al., 2010; Curto et al., 2012; Heilman,
2011) to define transformation rules on parse trees

25

are inherently limited in their scope and ability to
deal with authentic language data. Deep learning
has, in recent years, supplanted such methods given
its ability to learn the syntactic and semantic proper-
ties and characteristics of language when provided
with large amounts of natural language text.

Neural question generation is generally realised
as a sequence learning problem, so a sequence-to-
sequence (seq2seq) architecture (Sutskever et al.,
2014) is a logical fit for this type of task. Here, the
encoder network learns the latent representation
of the source sentence and the decoder network
generates the target question one word at a time.
The work done by Du et al. (2017) introduces two
such models, which are provided with the source
sentence and paragraph-level information that en-
codes the context of the generated question. Bor-
rowing from reinforcement learning, the work by
Kumar et al. (2018) introduces policy gradients
along with POS tags and named entity mentions to
assign task-specific rewards to the training objec-
tive. Pointer-generator networks (Gu et al., 2016;
See et al., 2017) with gated self-attention have been
deployed to address the problem of rare and out-of-
vocabulary words and larger contexts (Zhao et al.,
2018).

The neural question generation models men-
tioned above, and many more in this vein, pri-
marily focus on generating questions in English
and consider words to be the atomic unit of mean-
ing. They consequently approach the representa-
tion learning and text generation tasks at the word
level. This assumption does not necessarily hold
for languages such as Chinese, where the individual
characters contain rich internal information. Neu-
ral language models that are trained on character-
level inputs have been shown to capture more
salient information about morphology than their
word-level counterparts (Huang et al., 2016; Marra
et al., 2018). Character-aware question answering
systems (Golub and He, 2016; Lukovnikov et al.,
2017) have similarly been shown to be resilient to
the unknown word problem. To capture and com-
bine information about language form and meaning,
Bojanowski et al. (2017) proposed treating words
as bags of character n-grams to enrich word embed-
dings with subword information. Byte-pair encod-
ing (Shibata et al., 1999) has seen a recent resur-
gence in the context of generative language models
where it is employed to perform subword segmen-
tation without the necessity of tokenization or mor-

phological analysis. Subword-level embeddings
learned with the help of this method have been
competitive in many downstream NLP tasks (Sen-
nrich et al., 2015; Heinzerling and Strube, 2018;
Xu et al., 2019).
To test performance and trade-offs between
character-, subword-, and word-level representa-
tions in the context of question generation, we use
the German question generation task proposed by
De Kuthy et al. (2020), aimed at generating a Ques-
tion under Discussion for each sentence in a dis-
course. The required question-answer congruence
with the meaning and form requirements this en-
tails, together with the relative morpho-syntactic
richness and partially flexible word order of the
German language make it an interesting experimen-
tal setting for exploring the potential advantages of
character and subword representations.

3 Data

In terms of datasets for neural question generation
models, contemporary approaches are generally
trained on datasets created in the question answer-
ing context. These datasets, such as SQuAD (Ra-
jpurkar et al., 2016), Quac (Choi et al., 2018), and
Coqa (Reddy et al., 2019), are not well-suited for
training models for tasks requiring high question-
answer congruence, and they focus on English.
Multilingual datasets like XQUAD (Artetxe et al.,
2019), MLQA (Lewis et al., 2019), XNLI (Con-
neau et al., 2018), and TyDi QA (Clark et al., 2020)
are similarly unsuitable as they contain only little
data, intended as benchmark for the evaluation of
question answering systems.

Given these limitations of the established En-
glish datasets for the research goals we are pursu-
ing, we instead obtained the German QA answer
corpus created by De Kuthy et al. (2020) and base
our explorations on that dataset. The corpus con-
tains 5.24 million sentence-question-answer triples
which were generated by a transformation-based
question generation system (Kolditz, 2015) on arti-
cles from the German newspaper Die Tageszeitung
(taz, http://taz.de). The corpus exhibits over
30 different types of questions, the most common
of which are wh-questions asking for subject and
object phrases (such as who or what questions in
English) as well as various types of questions ask-
ing for adverbial modifiers (such as, for example,
when or where questions). Some typical question-
answer pairs will be discussed later in section 5.

26

4 Our Character and Subword-based
Neural QG Approach

As the starting point and baseline of our approach,
we take the same basic architecture as De Kuthy
et al. (2020), a word-embedding based sequence-to-
sequence model (Sutskever et al., 2014) with mul-
tiplicative attention (Luong et al., 2015). This was
done in order to ensure comparability of our results
with theirs. Furthermore, any fundamental changes
to the neural architecture – such as using a Trans-
former (Vaswani et al., 2017) or a pointer-generator
(Zhao et al., 2018) network – would make it more
difficult to distinguish between any improvements
offered exclusively by the change in input represen-
tation and those by the change in architecture.

To introduce character– and subword–level to-
kens, we defined an input pipeline consisting of the
following steps: 1) UTF-8 text normalization was
performed on the input sentence, 2) the normalized
input sentence was parsed using spaCy’s (Honni-
bal et al., 2020) de core news sm model to per-
form word-level tokenization and part-of-speech
(POS) tagging, 3) a second tokenization pass was
performed on each word token to generate charac-
ter and subword tokens, and 4) each character and
subword token pertaining to a given word token
was assigned the latter’s POS tag and the answer
phrase indicator.

For character-level tokenization, each word was
decomposed into a list of its component Unicode
codepoints. Subword tokenization was performed
with the HuggingFace Tokenizer library (Wolf
et al., 2020). The library provides byte-pair encod-
ing (BPE, Shibata et al., 1999) and unigram (Kudo,
2018) tokenization algorithms. BPE first constructs
a baseline vocabulary with all unique symbols in a
corpus. Then, merge rules that combine two sym-
bols in the base vocabulary into a new symbol are
learned iteratively until a desired final vocabulary
size is reached. Conversely, unigram tokenization
starts with a large initial vocabulary from which
it repeatedly removes symbols that have the least
effect on a loss function defined over the training
data of a unigram language model. To reduce the
size of the base vocabulary in both models, base
symbols are directly derived from bytes rather than
(all) Unicode codepoints. The library also includes
the SentencePiece (Kudo and Richardson, 2018)
algorithm, which processes the input as raw string
sequences obviating the need for pre-tokenization.

Finally, bidirectional LSTM was used as the re-

current unit in the encoder as we expect the contex-
tual information provided by the backward pass to
not only enrich the sentential representation learned
in the encoder but also lower the effective reduction
in learnable parameters caused by the smaller vo-
cabulary sizes of the character- and subword-level
models. The per-timestep input to the encoder is
the concatenation of the token embedding, POS em-
bedding, and the answer phrase indicator. The final
outputs of the encoder (hidden state, sequences,
cell state) is the concatenation of the respective
backward and forward layers of each output.

For the character-level models, a fixed-size vo-
cabulary consisting of all the unique codepoints in
the QA corpus was generated. Similarly, the sub-
word tokenizers were trained on the entire corpus
to generate vocabularies with 10K symbols each.1

5 Evaluation

For a comprehensive comparison, we trained five
models: a word-level model to replicate De Kuthy
et al. (2020), three subword models with different
tokenization algorithms (byte-level BPE, Senten-
cePiece BPE, and SentencePiece Unigram), and a
character model. All models were trained on the
same 400K training samples from the QA corpus
for 20 epochs, and validation was performed on
40K samples. For each type of input representation,
the model with the lowest validation loss was was
evaluated on a held-out test set of 15K samples.

For their original model, De Kuthy et al.
(2020) implemented a post-processing copy mod-
ule to replace OOV marker tokens in the gener-
ated question with the original tokens from the
source sentence; this behaviour was replicated
for our word-level model. As model hyperpa-
rameters, we used: batch size: 128, encoder:
Bi-LSTM, decoder: LSTM, encoder/decoder hid-
den size: 256/512, encoder/decoder dropout: 0.5,
word/subword/character embedding dim: 300, de-
coder beam search width: 5. Table 1 shows the
BLEU scores from comparing the ground-truth
questions of the test set with corresponding model-
generated questions. We used the standard Sacre-
BLEU library (Post, 2018)2 for the calculation of
the BLEU scores.

1The subword vocabularies also include the base symbols
found in the character vocabulary. In both cases, special meta
tokens such as unknown, sentence-start and end markers were
additionally added to each vocabulary.

2Version 1.4.10 with default parameters.

27

Model BLEU 1/2/3/4 Cumulative

Word 93.8/86.5/81.0/76.5 84.24
(De Kuthy et al., 2020)

Word 93.8/86.5/81.0/76.5 84.20
(replication)
Subword 98.2/93.4/90.0/87.4 91.97
(Byte BPE)
Subword 97.0/91.4/87.3/84.1 89.35
(SentPiece BPE)
Subword 98.1/93.3/89.8/87.2 91.76
(SentPiece Unigram)
Character 97.2/91.8/88.0/85.1 90.18

Subword-level 98.0/93.0/89.4/86.7 91.48
(Byte BPE NoPOS)
Subword 97.8/92.3/88.5/85.7 90.67
(SentPiece BPE NoPOS)
Subword 98.0/92.7/88.9/86.1 90.84
(SentPiece Unigram NoPOS)
Character 97.4/91.8/87.9/84.9 90.34
(NoPOS)

Table 1: Quantitative evaluation results

The word-level QG model with our modifica-
tions is able to produce results essentially identical
to those of the baseline model by De Kuthy et al.
(2020). Both models use the post-processing copy
step to address the problem of out-of-vocabulary
tokens, but neither is able to fully overcome it due
to the intrinsic weaknesses of such extra-modular,
non-neural solutions. The character- and subword-
level models, on the other hand, entirely sidestep
this issue by generating the target sequence one
character or subword at a time. We additionally
trained variants of the character- and subword-level
models without POS tags (the NoPOS models in
the table). Even with fewer learnable parameters
and without the linguistic information provided by
the POS tags, the models are able to achieve scores
very close to those of their POS-aware counter-
parts. The effect of different subword tokenization
algorithms on the quantitative performance of the
model appears to be minimal.

5.1 Error Analysis

To analyze the quality of the results produced by
our models and compare them to those of the base-
line word-level model, we performed a manual
evaluation of the questions generated for the same
sample of 500 sentences of De Kuthy et al. (2020).

The quality of the generated questions was man-
ually evaluated by two human annotators, both
trained linguists and native speakers of German.
They were asked to provide a binary judgment:
whether the question is well-formed and satisfies

question-answer congruence with the source sen-
tence. The two conjoined criteria were expressed
in the annotation manual as (i) Well-Formedness:
Is the question grammatically correct and would
I formulate it that way as a native speaker of Ger-
man? and (ii) Question-Answer Congruence: Is
the question answered by the associated sentence
as a whole? The annotators were instructed to take
into account all aspects of grammaticality, includ-
ing word order, verb forms, punctuation, and also
spelling and capitalization errors. For the evalua-
tion of question-answer congruence, the annotators
checked whether the generated question was an-
swerable by the full source sentence, in particular
whether the question word matched the given an-
swer phrase and whether the question did not con-
tain any semantically different words. The resulting
annotation showed good inter-annotator agreement
(κ = 0.74).

The results of this evaluation (Table 2) reveal
how model performance increases with more fine-
grained in input granularity. The baseline word-
level model posted the worst score among all
trained models, generating well-formed questions
for only 54.2% of the 500 sentences in the evalua-
tion set. The best subword model improves upon
this substantially with 61.0% well-formed ques-
tions, and the character model adds a further, small
improvement. Curiously, removing POS tags as
input features from the subword model results in
a slight performance increase, but the opposite for
the character model. The effect is even more pro-
nounced in the SentencePiece BPE subword model.
To investigate this further, we performed systematic
error analysis of the most frequently encountered
errors (Table 3). Note that the overall sums differ
slightly from the percentages in Table 2 since one
question can contain multiple types of errors.

Model Well-formed Questions

Word 54.2%

Subword 59.6%
(SentPiece Unigram)
Subword 61.0%
(SentPiece Unigram No POS)
Character 61.4%
Character 59.6%
(No POS)

Table 2: Results per question for the evaluation set

Despite the post-processing copy mechanism,
the questions from the word model still contained

28

Error Type Word Subword
(SentPiece Unigram)

Subword
(SentPiece Unigram NoPOS)

Character Character
(NoPOS)

Question word 82 108 100 109 117
Unknown Word 35 0 0 0 0
Word Order 29 20 23 21 23
Different Word 35 16 5 1 0
Different Subword 0 1 2 0 0
Missing Word 2 8 10 7 4
Missing Subword 0 0 2 0 0
Repeated Word 4 4 4 10 5
Verb Form 8 9 15 13 17
Source Sentence 13 13 13 13 13
Answer Phrase 23 31 31 24 26
Spelling 0 3 2 0 4

Total 231 217 205 197 213

Table 3: Distribution of error types in the evaluation samples

unknown words in 35 cases. For example, rare
words such as süffisant (smug), listenreich (cun-
ning), Naschwerk (sweet delicacy), Erbtanten (rich
aunt from which one inherits). The subword and
character models did not have this problem at all.
Unwanted word replacements with different words
occurred in 35 samples with the word model, for
example, unbegreiflich (incomprehensible) was re-
placed by geschehen (happen), Adelheid Streidel
(proper name of a terrorist) by extremistischen Strei-
del (extremist Streidel), and bewilligt (approved)
by beantragt (requested). The subword models re-
duce this to as few as five occurrences, and in the
character models this type of error does not occur
at all. By far, the biggest error source for all models
is the production of incorrect question words. This
is a hard objective since the question word depends
on aspects of form (e.g., does it refer to a nominal
phrase or a prepositional phrase) and meaning (e.g.,
does it refer to an animate or inanimate referent)
of the given answer phrase. The word-level model
had fewer problems with question word generation
than the other models, so the word embeddings
encode sufficient form and meaning information
for the model to learn the question word patterns.

There appears to be no single, clear pattern
across all models that explains the effect of POS
tags. Nevertheless, the quality of question words
does consistently suffer when they are removed
from the input. The character-based model without
POS tags generated the highest number of ques-
tions with an incorrect question word - an aspect of
question generation that relies on meaning-related
information, evidently provided by the latter. One
potential explanation could be rooted in how the
models process the POS features: By assigning to

each subword or character the POS tag of its par-
ent word, the model has to contend with increased
noise in the training data due to weak correlation be-
tween the tags and specific subwords or characters.
For instance, the subword unit her in herkommen
(to come from) would take the latter’s POS tag VB
(verb) but will be assigned JJ (adjective)
when appearing in herrlich (superb).

To gain a better understanding of when a model
generates a new form and when it copies tokens
from the input, in the following we discuss indica-
tive examples together with the softmax-activated
attention scores between the source sentence and
the question. In the figures below, the x-axis and
y-axis of each plot correspond to the tokens in the
generated question and the source sentence, respec-
tively. Each pixel corresponds to the alignment
weight wxy of the y-th source token and x-th target
token, ranging from 0 (purple) to 1 (yellow). The
red tokens on the y-axis indicate the phrase in the
source sentence that answers the question.

Example (2) shows a typical sentence-question
pair from the evaluation sample. Both the subword
models and the character models produced the cor-
rect question in (2-b), given the answer phrase
(marked in bold font).

(2) a. Bis
until

dahin
then

seien
would be

die
the

Länder
states

der
of the

DDR
GDR

pleite.
bankrupt

b. Wer
who

ist
is

bis
until

dahin
then

pleite?
bankrupt

For the correct question (2-b), the models have
to produce the question word Wer (who) in place
of the answer phrase die Länder der DDR (the
states of the GDR), and they have to transform

29

the plural seien (were) into the singular verb ist
(is). The sentence initial Bis dahin (until then)
must be placed after the verb and lower cased. The
attention plots in Figures 2 and 3 directly showcase
this. The tokens in the answer phrase, particularly
the first one, have higher alignment weights for the
question word than the other tokens in the sentence.
Similarly, the model specifically attends to the verb
in the source sentence when generating the same
in the question. The tokens that are copied as-is
from the source sentence have strong, monotonic
weights that appear as diagonals.

Example (3) shows another sentence-question
pair from the evaluation set. The character model
predicted the correct question (3-b), but the sub-
word model predicted the incorrect question (3-c),
in which the adverb danach (thereafter) is repeated
and the numeral 1988 from the input is missing.

(3) a. Danach
thereafter

sollte
should

Ende
end

1988
1988

mit
with

der
the

Produktion
production

der
of the

U-Boote
submarines

und
and

mit
with

der
the

Teillieferung
partial deliveries

begonnen
started

werden.
be

Subsequently, production of the submarines and par-

tial deliveries were to begin at the end of 1988.

b. Womit
with what

sollte
should

danach
thereafter

Ende
end

1988
1988

begonnen
started

werden
be

?

What should be started thereafter at the end of 1988?

c. Womit
with what

sollte
should

danach
thereafter

Ende
end

danach
thereafter

begonnen
started

werden
be

?

The corresponding attention scores are shown in
Figure 4 for the correct question (3-b) generated
by the character model and Figure 5 for the er-
roneous question (3-c) produced by the subword
model. Once again, in order to produce the ques-
tion word Womit (with what), both models assign a
strong weight to the preposition mit (with), which
is the first token of the given answer phrase. While
the character model then continues to correctly an-
notate the tokens in the source sentence, the sub-
word model’s alignments show more ambiguity.
For the token danach (thereafter), it additionally
attends to Ende (end) in the source sentence - an-
other word that carries a temporal meaning. At the
position of the numeral 1988, the model assigns
significant weights to all three temporally related
words, but the weight for Ende is diminished due to
its occurrence in the previous timestep. Neverthe-

Wer ist bi
s

 da
hin p lei te ?

<s>

Bis

 dahin

 seien

 die

 Länder

 der

 DDR

 p

lei

te

.

</s>

Figure 2: Subword attention plot for example (2)

W e r i s t b i s d a h i n p l e i t e ?

<s>
B
i
s
d
a
h
i
n
s
e
i
e
n
d
i
e
L
ä
n
d
e
r
d
e
r
D
D
R
p
l
e
i
t
e
.

</s>

Figure 3: Character attention plot for example (2)

30

less, the model ultimately shows higher confidence
in danach than in the rest and thus (mis-)predicts it
a second time.

Womi t s o l l t e d a n a c h E n d e 1 9 8 8 b e g o n n e n we r d e n ?

<s>Danach sollte Ende 1988 mit der Produktion der U-Boote und mit der Teillieferung begonnen werden .</s>

Figure 4: Character attention plot for example (3)

One potential problem of a purely form-based
approach using characters is that it can produce
character strings that do not correspond to any
word in the given language. This hardly ever oc-
curred in the questions generated by our character
model with the exception of one interesting exam-
ple where the model created a new question word,
illustrated here in example (4).

(4) a. Dies
this

dürfte
is likely

sich
itself

mit
with

der
the

Schaffung
creation

des
of the

Binnenmarktes
single market

ab
from

1993
1993

ändern.
change

This is likely to change with the creation of the single

market from 1993.

Wom
it
 so

llte

 da
na

ch
 En

de

 da
na

ch

 be
go

nn
en

erd
en ?

<s>

Danach

 sollte

 Ende

 1988

 mit

 der

 Produktion

 der

 U

-

Bo

ote

 und

 mit

 der

 Teil

liefer

ung

 begonnen

 werden

.

</s>

w

Figure 5: Subword attention plot for example (3)

b. Worab
where from

durfte
was likely

sich
itself

dies
this

mit
with

der
the

Schaffung
creation

des
of the

Binnenmarktes
single market

ändern?
change

From when was this likely to change with the creation

of the single market?

Given the answer phrase ab 1993, the model pro-
duced the question word Worab – a concatenation
of the (existing) words wo (where) and the prepo-
sition ab (on) – instead of the required question
phrase ab wann (from when). Such concatenations
of a question word and a preposition actually ex-
ist in German, e.g., in the question word woran
(what of), so the character model apparently picked
up this pattern of generating question words from
prepositions, but applied it to a non-existing case.

31

6 Conclusion

We explored the prospect of neural question genera-
tion at the character- and subword-level using finer-
grained input representations than word tokens by
adopting De Kuthy et al. (2020)’s task of generat-
ing Questions under Discussion for German. The
models that were trained on character and subword
tokens showed significant leaps in BLEU scores in
comparison to the baseline word-level model, even
in the absence of extra linguistic information.

In addition to eliminating the problem of out-of-
vocabulary and rare words, our manual analysis of
the generated questions revealed that those models
were able to learn and exploit both semantic and
orthographic information with fewer parameters,
producing questions with fewer errors relating to
word order and word replacement. The character
model, in particular, is able to fully eliminate the
latter error category.

Considering the relevance of the research be-
yond the specific question generation task, the re-
sults reported in this paper provide further evidence
and motivation to consider the advantages of form-
focused neural representations and character-level
natural language generation for tasks such as ma-
chine translation and extractive text summarization.

References
Manish Agarwal, Rakshit Shah, and Prashanth Man-

nem. 2011. Automatic question generation using
discourse cues. In Proceedings of the 6th Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 1–9, Portland, OR. Association
for Computational Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2019. On the cross-lingual transferability of mono-
lingual representations. CoRR, abs/1910.11856.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Ying-Hong Chan and Yao-Chung Fan. 2019. A recur-
rent bert-based model for question generation. In
Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering, pages 154–162.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. Quac: Question answering in context.
arXiv preprint arXiv:1808.07036.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and

Jennimaria Palomaki. 2020. Tydi qa: A bench-
mark for information-seeking question answering
in typologically diverse languages. arXiv preprint
arXiv:2003.05002.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing.

Sérgio Curto, Ana Cristina Mendes, and Luı́sa Coheur.
2012. Question generation based on lexico-syntactic
patterns learned from the web. Dialogue & Dis-
course, 3(2):147–175.

Kordula De Kuthy, Madeeswaran Kannan, Hae-
manth Santhi Ponnusamy, and Detmar Meurers.
2020. Towards automatically generating questions
under discussion to link information and discourse
structure. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics,
Barcelona, Spain.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. arXiv preprint arXiv:1705.00106.

David Golub and Xiaodong He. 2016. Character-level
question answering with attention. arXiv preprint
arXiv:1604.00727.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Michael Heilman. 2011. Automatic factual question
generation from text. Ph.D. thesis, Carnegie Mellon
University.

Michael Heilman and Noah A. Smith. 2010. Extract-
ing simplified statements for factual question gener-
ation. In In Proceedings of the Third Workshop on
Question Generation.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Jiangping Huang, Donghong Ji, Shuxin Yao, Wenzhi
Huang, and Bo Chen. 2016. Learning phrase repre-
sentations based on word and character embeddings.
In Neural Information Processing, pages 547–554,
Cham. Springer International Publishing.

32

Tobias Kolditz. 2015. Generating questions for Ger-
man text. Master thesis in computational linguistics,
Department of Linguistics, University of Tübingen.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Vishwajeet Kumar, Ganesh Ramakrishnan, and Yuan-
Fang Li. 2018. A framework for automatic question
generation from text using deep reinforcement learn-
ing. arXiv preprint arXiv:1808.04961.

Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2019. Mlqa: Eval-
uating cross-lingual extractive question answering.
arXiv preprint arXiv:1910.07475.

Ming Liu, Rafael A Calvo, and Vasile Rus. 2010. Auto-
matic question generation for literature review writ-
ing support. In International Conference on Intelli-
gent Tutoring Systems, pages 45–54. Springer.

Denis Lukovnikov, Asja Fischer, Jens Lehmann, and
Sören Auer. 2017. Neural network-based question
answering over knowledge graphs on word and char-
acter level. In Proceedings of the 26th international
conference on World Wide Web, pages 1211–1220.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Giuseppe Marra, Andrea Zugarini, Stefano Melacci,
and Marco Maggini. 2018. An unsupervised
character-aware neural approach to word and con-
text representation learning. Lecture Notes in Com-
puter Science, page 126–136.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Valentina Pyatkin, Ayal Klein, Reut Tsarfaty, and Ido
Dagan. 2020. QADiscourse - Discourse Relations
as QA Pairs: Representation, Crowdsourcing and
Baselines. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2804–2819, Online. Associa-
tion for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lintean,
Svetlana Stoyanchev, and Cristian Moldovan. 2012.
A detailed account of the first question generation
shared task evaluation challenge. Dialogue & Dis-
course, 3(2):177–204.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Yusuxke Shibata, Takuya Kida, Shuichi Fukamachi,
Masayuki Takeda, Ayumi Shinohara, Takeshi Shino-
hara, and Setsuo Arikawa. 1999. Byte pair encoding:
A text compression scheme that accelerates pattern
matching. Technical report, Technical Report DOI-
TR-161, Department of Informatics, Kyushu Univer-
sity.

Katherine Stasaski, Manav Rathod, Tony Tu, Yunfang
Xiao, and Marti A. Hearst. 2021. Automatically gen-
erating cause-and-effect questions from passages. In
Proceedings of the 16th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 158–170, Online. Association for Computa-
tional Linguistics.

Arnim von Stechow. 1990. Focusing and background-
ing operators. In Werner Abraham, editor, Dis-
course Particles, pages 37–84. John Benjamins, Am-
sterdam.

Ayaka Sugawara. 2016. The role of question-answer
congruence (QAC) in child language and adult sen-
tence processing. Ph.D. thesis, Massachusetts Insti-
tute of Technology.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on

33

Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Yuxi Xie, Liangming Pan, Dongzhe Wang, Min-Yen
Kan, and Yansong Feng. 2020. Exploring question-
specific rewards for generating deep questions.

BinChen Xu, Lu Ma, Liang Zhang, HaoHai Li,
Qi Kang, and MengChu Zhou. 2019. An adap-
tive wordpiece language model for learning chinese
word embeddings. In 2019 IEEE 15th International
Conference on Automation Science and Engineering
(CASE), pages 812–817. IEEE.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question genera-
tion with maxout pointer and gated self-attention net-
works. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3901–3910.

34

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 35–45,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Towards Zero-Shot Multilingual Synthetic Question and Answer
Generation for Cross-Lingual Reading Comprehension

Siamak Shakeri †

Google Research
siamaks@google.com

Noah Constant
Google Research

nconstant@google.com

Mihir Sanjay Kale
Google Research

mihirkale@google.com

Linting Xue
Google Research

lintingx@google.com

Abstract

We propose a simple method to generate mul-
tilingual question and answer pairs on a large
scale through the use of a single generative
model. These synthetic samples can be used
to improve the zero-shot performance of mul-
tilingual QA models on target languages. Our
proposed multi-task training of the generative
model only requires labeled training samples
in English, thus removing the need for such
samples in the target languages, making it
applicable to far more languages than those
with labeled data. Human evaluations indi-
cate the majority of such samples are grammat-
ically correct and sensible. Experimental re-
sults show our proposed approach can achieve
large gains on the XQuAD dataset, reducing
the gap between zero-shot and supervised per-
formance of smaller QA models across various
languages.

1 Introduction

Generating question and answers from raw text
has always been a challenging problem in natural
language generation. Recently, there have been
numerous efforts around question generation (Du
et al., 2017; Song et al., 2018; Klein and Nabi,
2019; Wang et al., 2020; Ma et al., 2020; Chen
et al., 2020; Tuan et al., 2019).

Using such synthetic samples to improve the
performance of question answering models has
been explored by Puri et al. (2020), Alberti et al.
(2019), and Shakeri et al. (2020), who show that
reading comprehension (RC) models can be im-
proved by generating large-scale synthetic training
data. These promising results combined with the
recent surge in the development of powerful gener-
ative models such as GPT-3 (Brown et al., 2020),
BART (Lewis et al., 2020a), and T5 (Raffel et al.,

†Corresponding author.

Pre-Trained
mT5 mT5

Target Language
Passages

English SQuAD
+ MLM

Fine-Tuned
mT5

Synthetic QA
Samples

1. Fine-Tuning 2. Synthetic QA
Generation

3. RC Model
Training

Figure 1: End-to-End pipeline: 1) Fine-tuning the generative
model using SQuAD English samples and multilingual MLM.
2) Generating synthetic samples from Wikipedia passages
of the target language using the fine-tuned generative model.
3) Training the downstream reading comprehension model
using synthetic samples.

2020) suggest that the need for large manually la-
beled datasets can be reduced.

Although synthetic question-answer (QA) gen-
eration is well explored in English, the efficacy of
such methods in the other languages remains an
open question. Considering the lack of manually
labeled QA datasets in many languages other than
English, QA generation techniques can be applied
to improve RC models in those languages. The
emergence of multilingual generative models such
as mBART (Liu et al., 2020a) and mT5 (Xue et al.,
2021) facilitates such endeavors.

In this work, we propose generating multilin-
gual question answer pairs to improve the perfor-
mance of RC models in languages other than En-
glish. Besides unlabeled articles and questions,
our proposed method only requires labeled training
samples in English, thus completely removing the
need to acquire new labeled datasets. Our approach
can easily be extended to any language, as long as
the multilingual generative model supports the lan-
guage, and unlabeled questions and articles, such
as Wikipedia, books, etc., exist in that language.

To enable zero-shot QA generation, the genera-
tive model should be able to produce non-English
QA samples from non-English inputs when only

35

trained on English samples. Inspired by the work
of Artetxe et al. (2020); Gururangan et al. (2020);
Liu et al. (2020b), we propose a multi-task learning
setting, where during the fine-tuning stage, we train
on two tasks in parallel: the target question-answer
generation task, and the multilingual masked lan-
guage modeling (MLM) task that was used in pre-
training the generative model. Our experimental re-
sults show that including the MLM task is crucial in
enabling the zero-shot capability of the fine-tuned
generative model.

We propose fine-tuning a pre-trained multilin-
gual T5 model on the SQuAD 1.1 (Rajpurkar et al.,
2016) training set. The fine-tuned model is then
used to generate a large set of synthetic question-
answer pairs from Wikipedia passages in the target
language. Fig. 1 illustrates the end-to-end pipeline.
We show that such synthetic samples can signifi-
cantly boost RC models trained only on the English
samples, with improvements up to 9 absolute points
on F1. To summarize, our contributions are:

• Improving the zero-shot performance of mul-
tilingual RC models on multilingual QA tasks
through generation of synthetic multilingual
QA pairs.

• Proposing a multi-task fine-tuning of the mul-
tilingual generative model which is crucial for
enabling zero-shot multilingual generation.

• Our approach is entirely zero-shot. No
manually-labeled sample is used in fine-
tuning the generative model on target lan-
guages, making our method applicable to both
high and low resource languages.

• Demonstrating grammatical correctness and
sensibility of generated questions through hu-
man evaluations.

The rest of the paper is organized as follows.
In section 2, we discuss the process designed to
train the generative model and produce synthetic
samples. Section 3 discusses related work in the
area of multilingual question-answer generation. In
section 4, we present experiments to measure the
quality of generated samples. Section 5 focuses on
the application of synthetic question-answer sam-
ples to downstream reading comprehension models.
Finally, we conclude in section 6.

2 End-to-End Question-Answer
Generation and Filtering

2.1 Modeling

We use pre-trained “multilingual T5” (mT5) (Xue
et al., 2021) as our generative model. The mT5
model is based on T5 (Raffel et al., 2020), which is
an encoder-decoder sequence-to-sequence model.

2.2 QA Generation Task

We follow the probability distribution factorization
suggested by Shakeri et al. (2020), where:

p(Q,A|P) = p(Q|P)× p(A|Q,P)

Sampling from the above factorization is performed
as follows:

q ∼ p(Q|P), a ∼ p(A|Q,P)

where Q,P,A refer to question, passage, and an-
swer, respectively. During fine-tuning, passage to-
kens are fed as inputs, and the targets are a concate-
nation of the question and answer tokens. During
sampling, candidate passages are passed as inputs
to the fine-tuned generative model, and question-
answer pairs are sampled from the decoder.

Fig. 2 depicts the fine-tuning and sampling pro-
cesses. We prepend “question” to the question
tokens and “answer” to the answer tokens, to help
the model distinguish one from the other.

2.3 Masked Language Modeling Task

The mT5 model is pre-trained on the large multi-
lingual “mC4” dataset (Xue et al., 2021) built from
Common Crawl data, and trained using a Masked
Language Modeling (MLM) task. This task in-
volves replacing contiguous spans of input tokens
with unique sentinel tokens (one per span). The de-
coder is then trained to reconstruct all the masked
spans in the input, using a standard cross-entropy
loss with teacher forcing. We use a variant of this
MLM task, where we remove all “sentinel” tokens
(corresponding to non-masked spans in the input
text) from the target sequence, as we find this im-
proves the quality of generated QAs.

2.4 Multi-Task Fine-Tuning

To perform zero-shot generation, the model needs
not only to learn the QA Generation task, but also
to retain its multilingual generation capabilities
achieved during pre-training. To avoid catastrophic

36

Pretrained
mT5

p1: <passage text…>
p2: <passage text…>

q1: Which team won the game? a1: The Lakers
q2: … a2: ...

s1: Thank <x> me to <y>.
s2: …

you for inviting your party
...

QA Generation Task

Masked Language Modeling Tasks

q1: How <x> live in <y>?
q2: ...

many people Beijing
...

mC4

TyDiQA
Questions

Figure 2: Multi-task fine-tuning of the multilingual pre-trained mT5 model. 1) QA generation task, which uses SQuAD English
samples. 2) MLM task on a subset of mC4. 3) MLM on only the questions from the TyDiQA Gold Passage Task. The MLM
variant used does not include sentinel tokens in the decoder output.

forgetting (French, 1999), which could lead to de-
graded generation capability, we propose a multi-
task setting, where a predetermined percentage of
fine-tuning examples come from the QA Genera-
tion task, while the remaining examples (trained
in parallel) are from a mixture of two MLM tasks:
1) MLM on a subset of mC4 which is a continuation
of mT5 pre-training, 2) MLM on only the questions
from TyDiQA Gold Passage dev and training sets.
The MLM task on mC4 helps the fine-tuned model
retain its multilingual generation capabilities, while
the MLM task on TyDiQA questions further im-
proves the question generation capabilities of the
generative model. Note that the only supervised
QA training data is SQuAD 1.1. The MLM task
on TyDiQA questions is not conditioned on the
associated passages of the questions. Experimental
results in section 4 demonstrate the efficacy of our
proposed approach. Fig. 2 illustrates the multi-task
fine-tuning process.

Fig. 3 demonstrates examples of generated sam-
ples in five languages using an mT5-XL (3.7B pa-
rameter) model fine-tuned in the multi-task setting
(§2.4). It can be observed that: 1) the generated
questions are in the same language as the passage
most of the time, 2) the answers are relevant to
the generated questions, 3) the model is capable of
generating long and non-trivial QA pairs.

Fig. 4 illustrates generated QA samples in Span-
ish and Arabic, when only the QA Generation task
(§2.2) is included in the fine-tuning. We observe:
1) questions are primarily in English, not the tar-
get language, 2) outputs contain certain tokens and

entities mentioned in the language of the passage,
and 3) ignoring language issues, the outputs exhibit
semantically well-formed QA correspondence.

2.5 Decoding and Filtering

Since the quality of the generated question answer
pairs is vital in improving the performance of down-
stream models, the generated samples require a
strong filtering technique. Using the F1 score of a
trained RC model to perform filtering, a.k.a. round-
trip filtering, has been previously explored by Puri
et al. (2020) and Alberti et al. (2019). For a gener-
ated QA sample (q, a, p), where q, a, and p indicate
question, answer, and passage, the following steps
are performed: 1) a trained RC model is applied to
(q, p), predicting a′, and 2) the F1 score of a and
a′ is calculated, and if above a certain threshold,
(q, a, p) is kept, otherwise dropped.

3 Related Work

Recent work has explored question-answer gener-
ation (Alberti et al., 2019; Puri et al., 2020; Lee
et al., 2020; Shakeri et al., 2020), but limited in
scope to English. We leverage the modeling and fil-
tering approaches proposed by Shakeri et al. (2020)
due to their simplicity and effectiveness.

Kumar et al. (2019) explores cross lingual ques-
tion generation. In contrast to our work, this only
generates questions, without the corresponding
answers. Additionally, this approach requires a
complicated pre-training process on the target lan-
guages, as well as gold samples to fine-tune the
generative models, so it is not easily extensible to

37

Figure 3: Samples of generated QAs in Spanish, Russian, Chinese, Arabic, and German. The generative model is mT5-XL
fine-tuned on the mixture setting of section 2.4. Trans. refers to translations of the QA sample using Google Translate service.

other languages. This is in contrast to our approach,
which does not require any gold QA samples in any
language other than English. Another distinguish-
ing factor is that we demonstrate improved perfor-
mance on downstream QA tasks, while Kumar et al.
(2019) only measure the quality of the generated
samples on automatic metrics such as BLEU, and
human evaluations.

Similarly, Chi et al. (2020) explore cross-lingual
question-only generation using SQuAD English
samples. They propose cross-lingual pre-training
on the source and target languages. Similar to Ku-
mar et al. (2019), their focus is only on the quality
of the generated questions, whereas we validate
our approach directly through improvements on
downstream QA tasks. Moreover, while Chi et al.
(2020) depends on a complex pre-training recipe
and parallel sentences in both source and target
languages, our approach not only does not require
such parallel corpus, but also the MLM task in-
cluded in our fine-tuning setting is widely used and
studied. This leads to our approach being more
easily adaptable to other languages and pre-trained
generative models.

Most closely related to our work is the multi-
lingual synthetic question generation approach of
Riabi et al. (2020). However, there are two im-
portant differences between the two approaches.
Firstly, our work includes both question and answer
generation using a single model, while theirs only
focuses on question generation. We believe gen-
erating the question and answer jointly is a richer
problem that better harnesses the capabilities of
pre-trained language models. Their question gener-
ation is conditioned on the selected answers, which
further limits the generation. Secondly, their pro-
posed method depends on translating SQuAD to
target languages to fine-tune the generative model,
hence limiting the application of their approach to
languages where such translation data exists. Fur-
thermore, even when translated data is available,
the quality of samples generated by a model trained
on such data is highly affected by the quality of
the translations. This could lead to low quality
QA samples in low resource languages. This is in
contrast to our zero-shot approach, which does not
require any training data in the target language.

38

Figure 4: Samples of generated QAs in Spanish and Arabic. The mT5-XL model is unable to generate valid questions in the
target language, as in this case it was fine-tuned exclusively on the English QA generation task from section 2.2.

4 Experimental Setup and Results

4.1 Datasets

SQuAD (Rajpurkar et al., 2016) is an English QA
dataset consisting of 100k samples. The passages
are extracted from Wikipedia. We use the train and
dev splits of SQuAD 1.1 in this work.
XQuAD (Artetxe et al., 2020) is a multilingual
QA dataset consisting of 240 paragraphs and 1190
question-answers in Arabic, Chinese, German,
Greek, Hindi, Russian, Spanish, Thai, Turkish and
Vietnamese. These samples have been profession-
ally translated from the SQuAD 1.1 dev set.
MLQA (Lewis et al., 2020b) is a benchmark
dataset for evaluating cross-lingual question an-
swering performance. This dataset contains over
5k QA instances (12k in English) following the
SQuAD format in each of Arabic, Chinese, English,
German, Hindi, Spanish and Vietnamese. We use
the test split in our evaluations.
TyDiQA (Clark et al., 2020) is another multilingual
QA dataset consisting of 200k QA pairs from 11 ty-
pologically diverse languages. There is less lexical
overlap between questions and answers compared
to XQuAD and MLQA. We use the Gold Passage
task, which includes ∼50k samples in the train
split and between 130 and 1,100 samples for each
language in the development set.

XTREME (Hu et al., 2020) is a multilingual
benchmark consisting of nine tasks spanning 40
typologically diverse languages. This dataset in-
cludes machine translated SQuAD 1.1 train and dev
samples, which we employed in our experiments.
We refer to such samples as translate-train.

4.2 Generative Model Fine-Tuning

We used the official mT5-XL model (Xue et al.,
2021) with 3.7 billion parameters as our genera-
tive model. The official pre-trained checkpoint is
fine-tuned using the mixture of tasks described in
section 2.1. We chose the task mixing ratio to be
10:1, meaning for every 10 instances of the QA
Generation task (§2.2), we mix one instance of the
MLM task (§2.3). We experimented with mixing
ratios of 100:1 and 1000:1 as well, both of which
under-performed 10:1. The unsupervised MLM
task covers text from two domains: 1) the subset
of the mC4 corpus (Xue et al., 2021) covering Ara-
bic, Bengali, English, Finnish, Indonesian, Korean,
Russian, Swahili, and Telugu, and 2) questions
from TyDiQA (Clark et al., 2020) train and dev
sets, covering the same set of languages.

It is worth highlighting that we only fine-tune
a single model to generate across all target lan-
guages. We do not apply language code prompts
during fine-tuning or inference. We observe that
by properly designing the fine-tuning mixture, the
model is capable of generating samples that match
the language of the input passage. Human evalua-
tions in section 4.4 further verify this.

All of our models are fine-tuned for 5,000 steps
with a batch size of 131,072 tokens, distributed
over 64 TPU-v3 chips. We use the Adafactor op-
timizer (Shazeer and Stern, 2018) with constant
learning rate of 1e-3. The final checkpoint is used
to perform synthetic data generation.

4.3 Automatic Evaluation Results

To compute automatic metrics such as BLEU
against QA samples of the development set, we
modify the generation task to generate a question

39

Training Task ar de en es hi vi zh
SQuAD en 1.7 3.0 23.4 3.6 3.2 4.4 1.2
Mixture 1 12.2 14.9 25.0 18.4 10.6 13.8 10.0
Mixture 2 13.1 15.2 24.9 18.4 11.1 13.9 9.7
Mixture 3 14.5 14.8 25.0 18.6 10.8 13.5 9.6

Table 1: Comparison of question generation quality (BLEU
score) on the MLQA test set with mT5-XL: The Mixtures
are as follows: SQuAD en: SQuAD en as the training data,
Mixture 1: SQuAD en + MLM on mC4 subset, Mixture 2:
SQuAD en + TyDiQA questions, Mixture 3: SQuAD en +
MLM on mC4 subset + MLM on TyDiQA questions.

Model Size ar de en es hi vi zh
Base (580M) 3.9 5.1 19.0 8.2 3.5 7.4 3.1
Large (1.2B) 10.3 5.7 23.9 5.9 4.3 6.2 3.9
XL (3.7B) 14.5 14.8 25.0 18.6 10.8 13.5 9.6
XXL (13B) 15.8 16.2 24.9 19.3 12.2 15.6 10.2

Table 2: Performance of question generation (mixture setting)
on the MLQA test set for different mT5 model sizes.

given the passage and answer. Conditioning on
the answer is needed, as without it, the generative
model might generate samples that are of high qual-
ity but not related to the answers provided in the
development set for a given passage. This would
lead to difficulty in interpreting metrics such as
BLEU.

Tab. 1 compares BLEU1 performance of two
fine-tuning settings on the MLQA test set. We
report results using the mT5-XL model. As can be
seen, including the MLM tasks has a large impact
on performance, conveying large gains up to +15
absolute BLEU points. This is in line with our
observations from section 2.5, where adding MLM
fine-tuning task enabled the generative model to
produce QA samples in the language of the target
passage.

Interestingly, MLM on either mC4 or TyDiQA
questions results in similar BLEU scores. Further-
more, using a mixture of the two does not yield
additional gains. However, eyeballing the gener-
ated samples indicated that the model fine-tuned
on the mixture of both MLM tasks and the super-
vised English task generates more well-structured
and sensible questions and answers. Human eval-
uations in section 4.4 verify the high quality of
generated samples from a model trained with this
mixture.

To investigate the effect of the generative model
size on the quality of data generation, we perform
experiments using mT5 variants with different num-

1All BLEU scores in this work are calculated using Sacre-
BLEU v1.3.0 (Post, 2018), with “exp” smoothing and “intl”
tokenization.

ber of parameters: Base (580M), Large (1.2B) and
XL (3.7B). We report results of the fine-tuned mod-
els with the mixture setting (§2.4) on the MLQA
dataset in Tab. 2. Model performance improves
dramatically with the size of the pre-trained model.
Based on these results, for the remainder of the
paper, we use the mT5-XL model fine-tuned using
the mixture approach.

4.4 Human Evaluations

To perform manual quality evaluation of the gen-
erated questions, raters were presented with gener-
ated questions, and tasked with rating them accord-
ing to the following criteria:

• Is the question in the target language? Raters
could select yes or no.
• grammatical correctness: Raters could select

a whole number from 1 (lowest) to 4 (highest).
• sensibility: Raters could select a whole num-

ber from 1 (lowest) to 4 (highest).

In total, 400 generated samples from 5 languages
were randomly selected and rated by native speak-
ers of each language. Each rater was assigned 40
samples. Two native speakers of each of the five
languages were asked to perform the task. Tab. 3
shows the evaluation results.

The results show that the multilingual generative
model is nearly perfect at generating samples that
match the language of the input passage. Consider-
ing no language codes are used during fine-tuning,
and only English supervised training data are used,
the results show that our proposed mixture has en-
abled the model to perform zero-shot cross-lingual
generation coherently.

Interestingly, Spanish samples achieve high
scores in all of the categories. Considering the
model is not trained on any Spanish samples, ei-
ther in the MLM tasks or SQuAD 1.1, the model
shows strong transfer learning capabilities. This
implies that including the MLM task as proposed
in our mixture setting not only prevents the gen-
erative model from catastrophic forgetting of its
multilingual capability on the languages included
in the MLM fine-tuning task, but also on those not
included. The same argument partially applies to
Hindi. While there are no Hindi samples in the
fine-tuning mixture, Bengali (a related Indo-Aryan
language) was seen in the MLM task.

40

Target Grammatical
Language Correctness Sensibility

Arabic 0.98 3.55 3.35
Chinese 1.00 3.60 3.60
Hindi 1.00 2.93 3.35
Russian 1.00 3.50 3.75
Spanish 1.00 3.10 3.05
Average 1.00 3.34 3.38

Table 3: Human evaluation metrics on the generated samples.
Samples are randomly drawn, and rated by native speakers.
“Target Language” scores are in the range 0–1, while the other
columns range from 1–4.

5 Application of Synthetic Data to
Multilingual Reading Comprehension

In this section, we describe experimental results
that demonstrate the efficacy of using synthetic
samples for improving multilingual reading com-
prehension (RC) models. This refers to the setting
where given a passage and a question, the model
is tasked with finding a span of the passage that
answers the question.

5.1 Synthetic Data Generation

We randomly selected 10k paragraphs from
Wikipedia, for each of Arabic (ar), German (de),
Hindi (hi), Russian (ru) and Spanish (es). The se-
lected paragraphs were restricted to have between
30 and 450 tokens, thereby removing passages that
are too long or too short.

We fine-tune the mT5-XL model according to
the mixture setting discussed in section 2.4 and the
hyper-parameters from section 4.2, and then use
this model to generate 20 questions per passage.
We apply top-k sampling (Holtzman et al., 2020)
with k=10 and temperature of 0.5. The generated
samples are processed to ensure: 1) each consists
of a question followed by an answer, 2) the an-
swer does exist in the passage. This was done to
ensure answers are extractive. Non-extractive or
no-answer QA are outside the scope of this work.

Finally, as discussed in section 2.5, round-trip
filtering is applied to the generated QA samples.
We use an mT5 XL model trained on SQuAD 1.1
(Rajpurkar et al., 2016) as the filtering model. The
overall process results in approximately 10-20k
synthetically generated samples in each target lan-
guage. These generated samples are then used for
training the RC models.

5.2 RC Model Fine-tuning

All of our reading comprehension models are ini-
tialized from the official mT5 (Xue et al., 2021)

and later fine-tuned on the generated samples. We
experimented with Base (580M), Large (1.2B), and
XL (3.7B) parameter variants of mT5. We fine-tune
using the TensorFlow framework. Each model was
trained for 10,000 steps with a learning rate of 1e-3
and a batch size of 131,072 tokens. The models
were trained on 16 TPU-v3 chips. In experiments
where both the SQuAD 1.1 samples and syntheti-
cally generated samples are used to fine-tune the
RC models, the model is trained on a mixture of the
two, with a 1:1 mixing ratio. Adafactor optimizer
(Shazeer and Stern, 2018) with constant learning
rate of 1e-3 is used in all cases.

5.3 Results

Tabs. 4–6 demonstrate the F1 performance of the
RC models trained on SQuAD 1.1 samples as well
as synthetic data generated as described in 5.1 on
mT5 Base, Large, and XL models. “SQuAD en ”
refers to the original SQuAD 1.1 (Rajpurkar et al.,
2016) dataset in English. Our zero-shot baselines
(denoted “ours”) were slightly higher than those
reported in Xue et al. (2021) (denoted “paper”).

We observe that augmenting SQuAD en with
synthetic samples leads to large gains with the Base
model. An improvement of +9 absolute points
is observed for Russian. Furthermore, with the
Base model, all average F1 scores are improved
with the addition of synthetic data, regardless of
which language the synthetic samples come from.
The largest gain is seen when German samples are
added (+2.9).

As the size of the mT5 model increases, the gains
from synthetic augmentation decrease, as shown in
Tabs. 5 and 6. With the Large model, the maximum
improvement in average F1 is +1.2 absolute points.
With the XL model, the average F1 scores are either
the same as the zero-shot baseline or slightly lower.
This is expected as when the model size increases,
the gap between zero-shot and supervised also be-
comes smaller, hence less headroom exists when
adding the synthetic samples. Fig. 5 demonstrates
this scaling effect. Nonetheless, improvements of
+5.1, +2.2, and +3.4 are observed on Russian, Ara-
bic, and Greek, respectively with the mT5 Large
model. Similarly, smaller per-language gains can
be seen with augmentation with the XL model, as
shown in Tab. 6.

A surprising observation is that best per-
language results are not necessarily achieved when
augmenting with the synthetic samples from the

41

Dataset en ar de el es hi ru th tr vi zh avg
SQuAD en (paper) 84.6 63.8 73.8 59.6 74.8 60.3 57.8 57.6 67.9 70.7 66.1 67.0
SQuAD en (ours) 85.5 65.7 73.6 62.5 75.0 62.4 61.9 57.6 68.9 71.9 71.1 68.1
SQuAD en + ru 83.7 67.5 73.6 69.3 73.8 66.2 70.3 62.7 67.5 68.8 68.9 70.0
SQuAD en + hi 84.2 68.3 75.0 68.4 75.0 63.7 68.2 64.5 67.2 69.5 68.9 69.9
SQuAD en + de 84.6 69.0 71.8 70.2 75.7 66.2 71.0 63.5 70.0 70.9 71.2 71.0
SQuAD en + ar 84.5 64.0 74.4 69.4 74.4 65.1 65.1 62.5 67.9 70.0 70.2 70.2
SQuAD en + es 84.8 69.1 76.1 68.2 72.8 65.4 68.9 62.7 70.0 71.0 71.0 70.6
Supervised 83.1 72.4 76.9 76.8 79.0 71.4 76.1 67.9 72.5 75.9 76.9 75.3

Table 4: Performance of fine-tuned mT5 Base models on XQuAD. Supervised refers to training on SQuAD en +
translate-train dataset of the target language.

Dataset en ar de el es hi ru th tr vi zh avg
SQuAD en (paper) 88.4 75.2 80.0 77.5 81.8 73.4 74.7 73.4 76.5 79.4 75.9 77.8
SQuAD en (ours) 88.6 75.0 80.4 76.5 81.6 73.9 74.1 73.8 76.2 80.1 76.4 77.4
SQuAD en + ru 88.2 76.6 81.2 79.1 82.6 76.1 77.6 72.1 75.1 78.4 77.4 78.6
SQuAD en + hi 88.9 76.7 81.5 79.4 82.9 73.4 78.7 74.1 75.0 79.1 78.0 78.6
SQuAD en + de 88.0 72.7 79.7 73.0 82.0 73.6 76.4 71.6 74.8 78.7 76.2 76.6
SQuAD en + ar 88.0 73.3 81.2 78.8 82.4 75.1 78.5 71.4 75.6 77.3 78.2 77.8
SQuAD en + es 88.2 77.2 81.8 79.9 81.3 76.4 79.2 72.3 75.8 79.5 77.7 78.7
Supervised 87.3 79.4 82.7 81.8 83.8 78.0 81.9 74.7 80.2 80.4 83.2 81.2

Table 5: Performance of fine-tuned mT5 Large models on XQuAD. Supervised refers to training on SQuAD en +
translate-train dataset of the target language.

Dataset en ar de el es hi ru th tr vi zh avg
SQuAD en (paper) 88.8 77.4 80.4 80.4 82.7 76.1 76.2 74.2 77.7 80.5 80.5 79.5
SQuAD en (ours) 89.7 79.2 80.9 80.9 83.2 78.7 78.4 74.3 78.4 79.5 80.7 80.2
SQuAD en + ru 89.1 78.6 82.1 81.7 82.7 78.6 79.4 74.3 78.7 80.6 79.2 80.2
SQuAD en + hi 89.1 79.1 81.7 80.9 83.4 76.1 79.0 74.6 77.6 81.0 80.4 79.9
SQuAD en + de 88.8 78.2 81.2 81.7 82.8 78.1 79.6 74.0 77.7 81.2 79.7 80.1
SQuAD en + ar 89.0 75.0 81.3 81.5 82.8 78.4 79.3 73.5 78.4 80.2 80.4 79.6
SQuAD en + es 88.8 79.0 82.2 81.3 82.6 78.7 78.8 73.8 78.3 81.1 80.5 80.2
Supervised 88.5 80.9 83.4 83.6 84.9 79.6 82.7 78.5 82.4 82.4 83.2 82.7

Table 6: Performance of fine-tuned mT5 XL models on XQuAD. Supervised refers to training on SQuAD en +
translate-train dataset of the target language.

same target language. Our hypothesis is that strong
multilingual models such as mT5 have already de-
veloped rich per-language representations. Adding
non-English synthetic data enables the model to
generalize well to non-English RC tasks by not
overfitting to English RC samples.

Comparing the Supervised metrics vs. SQuAD
en + 〈lang〉 indicates that with Base and Large,
using synthetic samples reduces the gap between
the zero-shot and supervised performance of the
trained RC models. This gap is reduced from 7.2 to
4.2 absolute points with the Base model. However,
there still exists a sizeable gap, which could likely
be further reduced through the use of higher quality
synthetic samples.

6 Conclusion

In this work, we presented a simple yet effective
approach to generate large-scale synthetic multi-
lingual question-answer pair data, which can be
used to improve the zero-shot performance of mul-

Figure 5: Scaling effect on augmentation using synthetic
samples.

tilingual reading comprehension (RC) models. Our
experimental results showed large improvements
in the performance of RC models trained on our
synthetic multilingual datasets as compared to stan-
dard zero-shot baselines. Moreover, our zero-shot
generation approach proved to be easily applied to
any language, as long as the language is supported

42

by the pre-trained multilingual generative model.
While our results showed that using synthetic

samples alongside English training data can sig-
nificantly narrow the gap between zero-shot and
supervised performance of RC models, the gap still
remains. We are optimistic that future work can re-
duce this gap further through improved generation
quality.

7 Ethical Considerations

Since the synthetic QA samples are generated by
a generative model, it is possible that generated
questions could include hallucinations and counter-
factual information. We have employed the follow-
ing safeguards: 1) The generative model is trained
on the SQuAD dataset to learn question-answer
generation. SQuAD is a well-studied and meticu-
lously curated dataset. 2) The passages from which
question-answer pairs are generated are selected
from Wikipedia. 3) We apply round-trip filter on
the generated question-answer pairs using the RC
model. This approach ensures the questions are
relevant to the passages. We believe these steps
drastically reduce the chances of hallucinated and
counterfactual samples. Nevertheless, there still
exists the possibility that such bad samples could
be generated. Future research efforts can explore
such potential issues.

43

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-

vlin, and Michael Collins. 2019. Synthetic QA cor-
pora generation with roundtrip consistency. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6168–
6173, Florence, Italy. Association for Computa-
tional Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623–4637, Online. Asso-
ciation for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. 2020.
Reinforcement learning based graph-to-sequence
model for natural question generation. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-
Ling Mao, and Heyan Huang. 2020. Cross-lingual
natural language generation via pre-training. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 34(05):7570–7577.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A bench-
mark for information-seeking question answering in
typologically diverse languages. Transactions of the
Association for Computational Linguistics, 8:454–
470.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1342–1352,
Vancouver, Canada. Association for Computational
Linguistics.

Robert M. French. 1999. Catastrophic forgetting in
connectionist networks. Trends in Cognitive Sci-
ences, 3(4):128–135.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
4411–4421. PMLR.

Tassilo Klein and Moin Nabi. 2019. Learning to an-
swer by learning to ask: Getting the best of GPT-2
and BERT worlds. CoRR, abs/1911.02365.

Vishwajeet Kumar, Nitish Joshi, Arijit Mukherjee,
Ganesh Ramakrishnan, and Preethi Jyothi. 2019.
Cross-lingual training for automatic question gen-
eration. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4863–4872, Florence, Italy. Association
for Computational Linguistics.

Dong Bok Lee, Seanie Lee, Woo Tae Jeong, Dongh-
wan Kim, and Sung Ju Hwang. 2020. Gener-
ating diverse and consistent QA pairs from con-
texts with information-maximizing hierarchical con-
ditional VAEs. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 208–224, Online. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2020b. MLQA: Evalu-
ating cross-lingual extractive question answering. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7315–
7330, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and

44

Luke Zettlemoyer. 2020a. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Zihan Liu, Genta Indra Winata, Andrea Madotto, and
Pascale Fung. 2020b. Exploring fine-tuning tech-
niques for pre-trained cross-lingual models via con-
tinual learning. CoRR, abs/2004.14218.

Xiyao Ma, Qile Zhu, Yanlin Zhou, and Xiaolin Li.
2020. Improving question generation with sentence-
level semantic matching and answer position infer-
ring. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 34(05):8464–8471.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa
Patwary, and Bryan Catanzaro. 2020. Training ques-
tion answering models from synthetic data. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5811–5826, Online. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Arij Riabi, Thomas Scialom, Rachel Keraron, Benoı̂t
Sagot, Djamé Seddah, and Jacopo Staiano. 2020.
Synthetic data augmentation for zero-shot cross-
lingual question answering. CoRR, abs/2010.12643.

Siamak Shakeri, Cicero Nogueira dos Santos, Henghui
Zhu, Patrick Ng, Feng Nan, Zhiguo Wang, Ramesh
Nallapati, and Bing Xiang. 2020. End-to-end syn-
thetic data generation for domain adaptation of ques-
tion answering systems. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5445–5460, On-
line. Association for Computational Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596–4604.
PMLR.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context in-
formation for natural question generation. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 569–574, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Luu Anh Tuan, Darsh J. Shah, and Regina Barzilay.
2019. Capturing greater context for question gen-
eration. CoRR, abs/1910.10274.

Bingning Wang, Xiaochuan Wang, Ting Tao, Qi Zhang,
and Jingfang Xu. 2020. Neural question generation
with answer pivot. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(05):9138–9145.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498, Online. Association for Computa-
tional Linguistics.

45

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 46–47,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Chefbot: A Novel Framework for the Generation of
Commonsense-enhanced Responses for Task-based Dialogue Systems

Carl Strathearn and Dimitra Gkatzia
Edinburgh Napier University

{c.strathearn,d.gkatzia}@napier.ac.uk

Abstract

Conversational systems aim to generate re-
sponses that are accurate, relevant and engag-
ing, either through utilising neural end-to-end
models or through slot filling. Human-to-
human conversations are enhanced by not only
the latest utterance of the interlocutor, but also
by recalling and referring to relevant informa-
tion about concepts/objects covered in the con-
versation so far. Such information may contain
recent referred concepts, commonsense knowl-
edge and more. A concrete scenario of such
dialogues is the cooking scenario, i.e. when an
artificial agent (personal assistant, robot, chat-
bot) and a human converse about a recipe. We
will demo a novel system for commonsense
enhanced response generation in the scenario
of cooking, where the conversational system is
able to not only provide directions for cooking
step-by-step, but also display commonsense ca-
pabilities such as offering explanations on ob-
ject use and recommending replacements of in-
gredients.

1 Introduction

Although conversational User Interfaces (CUIs)
have gained popularity with the introduction of
commercial personal assistants, these CUIs are
mostly retrieval-based question answering (QA)
systems that are incapable of holding a multi-turn
conversation or providing follow-up information
on the same topic or task. In addition, they do
not incorporate commonsense capabilities, i.e. the
ability to understand how an object is used, under-
stand/infer other non-obvious properties such as
its weight and materiality, or generally make infer-
ences about ordinary tasks in our daily lives (Davis
and Marcus, 2015)). Significantly, these CUIs can-
not provide “how-to” instructions when performing
practical tasks that require conversation over mul-
tiple steps, such as cooking a recipe or building

Figure 1: Excerpt from dialogue.

furniture. This work is inspired by the human abil-
ity to read a document with instructions on how to
perform a task and recall and rephrase the instruc-
tions to someone else. We consider a practical task
where two people cook together, where one user,
the Information Giver (IG) has access to the recipe
and provides instructions to the second user, the
Information Follower (IF), as shown in Figure 1.

In our setup, the IG is required to understand
the recipe, split it into manageable steps, possibly
rephrase it as well as being able to describe objects,
their use and common storage locations. The IF can
ask questions such as repeating an instruction, clari-
fication, and confirmation. Replicating these innate
cognition processes in artificial agents that func-
tion in real-world conditions is highly challenging
due to the complexity and interdisciplinary nature
of the problem. Unlocking these challenges will
enable artificial agents to operate with greater lev-
els of common-sense reasoning. This demo paper
presents a novel task-based CUI which combines
knowledge-grounded dialogue and commonsense-
enhanced response generation.

46

Figure 2: Examples of commonsense capabilities: On the right, Chefbot is suggesting an ingredient substitution
and on the left, Chefbot explains how an object is used.

2 Task Description
Task-oriented dialogue is concerned with helping
users achieve specific goals, by understanding user
intends, state tracking and generating responses
based on next actions (Hosseini-Asl et al., 2020).
On the other hand, open-domain dialogue systems
aim to converse over different topics within the
same dialogue. Our proposed task is situated be-
tween these two tasks: firstly, the goal of the system
is to help the user prepare a recipe by providing
instructions; secondly, the system aims to converse
about related concepts, such as ingredients and ob-
jects’ utility in an open domain fashion (Fig. 2).

3 Chefbot
To demonstrate the use of commonsense enhanced
dialogue in a practical task-based challenge, Chef-
bot was designed using RASA X1. Annotated sam-
ple conversations between the IG and IF are mod-
elled as two modes of question and answer pairs.
The first series of utterances are open-domain and
the second set are domain specific. In the dialog
flow, forms were used for each recipe to force the
sequence between the two series allowing for both
domain and non-domain utterance classification.
This produced a more robust structure and con-
textual awareness for state tracking and response
generation. The Chefbot is able to handle questions
that are not represented in the sample dataset with
the help of two commonsense databases. The first
database provides the user with appropriate alterna-
tive ingredients for a specific recipe and the second
explains the use, handling, alternative names and

1https://rasa.com/docs/rasa-x/

typical storage locations of kitchen utensils. A
combination of rules, checkpoints and custom ac-
tions, allow the user to ask questions at any stage in
the task and then on fulfilment, return the the next
logical step in the recipe. From this framework
we create a multi-intent / multi-turn policy model
that permits adaptability to cope with the variable
conditions of real-world tasks.

4 Future Work
In future, we aim to extend our system so it can
be used in a situated Human-Robot Interaction sce-
nario, where the conversation will take place as a
spoken conversational interaction.

5 Conclusions
This demo paper describes a commonsense-
enhanced chatbot for task-based dialogue. At
INLG, we will demo the chatbot and will discuss
initial findings.

Acknowledgements

The research is supported under the EPSRC
projects EP/T014598/1 and EP/T024917/1.

References
Ernest Davis and Gary Marcus. 2015. Commonsense

reasoning and commonsense knowledge in artificial
intelligence. Commun. ACM, 58(9):92–103.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179–20191.

47

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 48–54,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Predicting Antonyms in Context using BERT

Ayana Niwa †, Keisuke Nishiguchi‡, Naoaki Okazaki†

† Tokyo Institute of Technology
‡ CyberAgent, Inc.

ayana.niwa at nlp.c.titech.ac.jp
nishiguchi keisuke at cyberagent.co.jp

okazaki at c.titech.ac.jp

Abstract

We address the task of antonym prediction in
a context, which is a fill-in-the-blanks prob-
lem. This task setting is unique and practical
because it requires contrastiveness to the other
word and naturalness as a text in filling a blank.
We propose methods for fine-tuning pre-trained
masked language models (BERT) for context-
aware antonym prediction. The experimental
results show that these methods have positive
impacts on the prediction of antonyms within
a context. Moreover, human evaluation reveals
that more than 85% of the predictions using the
proposed method are acceptable as antonyms.

1 Introduction

Antonymy is a relationship between two words
that express contrasting or opposite meanings (e.g.,
“agree–disagree”). Capturing antonymy is directly
helpful for downstream applications such as sen-
timent transfer (Li et al., 2018) and claim genera-
tion (Hidey and McKeown, 2019). Further, seman-
tically contrasting expressions with antonyms are
utilized in advertising slogans (Katrandjiev et al.,
2016), political speeches (Heritage and Greatbatch,
1986), and Chinese poetry (Yan et al., 2016).

As antonymy is one of the relations of lexi-
cal semantics, such as synonymy and hyponymy,
antonymy can be modeled using a similar approach
to lexical knowledge acquisition. Most of the pub-
lished studies on this topic have focused on the
prediction of the relation between a given word
pair (Barkan et al., 2020; Shwartz and Dagan,
2016), or a target (tail) for a given word (head) and
its relation (Camacho-Collados et al., 2018; Rimell
et al., 2017). However, predicting an antonym is
challenging because multiple types of words are
plausible as antonyms for a word. This is because a
word can have semantic contrastiveness to the other
as long as the word contains at least one feature
contrasting to the other (Leech, 1976). For exam-
ple, dual, double, and multiple can be antonyms for

single because they all have the contrasting features
of AMOUNT or NUMBER. Additionally, the appro-
priateness of an antonym varies depending on the
context. For example, double, dual, and multiple
are used for a bed, nationality, and the number of
meanings of a word, respectively. Hence, antonym
prediction must be considered within the context.

In this study, we consider the new task of
antonym prediction, that is, the fill-in-the-blanks
problem for antonyms in context. For example,
in the sentence, “A bed is better than sin-
gle for me,” we expect to fill the blank with the
words “double” or “king-sized.” The fill-in-the-
blanks setting requires the prediction of context-
aware antonyms by capturing the contrasting fea-
tures between the word pair. The task also requires
a consideration of the naturalness of a text when fill-
ing the blank, which is necessary for applications
of generating text with antonyms.

In recent years, pre-training and fine-tuning ap-
proaches have achieved high performance in var-
ious NLP tasks (Devlin et al., 2019; Yang et al.,
2019). Therefore, we use Bidirectional Encoder
Representations from Transformers (BERT) as a
pre-trained model to predict antonyms in a con-
text. However, it is not easy to collect training data
for fine-tuning the model, that is, text containing
antonym pairs with a contrastive context.

Therefore, we focus on the rhetorical device that
effectively employs antonymy, that is, antithesis,
which juxtaposes words or phrases in a similar
structure with contrasting meanings. An antithesis
is suitable for data creation because it ensures that a
text has one or more antonym pairs in a contrastive
context. For example, the sentence, “My mother
who [is sensitive to the pension] [is insensitive to
the insurance],” has an antithesis structure with two
antonym pairs. We propose four methods to fine-
tune BERT for antonyms: (1) domain adaptation
using an antithesis corpus, (2) contrastive masking
to focus on antonym prediction, (3) antithesis po-

48

sitional encodings to capture antithesis structures,
and (4) pseudo-supervision data collected by auto-
matic annotation using an antonym dictionary.

The experimental results with the Japanese slo-
gan corpus demonstrate that the proposed fine-
tuning methods contribute to the adaptation of
BERT to the context-aware antonym prediction
task. An automatic evaluation based on a single
correct answer is improper because there are multi-
ple acceptable answers. However, the manual eval-
uation revealed that more than 85% of the words
predicted by the proposed method are appropriate
as antonyms and that fine-tuned BERT is highly
capable of capturing antonymy in a context.

2 Method

2.1 Model

Given a sequence of n tokens, x1, . . . , xn, with a
[MASK] (blank) token at position m (1 ≤ m ≤ n),
the conditional probability of token ym for filling
the blank can be modeled using a BERT (Devlin
et al., 2019) (illustrated in Figure 1),

P (ym|x1, . . . , xm, . . . , xn). (1)

Based on the bidirectional contexts of the in-
put, BERT considers the surrounding context of
[MASK]. By fine-tuning BERT on a text cor-
pus with an antithesis structure (described in Sec-
tion 2.2), we can expect that the model will eventu-
ally consider antonymy in an input text by domain
adaptation because an antithesis contains more than
one antonym pair and the contrastive context.

To utilize a small corpus for adapting BERT for
antonyms, we explore two approaches. First, we
create supervision data for fine-tuning by replacing
a token with [MASK] such that the [MASK] token
is likely to have a counterpart in the text. For exam-
ple, given a text, “[Starts with the reckoning], [ends
with the relish],” we obtain two training instances,
that is, “[MASK] with the [MASK], ends with the
relish” and “Starts with the reckoning, [MASK]
with the [MASK].” These [MASK] tokens are cho-
sen because they do not appear in the counterpart
phrase, whereas “with” and “the” do. We refer
to this strategy as contrastive masking. This strat-
egy selectively creates supervision data for filling
antonyms more efficiently than the default strategy
for BERT (deciding [MASK] positions randomly).

Second, we extend the positional encodings in
BERT to indicate an antithesis structure in an input.
Consider a text that includes two spans [i, j) and

[k, l) (1 ≤ i < j ≤ k < l ≤ n) forming an antithe-
sis structure and the span [i, j) includes [MASK]
tokens. To indicate that span [i, j) corresponds
to [k, l), we compute an index specialized for the
antithesis structure,

at =

{
k +

⌊
(l−k)(t−i)

j−i

⌋
(a ∈ [i, j))

t (otherwise)
. (2)

The index at represents the position of the token
xt if t /∈ [i, j) but that of the counterpart span
[k, l) if t ∈ [i, j). We used the mean of absolute
positional encoding (used in the original BERT)
and antithesis positional encodings (indexed by at)
as the positional encodings for BERT.

2.2 Supervision data

For the domain of the training data, we selected
advertising slogans in which antitheses were likely
to be used frequently. We used a corpus of adver-
tising slogans that consisted of 111,295 Japanese
slogans collected from existing books (Taniyama,
2007; Nakahata, 2008; Aota et al., 2007; Umeda,
2016; Sendenkaigi Award Committee, 2003–2018)
to construct the supervision data. With the slogans,
we constructed an antithesis corpus manually by
crowd-sourcing two subtasks: (1) filtering out slo-
gans that do not contain antithesis structures with
strict criteria, and (2) annotating antithesis spans.
This process yielded 7,457 slogans with annotated
spans of antitheses1. Additional information is pro-
vided in the Appendix.

2.3 Pseudo-supervision data

The number of instances in the supervision data
may be small for fine-tuning BERT. Thus, we also
explore an approach for automatically annotating
a text in a manner similar to distant supervision.
Specifically, we find slogans that include pairs of
antonyms included in the antonym dictionary (San-
seido Editorial Office, 2017). This process resulted
in 1,894 slogans that were not included in the
dataset explained in Section 2.2. The strict cri-
teria filtered out these slogans in the first step of
the corpus construction, but some of them actually
presented antitheses. For each pair of antonyms
in a slogan, we obtain two training instances, one
antonym replaced with the [MASK] token, and
vice versa. In this way, we inject the lexical knowl-
edge of antonyms into BERT.

1Unfortunately, we cannot release the corpus to the public
because we do not own the copyrights of the slogans.

49

Figure 1: Outline of the proposed method. This is an example of predicting “daughter” and “spa” for the input text
“A [MASK] goes to a [MASK], and a mother goes to a chiro.” The phrases, “A [MASK] goes to a [MASK]” and “a
mother goes to a chiro” consist of an antithesis structure.

3 Experiments and Results

3.1 Experimental settings

Dataset We split the 7,457 slogans in the antithe-
sis corpus into training, development, and test data,
and subsequently converted them into fill-in-the-
blank instances that contained the [MASK] tokens.
Each text yielded two masked instances because
an antithesis structure has two contrastive phrases.
In this manner, we obtained 11,922 training, 1,496
development, and 1,496 test instances. We also
used 3,788 training instances from the pseudo-
supervision data. In addition to them, we created a
subset of the test data (“word level” hereafter) for
a fair comparison with the human baseline. The
above test data contained instances wherein the
[MASK] token is split into subword units, which
human subjects cannot fill in. Additionally, our
fill-in-the-blank problem is complex for general
cloud workers to solve because it require an under-
standing of the context. Therefore, we created the
simple “word level” test set based on the following
criteria: (1) a single word is selected as a masked
token per test instance, (2) the selected word is
not split into subwords, and (3) the part of speech
is either a noun, verb, adjective, or adjective-verb.
Furthermore, we randomly selected only one test
instance per slogan to simplify the crowd-sourcing
process. This process created 529 word level test
instances, which is smaller than the entire test set.

Baselines We used two baselines, dictionary-
lookup and pre-trained BERT without fine-tuning.
The dictionary-lookup baseline examines whether
the gold word of each blank is registered in the
dictionary (Sanseido Editorial Office, 2017) as an

antonym of any word in the corresponding phrase2.
A pre-trained BERT without fine-tuning is evalu-
ated to investigate the ability of the model to predict
antonyms in a context without specialized train-
ing. We used BERT pre-trained with the Japanese
Wikipedia3. To assess the difficulty of this task, we
asked three human subjects to guess at most five
possible words to fill the blanks in the test set.

We do not employ a non-contextual baseline
other than the dictionary-lookup because the
dataset has annotations of antithesis structures only
at the segment level (phrase-to-phrase alignment)
but not at the word level (word-to-word alignment).

Evaluation metrics We used top-1 and top-10
accuracy values as the measures for the correctness
of model predictions. Because human subjects
could not always come up with five answers for a
blank, we used the top-1 and top-n accuracy values,
wherein the number of n varied depending on the
number of human responses in each instance.

3.2 Results

Table 1 reports the accuracy of the prediction of
blanks on the test data. The proposed method
achieved 29.3% top-1 and 53.8% top-10 accura-
cies measured for all instances, and 30.4% top-1
and 49.1% top-n accuracies measured at the word
level. The pre-trained BERT without fine-tuning
obtained much lower accuracies than those of the
proposed method. This indicates that a general
masked language model was insufficient to predict
antonyms even if presented in the context of the
antithesis structure.

2This baseline presents the upper bound of the performance
of dictionary-lookup because it knows the gold words.

3https://github.com/cl-tohoku/
bert-japanese

50

All Word level
Acc@1 Acc@10 Acc@1 Acc@n

dictionary-lookup - - 9.6 -
pre-trained BERT (w/o fine-tuning) 15.0 40.9 15.7 39.1
fine-tuned BERT (default masking) 24.4 51.4 25.0 44.4
- default masking + contrastive masking 28.8 52.6 27.4 47.4
+ antithesis positional encodings 28.7 53.5 27.4 48.0
+ pseudo-supervision data 29.3 53.8 30.4 49.1
human (lowest) - - 31.5 52.3
human (highest) - - 34.5 59.1
human (votes from three subjects) - - 51.8 66.6

Table 1: Accuracy values of antonym prediction.

Contrastiveness Naturalness
human 94 90
method 88 85

Table 2: Number of contrastive and natural instances
(out of 100) judged by a human.

Fine-tuning BERT on the supervision data
boosted the performance, especially for top-1 pre-
dictions (+9.4 and +9.3 points). Contrastive mask-
ing improved all the accuracies, and antithesis po-
sitional encodings improved the top-10 and top-n
accuracies in particular (+1.2 to +3.0 points for
the former and +0.9 and +0.6 points for the lat-
ter). Moreover, we confirmed that the pseudo-
supervision data improved the accuracy, especially
for top-1 predictions (+0.6 and +3.0 points). The
fact that these proposed methods contribute to the
performance shows the importance of fine-tuning
BERT with a special focus on antonym prediction.

The baseline of dictionary-lookup obtained 9.6%
top-1 accuracy measured at the word level. We
found that the low coverage of the dictionary was
the leading cause: the dictionary had entries for
only 39.3% of antonyms in the test data.

Table 1 also illustrates the results of human sub-
jects who had the lowest and highest accuracy when
solving the fill-in-the-blank task. The accuracy val-
ues of all the human subjects were better than those
of the proposed method, although the performance
of each human subject varied. However, even
the best-performing human subject could achieve
34.5% top-1 and 59.1% top-n accuracies, which
justifies the difficulty of this task. Conversely, with
the most lenient evaluation in which we regard a
prediction as correct if any of the three human sub-
jects provided the right answer, the top-1 accuracy

was 51.8%, and the top-n accuracy was 66.6%. The
performance increase in top-1 implies that multi-
ple words are acceptable for the blanks in the test
data, and the characteristic is considered the rea-
son why even human subjects cannot achieve high
accuracy values. To investigate such cases with
multiple possible correct words, we conducted a
subjective evaluation of the quality of the answers
of the human subjects and the proposed method
(with the participation of another human subject).
For this analysis, we used 100 instances sampled
at random from the test data for which the answers
of both human subjects and methods did not match
the correct word. We chose an answer from three
subjects at random for each instance because we
had multiple answers from three subjects. Table 2
reports the number of predictions from the human
subjects and the proposed method for which the
manual evaluation recognized contrastiveness and
naturalness (fluency). The results reveal that more
than 85% of both the answers of the human subjects
and the predicted words of the proposed method
are appropriate as antonyms.

To summarize, we found that the automatic eval-
uation using a single correct answer (accuracy) un-
derestimated the context-aware antonym prediction
performance because there could be multiple ac-
ceptable answers. However, the subjective evalua-
tion revealed that the predictions of the proposed
method were satisfactory in terms of contrastive-
ness (as an antonym) and naturalness in a context.

3.3 Analysis

We list the predictions by the baseline (BERT with-
out fine-tuning) and the proposed method, and the
answers by each human subject in Table 3.

When the antonymy was easy to understand,

51

Example (A) Example (B)
別れの曲だったのに、[MASK]の曲になった。 地球の環境より、まず[MASK]の環境。
It was the farewell song, Put the environment of the [MASK],

but became the [MASK] song. before the environment of the earth.
correct answer: 出会い encounter correct answer: 心 mind
baseline 別れ,最後,今,人生 baseline 宇宙,水,地球,太陽,植物

farewell, last, present, life’s universe, water, earth, sun, plants
proposed 出会い,憧れ,最高,始まり proposed 家族,私,周り,トイレ,家

encounter, longing, best, beginning family, of myself, vicinity, restroom, house
human 1 出会い,再会,初恋,永遠 human 1 自宅,自分,部屋,職場

encounter, reunion, first love, eternal one’s home, of myself, room, workplace
human 2 出会い,始まり,邂逅 human 2 自分,私,周辺,室内,家内

(unexpected) encounter, beginning of myself, vicinity, room, one’s wife
human 3 出会い human 3 国,家庭,町,周り

encounter country, family, town, vicinity

Table 3: Examples of prediction of methods and answers of human subjects. Owing to space limitations, we
removed some duplicated words, which are synonyms (e.g., beginning and start) or the same word in different
character types (e.g., Hiragana and Kanji in Japanese).

such as “farewell–encounter” in Example (A), both
the proposed method and the human subjects could
output the correct word as the first candidate. Com-
pared to the baseline, the proposed method could
focus on the contrastiveness between the phrases
“the farewell song–the encounter song.”

In Example (B), the correct word was not pre-
dicted or answered, but their outputs were the
antonyms. The output word should be contrasted
with the word “earth” in terms of its scale and
degree of familiarity. In this respect, both the pre-
diction of the proposed method and the answers of
the human subjects satisfied the semantic contrast
and naturalness as sentences because they were
lined up with words that mainly referred to objects
and people around them, and all of them satisfied
the semantic contrast and naturalness as sentences.
However, the correct answer was “mind,” which
has “physical and mental contrasts” in addition to
perspectives of scale and familiarity. To deal with
these cases, it is necessary to clarify from what
perspective the two words are contrasted.

Some cases were difficult to predict both by
the proposed method and human subjects. Such
instances require prior knowledge and imagina-
tions about objects mentioned in the text (adver-
tisement targets in case of slogans), for example,
“From lightness within [MASK] to lightness almost
weightless,” where the gold answer is “tolerance”
for a glass product. It requires additional input in-
formation about the target of the sentence to deal
with such cases.

4 Conclusion

In this study, we addressed the task of predicting
antonyms within a context. We proposed methods
for adapting BERT to antonym prediction, such
as domain adaptation using an antithesis corpus,
contrastive masking, antithesis positional encod-
ings, and pseudo-supervision data collection. The
proposed method achieved 29.3% top-1 and 53.8%
top-10 accuracies on the test data. Although these
values seem low, an automatic evaluation based
on a single correct word underestimates the per-
formance because multiple valid words can fill in
the blanks. The subjective evaluation revealed that
more than 85% of the words predicted by the pro-
posed method were appropriate as antonyms. Our
proposed task and method will be useful in many
real-world applications that use contrastive expres-
sions. Although we used Japanese text in this study,
it can be applied to any language as far as the an-
notated data is available. In the future, we will
extend the proposed method to generate text with
antithesis, and explore the fill-in-the-blanks prob-
lem setting for other semantic relations.

References
Mitsuaki Aota, Akira Akiyama, Hideki Azuma, et al.

2007. Saishinyaku copy bible (in Japanese) (En-
glish translation:The brand new slogan bible).
Sendenkaigi Co., Ltd.

Oren Barkan, Avi Caciularu, and Ido Dagan. 2020.
Within-between lexical relation classification. In

52

Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3521–3527, Online. Association for Computa-
tional Linguistics.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli, and
Horacio Saggion. 2018. SemEval-2018 task 9: Hy-
pernym discovery. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
712–724, New Orleans, Louisiana. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

John Heritage and David Greatbatch. 1986. Generating
applause: A study of rhetoric and response at party
political conferences. American journal of sociology,
92(1):110–157.

Christopher Hidey and Kathy McKeown. 2019. Fixed
that for you: Generating contrastive claims with se-
mantic edits. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1756–1767, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hristo Katrandjiev, Ivo Velinov, and Kalina Radova.
2016. Usage of rhetorical figures in advertising slo-
gans. Trakia Journal of Sciences, 14(03):267–274.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to
Japanese morphological analysis. In Proceedings of
the 2004 Conference on Empirical Methods in Natu-
ral Language Processing, pages 230–237, Barcelona,
Spain. Association for Computational Linguistics.

Geoffrey Leech. 1976. Semantics. Penguin Books.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to senti-
ment and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Takashi Nakahata. 2008. Honto no koto wo iu to,
yoku, shikarareru. katsu copy no zenbu (in Japanese)
(English translation : We are often scolded when
we say the truth. All of the slogans for winning.).
Sendenkaigi Co., Ltd.

Laura Rimell, Amandla Mabona, Luana Bulat, and
Douwe Kiela. 2017. Learning to negate adjectives
with bilinear models. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 71–78.

Sanseido Editorial Office, editor. 2017. Hantaigo Tairit-
sugo Dictionary (in Japanese) (English translation :
Antonym Dictionary). Sanseido Co.,Ltd.

Sendenkaigi Award Committee. 2003–2018. SKAT.2–
SKAT.17. Sendenkaigi Co., Ltd.

Vered Shwartz and Ido Dagan. 2016. Path-based vs.
distributional information in recognizing lexical se-
mantic relations. In Proceedings of the 5th Workshop
on Cognitive Aspects of the Lexicon (CogALex - V),
pages 24–29, Osaka, Japan. The COLING 2016 Or-
ganizing Committee.

Masakazu Taniyama. 2007. Koukoku copy tte kou
kakunnda! dokuhon (in Japanese) (English trans-
lation : This is how you write advertising slogans! A
textbook). Sendenkaigi Co., Ltd.

Satoshi Umeda. 2016. “Kotoba ni dekiru” ha buki ni
naru. (in Japanese) (English translation:The ability
to “put into words” is a weapon.). Nikkei Publishing
Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Rui Yan, Cheng-Te Li, Xiaohua Hu, and Ming Zhang.
2016. Chinese couplet generation with neural net-
work structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2347–2357.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 5753–
5763. Curran Associates, Inc.

53

A Construction of an antithesis corpus

As described in Section 2.2, the annotation process
for constructing the antithesis corpus was divided
into the following two steps: (1) identification of
candidate antitheses and (2) annotation of the span
of the antithesis. In step (1), we assigned each
slogan to five workers to determine whether the
slogan contained an antithesis. If more than three
workers determined that the slogan contained an
antithesis, we would consider it as a candidate an-
tithesis. Thus, we succeeded in extracting 9,720
slogans that contained antitheses. In step (2), we
selected two workers with high-annotation quality
and asked them to annotate each antithesis with its
span, for example, “[A lean body] leads [a bold
life].”

B Model architectures and
implementation details

We used BERTBASE, which has 12 layers, 768 hid-
den states, 12 heads, and 110M parameters for all
the experiments. During the pre-training, the whole
word masking was enabled. We used Mecab (Kudo
et al., 2004) as the tokenizer.

Our implementation, including the code for
evaluation, was based on Huggingface Transform-
ers (Wolf et al., 2020). In fine-tuning BERT with
the AdamW (Loshchilov and Hutter, 2019) opti-
mizer, we set a batch size of 8, a maximum se-
quence length of 50, and the remaining parameters
were set to the default values. The experiments
were run on servers with an Nvidia Tesla P100
GPU. The total number of epochs for the fine-
tuning was 6, determined by the accuracy of devel-
opment data.

54

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 55–63,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Examining Covert Gender Bias: A Case Study in Turkish and English
Machine Translation Models

Chloe Ciora∗, Nur Iren∗, Malihe Alikhani
University of Pittsburgh

{chloeciora,nei3,malihe}@pitt.edu

Abstract

As Machine Translation (MT) has become
increasingly more powerful, accessible, and
widespread, the potential for the perpetua-
tion of bias has grown alongside its advances.
While overt indicators of bias have been stud-
ied in machine translation, we argue that
covert biases expose a problem that is further
entrenched. Through the use of the gender-
neutral language Turkish and the gendered lan-
guage English, we examine cases of both overt
and covert gender bias in MT models. Specif-
ically, we introduce a method to investigate
asymmetrical gender markings. We also as-
sess bias in the attribution of personhood and
examine occupational and personality stereo-
types through overt bias indicators in MT mod-
els. Our work explores a deeper layer of bias
in MT models and demonstrates the continued
need for language-specific, interdisciplinary
methodology in MT model development.

1 Introduction

Various forms of biases are encoded in the way
that people use language (Rudinger et al., 2018;
Butler, 1990). Similar to other Natural Language
Processing (NLP) tasks, learned models used in
MT systems include social biases as they learn cor-
relations from their training data that have encoded
stereotypes. Specifically, several studies (Prates
et al., 2020; Cho et al., 2019; Baeza-Yates, 2019)
have shown that translations from a gender-neutral
language to a language with gendered pronouns
are biased in the selection of pronouns in the target
language.

However, this is not the only way bias can man-
ifest in MT. For example, Figure 1 demonstrates
marked gender in the female case of the same sen-
tence while remaining neutral in the male case.
Since the translations are both accurate, unless the

∗* Equal contribution.

Figure 1: Using Google Translate, “My sister is a soccer
player” accurately translates to “My female sibling is a soccer
player” while “My brother is a soccer player” is translated to
“My sibling is a soccer player”. Gender is overtly marked only
when the subject is female.

two sentences are presented together, the asymme-
try in gender reference is not immediately obvious.
The example demonstrates the use of optional ref-
erential gender in Turkish, highlighting the need to
frame gender bias in MT around language-specific
social and cultural knowledge.

While previous mitigation efforts have focused
on debiasing training data (Elaraby et al., 2018;
Costa-jussà and de Jorge, 2020; Stafanovičs et al.,
2020; Saunders and Byrne, 2020), the issue of
covert bias has not been adequately addressed, and
goes far beyond the perpetuation of outdated stereo-
types. In order to ensure that the true meaning
of the source is accurately represented during the
translation process, understanding the linguistic
and social context of the utterance is necessary.

In this paper, we examine both overt and covert
gender biases in commercially-used MT models
through the use of a gender-neutral language, Turk-
ish, and a gendered language, English. Our study
investigates explicit stereotype bias through the
assignment of pronouns according to stereotypes
regarding occupation and personality. We also in-
vestigate how additional qualifiers to job descrip-
tions affect results: for example, are “good doctors”

55

more likely to be men than “bad” ones? Simi-
larly, we measure how a reference to personhood
changes pronoun results. Lastly, we shed light on
the presence of asymmetrical gender in MT models
by analyzing explicit gender markings in Turkish
translations of gender-specific English sentences.
We not only ask if gender markings occur more for
female subjects, but also if gender markings are
more likely when the stereotype of the predicate
does not align with the gender of the subject.

To this end, we created a parallel corpus of 1,617
Turkish and English job titles. We also compiled
a list of descriptive adjectives based on Turkish
stereotypes and formed appropriate Turkish sen-
tences with and without a reference to personhood.
Lastly, we formed a dataset of English sentences by
pairing a gendered English subject word (that has
no gendered translation in Turkish) with a gender-
stereotyped action or description. Our code and
data can be found in our GitHub repository.1

2 Related Work

Previous works on bias in embeddings and mod-
els (Bolukbasi et al., 2016; Zhao et al., 2019;
Stanovsky et al., 2019), as well as corpora
(Babaeianjelodar et al., 2020), have demonstrated
that gender bias exists in the core of MT models.
Additionally, Stanovsky et al. (2019) introduced
a challenge set in measuring bias from English to
languages with morphological gender.

One common approach in bias evaluation is to
translate from a gender-neutral language to a gen-
dered language and examine the pronouns selected
for occupations and adjectives (Prates et al., 2020;
Farkas and Németh, 2020; Cho et al., 2019). We
used a modified version of these methods by en-
suring that the occupation exists in the target lan-
guage as well as the source language and that the
adjectives used are actual stereotypes in Turkey
(Sakallı et al., 2018)2. Our remaining experiments
are inspired by socio-linguistics research in Turkish.
First, Braun (2001) discusses how neutral Turkish
words describing people, such as insan (“human”),
tend to be biased towards male interpretations. In
NLP, Mehrabi et al. (2020) examines a related bias
in English named-entity recognition where fewer

1https://github.com/NurIren/Gender-Bias-in-TR-to-EN-
MT-Models

2Turkish is also a commonly used gender-neutral language
in previous works (Prates et al., 2020; Lauscher and Glavaš,
2019; Zhao et al., 2020), but these works use an intermediary
translator to form their Turkish datasets.

female names are recognized as “person” entities
than male ones. Our work will similarly exam-
ine gender and personhood bias but in MT models.
Second, Braun (2001) describes asymmetrical gen-
der markings in the Turkish language, concluding
that male gender remains unmarked regardless of
context, whereas female gender tends to be overly
expressed. For example, female children are more
likely to be referred to with marked gender (kız
çocuğu “girl child” instead of çocuk “child”) than
male children. The exception to this pattern is when
the subject is exceptionally stereotyped as feminine
(e.g. hizmetçi “househelper”). We will extend the
study of this phenomenon to MT.

3 Experiments

We used four commercially available MT models
in our experiments: Google Translate, Amazon
Translate, Microsoft Translator, and SYSTRAN.
For reproducibility purposes, all translations were
executed in April of 2021. All datasets can be
found on our GitHub1.

3.1 He is a Doctor, She is a Nurse? Gender
Bias in Job Occupation

We examined the distributions of the pronouns se-
lected in English when Turkish sentences were
translated following the template3: “He/She is a(n)
<occupation>”, and compared them to the 2020
Turkish (Türkiye Istatistik Kurumu, 2021) and US
(U.S. Bureau of Labor, 2020) workforce statistics.
Inspired by Farkas and Németh (2020), a second
template “He/She is a <adjective><occupation>”
was also formed using the words çok kötü (“very
bad”), kötü (“bad”), iyi (“good”), and çok iyi (“very
good”) as attributive adjectives to determine their
influence.

We retrieved occupation lists from Turkish and
US government agencies4 and matched occupa-
tions that exist in both countries 5. Some occupa-
tion titles were modified for clarity, and some were
removed due to gender requirements or a lack of
census data, as described in detail in Appendix A.
Through our matching process, we were able to
match 1,617 occupations.

3The same template was also used by Prates et al. (2020).
4Turkish Employment Agency (İŞKUR) and the United

States Department of Labor Bureau of Labor Statistics
5Using both the major and minor occupational titles of

International Standard Classification of Occupations (ISCO-
08)

56

3.2 He is Smart, She is Beautiful? Bias in
Adjective Use

We pulled stereotypes from a study where Turk-
ish undergraduate students were asked to provide
adjectives that describe men and women (Sakallı
et al., 2018). We compiled the list of adjectives pre-
sented by this work and removed any that were lexi-
cally gendered, leaving 97 total adjectives. Each ad-
jective was then labeled as either masculine-coded
(e.g. agresif “agressive”) or feminine-coded (e.g.
güçsüz “weak”) if more than 60% of the time that
word was used to describe a certain gender. All
others were considered to be neutral.

The adjectives were first placed into the tem-
plate “O <adjective>” (He/She is <adjective>)6

to assess the adjective stereotypes and then into
the template “O <adjective> birisidir” (“He/She
is someone who is <adjective>)7 in order to as-
sess if the introduction of the “personhood factor”
changed the assumed gender in the translations.

6Since Turkish is an agglutinative language, the proper
suffixes were also appended to each adjective in order to fit
the first template.

7Note that although the translation may seem unnatural in
English, this is a common utterance in Turkish.

3.3 Bias Through Asymmetrical Gender
Markings

English sentences were formed with grammati-
cally gendered subjects, followed by a predicate
including a stereotypical occupation, description,
or activity. For example, “My sister is an engi-
neer” contains a female subject and a stereotypi-
cally masculine predicate. These sentences were
then translated to Turkish to measure if the sub-
ject was gender-marked. We aim to answer several
questions. First, are sentences with male subjects
less likely to mark gender than sentences with fe-
male subjects? Second, is gender more likely to be
marked when the stereotype of the predicate does
not align with the gender of the subject?

We selected four subject words that are gendered
in English but are grammatically neutral in Turkish.
For example, there are no commonly used words
for “brother” and “sister”; the only options are
“sibling” (kardeş), “male sibling” (erkek kardeş),
or “female sibling” (kız kardeş). For each of the
predicate categories (occupation, description, and
activity), we selected five that were stereotypically
masculine and five stereotypically feminine accord-
ing to Turkish gender stereotypes (Sakallı et al.,

0

20

40

60

30.98

18.18

47.03

28.32

42.48
33.26 34.11

39.93

12.82 11.47

2020
Translation

Total Managers Professionals Technicians Clerical Service Agricultural Elementary Trades Machine Operators

0
2.8 0.0

4.66 1.38 0.34
8.06 5.56 2.49 1.71 0.66

US SOC Major Occupation Group

Pe
rc

en
ta

ge
 o

f W
om

en

0

20

40

60

80

100

46.8 40.4
53.9

25.2
16.5

49.3

68.8

51.9

73.5

51.3

74.4
85.3

23.6

58.1

40.3

77.0
61.3

72.7

24.1 20.5

4.0 4.1

2020
Translation

Total Man. Bus. Comp. Arch. Eng. Soc. Leg. Edu. Art Hea. Hea. Sup. Ser. Food Bui. Per. Sal. Off. Far. Trans. Cons. Main.

0

20
2.88 0.0 1.39 0.74 0.0 1.13

8.34 3.57 7.44 2.68 8.16 6.07 0.0
7.41 6.25 12.25

2.05 1.54 2.28 0.27 0.6 0.32

Turkish ISCO Major Occupation Group

Pe
rc

en
ta

ge
 o

f W
om

en

Figure 2: Comparison of the percent of women in the Turkish (bottom) and US (top) labor force in 2020 with the
average of the MT models broken down by ISCO-08 and SOC major groups. In both breakdowns, the translation
results clearly do not match the labor force. Additionally, the percent of female translations tends to increase in
ISCO groups (bottom) with higher female participation. Full group names can be found in Appendix A.

57

2018; Vatandaş, 2011).
By checking the translations for overt gender

markings, translators can be evaluated for asym-
metry. We compared the results across the gender
of each original English subject word as well as
the stereotypical gender of each predicate. With
10 sentence templates in each category for the four
gendered subject words, we constructed 120 sen-
tences for each gender in total.

4 Results

In this section, we evaluate8 aggregate results
across all experiments.

4.1 Gender Bias in Occupations
Overall, the percent of female pronouns selected by
the MT models were: 1.11% with Google, 1.18%
with Amazon, 3.83% with Microsoft, and 5.07%
with Systran. Figure 2 demonstrates that this is
drastically low compared to female participation
in the 2020 workplace in Turkey (31.78%) and the
US (47%).

The SOC 2018 group breakdown reveals that,
for occupation groups where female participation
is either approximately equivalent to or greater than
male participation, the models tended to translate
the occasional occupation with a female pronoun.
Occupations where women are the minority tended
to have none or nearly no female translations. Ad-
ditionally, stereotypical occupations like nurses,
fashion designers, and beauticians9 were consis-
tently translated with female pronouns. Overall, as-
suming the translation results in each job category
should match the corresponding labour statistic,
our results were statistically significant (p < 0.01).

4.2 Impact of an Attributive Adjective
Preceded by Occupation

As shown in Table 1, when an adjective was in-
troduced, sentences originally assigned a female
pronoun were more likely to be assigned a male
pronoun instead. For each attributive adjective, this
was statistically significant (p < 0.01). Further-
more, as the adjective changed from çok iyi “very
good” to çok kötü “very bad”, the amount of fe-
male pronouns that changed to male increased, but
the reverse occurred for male pronouns. For exam-
ple, using Google, Amazon, and SYSTRAN, the

8One sided t-tests performed with equal variance and p <
0.01 unless specified otherwise.

9A full list of occupations assigned female pronouns can
be found in the appendix.

Turkish sentence “O bir Yoğun Bakım Hemşiresi”
yielded the translation “She is an intensive care
unit nurse”, but the sentence “O çok kötü bir Yoğun
Bakım Hemşiresi” yielded “He is a very bad inten-
sive care unit nurse”.

Adjective “She”→“He” “He”→“She”
Very Good 0.1272 0.0044
Good 0.1503 0.0039
Bad 0.3353 0.0005
Very Bad 0.3815 0.0010

Table 1: The proportion of pronouns that changed (fe-
male to male or male to female) due to the addition of
an attributive adjective, cumulative across all transla-
tors.

4.3 Turkish Gender Stereotypes in Person
Descriptors

For the first sentence template (“He/She is
<adjective>”), the first outstanding result is that
only 6.74% percent of the pronouns assigned were
female (SYSTRAN: 24.5%, Google: 2%, Mi-
crosoft: 3.1%, Amazon: 2%) which indicates a
strong bias towards male pronouns overall. Sec-
ondly, the sentences that were translated to a female
pronoun were much more likely to have contained a
female-coded adjective. This was highly significant
(p < .01) in comparison to the amount of female
pronouns generated by sentences with male-coded
adjectives and significant (p < .05) in comparison
to neutral ones. The reverse did not hold true for
male pronouns; while 83.34% of all sentences that
were assigned a female pronoun contained female-
coded adjective, only 46.70% of translations with
male pronouns were male-coded.

4.4 Analyzing Gendered Personhood
Following from the previous section, we analyze
if adding a personhood modifier to the adjective
sentences affects pronoun use. Of the sentences
that were assigned female gender in the first tem-
plate, 74.07% changed to male pronouns in the
second template when personhood was introduced.
The opposite is not the case; only 2.76% of ad-
jectives with male pronouns in Template 1 were
female in Template 2. Overall, each translator was
significantly more likely to assign a male pronoun
when the original sentence contained a personhood
modifier (p < 0.01).

4.5 Asymmetrical Gender Analysis
As shown in Figure 3, for male subject words,
47.7% of the translations did not mark gender

58

Male Female
Gender of Subject

0

10

20

30

40

50

60
Pe

rc
en

t o
f N

eu
tra

l T
ra

ns
la

tio
ns

Google
Amazon
Microsoft
SYSTRAN
Average

Figure 3: The percentages of translations that used the
neutral case according to the gender of the subject per
translator as well as the average. While the translations
with male subject words had an almost even split, fe-
male subject words left gender unmarked only 25% of
the time.

Male Female
Gender of Subject

0

20

40

Pe
rc

en
t o

f N
eu

tra
l T

ra
ns

la
tio

ns

Masculine Predicate
Feminine Predicate

Figure 4: The percent of translations that used the neu-
tral case and didn’t preserve gender, across male and
female stereotyped predicates, as well as masculine or
feminine subjects. For male subject words, gender is
significantly more likely to be overtly expressed if the
predicate is stereotypically feminine (p < 0.05).

and used the neutral form. However, only 25%
of the female subject words used the neutral case.
This was due to one word, yeğen (“niece/nephew”),
that remained neutral 100% of the sentences for
both male and female subject words. We theo-
rize that this derives from spoken Turkish as yeğen
(“niece/nephew”) is not frequently gender-marked.

Figure 4 demonstrates that when the predicate
was stereotypically masculine and the subject word
was male, the MT models assumed that the gender
of the subject did not need to be overtly expressed,
and gender was not preserved 52.1% of the time.
For example, “The young men are soccer players”
(masculine predicate) did not preserve gender in the
translation while “The young men are secretaries”
(feminine predicate) did. However, gender was
overtly expressed in 56.6% of translations when a
stereotypically female predicate was paired with a
male subject. Female subject words did not follow
this pattern—in fact, for all subject words other

than niece/nephew, gender was overtly marked in
75% of the translations. In summary, although male
gender was only marked when the content of the
sentence deviated from the masculine social norm,
female gender was marked in the overwhelming
majority of cases, and was consistently treated as
aberrational regardless of context.

5 Conclusion

We have examined gender bias exhibited by com-
mercially used MT models in the case of Turkish
and English translations. We have shown evidence
of overt gender bias through occupation and ad-
jective stereotypes, and covert gender bias through
asymmetrical gender and personhood bias. Further-
more, our experiments show consistent evidence
of male bias in a neutral context. Male gender was
assumed in reference to gender-equal occupations
and stereotype-neutral adjectives, and the same phe-
nomenon extends to the manifestation of overt gen-
der markings where male subjects were more likely
to be assigned the neutral case. However, when the
context was not neutral, stereotype bias routinely
affected results across all experiments.

Previous bias mitigation discussions have fo-
cused on fair pronoun assignments (Prates et al.,
2020; Cho et al., 2019; Baeza-Yates, 2019). Ad-
ditionally, Google Translate has recently imple-
mented a gender-specific translation feature (Kucz-
marski, 2018; Johnson, 2020). While pronoun as-
signment is a salient and ongoing concern, our
study demonstrates how the problem of gender bias
can be far more complex. Our experiments show
that domain and cultural knowledge are required
and these techniques are not necessarily transfer-
able across languages. We advocate for the inclu-
sion of language-specific differences and the design
of mitigation models that are linguistically aware
and socially grounded. We hope that our work
will bring more attention to such interdisciplinary
work, prompt continued research in how gender
bias is expressed in NLP, and assist with mitigation
efforts.

Acknowledgements

We would like to thank Sami Iren for his assistance
and insights in verifying our translation data sets
for accuracy.

59

References
Marzieh Babaeianjelodar, Stephen Lorenz, Josh Gor-

don, Jeanna Matthews, and Evan Freitag. 2020.
Quantifying gender bias in different corpora. In
Companion Proceedings of the Web Conference
2020, WWW ’20, page 752–759. Association for
Computing Machinery.

Ricardo Baeza-Yates. 2019. Bias on the web. Sympo-
sium on Fairness and Transparency, page 9.

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Pro-
ceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS’16,
page 4356–4364. Curran Associates Inc.

Friederike Braun. 2001. The communication of gender
in turkish. In Gender Across Languages, pages 283–
310. John Benjamins.

Judith Butler. 1990. Gender trouble: feminism and the
subversion of identity. Routledge, New York, NY.

Won Ik Cho, Ji Won Kim, Seok Min Kim, and
Nam Soo Kim. 2019. On measuring gender bias
in translation of gender-neutral pronouns. In Pro-
ceedings of the First Workshop on Gender Bias in
Natural Language Processing, pages 173–181. As-
sociation for Computational Linguistics.

Marta R. Costa-jussà and Adrià de Jorge. 2020.
Fine-tuning neural machine translation on gender-
balanced datasets. In Proceedings of the Second
Workshop on Gender Bias in Natural Language
Processing, pages 26–34. Association for Computa-
tional Linguistics.

Mostafa Elaraby, Ahmed Y Tawfik, Mahmoud Khaled,
Hany Hassan, and Aly Osama. 2018. Gender aware
spoken language translation applied to english-
arabic. In 2018 2nd International Conference
on Natural Language and Speech Processing (IC-
NLSP), pages 1–6. IEEE.

Anna Farkas and Renáta Németh. 2020. How to mea-
sure gender bias in machine translation: Optimal
translators, multiple reference points. arXiv preprint
arXiv:2011.06445.

Melvin Johnson. 2020. A scalable approach to reduc-
ing gender bias in google translate. Google AI Blog.

James Kuczmarski. 2018. Reducing gender bias in
google translate. The Keyword.

Anne Lauscher and Goran Glavaš. 2019. Are we con-
sistently biased? multidimensional analysis of bi-
ases in distributional word vectors. In Proceedings
of the Eighth Joint Conference on Lexical and Com-
putational Semantics (*SEM 2019), pages 85–91.
Association for Computational Linguistics.

Ninareh Mehrabi, Thamme Gowda, Fred Morstatter,
Nanyun Peng, and Aram Galstyan. 2020. Man is to
person as woman is to location: Measuring gender
bias in named entity recognition. In Proceedings of
the 31st ACM Conference on Hypertext and Social
Media, HT ’20, page 231–232. Association for Com-
puting Machinery.

Marcelo Prates, Pedro Avelar, and Luı́s Lamb. 2020.
Assessing gender bias in machine translation: a case
study with google translate. Neural Computing and
Applications, 32.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14. Association for Computational Linguis-
tics.

Nuray Sakallı, Beril Türkoğlu, and Abdulkadir Kuzlak.
2018. How are women and men perceived? struc-
ture of gender stereotypes in contemporary turkey.
Nesne Psikoloji Dergisi, 6:309–336.

Danielle Saunders and Bill Byrne. 2020. Reducing gen-
der bias in neural machine translation as a domain
adaptation problem. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7724–7736. Association for Com-
putational Linguistics.

Artūrs Stafanovičs, Toms Bergmanis, and Mārcis Pin-
nis. 2020. Mitigating gender bias in machine trans-
lation with target gender annotations. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 629–638. Association for Computational Lin-
guistics.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettle-
moyer. 2019. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1679–1684. Association for Computa-
tional Linguistics.

Türkiye Istatistik Kurumu. 2021. İşgücü İstatistikleri,
2020.

U.S. Bureau of Labor. 2020. Labor force statistics from
the current population survey.

Celalettin Vatandaş. 2011. Toplumsal cinsiyet ve cin-
siyet rollerinin algılanışı. Istanbul Journal of Socio-
logical Studies, 0:29 – 56.

Jieyu Zhao, Subhabrata Mukherjee, Saghar Hosseini,
Kai-Wei Chang, and Ahmed Hassan Awadallah.
2020. Gender bias in multilingual embeddings and
cross-lingual transfer. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2896–2907. Association
for Computational Linguistics.

60

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cot-
terell, Vicente Ordonez, and Kai-Wei Chang. 2019.
Gender bias in contextualized word embeddings.
pages 629–634.

61

A Occupation Data Set Details

This section provides additional details on how the
occupation data set was created. The final data
set includes matches that are exact matches and
matches that are similar. Similar matches fall into
one of the following categories:

1. One occupation is a more specific or broad
version of it’s matching occupation.

2. One occupation uses a slightly different title
but describes a similar job.

3. Specifically for educational occupations, the
matching occupation describes a different edu-
cational level. This helps include occupations
that generally exist, but due to different edu-
cation system setups, are offered at different
levels.

Some of the occupation titles have been slightly
modified in order to better describe the occupation
it matches. These modifications fall into one of the
following categories:

1. The occupation title includes punctuation like
hyphens or parentheses that describe the occu-
pation. These titles were modified to include
the details provided by that occupation.

2. The occupation is split into multiple occupa-
tions because it is two separate occupations in
the matching country.

3. Specific job details not included in the match-
ing occupation were removed.

Although there were matches, certain occupa-
tions were not included for the following reasons:

1. Any religious occupation, due to gender re-
quirements of the majority of those occupa-
tions, were not included.

2. Gender specific Turkish occupations. This
includes occupations that are either culturally
gendered or lexically have gender.

3. Due to different governmental regulations and
requirements surrounding gender, military oc-
cupations were not included.

Lastly, we list all occupation group names and
their abbreviations in Tables 2 and 3.

Abbreviation SOC Major Group Title
Man. Management
Bus. Business and Financial Operations
Comp. Computer and Mathematical
Arch. Architecture and Engineering
Eng. Life and Physical Engineering
Soc. Community and Social Service
Leg. Legal
Edu. Education Training and Library
Art. Arts, Design, Entertainment, Sports and

Media
Hea. Healthcare Practitioners and Technical
Hea. Sup. Health Practitioner Support Technologists

and Technicians
Ser. Service
Food Food Preparation
Bui. Building and Grounds Cleaning and Man-

agement
Per. Personal Care and Service
Sal. Sales and Office
Off. Office Administration Support
Far. Farming, Fishing and Forestry
Trans. Transportation and Material Moving
Cons. Construction and Extraction
Main. Installation, Maintenance, and Repair

Table 2: Full US SOC occupation titles.

Abbreviation ISCO Major Group Title
Technicians Technicians and Associate Professionals
Clerical Clerical Support Workers
Service Service and Sales Workers
Agricultural Skilled Agricultural, Forestry, and Fishery

Workers
Trades Craft and Related Workers
Machine Op-
erators

Plant Machine Operators and Assemblers

Elementary Elementary Operators

Table 3: Turkish ISCO group names.

B Occupations with Female Generated
Pronouns

Table 4 lists all occupations that were assigned
female pronouns by at least 3 out of 4 translators.

Occupational Health Spec. Skin Care Instructor
Barbering Instructor Emergency Room RN
Registered Nurse Housekeeping Aide
Surgical Nurse Practitioner Interior Design Professor
Fashion Designer CCU Nurse
Certified Diabetes Educator Bridal Gown Fitter
Cosmetology Instructor Clinical Nurse Specialist
Makeup Artist Beautician
Pediatric Registered Nurse

Table 4: Occupations assigned mostly female pro-
nouns.

The matching Turkish occupation titles can be
found in the GitHub1.

62

C Sentence Templates in Turkish

Table 5 lists original sentence templates in Turkish.

Original Turkish Template English Translation
O bir <occupation> He/she is a <occupation>
O bir <adjective> He/she is <adjective>
O bir <adjective>
<occupation>

He/she is a <adjective>
<occupation>

O <adjective> birisidir He/she is someone who is
<adjective>

Table 5: Turkish sentence templates. In the third tem-
plate, the adjective was one of: “çok iyi” (very good),
“iyi” (good), “kötü” (bad), or “çok kötü” (very bad).

63

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 64–75,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

WeaSuLπ: Weakly Supervised Dialogue Policy Learning: Reward
Estimation for Multi-turn Dialogue

Anant Khandelwal
India Machine Learning

Amazon
anantkha@amazon.com

Abstract

An intelligent dialogue system in a multi-turn
setting should not only generate the responses
which are of good quality, but it should also
generate the responses which can lead to
long-term success of the dialogue. Although,
the current approaches improved the response
quality, but they over-look the training signals
present in the dialogue data. We can lever-
age these signals to generate the weakly su-
pervised training data for learning dialog pol-
icy and reward estimator, and make the pol-
icy take actions (generates responses) which
can foresee the future direction for a suc-
cessful (rewarding) conversation. We simu-
late the dialogue between an agent and a user
(modelled similar to an agent with supervised
learning objective) to interact with each other.
The agent uses dynamic blocking to gener-
ate ranked diverse responses and exploration-
exploitation to select among the Top-K re-
sponses. Each simulated state-action pair is
evaluated (works as a weak annotation) with
three quality modules: Semantic Relevant, Se-
mantic Coherence and Consistent Flow. Em-
pirical studies with two benchmarks indicate
that our model can significantly out-perform
the response quality and lead to a successful
conversation on both automatic evaluation and
human judgement.

1 Introduction

Dialog policy for multi-turn dialogue decides the
next best action to take on the environment so as to
complete the conversation based on various success
criteria. Reinforcement learning can help to learn
such a policy where the environment can be users
(human or model) and the policy takes action on
the environment from which it gets a reward signal
(Fatemi et al., 2016; Peng et al., 2017; Chen et al.,
2017; Yarats and Lewis, 2018; Lei et al., 2018; He
et al., 2018; Su et al., 2018).

Learning a dialogue policy using reinforcement
learning can be challenging with humans users,

since it requires a large set of samples with a reward
to train. Since there are a lot of previous works on
neural response generation (Gu et al., 2020; Zhao
et al., 2020; Zhang et al., 2019; Xing et al., 2018;
Serban et al., 2016) we can model the users also,
using any of these encoder-decoder architectures.
This helps to simulate the conversations between
the simulated user and the agent (policy model)
replying to each other (Zhao and Eskenazi, 2016;
Dhingra et al., 2016; Shah et al., 2018). Reward
signal for policy learning can be as simple as the
small constant negative reward at each turn and a
large reward at the end (if the goal completes) to
encourage shorter conversations (Takanobu et al.,
2019).

However, reward estimation for dialogue is chal-
lenging, the small constant negative reward at each
turn may lead to ending the conversation prema-
turely. Instead of handcrafting the reward at the
end based on success or failure, it is more useful
if we can evaluate reward at every turn to guide
the policy to dynamically change actions as per the
need for the user and end the conversation natu-
rally. With the growing complexity of the system
across different topics, it is required to build a more
sophisticated reward function to avoid manual in-
tervention for accounting different factors towards
conversation success.

In this work, we proposed a novel model for
contextual response generation in multi-turn dia-
logue. The model includes the turn-level reward
estimator, which combines the weak supervision
signals obtained from three basic modules 1) Se-
mantic Coherence, 2) Consistent Flow, 3) Semantic
Relevance. These modules are learned jointly with
the response generation model with the counter-
factual examples obtained from negative sampling.
Leveraging the weak supervision signals obtained
from these models, we further update the reward
estimator and dialog policy jointly in an alternative
way, thus improving each other.

64

Our proposed approach integrates semantic un-
derstanding of utterances using encoder-decoder
systems with the power of Reinforcement Learning
(RL) to optimize long-term success. We test the
proposed approach with two benchmarks: Daily-
Dialog (Li et al., 2017b) and PersonaChat (Zhang
et al., 2018). Experimental results demonstrate
on both datasets indicate that our model can sig-
nificantly outperform state-of-the-art generation
models in terms of both automatic evaluation and
human judgment.

2 Related Work

Open-domain dialogue in a multi-turn setting
has been widely explored with different encoder-
decoder architectures (Gu et al., 2020; Feng et al.,
2021; Kottur et al., 2017; Li et al., 2016; Shah
et al., 2018; Shang et al., 2015; Vinyals and Le,
2015; Wu et al., 2019; Zhao et al., 2020; Zhong
et al., 2019). The basic encoder-decoder archi-
tectures like Seq-to-Seq models have been widely
extended and modified to generate the generic re-
sponses, context modelling and grounding by per-
sona/emotion/knowledge (Li et al., 2015; Xing
et al., 2017; Serban et al., 2016; Xing et al., 2018;
Zhang et al., 2019, 2018; Zhou et al., 2018; Dinan
et al., 2018).

The dialogue literature widely applies reinforce-
ment learning, including the recent ones based on
deep architectures (Takanobu et al., 2019, 2020;
Li et al., 2020; Takanobu et al., 2020; Li et al.,
2020; Gordon-Hall et al., 2020a,b). But these task-
oriented RL dialogue systems often model the di-
alogue with limited parameters and assumptions
specific to the dataset, targeted for that task. The
dataset includes hand-built templates with state, ac-
tion and reward signals designed by humans for
each new domain making this setting difficult for
extending these to open domain dialogue systems.

Our goal in this work is to integrate the state-
of-the-art encoder-decoder architectures like in Gu
et al. (2020); Zhao et al. (2020); Csaky and Rec-
ski (2020) and reinforcement learning paradigms
to efficiently learn the dialogue policy optimized
for long-term success in the multi-turn dialogue
scenarios. We are recently inspired by the works
in Takanobu et al. (2019); Li et al. (2020, 2016)
to jointly learn the reward function and dialogue
policy, and reduce the effort and cost for manual
labelling the conversations for building the reward
model. Specifically, we leverage the weak supervi-

sion inspired from Chang et al. (2021a,b) to gener-
ate the labelled dataset to facilitate this joint learn-
ing and building reward estimation model.

3 Approach

We represent dialog sessions D =
{τ1, τ2, τ3,τn} where each dialog ses-
sion τ represents the trajectory of state-action pairs
as {su0 , au0 , s0, a0, su1 , au1 , s1, a1,}. The user in
our case is a simulator which utters a response au

given the state su denoted as µ(au, eu|su) where
eu denotes the binary signal indicating the end
of a dialog session, in that case the response au

is empty. The dialog policy πθ(a|s) decides the
action a according to the current state s after the
agent interacts with the user simulator µ. At each
time, the state given to the either dialog party is
updated after recording the action uttered by the
other party. The reward estimator f evaluates the
quality of response/action uttered by the dialog
policy π. The dialog policy π is based on the
BERT (Devlin et al., 2019) encoder-decoder model
and the reward function f is the MLP model
parameterized by θ and ω respectively. We have
modeled the user simulator exactly in the same
way as the agent but trained only using supervised
learning objective.

In the subsequent section, we will introduce the
components action, state, policy, quality modules
and reward estimator. Further, sections explain the
setup we have used for weakly supervised learning
and, finally, the experimental results.

3.1 Action

An action a is the dialogue utterance generated by
the encoder-decoder model as shown in Figure 1.
The model takes as input the context history (state),
and outputs the probability distribution over a set of
possible actions denoted as πθ(a|s) parameterized
by θ. The user simulator generates the action au,
policy generates the action a, and the input state
for the agent and the user is s and su respectively.

3.2 State

The state is the past conversation history be-
tween an agent and a user denoted as, st =
{q1, a1, q2, a2, q3, a3,, qt}. The state for an
agent and a user are differently denoted as s
and su respectively. Let’s say the agent utter-
ances are denoted by a’s, then state, s = st
and the agent utters at. Similarly, the user state

65

BERT Encoder

[CLS] SBERT

BERT Decoder

[CLS]

MLP

[EOS]

Figure 1: BERT based Encoder-Decoder with Seman-
tic Coherence and Relevance. Similarly, Consistent
Flow loss is also calculated using encoder.

sut = {q1, a1, q2, a2, q3, a3,, qt, at} and the
user utters qt+1. Each of the utterances is mapped
to a fixed-length sentence vector using SBERT
(Reimers and Gurevych, 2019).

3.3 Dialogue Policy
The dialogue policy takes the form of a BERT
based encoder-decoder (i.e. πθ(a|s)) (Gu et al.,
2020) as shown in Figure 1. Similar to Xu et al.
(2020), we have used the BERT based encoder and
transformer decoder, but instead of feeding the ut-
terance at word level, we instead fed the utterance
representation (obtained from SBERT) into the en-
coder. The encoder takes as input the previous
context history as st and output the response at at
the output of the decoder.

3.4 User Simulator
We have modelled the user simulator in exactly
the same way as the BERT based encoder-decoder
shown in Figure 1. However, the user simulator is
trained only (with supervised learning objective)
for utterances in dialog corpus and predicting user
response (Gu et al., 2020).

3.5 Conversation Quality Modules
We calculate the reward for each state-action pair
(see Section. 3.8) and use this signal to train the
dialogue policy so that it can avoid reaching bad
states so as to reach the successful end of the con-
versation between a user and an agent. We have
leveraged the signals from three basic modules,

namely, Semantic Coherence, Consistent Flow and
Semantic Relevance (which are jointly learned with
the dialogue policy). For each of the three modules,
the data for the positive class is obtained from the
source corpus while for the negative class it has
been generated dynamically during training. We
describe each of the three modules in the following
sections.

3.5.1 Semantic Relevance
We need to filter out the utterances generated with
high confidence by the dialog policy but are se-
mantically irrelevant to the previous context. To
quantify such a characteristic, we modeled the gen-
eral response relevance prediction task which uti-
lizes the sequential relationship of the dialog data
fed to the encoder side of BERT encoder-decoder
framework. Since, the task of semantic relevance
is to match the two sequences of conversation, so
instead of matching the context and response, we
have measured the relevance of two fragments of
dialogue session.

Specifically, given a context c =
{q1, a1, q2, a2,qm}, we randomly
split c into two consecutive pieces
cleft = {q1, a1, q2, a2,qt, at} and
cright = {qt+1, at+1,qm}. Similar to Xu
et al. (2020), we replaced the left or right part with
the sampled piece from the corpus. Also, we addi-
tionally generate the negative samples by internal
shuffling in the left or right part. The whole model
is trained like a classifier with corresponding labels
ysr ∈ {0, 1}. Since the individual utterances are
fed after obtaining their vector representation,
the aggregated representation of two pieces is
represented by EsrCLS over which the non-linear
transformation is applied, the score for semantic
relevance is given by g(cleft, cright), and similar
to Xu et al. (2020), it has been trained using the
binary cross-entropy loss as:

Lsr = −ysr log(g(cleft, cright))

− (1− ysr) log(1− g(cleft, cright)) (1)

3.5.2 Semantic Coherence
The response generated should be rewarded only if
it is coherent despite having adequate content. This
makes the model to generate the coherent responses
while avoiding the incoherent ones. Specifically,
given a context c = {q1, a1, q2, a2,qm}, we
randomly select any of the agent response at time
t, denoted as at, and replace it with any random

66

utterance from the corpus. We also generate the in-
coherent samples by internal shuffling of bi-grams.
The incoherent utterance is labelled as ycoht = 0
and coherent samples as ycoht = 1. The semantic
coherence model is also trained like a classifier for
each of the utterance representations obtained at the
output of BERT encoder as shown in Figure 1. The
probability of the t-th utterance being incoherent is
given as:

p(zt = 1|a1, .., at) = softmax(WcohEat+bcoh)

=
exp(WcohEat + bcoh)∑m
l=1 exp(WcohEal + bcoh)

(2)

and the loss function is given as:

Lcoh = −
m∑

t=1

zt log p(zt = 1|a1, a2.....am) (3)

3.5.3 Consistent Flow
We want the agent to continuously add the infor-
mation to keep the conversation going in the for-
ward direction. To determine the flowing conversa-
tion, we take the cosine similarity between the last
two agent utterances denoted as Eai−1 and Eai de-
noted as g(ai−1, ai), and we measure the similarity
with randomly sampled utterance v in place of ai−1
given as g(ai−1, v). We would like g(ai−1, ai) to
be larger than g(ai−1, v) by at least a margin ∆ and
define the learning objective as a hing loss function:

Lcf = max{0,∆−g(ai−1, ai)+g(ai−1, v)}
(4)

3.6 Joint Training of Agent and Reward
Modules

To initialize the parameters of agent and reward
modulesM ={Semantic Relevance, Semantic Co-
herence, Consistent Flow}, we used the supervised
learning objective since all the state-action pairs ob-
tained from the pre-training corpus are the ground-
truth and can be used as close approximation for
further fine-tuning on other dialog corpus. We
used the pre-training corpus P as Gutenberg di-
alog corpus (Csaky and Recski, 2020). Since the
agent model in our case is based on BERT encoder-
decoder parameterized by θ similar to Gu et al.
(2020), the probability of generating agent’s re-
sponse a is given as:

pθ(a|s) =
N∏

j=1

pθ(aj |a<j , s), (5)

where aj is the j-th word generated at the output
of decoder and s is the whole context history utter-
ances fed to the encoder and N is the maximum
sequence length of decoder. The loss function for
generating agent response a is given as:

La = J(θ) = −
N∑

i=1

log pθ(aj |a<j , s) (6)

The joint loss function is defined as:

Lfull = La + α ∗ (Lsr + Lcoh + Lcf) (7)

The policy πθ is also parameterized by θ, and the
probability of action a is given by πθ(a|s) simi-
lar to pθ(a|s), since the probability distribution is
learned only from (s, a) pairs obtained from the
corpus with human demonstrations. It is a good
approximation to initialize the parameters of policy
πθ(a|s) with parameters of pθ(a|s). Furthermore,
we update the policy πθ (Step 13 in the Algorithm.
1) to avoid actions awhich do not lead to rewarding
conversations.

3.7 Dialogue Simulation between Agent and
User

We setup simulation between virtual agent and user,
and let them take turns talking to each other. The
simulation is started with a starter utterance ob-
tained from the dialog samples DH (Step 5 of Al-
gorithm 1) and fed to the agent, it then encodes the
utterance and generates the response a, the state
su is then updated with previous history and fed
to the user model to obtain the next response au.
The response au is appended to su to obtain the
updated state s. Similarly, the process is repeated
until one of the following conditions occurs after
a few number of turns1: a) When agent starts to
produce dull responses like “I don’t know” 2. b)
When agent starts to generate repetitive response
consecutively 3 c) Or, the conversation achieved
the maximum number of turns handled by agent
and user models.4

1The number of turns after these rules applied is average
number of turns in the corpus

2Used simple rule matching method with 9 phrases col-
lected from the corpus, instead of having false positives and
negatives this works well in practice.

3If by rule two consecutive utterances matched more than
80% it is said to be repetitive.

4The maximum number of turn is set as 20.

67

3.8 Weakly Supervised Learning Algorithm

Learning with weak supervision is widely used
with the rise of data-driven neural approaches (Rat-
ner et al., 2020; Mrkšić et al., 2017; Chang et al.,
2020; Bach et al., 2017; Wu et al., 2018; Chang
et al., 2021a). Our approach incorporates a simi-
lar line of work by providing noisy text to a pre-
trained model which incorporates prior knowledge
from general-domain text and small in-domain text
(Peng et al., 2020; Chen et al., 2019; Harkous et al.,
2020) and use it as a weak annotator similar to
Ratner et al. (2020). The primary challenge with
the synthetic data is the noise introduced during
the generation process, and the noisy labels tend to
bring little to no improvement (Frénay and Verley-
sen, 2013). To train on such noisy data, we employ
three step training process: a) pre-training b) gen-
erate data with weighted categories c) fine-tuning
similar to Chang et al. (2021a); Dehghani et al.
(2017).

Step 1: Pre-train Generation and Quality Mod-
ules Jointly. This step involves pre-training the
agent with quality modules jointly as explained
in Section 3.6. Quality modules trained on clean
data as well as automatically generated negative
samples by random sampling. These modules are
further fine-tuned on the sampled dialogues from
target dialogue corpus at each training iteration.
Similarly, we initialized the user also by supervised
training on the pre-training dialogue corpus with
fine-tuning on target dialogue corpus. (see steps 2-7
of Algorithm 1). The fine-tuning steps make use of
continual learning to avoid catastrophic forgetting
(Madotto et al., 2020; Lee, 2017).

Step 2: Generates the Weakly Labelled data
with Reward categories. After the models are ini-
tialized with trained parameters, the dialogue simu-
lation has been started between the agent and the
user (see Section. 3.7) to interact with each other
and generates the synthetic data with annotated
scores with each quality module for every state-
action pair in sampled dialogues. During dialogue
simulation, we employ Dynamic Blocking mecha-
nism(Niu et al., 2020) to generate novel words and
paraphrased responses. Specifically, we generate
Top-7 response at each turn and set the agent to ex-
ploration for 60 percent of the times and for the rest
of the times it exploits by selecting the response
from top two ranked responses. We specifically
filter the state-action pairs into three reward cate-
gories namely, VeryHigh, High and Low. For the

state-action pairs whose scores by each module
are greater than or equal to 0.8 are put into the
VeryHigh category. Other, state-action pairs whose
scores by each module are between 0.6 and 0.8 are
put into the High reward category. The rest of all
state-action pairs are put into the Low reward cat-
egory. Additionally, we include state-action pairs
sampled from target dialog corpus in Step 1. into
the VeryHigh category.

Step 3: Update the reward estimator and pol-
icy. The reward estimator maximizes the log likeli-
hood state-action pairs of higher rewards than the
lower ones. The reward estimator fω, parameter-
ized by ω, and let’s say H , V and L represents the
collection of all state action pairs of High, Very-
High and Low reward category respectively.

ω∗ = arg maxE(sk,ak)∼{H,V,L}[fω(sk, ak)]

fω(sk, ak) = log pω(sk, ak) = log
eRω(sk,ak)

Zω

Rω(sk, ak) =
T∑

t=k

γt−krω(st, at)

Zω =
∑

∀(sk,ak)
eRω(sk,ak)

(8)

where f models state-action pairs of H, V and L
category as a Boltzmann distribution (Takanobu
et al., 2019). The cost function for reward estimator
in terms of trajectories obtained from respective
reward categories is given as:

Jf (ω) = −0.5 ∗KL(pH(s, a) ‖ pω(s, a))

−KL(pV (s, a) ‖ pω(s, a))

+KL(pL(s, a) ‖ pω(s, a)) (9)

It minimize the KL-divergence between reward
distribution and the state-action pairs of high and
very high reward but maximize the distribution
from the ones with low category. The gradient
yields:

5ω Jf = 0.5 ∗ E(s,a)∼H [5ωfω(s, a)]

+E(s,a)∼V [5ωfω(s, a)]−E(s,a)∼L[5ωfω(s, a)]

(10)

Since, the dialog policy is required to put the ac-
tions atleast to that of high category, i.e. max-
imize the entropy regularized expected reward
(Eπ[R] + H(π)) which is effectively minimizes

68

the KL divergence between the policy distribution
and Boltzmann distribution.

Jπ(θ) = −KL(πθ(a|s) ‖ pω(s, a))

= E(s,a)∼π[fω(s, a)− log πθ(a|s)]
= E(s,a)∼π[Rω(s, a)]− logZω +H(πθ) (11)

where the term logZω is independent to θ, andH(·)
denotes the entropy of a model. Using likelihood
ratio trick the gradient for policy is given as:

OθJπ = E(s,a)∼π[(fω(s, a)

− log πθ(a|s))Oθ log πθ(a|s)]. (12)

Hence, the reward is rω(s, a) = fω(s, a) −
log πθ(a|s) for each state-action pair and the loss
function re-written as:

Jπ(θ) = E(s,a)∼π[

T∑

k=t

γk−t(fω(sk, ak)

− log πθ(ak|sk))] (13)

Like in Takanobu et al. (2019) the reward estimator
fω includes the shaping term. Formally, we include
next state st+1 also instead of just (st, at)

fω(st, at, st+1) = gω(st, at) + γh(st+1)− h(st)
(14)

where h is the MLP network with input as pre-
sigmoid scores from each quality modules, and gω
is also the MLP network with input as the con-
catenation of ECLS as state vector and SBERT
sentence embedding of action a.

4 Experiments

We conduct experiments on DailyDialog (Li et al.,
2017b), PersonaChat (Zhang et al., 2018) and used
Gutenberg Dialogue Dataset (Csaky and Recski,
2020) as a pre-training corpus. We compare our
model performance with baselines on various as-
pects of response quality.

4.1 Datasets
We considered DailyDialog (Li et al., 2017b) and
PersonaChat (Zhang et al., 2018) which are open
domain dialog corpus to evaluate our system. Dai-
lyDialog contains conversation revolving around
various topics pertaining to daily life, and Per-
sonaChat contains conversations between people
with their respective persona profiles. These dia-
logues can be of varying length, we limit the max-
imum length to 20, that can be fed to the BERT

Algorithm 1 Dialogue Policy Learning

Require: Pre-Training corpus P , Dialogue Cor-
pus D.

1: ModulesM = {Semantic Relevance, Semantic
Coherence, Consistent Flow}

2: Do Agent training on P as in Section 3.6
jointly with modulesM

3: User µ supervised training on P .
4: for each training iteration do
5: Sample dialogues DH from D randomly.
6: Fine-tune user simulator µ on DH .
7: Fine-tune Agent andM on DH jointly.
8: Collect dialog samples Dπ by executing

the dialog policy π and interacting with
µ, au ∼ µ(·|su), a ∼ π(·|s) where s
and su is updated each time after get-
ting response from user and agent re-
spectively.

9: Get weak annotation scores for all (s, a) ∈
Dπ from each of the modulesM.

10: Filtering the (s, a) pairs into {VeryHigh,
High and Low} reward categories.

11: Update the reward estimator f by minimiz-
ing Jf w.r.t ω (Eq.10)

12: Compute reward for each (s, a) ∈ Dπ as,

r̂ = fω(st, at, st+1)− log π(at|st)

13: Update the policy πθ by minimizing Jπ
w.r.t θ (Eq. 13).

14: end for

Encoder-Decoder model. Since average length of
DailyDialog is 7.9 and that of PersonaChat is 9.4,
so most of the dialogues fit easily without trunca-
tion from the history. For rest of the dialogues,
it can be slided across to include the more recent
utterances and remove it from the starting. Since
we are mapping the utterances to their correspond-
ing vectors using SBERT, the length of individual
utterances truncated automatically and retain only
first 512 word pieces in case of longer utterances.
For pre-training corpus the vocabulary is limited to
100,000 while the vocabularies for DailyDialog and
PersonaChat are 25,000 and 32,768 respectively.

4.2 Baselines

We select various multi-turn response genera-
tion baselines. The baselines which are not in-
cluded pre-training are (1) HRED : Hierarchical
encoder-decoder framework (Serban et al., 2016)

69

(2) VHRED : an extension of HRED that gener-
ates response with latent variables (Serban et al.,
2017) (3) HRAN : Hierarchical attention mech-
anism based encoder-decoder framework (Xing
et al., 2018) (4) ReCoSa : Hierarchical transformer
based model (Zhang et al., 2019) (5) SSN: di-
alogue generation learning with self-supervision
signals extracted from utterance order (Wu et al.,
2019) (6) Transformer-Auxiliary Tasks: A re-
cent state-of-the are model leaning language gener-
ation with joint learning of transformer with aux-
iliary tasks (Zhao et al., 2020). The another two
baselines from Csaky and Recski (2020) which
involve pre-training on the Gutenberg corpus are:
(1)Transformer : 50M parameters version and (2)
GPT-2 : Pre-trained model with version of 117M
parameters. The repository5 contains these two
trained models.

4.3 Evaluation Metrics

We evaluate the performance of our model on var-
ious aspects of response quality using both auto-
matic and human evaluation. Although, most of
the automatic metrics poorly correlate with human
evaluation (Liu et al., 2016), and the recently pro-
posed metrics (Li et al., 2017a; Lowe et al., 2017;
Tao et al., 2018) are harder to evaluate than perplex-
ity and BLEU (Papineni et al., 2002). Addition-
ally, human evaluation has its inherent limitation
of bias, cost and replication difficulty (Tao et al.,
2018). Due to this consensus, some used only au-
tomatic metrics (Xing and Fernández, 2018; Xu
et al., 2018b) and some used only human evalua-
tion (Krause et al., 2017; Fang et al., 2018) while
some used both (Shen et al., 2018; Xu et al., 2018a;
Baheti et al., 2018; Ram et al., 2018).

We mainly used the automatic metrics using the
DIALOG-EVAL repository6, it contains 17 differ-
ent metrics, but we measure only a few metrics to
facilitate the comparison with the published base-
lines results. We specifically follow (Zhao et al.,
2020) to measure automatic evaluation and human
evaluation. For response content quality we mea-
sured BLEU-4 (Papineni et al., 2002) and Perplex-
ity(PPL) (Sutskever et al., 2014). Like in Zhao et al.
(2020) used embedding metrics average (AVG), ex-
trema (EXT), and greedy (GRE) measuring similar-
ity between response and target embedding. Sim-
ilar to Zhao et al. (2020) we also measured the

5https://github.com/ricsinaruto/gutenberg-dialog
6https://github.com/ricsinaruto/ dialog-eval

informativeness of responses with distinct-1 and
distinct-2 that are calculated as the ratios of distinct
unigrams and bigrams.

Since our main objective is not to judge the re-
sponse quality but to predict the response for long-
term success of dialogue. We follow the guidelines
as in Li et al. (2016) to explore both single-turn and
multi-turn settings. We picked 500 dialogues from
the test set and asked 3 native speakers for their
judgement. In the first setting, we asked judges to
pick the better response among the one generated
by our model and a baseline model (Pre-Trained
GPT2) based on various criteria like answerability
and semantics. In the second setting, in case of
multi-turn we used 200 simulated conversations
between RL agent and a user model to judge the
whole conversation for responses uttered by agent.
In a complete end-to-end conversation we asked the
judges to decide which of the simulated conversa-
tions are of higher quality. To compare against the
RL model we employ baseline model to simulate
the 200 conversations with the same starter utter-
ance used by RL model. Automatic and Human
evaluation are shown in Table. 1 and 2 respectively.

4.4 Results and Discussions

Table. 1 reports automatic evaluation metrics on the
baseline and the proposed model. Our model out-
performs for most of the metrics on both datasets.
Since our main idea is to generate the responses for
successful conversation in the long run than just
evaluating the response quality at each of the turn.
This is the main reason of why our model outper-
forms on both distinct-1 and distinct-2 metrics, in
comparison to Transformer-auxiliary task model
which also trained jointly with the similar tasks but
lacks fine-tuning with the weak supervision signals
indicate that an additional training with weakly
labelled data improves the generalization perfor-
mance. Although, we see the perplexity also im-
proves since our model is generating the responses
more like humans to optimize the conversation in
long run. Similarly, embedding metrics also shown
the improvement but little on average since it cap-
turing the sense but due to length mismatch which
occurs owing to the fact that our model is generat-
ing more novel words with futuristic sense. How-
ever, Distinct-{1,2} scores shows improvement be-
cause of the large pre-trained vocabulary, it gives
the model more flexibility to generate novel words
without disturbing the sense of the sentence.

70

Dataset Model PPL BLEU Distinct-1 Distinct-2 Average Greedy Extrema

DailyDialog

HRED 56.22 0.535 1.553 3.569 81.393 65.546 48.109

HRAN 47.23 0.447 1.953 7.400 83.460 67.239 49.599

VHRED 44.79 0.997 1.299 6.113 83.866 67.186 48.570

SSN 44.28 1.250 2.309 7.266 72.796 73.069 44.260

ReCoSa 42.34 1.121 1.987 10.180 84.763 67.557 48.957

Transformer-Auxiliary Tasks 38.60 1.658 3.457 14.954 85.224 69.518 49.069

Pre-Trained Transformer - 11.5 2.92 14.7 55.1 53.5 59.8

Pre-Trained GPT2 - 12.8 4.07 25.9 56.8 54.0 59.6

Our Model 20.13 15.171 6.316 28.422 85.417 73.118 61.539
Our Model w/o weak supervision 20.51 14.718 4.611 26.752 86.481 73.003 59.911

PersonaChat

HRED 46.04 1.279 0.164 0.450 83.329 65.546 48.109

HRAN 41.94 1.997 0.235 0.771 82.850 67.239 49.599

VHRED 42.07 2.181 0.312 1.915 82.995 67.186 48.570

SSN 47.90 2.288 0.637 2.623 85.002 73.069 44.260

ReCoSa 34.19 2.258 0.915 4.217 83.963 67.557 48.957

Transformer-Auxiliary Tasks 33.23 2.434 1.279 5.816 83.632 69.518 49.069

Pre-Trained Transformer - 15.5 1.04 4.8 51.3 57.5 57.1

Pre-Trained GPT2 - 15.3 1.82 12.9 53.6 55.9 55.8

Our Model 19.78 16.651 2.434 13.912 84.941 73.081 59.241
Our Model w/o weak supervision 21.49 16.017 2.318 13.274 85.018 72.438 58.816

Table 1: Automatic metrics comparison with baselines. Results in bold indicate the best performing model on the
corresponding metrics.

DailyDialog
Setting RL-Win RL-Lose Tie

Single-Turn general quality 0.41 0.28 0.31

Single-Turn ease to answer 0.55 0.12 0.33

Multi-turn general quality 0.76 0.13 0.11

PersonaChat
Setting RL-Win RL-Lose Tie

Single turn general quality 0.36 0.22 0.42

Single-Turn ease to answer 0.51 0.14 0.35

Multi-turn general quality 0.71 0.17 0.12

Table 2: Human Evaluation Results. Ratios are cal-
culated after taking majority vote among the decisions
made by three judges.

We also note the results for our model without
weak supervision training, namely, Our Model
w/o Weak Supervision, this model just fine-tunes
on the DailyDialog (Li et al., 2017b) and Per-
sonaChat (Zhang et al., 2018) without generat-
ing the weak labelled data. Clearly, the distinct-1
and distinct-2 metrics are lower than the proposed
model, because the model tends to generate the
repetitive words more frequently. Similarly, the
embedding metrics and PPL does not show any
improvement over the proposed model except on
embedding metric based on Average. However, it
performs well on BLEU scores since it learns well

to reproduce the responses as in the ground truth
but not optimized for a successful conversation in
the long run.

Table 1 also reports the results of another two
baselines which are pre-trained models on Guten-
berg Dialogue Corpus (Csaky and Recski, 2020).
These models are fine-tuned on DailyDialog and
PersonaChat dataset respectively. These models
although improved much on BLEU scores and
distinct-1 and distinct-2 scores since it gets the
larger vocab and more enhanced training for learn-
ing the language structure. But lags in the embed-
ding metrics indicating the response quality is low.

Table 2 reports the human evaluation results, the
objective for which our model training is to gen-
erate the response for a successful conversation in
the long run for the multi-turn scenario. Clearly,
the evaluation results are up to our expectation,
since the RL system does not bring a significant
boost in single-turn response quality than the case
of multi-turn setting.

5 Conclusions

We proposed a weak supervision framework for
policy and reward estimation for long-term success
of the dialogue by simulating the conversation be-
tween a virtual agent and user. Empirical studies

71

on two benchmarks proves the effectiveness of our
approach.

References
Stephen H Bach, Bryan He, Alexander Ratner, and

Christopher Ré. 2017. Learning the structure of
generative models without labeled data. In Interna-
tional Conference on Machine Learning, pages 273–
282. PMLR.

Ashutosh Baheti, Alan Ritter, Jiwei Li, and Bill Dolan.
2018. Generating more interesting responses in
neural conversation models with distributional con-
straints. arXiv preprint arXiv:1809.01215.

Ernie Chang, David Ifeoluwa Adelani, Xiaoyu Shen,
and Vera Demberg. 2020. Unsupervised pidgin text
generation by pivoting english data and self-training.
arXiv preprint arXiv:2003.08272.

Ernie Chang, Vera Demberg, and Alex Marin.
2021a. Jointly improving language understand-
ing and generation with quality-weighted weak su-
pervision of automatic labeling. arXiv preprint
arXiv:2102.03551.

Ernie Chang, Xiaoyu Shen, Dawei Zhu, Vera Demberg,
and Hui Su. 2021b. Neural data-to-text generation
with lm-based text augmentation. arXiv preprint
arXiv:2102.03556.

Lu Chen, Xiang Zhou, Cheng Chang, Runzhe Yang,
and Kai Yu. 2017. Agent-aware dropout dqn for
safe and efficient on-line dialogue policy learning.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2454–2464.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2019. Few-shot nlg
with pre-trained language model. arXiv preprint
arXiv:1904.09521.

Richard Csaky and Gabor Recski. 2020. The gutenberg
dialogue dataset. arXiv preprint arXiv:2004.12752.

Mostafa Dehghani, Arash Mehrjou, Stephan Gouws,
Jaap Kamps, and Bernhard Schölkopf. 2017.
Fidelity-weighted learning. arXiv preprint
arXiv:1711.02799.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2016.

Towards end-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint
arXiv:1609.00777.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. arXiv preprint arXiv:1811.01241.

Hao Fang, Hao Cheng, Maarten Sap, Elizabeth Clark,
Ari Holtzman, Yejin Choi, Noah A. Smith, and Mari
Ostendorf. 2018. Sounding board: A user-centric
and content-driven social chatbot. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Demonstrations, pages 96–100, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Mehdi Fatemi, Layla El Asri, Hannes Schulz, Jing
He, and Kaheer Suleman. 2016. Policy networks
with two-stage training for dialogue systems. arXiv
preprint arXiv:1606.03152.

Shaoxiong Feng, Xuancheng Ren, Kan Li, and Xu Sun.
2021. Multi-view feature representation for di-
alogue generation with bidirectional distillation.
arXiv preprint arXiv:2102.10780.

Benoı̂t Frénay and Michel Verleysen. 2013. Classifica-
tion in the presence of label noise: a survey. IEEE
transactions on neural networks and learning sys-
tems, 25(5):845–869.

Gabriel Gordon-Hall, Philip John Gorinski, and Shay B
Cohen. 2020a. Learning dialog policies from weak
demonstrations. arXiv preprint arXiv:2004.11054.

Gabriel Gordon-Hall, Philip John Gorinski, Gerasimos
Lampouras, and Ignacio Iacobacci. 2020b. Show us
the way: Learning to manage dialog from demon-
strations. arXiv preprint arXiv:2004.08114.

Xiaodong Gu, Kang Min Yoo, and Jung-Woo Ha. 2020.
Dialogbert: Discourse-aware response generation
via learning to recover and rank utterances. arXiv
preprint arXiv:2012.01775.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. arXiv
preprint arXiv:2004.06577.

He He, Derek Chen, Anusha Balakrishnan, and Percy
Liang. 2018. Decoupling strategy and gener-
ation in negotiation dialogues. arXiv preprint
arXiv:1808.09637.

Satwik Kottur, Xiaoyu Wang, and Vı́tor Carvalho.
2017. Exploring personalized neural conversational
models. In IJCAI, pages 3728–3734.

Ben Krause, Marco Damonte, Mihai Dobre, Daniel
Duma, Joachim Fainberg, Federico Fancellu, Em-
manuel Kahembwe, Jianpeng Cheng, and Bonnie

72

Webber. 2017. Edina: Building an open do-
main socialbot with self-dialogues. arXiv preprint
arXiv:1709.09816.

Sungjin Lee. 2017. Toward continual learn-
ing for conversational agents. arXiv preprint
arXiv:1712.09943.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity:
Simplifying task-oriented dialogue systems with sin-
gle sequence-to-sequence architectures. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1437–1447.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep rein-
forcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017a. Adversar-
ial learning for neural dialogue generation. arXiv
preprint arXiv:1701.06547.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017b. Dailydialog: A man-
ually labelled multi-turn dialogue dataset. In Pro-
ceedings of The 8th International Joint Conference
on Natural Language Processing (IJCNLP 2017).

Ziming Li, Sungjin Lee, Baolin Peng, Jinchao Li,
Shahin Shayandeh, and Jianfeng Gao. 2020. Guided
dialog policy learning without adversarial learning
in the loop. arXiv preprint arXiv:2004.03267.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023.

Ryan Lowe, Michael Noseworthy, Iulian V Serban,
Nicolas Angelard-Gontier, Yoshua Bengio, and
Joelle Pineau. 2017. Towards an automatic turing
test: Learning to evaluate dialogue responses. arXiv
preprint arXiv:1708.07149.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu, Eu-
njoon Cho, and Zhiguang Wang. 2020. Continual
learning in task-oriented dialogue systems. arXiv
preprint arXiv:2012.15504.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state track-
ing. In Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1777–1788, Vancouver,
Canada. Association for Computational Linguistics.

Tong Niu, Semih Yavuz, Yingbo Zhou, Huan Wang,
Nitish Shirish Keskar, and Caiming Xiong. 2020.
Unsupervised paraphrase generation via dynamic
blocking. arXiv preprint arXiv:2010.12885.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao,
Asli Celikyilmaz, Sungjin Lee, and Kam-Fai Wong.
2017. Composite task-completion dialogue policy
learning via hierarchical deep reinforcement learn-
ing. arXiv preprint arXiv:1704.03084.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xi-
ujun Li, Jinchao Li, Michael Zeng, and Jian-
feng Gao. 2020. Few-shot natural language gen-
eration for task-oriented dialog. arXiv preprint
arXiv:2002.12328.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu
Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar,
et al. 2018. Conversational ai: The science behind
the alexa prize. arXiv preprint arXiv:1801.03604.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2020.
Snorkel: Rapid training data creation with weak su-
pervision. The VLDB Journal, 29(2):709–730.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Iulian Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 30.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, page 3295–3301.
AAAI Press.

Pararth Shah, Dilek Hakkani-Tur, Bing Liu, and
Gokhan Tur. 2018. Bootstrapping a neural conversa-
tional agent with dialogue self-play, crowdsourcing
and on-line reinforcement learning. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Industry
Papers), pages 41–51.

73

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364.

Xiaoyu Shen, Hui Su, Wenjie Li, and Dietrich Klakow.
2018. Nexus network: Connecting the preceding
and the following in dialogue generation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4316–
4327.

Shang-Yu Su, Xiujun Li, Jianfeng Gao, Jingjing Liu,
and Yun-Nung Chen. 2018. Discriminative deep
dyna-q: Robust planning for dialogue policy learn-
ing. arXiv preprint arXiv:1808.09442.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
arXiv preprint arXiv:1409.3215.

Ryuichi Takanobu, Runze Liang, and Minlie Huang.
2020. Multi-agent task-oriented dialog policy learn-
ing with role-aware reward decomposition. arXiv
preprint arXiv:2004.03809.

Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang.
2019. Guided dialog policy learning: Reward esti-
mation for multi-domain task-oriented dialog. arXiv
preprint arXiv:1908.10719.

Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui
Yan. 2018. Ruber: An unsupervised method for au-
tomatic evaluation of open-domain dialog systems.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Huggingface’s transformers: State-of-the-art natural
language processing.

Jiawei Wu, Xin Wang, and William Yang Wang. 2019.
Self-supervised dialogue learning. arXiv preprint
arXiv:1907.00448.

Yu Wu, Wei Wu, Zhoujun Li, and Ming Zhou. 2018.
Learning matching models with weak supervision
for response selection in retrieval-based chatbots.
arXiv preprint arXiv:1805.02333.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2017. Topic aware
neural response generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 31.

Chen Xing, Yu Wu, Wei Wu, Yalou Huang, and Ming
Zhou. 2018. Hierarchical recurrent attention net-
work for response generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Yujie Xing and Raquel Fernández. 2018. Auto-
matic evaluation of neural personality-based chat-
bots. arXiv preprint arXiv:1810.00472.

Can Xu, Wei Wu, and Yu Wu. 2018a. Towards ex-
plainable and controllable open domain dialogue
generation with dialogue acts. arXiv preprint
arXiv:1807.07255.

Ruijian Xu, Chongyang Tao, Daxin Jiang, Xueliang
Zhao, Dongyan Zhao, and Rui Yan. 2020. Learning
an effective context-response matching model with
self-supervised tasks for retrieval-based dialogues.

Xinnuo Xu, Ondřej Dušek, Ioannis Konstas, and Ver-
ena Rieser. 2018b. Better conversations by model-
ing, filtering, and optimizing for coherence and di-
versity. arXiv preprint arXiv:1809.06873.

Denis Yarats and Mike Lewis. 2018. Hierarchical text
generation and planning for strategic dialogue. In In-
ternational Conference on Machine Learning, pages
5591–5599. PMLR.

Hainan Zhang, Yanyan Lan, Liang Pang, Jiafeng Guo,
and Xueqi Cheng. 2019. Recosa: Detecting the rel-
evant contexts with self-attention for multi-turn dia-
logue generation. arXiv preprint arXiv:1907.05339.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? arXiv preprint arXiv:1801.07243.

Tiancheng Zhao and Maxine Eskenazi. 2016. To-
wards end-to-end learning for dialog state tracking
and management using deep reinforcement learning.
arXiv preprint arXiv:1606.02560.

Yufan Zhao, Can Xu, and Wei Wu. 2020. Learning a
simple and effective model for multi-turn response
generation with auxiliary tasks. arXiv preprint
arXiv:2004.01972.

Peixiang Zhong, Di Wang, and Chunyan Miao. 2019.
An affect-rich neural conversational model with bi-
ased attention and weighted cross-entropy loss. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 7492–7500.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

74

A Implementation Details

Our implementation uses the open source Hug-
gingface Transformer repository (Wolf et al.,
2020). Specifically, we have used the base version
from sentence transformers pre-trained on millions
of paraphrase examples, named as ‘paraphrase-
distilroberta-base-v1’. The encoder-decoder frame-
work is initialized with the base version ‘bert-base-
uncased’but with configuration of smaller size.
The smaller sized model reduces the ‘bert-base-
uncased’configuration to 6 transformer layers, has
a hidden size of 768, and contains 2 attention heads,
{L=6, H=768, A=2}. Similar to Gu et al. (2020)
we sum the position embeddings to the output sen-
tence embeddings of size 768 to indicate the user
or agent utterances. Odd ones indicate the user
utterances and even ones are that of an agent. The
MLP network for semantic relevance and semantic
coherence used a hidden dimension of 128. The
∆ has been set to best value of 0.54 after perform-
ing a grid search in the range of {0.4, 0.7} with
step size of 0.02. The reward estimator models
gω using two hidden layers of size 512 and 256
respectively. And, h is modelled using a single
hidden layer of size one. In each training iteration
the policy and reward estimator are updated with
continual learning to avoid catastrophic forgetting
mechanism using EWC modified loss, the λ value
used as a parameter is set to 0.4. Also, at each train-
ing iteration the policy and reward parameters are
saved if it reduces the perplexity on the validation
set (calculated after running for all the batches of
the training dataset) and patience is set to 3 as a
stopping criterion before we terminate the training.

75

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 76–86,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Multi-Sentence Knowledge Selection in Open-Domain Dialogue

Mihail Eric, Nicole Chartier, Behnam Hedayatnia, Karthik Gopalakrishnan,
Pankaj Rajan, Yang Liu and Dilek Hakkani-Tur
{behnam,karthgop,yangliud,hakkanit}@amazon.com

Amazon Alexa AI

Abstract

Incorporating external knowledge sources ef-
fectively in conversations is a longstanding
problem in open-domain dialogue research.
The existing literature on open-domain knowl-
edge selection is limited and makes certain
brittle assumptions on knowledge sources to
simplify the overall task (Dinan et al., 2019),
such as the existence of a single relevant
knowledge sentence per context. In this work,
we evaluate the existing state of open-domain
conversation knowledge selection, showing
where the existing methodologies regarding
data and evaluation are flawed. We then im-
prove on them by proposing a new framework
for collecting relevant knowledge, and create
an augmented dataset based on the Wizard
of Wikipedia (WOW) corpus, which we call
WOW++. WOW++ averages 8 relevant knowl-
edge sentences per dialogue context, embrac-
ing the inherent ambiguity of open-domain di-
alogue knowledge selection. We then bench-
mark various knowledge ranking algorithms
on this augmented dataset with both intrinsic
evaluation and extrinsic measures of response
quality, showing that neural rerankers that use
WOW++ can outperform rankers trained on
standard datasets.

1 Introduction

One of the key components needed to enable ro-
bust and engaging open-domain conversational sys-
tems is the ability to select and integrate relevant
knowledge from diverse knowledge sources. This
knowledge selection setting is complex for a num-
ber of reasons: 1) relevant knowledge is highly
dependent on conversational context, and requires
understanding dialogue history and evolving user
requirements at a turn-by-turn granularity, 2) be-
cause conversations are not topic-constrained, sys-
tems may need to pool knowledge from a theoreti-
cally boundless number of sources (i.e. the entire

Figure 1: Overview of an end-to-end knowledge rank-
ing and response generation system

internet), and 3) knowledge may be represented in
structured, semi-structured, and unstructured for-
mats making it difficult to extract all the informa-
tion needed for a conversation.

Recently there has been increasing interest in the
problem of knowledge selection for open-domain
dialogue (Gabriel et al., 2020; Dinan et al., 2019;
Kim et al., 2020; Gopalakrishnan et al., 2019).
There have been numerous efforts to build standard-
ized benchmark datasets whereby open-domain
conversations are collected with crowdworkers
who are given access to some closed set of knowl-
edge sources such as a subset of Wikipedia or news
articles (Dinan et al., 2019; Gopalakrishnan et al.,
2019). These datasets suffer from a number of lim-
itations including the fact that they either do not ex-
plicitly annotate relevant knowledge sentences per
turn in the conversation or make the strict assump-
tion that only a single utterance from a knowledge
source is relevant. Without sufficient information
about relevant knowledge for a given context, it is
difficult to train data-driven models on the isolated
problem of knowledge selection.

In this work, we conduct a thorough analysis of
the knowledge selection problem through the lens
of the Wizard of Wikipedia (WOW) dataset, one

76

of the standard knowledge-grounded open-domain
dialogue benchmarks (Dinan et al., 2019). Our
analysis qualitatively and quantitatively demon-
strates that the strict one-knowledge-sentence-for-
one-context assumption in the data is unreason-
able, leading to a lack of meaningful interannotator
agreement scores.

We then build on this result and relax this as-
sumption, allowing for multiple knowledge snip-
pets per context. We introduce a new continuously-
scaled notion of relevance called wisdom-of-the-
crowd-relevance (WOC) and use this measure to
reannotate about 800 dialog contexts from the orig-
inal WOW corpus with relevant knowledge. This
is done by taking a dialogue from WOW and ex-
tracting a subdialogue at a random turn in the di-
alogue. Our augmented WOW corpus, which we
call WOW++, averages 8 knowledge sentences
per dialogue turn, and demonstrates significantly
more knowledge diversity. Using WOW++, we
then benchmark a number of different knowledge
ranking algorithms using both standard information
retrieval automatic measures as well as extrinsic
human evaluation on generated responses. Our re-
sults indicate that neural rerankers using WOW++
are able to outperform other algorithms such as
traditional IR baselines and neural models trained
using the original WOW data.

2 Related Work

In recent years, knowledge selection in open-
domain dialogue systems has seen a tremendous
surge in interest as the community has recognized
the utility of having these abilities in conversa-
tional systems (Ram et al., 2018; Khatri et al., 2018;
Gabriel et al., 2020).

In one line of work, a number of industry re-
search groups have demonstrated that large quan-
tities of chat data coupled with the latest high-
capacity Transformer-based models can produce
particularly engaging and convincing conversa-
tional experiences (Adiwardana et al., 2020; Roller
et al., 2020). While these models produce impres-
sive outputs, they consciously shirk any explicit
knowledge-selection mechanisms. Any knowledge-
able appearance in their outputs tends to be a con-
sequence of facts memorized in training data (Lux
et al., 2020). In addition, the models have a ten-
dency to generate facts that may be factually inac-
curate, referred to as factual hallucination.

Knowledge selection in open-domain systems

took a tremendous leap forward with the introduc-
tion of standard datasets of knowledge-grounded
dialogues. The work of (Zhou et al., 2018; Dinan
et al., 2019; Gopalakrishnan et al., 2019) produced
such corpora with upwards of 10K dialogues and
up to 10s of dialogue turns leveraging knowledge
from diverse sources such as Wikipedia, and the
Washington Post. While certainly a step forward,
these datasets introduced some unreasonable data
constraints that aren’t apt to the knowledge setting
such as either no explicitly-annotated knowledge
snippets or only a single one, making training of
robust knowledge selection systems very difficult.

Since the introduction of these corpora, numer-
ous groups have tackled the knowledge selection
problem from different angles. For example, Kim
et al. (2020) developed a sequential latent vari-
able model to help address ambiguity in knowledge
sources in the WOW context. Zhao et al. (2020)
developed models that dealt with low-resource set-
tings with general representations learned from
ungrounded dialogues but finetuning done with
small numbers of domain-specific training exam-
ples. Tuan et al. (2020) recognized that even with
external knowledge sources, there may be a knowl-
edge gap that can be filled in real-time using unsu-
pervised local knowledge. While these works cre-
ated modeling improvements on existing datasets,
there has still not been a study investigating how
well-formed our existing datasets are.

3 WOW++

The WOW++ dataset we describe below is an aug-
mented dataset based on the Wizard of Wikipedia
(WOW) corpus (Dinan et al., 2019). The WOW
corpus consists of 22,311 dialogues containing
201,999 turns. The dialogues are comprised of two
interlocutors who engage in chit chat on a given
topic where one interlocutor is a knowledgeable
expert in the topic. The expert, or wizard, is pro-
vided access to knowledge snippets from Wikipedia
that are potentially relevant to a given conversation
topic, asked to select one of the knowledge snip-
pets and utilize the information from the knowledge
snippet in their response. Thus, for a given wizard
utterance only a single knowledge snippet is se-
lected from a set of potentially relevant knowledge
snippets. This selected snippet is considered to be
the ground-truth, referred to as the gold sentence,
and is referred to as such throughout this paper.

77

Eric Clapton Example:

HUMAN: [...] Do you know any famous guitar players, or
have a favorite guitarist that you listen to?

ORIGINAL WOW GROUND-TRUTH KNOWLEDGE SNIPPET:

¨ Eric Patrick Clapton (born 1945) is an English rock
and blues guitarist singer and songwriter.

ALTERNATIVE RELEVANT KNOWLEDGE SNIPPETS:
¨ George Buddy Guy (born July 30 1936) is an

American blues guitarist and singer.
¨ Doyle Bramhall II (born 24 December 1968) is an

American musician, producer, guitarist, and songwriter
known for his work with Eric Clapton, Roger Waters,
and many others.

¨ John Mayall OBE (born 29 November 1933) is an
English blues singer, guitarist, organist, and songwriter
whose musical career spans over fifty years.

Figure 2: Example dialogue in WOW with ground-
truth and alternative relevant knowledge snippets.

3.1 Data Motivation: Limitations of One
Knowledge

In order to address the well-formedness of exist-
ing datasets, we identify two inter-related aspects
of knowledge selection in open-domain dialogues:
the potential for multiple knowledge snippets to
be relevant for a given response, and the subjec-
tive nature of relevance selection. Figure 2 exem-
plifies how multiple knowledge snippets can be
equally relevant for a specific question. All knowl-
edge snippets, both the ground-truth snippet and
the alternatives, come from Wikipedia. In this ex-
ample, the response and relevant knowledge that
could be leveraged in the response, is open to any
guitarist. While the original WOW corpus identi-
fies the knowledge snippet containing information
about Eric Clapton as the ground-truth one (i.e. the
gold sentence) (Dinan et al., 2019), the alternative
relevant knowledge snippets are equally relevant.
There is nothing inherently more relevant with the
Eric Clapton knowledge snippet than these alter-
natives. The choice, then, for one being the single
relevant knowledge snippet, would seem to be a
reflection of personal preference of the annotator
rather than objective relevance.

Annotator subjectivity is not only reflected in
questions, but also in open-ended, general state-
ments. Figure 3 depicts this scenario, in which the
human’s turn leaves the response by the assistant
open: there is no direct or leading question to limit
the scope of the conversation. In this context, it
would be just as reasonable for the system’s next
turn to leverage the ground-truth knowledge snip-
pet provided by the WOW dataset as it would to
leverage the alternative ones shown.

Animal Shelter Example:

SYSTEM: I work in an animal shelter where abandoned, lost,

or stray animals are tended to and rehabbed!
HUMAN: That is good work, I salute you for what you do,

that helps a lot of animals out!

ORIGINAL WOW GROUND-TRUTH KNOWLEDGE SNIPPET:

¨ While no-kill shelters exist, it is sometimes policy to
euthanize sick animals and any animal that is not
claimed quickly enough by a previous or new owner.

ALTERNATIVE RELEVANT KNOWLEDGE SNIPPETS:

¨ Critics believe the new term animal shelter is generally
a euphemism for the older term pound.

¨ A no-kill or limited admit shelter is a shelter that saves
healthy, treatable, and rehabilitatable animals.

¨ As a benchmark at least 90% of the animals entering
the shelter are expected to be saved.

Figure 3: Example dialogue in WOW with ground-
truth and alternative relevant knowledge snippets.

In these cases, the choice of one knowledge sen-
tence over all others reflects a subjective choice
by the annotators, who are influenced by their own
preconceived notions and expectations of the trajec-
tory of the conversation. As such, although limiting
relevance selection to a single knowledge sentence
may be beneficial to simplify the annotation task, it
does so at the expense of variation that is inherent
and expected in open-domain dialogue. Further,
the selection of one knowledge snippet in instances
where many are relevant reflects annotator prefer-
ences, creating an issue of reproducibility.

3.2 Subjectivity of Knowledge Selection

In order to address the feasibility of an annotation
task in which multiple knowledge sentences are se-
lected, we conduct a pilot study, adapting the meth-
ods used in the WOW study (Dinan et al., 2019).
We use a static evaluation that allows annotators
to select multiple relevant knowledge snippets for
only the final turn of a dialogue. This pilot study
includes 40 in-house annotators selecting knowl-
edge snippets for 20 dialogues from the WOW cor-
pus. Annotators are provided with the dialogue and
approximately 30 potentially relevant knowledge
snippets, including the WOW-identified ground-
truth knowledge snippet (Dinan et al., 2019), also
from the WOW corpus. These 30 snippets come
from, on average, 5 different Wikipedia articles.
Annotators are instructed to select all knowledge
snippets that could be used in the following turn to
craft a relevant response, using the dialogue con-
text to help assess relevance, and that a relevant
knowledge sentence should not change the topic
of the conversation. Figure 8 in Appendix shows
the annotation instruction and interface. Please

78

note that with this method, a single turn for each
dialogue is annotated for knowledge selection.

We find that within the 610 snippets in the pi-
lot annotation, 177 were not selected by a single
annotator, i.e. not relevant and only 7 knowledge
snippets were selected by all annotators as relevant.
Further, we find that only 1 of the 20 gold sentences
is selected by all annotators as relevant, the average
proportion of annotators that select a gold sentence
as relevant is 0.77.

We first assess the quality of the pilot data
by computing Fleiss’ Kappa to measure inter-
annotator agreement (IAA). We compute IAA for
relevance selection in the pilot dataset (610 knowl-
edge snippets, assessed by 40 annotators); agree-
ment is moderate (κ = 0.477, p< 0.01) (Landis and
Koch, 1977). This finding is not surprising, as we
outlined in the previous section that we suspected
there would be subjective reactions to knowledge
snippets. Next, we explore whether IAA would in-
crease if only the WOW gold snippets are assessed
for agreement. To do this, we create a subset of
the pilot dataset, consisting of only the relevance
assessments by our annotators of the WOW ground-
truth knowledge snippets (Dinan et al., 2019) and
then compute Fleiss’ κ on the subset (20 knowl-
edge snippets, assessed by 40 annotators). IAA
for the ground-truth sentences is poor (κ = 0.06,
p < 0.01) (Landis and Koch, 1977). Finally, we
examine whether low IAA was a reflection of some
annotators’ understanding of and ability to com-
plete the task. We would expect that if the quality
of some annotators’ work were subpar, IAA should
increase if we find a better subset of annotators. To
assess this, we create 100 random samples of 10 an-
notators from the set of 40 and computed Fleiss’ κ
for each sample. Agreement in these samples of 10
ranges from fair (κ = 0.40, p < 0.01) to moderate
(κ = 0.59, p< 0.01). These results demonstrate that
we are unable to create a subset of 10 annotators
that agree on relevance selection.

Although low IAA can be an indication of un-
reliable data (Krippendorff, 1980), it can also be
an indication that the task is subjective (Salminen
et al., 2018). We argue that low IAA in this con-
text is a result of the inherent subjectivity of the
knowledge selection task. Rather than clear and
mutually exclusive categories, the notion of rel-
evance in this context has fuzzy boundaries and
can be dependent on the individual making the as-
sessment. While there will be some agreement on

relevance, it should not be assumed that relevance
is an agreed-upon concept. Thus, rather than rely-
ing on absolute agreement among all annotators for
relevance, we suggest that the notion of relevance
be considered on a continuum.

3.3 Data Methodology:
Wisdom-of-the-Crowd Relevance

Due to the limitations outlined above, we propose
that knowledge selection be handled by appealing
to the crowd. Using the same data collection ap-
proach as outlined in the pilot study, we conduct a
knowledge selection task in which 798 dialogues
and corresponding knowledge sentences were ran-
domly sampled from the test seen (198), test unseen
(200), and train (400) datasets in the original WOW
corpus (Dinan et al., 2019). In order to make the
task reasonable for annotators, we create 80 tasks
on a crowd-source worker platform in which anno-
tators are presented 10 randomized dialogues. As
described above, for each dialogue a single turn is
annotated for knowledge selection. 10 annotators
assess knowledge snippets for these 798 dialogues,
with an average of 30 knowledge snippets per dia-
logue. In order to mitigate low-quality annotations,
we include two filter metrics in the task.

Determining the threshold for relevance, or
wisdom-of-the-crowd-relevance, consists of a
mixed approach of relevance vote distribution and
manual inspection. The relevance vote for each
knowledge sentence represents the proportion of
annotators that selected a given knowledge sen-
tence as relevant. We order the knowledge snippets
from all dialogues by this relevance vote and use
the third quartile of the vote distribution as the cut-
off for relevance, resulting in a relevance threshold
of 0.6. A sample of relevant knowledge sentences
is manually inspected to ensure the quality and ac-
curacy of the wisdom-of-the-crowd-relevance. This
approach to relevance accounts for variation due to
inherent subjectivity while limiting noise expected
from human evaluation.

The wisdom-of-the-crowd-relevance scoring re-
sults in an average of 8 selected knowledge snippets
per turn. Table 1 provides a summary of relevant
knowledge snippets in the WOW++ dataset. Figure
4 shows the distribution of relevant knowledge for
the WOW++ dataset. Only 5% of the dialogues
in the dataset contain a single relevant knowledge
snippet. These results suggest that, for the majority
of dialogues, more than one knowledge sentence is

79

relevant, and more importantly, that only a single
knowledge sentence being relevant is the exception,
not the norm.

Number of Dialogues 798
Average Relevant KS per Turn 8

Turns with no Relevant KS 39
Turns with 1 Relevant KS 41

Turns with >1 Relevant KS 718

Table 1: Counts of relevant knowledge snippets (KS) in
WOW++

Figure 4: Histograms of the frequency counts for dif-
ferent numbers of relevant snippets per turn annotated
from the test seen, test unseen, and train data.

To better understand the conversational contexts
that have multiple relevant knowledge snippets, we
examine a sample of the data to categorize the
users’ last utterance. Table 2 depicts the three broad
categories: personal questions; factual questions;
and general statements, and their distribution across
our sample. Overall, the most frequent type is when
the user’s last utterance was a general statement.
We then examined whether the multiple knowledge
snippets came from the same topic (i.e. Wikipedia
article) or were spread across the five different top-
ics presented. Approximately 50% of the relevant
knowledge comes from a single topic for all three
categories. For both general statements and fac-
tual questions, the remaining 50% of knowledge is
spread across 2 - 5 topics. For personal questions,
40% of the knowledge comes from only two topics,
and the final 10% comes from 5 topics.

Finally, we examined the original WOW gold

Category Example %
Personal I love to play football, do you? 10
Factual What else do you know about rap? 33
General Soap operas seem so bad to me. 57

Table 2: Types of last user utterances and percent of
occurrence in our dataset.

HUMAN: I’ve had my heart broken a few times, how about
you?

ORIGINAL WOW GROUND-TRUTH KNOWLEDGE SNIPPET:

¨ It is the day before Valentine’s Day and Phil (Ty
Burrell) and Claire (Julie Bowen) decide to bring back
their alter egos, Clive Bixby and Juliana

ALTERNATIVE RELEVANT KNOWLEDGE SNIPPETS:

¨ The concept is cross-cultural, often cited with
reference to a desired or lost lover, and dates back to at
least 3000 years.

¨ The emotional pain of a broken heart is believed to be
part of the survival instinct.

¨ The concept is believed to be universal, with many
cultures using the same words to describe both
physical pain and the feelings associated with
relationship loss.

Figure 5: Example dialogue where WOW original
“gold” is not relevant, but alternative snippets are.

snippet in relation to our multiple knowledge selec-
tion method. After removing dialogues where gold
snippets were not included among the 30 candi-
dates, there are a total of 697 conversations where
the gold snippet is presented among the potentially
relevant knowledge sources. Of those, there are 10
dialogues where the gold snippet is the only rele-
vant knowledge snippet. However, there are 160
dialogues where the gold snippet does not meet the
relevance threshold. Although the gold snippet is
not relevant in these 160 conversations, 136 have at
least one alternative knowledge snippet selected as
relevant. We inspect these instances and find that,
in general, it is due to noise in the original WOW
dataset. The dialogue in Figure 5 exemplifies this
noise. Reading the WOW gold snippet, it is not
clear how the knowledge in that snippet could be
leveraged accurately to craft a relevant response to
the question about heartbreak. This suggests that
while a single person was able to craft a relevant
response from this snippet, in general, it would not
be seen as relevant. In other words, although the
gold snippet is not relevant in these conversations,
other knowledge snippets are, suggesting that there
are knowledge snippets that are more “gold” than
the WOW gold snippet.

By allowing for multiple relevant knowledge and
introducing wisdom-of-the-crowd-relevance scor-

80

ing, we have produced a robust augmented dataset
that embraces the variation present in open-domain
knowledge selection. We have demonstrated the
assumption of one-knowledge-snippet-per-context
needs to be re-assessed, as our data suggests that a
single relevant knowledge snippet may not be rea-
sonable nor replicable. Not only does this method
help to mitigate some noise present in the original
WOW dataset (Dinan et al., 2019), but we expect
that it will be more fruitful when incorporating
knowledge sources beyond Wikipedia.

4 Method

We evaluate WOW++ using two different regimes
to see the effect of the augmented knowledge snip-
pets. The first is intrinsic evaluation for the knowl-
edge reranking or selection task using automatic
measures. The second is extrinsic evaluation where
we provide a selected knowledge candidate to a
response generation model and perform human an-
notation of system generated responses.

4.1 Knowledge Selection
This intrinsic evaluation is intended to assess
the performance of different models within the
context of an isolated knowledge selection mod-
ule. More formally, assume we are given a dia-
logue context consisting of m turns represented
as D = {T1, T2, ..., Tm}, and for the last turn, a
list of knowledge sentence candidates are provided,
C = {s1, s2, ..., sn}, the system is asked to assess
the relevance of these candidates and generate a
ranked list, i.e., f(C,D) = {si1 , si2 , ..., sim}.

We first evaluate using unsupervised sentence
similarity scores for knowledge sentence relevance
ranking, with scores calculated using traditional
Tf-idf method or large pretrained models.

• Tf-IDF: Here we separately encode the dia-
logue context and each knowledge sentence
from the set C using term-frequency (TF)
inverse-document-frequency (IDF) weights
and then return the top 10 sentences that are
most similar to the context vector using the
cosine similarity metric. The IDF weights
are learned from the full train set of the new
WOW++ dataset by treating each sentence of
the knowledge passages and dialogue turns as
documents.

• Static RoBERTa Retriever: Here we encode
the context and knowledge sentences using
an off-the-shelf non-finetuned RoBERTa base

model (Liu et al., 2019). We then compute
cosine similarity and return the top-ranked
sentences.

• MLM tuned RoBERTa Retriever: Here we
use the same scheme as in the Static RoBERTa
case except that the RoBERTa weights are first
finetuned using a masked language modeling
(MLM) objective on the WOW train set. This
is analogous to the self-supervised pretraining
described in (Mehri et al., 2020).

In addition, we propose to use supervised learn-
ing to train knowledge rerankers based on the pre-
trained language models, RoBERTa. We fine tune
the RoBERTa base model by scoring an input se-
quence consisting of a dialogue context and a can-
didate knowledge sentence using a binary log-loss
objective. This trained RoBERTa reranker outputs
a binary probability of relevance for the context
and candidate pair, which is used to rank the can-
didates. In the following, we describe different
training configurations in order to examine their
effect on knowledge selection performance. For all
the RoBERTa models, we use a maximum length
of 256 tokens for the concatenated dialog context
and knowledge candidate.

• Training on WOW++: we finetune a
RoBERTa base model on WOW++ data. In
training, a candidate knowledge sentence is
considered positive if it exceeds our WOC
relevance threshold.

• Training on WOW-original: the original
WOW train set is used as the labelled data.
Here we leverage one positive candidate (the
gold knowledge snippet) and one negative can-
didate (sampled from the remaining knowl-
edge) per dialogue context. Note that this
scheme has about 120K examples, roughly
an order of magnitude more data for training
compared to only using WOW++.

• Training on WOW-original-subset: here
we use the same dialogs as used in WOW++,
however, rather than using the new anno-
tated snippets from WOW++, we use the gold
knowledge snippet from the original WOW
dataset corresponding to each context of the
400 training dialogues. Since this only intro-
duces a single positive snippet per context, we
additionally sample enough negative candi-
dates from the available knowledge in each

81

MRR@1 MRR@5 MAP@5 MAP@10 NDCG@5 NDCG@10
TF-IDF 0.66/0.74 0.76/0.84 0.56/0.65 0.57/0.63 0.80/0.87 0.81/0.86

Roberta Retriever
Static RoBERTa 0.51/0.58 0.66/0.68 0.39/0.45 0.36/0.38 0.70/0.73 0.72/0.75
Finetuned RoBERTa 0.68/0.71 0.78/0.82 0.55/0.64 0.53/0.59 0.81/0.85 0.81/0.85

Roberta classifier

WOW ++ 0.75/0.84 0.83/0.89 0.67/0.75 0.67/0.73 0.86/0.90 0.86/0.90
WOW-original 0.65/0.71 0.76/0.81 0.56/0.63 0.55/0.60 0.79/0.85 0.81/0.86
WOW-original-subset 0.30/0.45 0.46/0.59 0.25/0.37 0.27/0.37 0.52/0.65 0.58/0.68
WOW-original + WOW++ 0.71/0.82 0.80/0.88 0.62/0.70 0.63/0.67 0.82/0.89 0.83/0.89

Table 3: Knowledge selection: automatic evaluation results by data split (Test Unseen/Test Seen).

context so that the total samples used for train-
ing match the number used in the case when
training with WOW++ data.

• Training on WOW-original + WOW++:
Here the training data contains both the
WOW++ and the original WOW train set.

4.2 Response Generation

The extrinsic evaluation is intended to evaluate the
knowledge selection module in the context of a
fully-integrated dialog response generation system,
thereby giving us a better understanding of end-
to-end performance. We seek to understand the
effect of different quality knowledge sentences on
the downstream task of response generation.

Here, we first finetune the language modeling
head of a GPT2 medium-model (Radford et al.,
2019) on the original WOW corpus, using a similar
setup as (Wolf et al., 2019) where the ground-
truth knowledge and response are used for teacher-
forcing training. The context is truncated to 64
tokens. During inference, we take the top ranked
sentence from a knowledge reranking model, use
it along with the dialog context as a concatenated
input to generate a response.

5 Experimental Results

5.1 Knowledge Selection Results

For knowledge selection, we evaluate our mod-
els using a number of standard information re-
trieval metrics: MAP (mean average precision) and
NDCG (normalized discounted cumulative gain)
for the 5 and 10 candidate decision thresholds, and
MRR (mean reciprocal rank) for the 1 and 5 candi-
date decision thresholds.

Table 3 shows the results for the knowledge se-
lection methods presented in Section 4. First for
the similarity-based methods, we see the traditional
TF-IDF measure has strong performance. This may
also speak to the manner in which the WOW data
collection was done whereby crowdworkers could

have optimized for snippets with high degrees of
overlap with the dialogue context rather than nec-
essarily those with the highest levels of semantic
relevance. This is certainly an artifact of the origi-
nal WOW data collection process where candidate
articles were chosen via their TF-IDF weighted
n-gram scores with the dialogue context. Using
the static RoBERTa model to computer similarity
does not perform as well as the TF-IDF metrics,
again, partly because of the reason discussed above.
Adapting the RoBERTa model to the task domain
using the WOW data in an unsupervised fashion
via MLM loss improves the performance signifi-
cantly over the static models. This is not surprising
since the model is further trained on the domain
data, resulting in better representations for words
and sequences for similarity measures.

Regarding the RoBERTa classifier ranking ap-
proaches, results show that the model trained using
the WOW++ training data achieves the best per-
formance, also outperforming the similarity-based
unsupervised methods. This shows that neural mod-
els for knowledge selection benefit from supervised
training. Among different configurations for the
RoBERTa classifiers, we can see that training on
WOW++ is the most effective across different met-
rics. Given that the training data size is about the
same between WOW++ and WOW-original-subset,
the performance gap can be explained by the fact
that only a single positive snippet was provided
in the latter, whereas multiple positive knowledge
sentences are used in WOW++, which is a matched
condition for our test setup. We also varied the
setting for WOW-original-subset by only including
one negative example, i.e., total 800 classification
training instances. This improved the performance
slightly, i.e., MRR@1 is 0.35/0.46, but still a large
gap with using WOW++ training data. Compar-
ing to WOW-original, though WOW++ is much
smaller, the model was able to better leverage the
information from multiple relevant knowledge snip-
pets and learn the optimal ordering of knowledge

82

candidates. The last row in the table again shows
that matched training is important. When adding
WOW-original to WOW++ for training, the results
are not as competitive as just using WOW++ data.

Between the seen and unseen split, the results are
generally as expected. However, for the unsuper-
vised methods, we would expect smaller difference
since there is no notion of ‘seen’ topics. One rea-
son for this is that the IDF is in fact learned from
the training set, and finetuned RoBERTa retriever
also has in-domain unsupervised pre-training. We
will investigate the effect of topics further in our
future work.

5.2 Response Generation Results

For extrinsic evaluation, we perform human evalu-
ation of the responses generated using different
knowledge selection methods. We also experi-
mented with computing automatic evaluation met-
rics such as ROUGE with respect to the human
responses in the original WOW dataset but found
the results quite low. This is to be expected given
the sensitivity of generated responses to the knowl-
edge we provide in our systems.

First we evaluate the effect of different ground
truth, Wisdom-of-Crowd and WoW Original Gold,
on response generation. The Wisdom-of-Crowd set-
ting uses the most relevant knowledge sentence ac-
cording to the WOC scores from WOW++, whereas
the WoW Original Gold setting uses the gold rele-
vant snippet from the original WOW dataset. We
randomly sampled 100 dialogue contexts for hu-
man evaluation. Each dialogue context coupled
with the system output is provided to an annotator
who is asked to evaluate the output according to ap-
propriateness and informativeness. The responses
were evaluated by 2 expert annotators on an ordinal
0-2 scale for each metric. Results are provided in
Table 4. It is clear that the single ground truth in the
original WOW data is not as good as the WOC scor-
ing scheme for picking good knowledge snippets
to feed to the downstream response generator.

Knowledge used Appropriate Informative
WOW Original Gold 1.33/1.60 1.00/1.18
Wisdom-of-Crowd 1.34/1.70 1.25/1.29

Table 4: Response generation: human evaluation re-
sults of responses when ground truth knowledge is pro-
vided to the NRG model (Test Unseen/Test seen).

Next we compare the responses generated us-
ing different automatic knowledge selection ap-

proaches. Based on results from Table 3, we just
ran this human evaluation for two methods, TF-IDF
and RoBERTa reranker. For this evaluation, since
providing absolute scores is more subjective, we
performed a preference test by asking annotators
to choose which response is better between the two
candidates, on two dimensions: appropriate and
informative. Results in Table 5 show that consis-
tent with the intrinsic knowledge selection results,
the RoBERTa model trained on the WOW++ data
performs better, showing it is more able to provide
relevant knowledge to be used by the downstream
response generator. One problem we found with
the TF-IDF method is that it may select a knowl-
edge sentence that repeats information in the dialog
context. This is not surprising since it is heavily
relying on lexical overlap, whereas the supervised
RoBERTa reranker has learned about both rele-
vance and repetition during training. Examples in
Appendix show this issue for TF-IDF.

Knowledge used Appropriate Informative
TF-IDF 21.5% 22%
RoBERTa 49.5% 47.5%

Table 5: Response generation using different knowl-
edge selection method: TF-IDF vs. RoBERTa. Results
show the percentage of the method chosen as the pre-
ferred one for that dimension.

6 Conclusion

In this work, we demonstrated that knowledge
selection is an intrinsically ambiguous task for
open-domain conversations, which necessitates im-
proved notions of relevance in our benchmark
datasets. We used this insight to propose a new
measure for knowledge sentence relevance called
Wisdom-of-the-Crowd relevance. Using this mea-
sure, we annotated a new collection of dialogues
with relevant knowledge called WOW++ (it will
be released publicly). We then evaluated a num-
ber of knowledge selection algorithms on our new
dataset using both intrinsic and extrinsic metrics,
and demonstrate that neural rankers trained leverag-
ing WOW++ can outperform traditional knowledge
selection algorithms. It is worth noting, however,
that annotating a knowledge selection dataset with
all relevant snippets as we have done for WOW++
is a time-intensive task that may be expensive to
scale up. Future work should investigate how to
develop more low-resource rankers or how to boot-
strap from a high quality seed dataset like WOW++
to a larger corpus.

83

References
D. Adiwardana, Minh-Thang Luong, D. So, J. Hall,

Noah Fiedel, R. Thoppilan, Z. Yang, Apoorv Kul-
shreshtha, G. Nemade, Yifeng Lu, and Quoc V. Le.
2020. Towards a human-like open-domain chatbot.
ArXiv, abs/2001.09977.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, M. Auli, and J. Weston. 2019. Wizard
of wikipedia: Knowledge-powered conversational
agents. ArXiv, abs/1811.01241.

Raefer Gabriel, Yang Liu, Mihail Eric Anna Got-
tardi, Anju Khatri, Anjali Chadha, Qinlang Chen,
Behnam Hedayatnia, Pankaj Rajan, Ali Binici, Shui
Hu, Karthik Gopalakrishnan, Seokhwan Kim, Lau-
ren Stubel, Arindam Mandal, , and Dilek Hakkani-
Tür. 2020. Further advances in open domain dialog
systems in the third alexa prize socialbot grand chal-
lenge. Alexa Prize Proceedings.

Karthik Gopalakrishnan, Behnam Hedayatnia,
Q. Chen, Anna Gottardi, Sanjeev Kwatra, Anu
Venkatesh, R. Gabriel, and D. Hakkani-Tur. 2019.
Topical-chat: Towards knowledge-grounded open-
domain conversations. In INTERSPEECH.

C. Khatri, Behnam Hedayatnia, Anu Venkatesh,
J. Nunn, Yi Pan, Q. Liu, H. Song, Anna Gottardi,
Sanjeev Kwatra, S. Pancholi, Ming Cheng, Qinglang
Chen, Lauren Stubel, Karthik Gopalakrishnan, Kate
Bland, R. Gabriel, A. Mandal, Dilek Z. Hakkani-Tür,
Gene Hwang, Nate Michel, E. King, and R. Prasad.
2018. Advancing the state of the art in open do-
main dialog systems through the alexa prize. ArXiv,
abs/1812.10757.

Byeongchang Kim, Jaewoo Ahn, and G. Kim.
2020. Sequential latent knowledge selec-
tion for knowledge-grounded dialogue. ArXiv,
abs/2002.07510.

Klaus Krippendorff. 1980. Validity in content analysis.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159–174.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Klaus-Michael Lux, Maya Sappelli, and Martha Lar-
son. 2020. Truth or error? towards systematic analy-
sis of factual errors in abstractive summaries. In Pro-
ceedings of the First Workshop on Evaluation and
Comparison of NLP Systems, pages 1–10, Online.
Association for Computational Linguistics.

Shikib Mehri, M. Eric, and D. Hakkani-Tur. 2020.
Dialoglue: A natural language understanding
benchmark for task-oriented dialogue. ArXiv,
abs/2009.13570.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language mod-
els are unsupervised multitask learners.

A. Ram, Rohit Prasad, C. Khatri, Anu Venkatesh,
R. Gabriel, Q. Liu, J. Nunn, Behnam Hedayatnia,
Ming Cheng, Ashish Nagar, E. King, Kate Bland,
Amanda Wartick, Yi Pan, Han Song, Sk Jayadevan,
Gene Hwang, and Art Pettigrue. 2018. Conversa-
tional ai: The science behind the alexa prize. ArXiv,
abs/1801.03604.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
M. Williamson, Yinhan Liu, J. Xu, Myle Ott, Kurt
Shuster, Eric Michael Smith, Y.-Lan Boureau, and
J. Weston. 2020. Recipes for building an open-
domain chatbot. ArXiv, abs/2004.13637.

Joni O Salminen, Hind A Al-Merekhi, Partha Dey, and
Bernard J Jansen. 2018. Inter-rater agreement for so-
cial computing studies. In 2018 Fifth International
Conference on Social Networks Analysis, Manage-
ment and Security (SNAMS), pages 80–87. IEEE.

Yi-Lin Tuan, Wei Wei, and William Yang Wang.
2020. Unsupervised injection of knowledge into
dialogue generation via language models. ArXiv,
abs/2004.14614.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A trans-
fer learning approach for neural network based con-
versational agents. ArXiv, abs/1901.08149.

Xueliang Zhao, Wei Wu, Chongyang Tao, Can Xu,
Dongyan Zhao, and Rui Yan. 2020. Low-resource
knowledge-grounded dialogue generation. ArXiv,
abs/2002.10348.

Kangyan Zhou, Shrimai Prabhumoye, and A. Black.
2018. A dataset for document grounded conversa-
tions. ArXiv, abs/1809.07358.

84

Figure 6: Example dialogues showing the top 3 ranked knowledge snippets for both the Tf-IDF and RoBERTa
Reranker models. Note how the RoBERTa Reranker tends to select knowledge that is more semantically coherent
with the most recent dialogue context. By comparison, the TF-IDF model only focuses on snippets with high
lexical overlap, resulting in repeated information.

Figure 7: Example dialogue with corresponding responses. Note that both the TF-IDF and WOW original gold
responses repeat information that was previously given by the user’s turn.

85

Figure 8: Adapted version of knowledge selection task presented to crowdworkers.

86

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 87–102,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Self-Training for Compositional Neural NLG in Task-Oriented Dialogue

Xintong Li, Symon Jory Stevens-Guille, Aleksandre Maskharashvili and Michael White

Department of Linguistics
The Ohio State University

znculee@gmail.com stevensguille.1@osu.edu

maskharashvili.1@osu.edu mwhite@ling.osu.edu

Abstract

Neural approaches to natural language gener-
ation in task-oriented dialogue have typically
required large amounts of annotated training
data to achieve satisfactory performance, es-
pecially when generating from compositional
inputs. To address this issue, we show that self-
training enhanced with constrained decoding
yields large gains in data efficiency on a conver-
sational weather dataset that employs compo-
sitional meaning representations. In particular,
our experiments indicate that self-training with
constrained decoding can enable sequence-to-
sequence models to achieve satisfactory quality
using vanilla decoding with five to ten times
less data than with ordinary supervised base-
line; moreover, by leveraging pretrained mod-
els, data efficiency can be increased further to
fifty times. We confirm the main automatic
results with human evaluations and show that
they extend to an enhanced, compositional ver-
sion of the E2E dataset. The end result is an
approach that makes it possible to achieve ac-
ceptable performance on compositional NLG
tasks using hundreds rather than tens of thou-
sands of training samples.

1 Introduction

Neural approaches to natural language generation
(NLG) have received increasing attention due to
their flexibility and end-to-end trainability (Wen
et al., 2016; Mei et al., 2016; Dušek and Jurcicek,
2016; Dušek et al., 2019). However, despite us-
ing simplistic input meaning representations (MR),
most neural models require large quantities of clean
annotated training data in order to obtain good per-
formance. As such, the time and expense required
to obtain sufficient training data is a significant
obstacle to deploying neural NLG models at scale.

To enable richer task-oriented dialogue, Balakr-
ishnan et al. (2019) argue for using compositional,
tree-structured MRs that include discourse rela-

tions, emphasizing the need for applications to ex-
ert control over these relations when generating
text. Perhaps not surprisingly, their compositional
input MRs further exacerbate annotated data needs.
To address this issue, Balakrishnan et al. (2019)
introduce a novel constrained decoding technique
that nearly always yields correct output even in
challenging cases. However, their constrained de-
coding method incurs a substantial runtime cost,
making it too slow to deploy in task-oriented dia-
logue systems where low latency is a priority. Thus,
finding ways to improve data efficiency for train-
ing models that perform satisfactorily with vanilla
decoding remains an important challenge.

In order to reduce annotated data needs, Kedzie
and McKeown (2019) and Qader et al. (2019) pro-
pose self-training methods for NLG, though they
do not explore self-training for the more challeng-
ing case of generating from compositional input
representations. Arun et al. (2020) do explore
self-training with compositional inputs, but they
do not consider constrained decoding. In this pa-
per, we investigate for the first time whether con-
strained decoding can be used during self-training
to enhance data efficiency for compositional neural
NLG, since the speed of constrained decoding is
much less of a concern during self-training than
it is at runtime in dialogue systems. In particu-
lar, we adapt and extend He et al.’s (2020) ap-
proach to self-training for MT to the setting of
neural NLG from compositional MRs, comparing
vanilla self-training to self-training enhanced with
constrained decoding as well as with reverse model
reranking (Shen et al., 2019; Yee et al., 2019), a
simpler technique where the n-best outputs of the
forward model are reranked using scores from a
reverse model. In both cases, the idea is to enhance
the quality of the pseudo-annotated texts created
during self-training, so that self-training can more
successfully avoid entrenching the model’s own

87

Query Context MR
When will
it snow
next?

Reference
date: 29th
September
2018

[CONTRAST
[INFORM

[LOCATION [CITY Parker]] [CONDITION NOT snow]
[DATE TIME [DAY 29] [MONTH September] [YEAR 2018]]

]
[INFORM

[DATE TIME [DAY 29] [MONTH September] [YEAR 2018]]
[LOCATION [CITY Parker]] [PRECIP CHANCE SUMMARY very likely]
[CONDITION heavy rain showers] [CLOUD COVERAGE partly cloudy]

]
]

Annotated Response
[CONTRAST [INFORM [LOCATION [CITY Parker]] is not expecting any [CONDITION NOT snow]] , but
[INFORM [DATE TIME [COLLOQUIAL today]] there’s a [PRECIP CHANCE SUMMARY very likely chance] of
[CONDITION heavy rain showers] and it’ll be [CLOUD COVERAGE partly cloudy]]]

Table 1: Example compositional MR and annotated response from Balakrishnan et al.’s (2019) conversational
weather dataset. In the actual dataset, discourse relations have a DS prefix (e.g., DS CONTRAST), dialog acts have
a DG prefix (e.g, DG INFORM) and arguments have an ARG prefix (e.g., ARG CITY); these are elided here for
brevity.

mistakes. We show that self-training benefits con-
siderably from both methods, and that constrained
decoding yields especially large gains in data effi-
ciency. In particular, our experiments indicate that
using constrained decoding during self-training,
rather than at runtime, enables standard sequence-
to-sequence (seq2seq) models to achieve satisfac-
tory quality with much reduced latency.

Our contributions are two-fold. On Balakrishnan
et al.’s (2019) conversational weather dataset, we
show that using constrained decoding during self-
training and their SEQ2SEQ-TREE model at runtime
yields comparable performance with 20% of the
annotated data as using the full training set in super-
vised fashion, and by leveraging pretrained models,
annotated data needs can be further reduced to 2%.
We then confirm the main automatic metric results
with human evaluations and show that they hold
for Balakrishnan et al.’s (2019) enhanced version
of the E2E dataset (Dušek et al., 2019).

2 Method

Neural NLG seq2seq models aim to generate a nat-
ural language text y = 〈y1, · · · , y|y|〉 from a mean-
ing representation x = 〈x1, · · · , x|x|〉 by modeling
the conditional probability

P (y|x) =
|y|∏
i=1

P (yi|y<i,x) , (1)

where y<i = 〈y1, . . . , yi−1〉 denotes a prefix of y
with length i − 1. Usually, the model parameters

are learned in supervised fashion from a set of
annotated data L = {xk,yk}|L|k=1.

2.1 Compositional Inputs

Balakrishnan et al. (2019) propose to generate
annotated responses from compositional, tree-
structured MRs, as shown in Table 1. They demon-
strate that compositional MRs offer greater control
over the expression of CONTRAST and JUSTIFI-
CATION discourse relations and lead to improve-
ments in semantic correctness in a human evalu-
ation, which they argue is important for conver-
sational systems where external knowledge like
user models may inform decisions around contrast,
grouping, or justifications (Carenini and Moore,
2006; Walker et al., 2007; White et al., 2010; Dem-
berg et al., 2011). By serializing the trees as shown,
it is possible to use standard seq2seq models to
effectively accomplish tree-to-tree generation. At
runtime, the bracketing tokens can be straightfor-
wardly removed to produce the final outputs.

2.2 Vanilla Self-Training

Hiring annotators to produce large amounts of
clean, parallel data is costly, but it is often pos-
sible to automatically obtain lots of unlabeled data
U = {xl}|U|l=1. To take advantage of the large unla-
beled data U , we adapt and extend He et al.’s (2020)
semi-supervised self-training strategy, which has
been successfully applied to MT. As shown in Al-
gorithm 1, vanilla self-training starts from a base

88

model trained with annotated parallel data L, then
(i) iteratively applies the current model to pseudo-
label the unlabeled data with its predictions, (ii)
trains a new model on the pseudo-labeled data, and
(iii) fine-tunes the model on L. Naturally, higher-
quality pseudo-labeling can be expected to lead to
more effective self-training by helping the model
to avoid entrenching its own mistakes; below, we
consider two strategies for improving generation
during the pseudo-labeling step.

Algorithm 1: Vanilla Self-Training

1 Train a model on L;
2 repeat
3 Pseudo-label the unlabeled data in U ;
4 Train a model on the pseudo-parallel

data;
5 Fine-tune the model on L;
6 until convergence or maximum iteration;

2.3 Constrained Decoding

Balakrishnan et al. (2019) demonstrate that con-
strained decoding can enhance the correctness of
text generated with seq2seq models. In our ex-
periments, we make use of an enhanced version
of their constrained decoding method, both in the
pseudo-labeling step of self-training as well as dur-
ing runtime prediction.

Balakrishnan et al.’s (2019) constrained decod-
ing method begins by scanning the input MR tree to
build constraints on coverage and ellipsis.1 During
decoding, the non-terminals in the incrementally
generated candidates are checked against the input
tree for validity, where an output tree (ignoring ter-
minals) is considered valid if it is isomorphic to
the input tree up to sibling order and elided argu-
ments. After each time step of the beam search,
invalid candidates are filtered out to prevent hallu-
cinations of tree structure, and closing brackets can
only be generated when the non-terminals in the
current subtree have all been covered. For example,
in decoding a response for the MR in Table 1, if
the prediction has followed the annotated response
up until and it’ll be, then a closing bracket cannot
be generated at this point because the second IN-
FORM is not complete, and CLOUD COVERAGE
is the only non-terminal that can be validly gener-
ated here.

1Arguments appearing multiple times in the input MR are
only required to appear once in the output.

A problem with this post-filtering method of con-
strained decoding is that it can end up filtering out
all candidates in the beam search, making it impos-
sible for the decoding to proceed forward. To avoid
this issue, we instead make use of a pre-filtering
constraint. Specifically, rather than checking the
non-terminals in y6i after generating the next to-
ken in each time step i, our pre-filtering method
instead determines all non-terminals that can ap-
pear as valid next tokens with y<i, then masks out
all invalid non-terminals from the vocabulary be-
fore the next decoding step (the closing bracket is
treated similarly). This ensures that all candidates
in the beam are valid.

Another problem with Balakrishnan et al.
(2019)’s constrained decoding is that it only con-
strains the generation of non-terminals. The gener-
ated terminals may be inconsistent with their parent
argument non-terminals, even when placeholder
terminals are used for delexicalized arguments. For
example, a placeholder for city name should only
be valid to generate inside an [ARG CITY] argu-
ment instead of [ARG DAY]. This kind of error
is not common when the training data is sufficient,
but it can severely harm the generation quality in
data sparse situations. Therefore, in our enhanced
constrained decoding, we constrain the generation
of arguments by only nominating correspondingly
valid placeholder terminals given a particular par-
ent argument non-terminal.

While constrained decoding ensures the correct-
ness of the partial tree structure and helps avoid
inappropriate argument realizations, it does not
constrain most terminals (i.e., the words them-
selves). As such, when the model ends up in a
poorly trained part of its distribution, it can still
hallucinate terminals; in particular, it can end up
stuttering words until the maximum output length
is reached, yielding an invalid tree structure. In
these failure cases, we replace the output with the
result of vanilla decoding, whose text is usually
much better.

2.4 Reverse Model Reranking

As an alternative to constrained decoding’s hard
constraints on non-terminals, we also investigate a
soft approach to favoring generated texts that cor-
rectly express the input MRs (Shen et al., 2019;
Yee et al., 2019). To score the correctness of a gen-
erated text (with non-terminals removed), we train
a reverse (i.e., parsing) model to generate a mean-

89

ing representation x from a natural language text y.
Then, following beam search, the n-best generated
texts are reranked with the forced decoding per-
plexity of the reverse model. When using reverse
model reranking in self-training, the reverse model
is also self-trained as shown in Algorithm 2.

Algorithm 2: Reverse Model Reranking

1 Train forward and reverse models on L;
2 repeat
3 Pseudo-label the unlabeled data in U

with reverse model reranking;
4 Train forward and reverse models on the

pseudo-parallel data;
5 Fine-tune both models on L;
6 until convergence or maximum iteration;

3 Experiments

3.1 Setup
Datasets We conduct experiments on the pub-
licly available conversational weather and enriched
E2E datasets from Balakrishnan et al. (2019), fo-
cusing on the more challenging weather dataset.
The weather task consists of 25k parallel items
for training, and 3k for both validation and test.
In the weather task, there are 1.6k unique tokens
in the MRs, and 1.3k in the annotated responses.
The enriched E2E dataset contains Balakrishnan
et al.’s (2019) automatic enhancements to the E2E
texts and MRs to include CONTRAST and JUSTIFI-
CATION relations as well as slot-level annotations.
The E2E task consists of 42k items for training, and
4.6k for both validation and test. In the E2E task,
there are 60 unique tokens in the MRs, and 2.9k in
the annotated responses. All the results are reported
on the test set in the following experiments.

Unlabeled MR Creation For many NLG appli-
cations, unlabeled MRs can be generated in nearly
unlimited quantities with a simulator, but unfor-
tunately, we do not have access to the MR simu-
lators for these two datasets. Our workaround is
to create unlabeled MRs by modifying the MRs
we have in the parallel data. Because there are
contextual dependencies in the MRs, it would be
hard to get realistic MRs just by sampling elements.
Therefore, we instead delete all possible combi-
nations of removable subtrees from the MRs in
order to keep the pruned MRs meaningful. The
removable subtrees are defined as an unprotected

DG INFORM or ARG that has at least one unpro-
tected sibling, where protected elements are those
that are manually identified as establishing context
(e.g., ARG LOCATION) or are children of CON-
TRAST and JUSTIFICATION relations, which have
coherence-related contextual dependencies. In this
way, we created 137k unlabeled MRs for weather
and 143k MRs for E2E. When training a new model
on pseudo-labeled data, we split 3k from each of
them as validation data.

Models We report results for the following four
kinds of models, where *-n means the method only
uses n% of the parallel data from the full train-
ing set (three iterations of self-training were used,
unless otherwise specified):

• LBL-n: A seq2seq model (LSTM with atten-
tion or BART), which is also the base model
for the other methods

• ST-VAN-n: A model trained with vanilla self-
training

• ST-CD-n: A model self-trained with con-
strained decoding for pseudo-labeling

• ST-RMR-n: A model self-trained with re-
verse model reranking for pseudo-labeling

Metrics We report the automatic metrics listed
below on the raw model predictions, which
have delexicalized fields (e.g., ARG CITY). Non-
terminal annotations are stripped when calculating
BLEU-4 and auto–tree accuracy.

• BLEU-4 (Papineni et al., 2002): The BLEU
evaluation from e2e-metrics (Dušek et al.,
2018).

• Tree accuracy (Balakrishnan et al., 2019): The
ratio of annotated responses that pass the va-
lidity constraints specified by the input MR.
Note that if constrained decoding terminates
successfully, it is guaranteed to pass the tree
accuracy check, but vanilla decoding comes
with no such guarantee.

• Auto–tree accuracy: Tree accuracy after using
a reverse model (trained on all the paired data)
to parse the text. Note that parse errors make
auto–tree accuracy less accurate than tree ac-
curacy, but this method can be used with plain
text output.

90

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

0

20

40

60

80

100

#Training Samples

Tr
ee

A
cc

ur
ac

y

LBL
ST-VAN
ST-RMR
ST-CD

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

55

60

65

70

75

80

#Training Samples

B
L

E
U

LBL
ST-VAN
ST-RMR
ST-CD

Figure 1: Tree accuracy and BLEU scores of the LSTM base model and three self-training strategies by parallel
training data size with vanilla decoding on the conversational weather dataset. Tree accuracy on pseudo-labeled data
is indicated by the same color dashed lines. Performance of the supervised model (LBL) using all of the labeled
data is indicated by the gray dashed lines.

Implementation Our implementation2 of self-
training, constrained decoding and reverse model
reranking is based on the same one-layer LSTM
with attention approach as in Balakrishnan et al.
(2019), with the same configuration of hyper-
parameters. The experiments with pretrained mod-
els implement all above mentioned methods with
BART (Lewis et al., 2020). We use the open source
fairseq implementation (Ott et al., 2019). More
specific configuration details of these two models
are listed in Appendix A.

3.2 Data Efficiency Study

Figures 1 and 2 show the comparisons among
the four training strategies on tree accuracy and
BLEU score as a function of the amount of paral-
lel data available. We can clearly see that ST-CD
always surpasses the other three self-training meth-
ods. Meanwhile, the ST-CD lines are much flatter,
indicating better data-efficiency, especially for tree
accuracy with less parallel data. In particular, ST-
CD achieves a considerable tree accuracy of 90%
and 97% with LSTM and BART respectively, us-
ing only 1% of the parallel data (253 items). Using
100% of the data, ST-CD sets a new state-of-the-art
in tree accuracy and BLEU, exceeding Rao et al.’s
(2019) more complex tree-to-sequence method.3

Notably, with LSTM vanilla decoding, ST-CD
needs only 20% of the parallel data to achieve com-

2Code is available at https://github.com/znculee/TreeNLG
and https://github.com/znculee/TreeNLG-BART. See ap-
pendix for further details to enhance reproducibility.

3Results of using constrained decoding at runtime are
shown in Figure 5 and Figure 6 in the appendix.

parable performance to LBL trained on all the par-
allel data.4 More remarkably, BART vanilla de-
coding ST-CD needs only 2% of the parallel data
to achieve essentially comparable performance to
LBL trained on all the parallel data.5 At this data
efficiency level, tree accuracy exceeds 97% using
just over 500 training samples, while Arun et al.’s
(2020) results on the same dataset are under 90%
despite using four times as much data. This is a key
result since vanilla decoding is so much faster than
constrained decoding, and latency is an important
consideration for dialogue systems. For example,
in our experiments using a single NVIDIA V100,
the speed of LSTM vanilla decoding was 925.01
responses/s, or 37,973.22 tokens/s, while the speed
of constrained decoding was 12.76 responses/s, or
532.61 tokens/s. This translates to an average of
80ms per response for constrained decoding, which
is a barrier to production for systems with a strict
latency budget. For BART, the speed of vanilla de-
coding was 25.17 responses/s, or 1565.75 tokens/s,
while the speed of constrained decoding was 1.82
responses/s, or 113.92 tokens/s. As such, BART
with vanilla decoding could be suitable in some
production settings; alternatively, one could pursue
knowledge distillation techniques as in Arun et al.
(2020).

Although not as effective as ST-CD, ST-RMR
also consistently surpasses ST-VAN and LBL.
Moreover, it can also be used in more conventional

4With 20% of the parallel data, ST-CD exceeds LBL in
tree accuracy while trailing it slightly in BLEU.

5Confirmed in significance tests on tree accuracy and hu-
man evaluation later in this section.

91

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

20

30

40

50

60

70

80

90

100

#Training Samples

Tr
ee

A
cc

ur
ac

y

LBL
ST-VAN
ST-RMR
ST-CD

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

68

70

72

74

76

78

#Training Samples

B
L

E
U

LBL
ST-VAN
ST-RMR
ST-CD

Figure 2: Tree accuracy and BLEU scores of the BART base model and three self-training strategies by parallel
training data size with vanilla decoding on the conversational weather dataset. Tree accuracy on pseudo-labeled
data is indicated by the same color dashed lines.

settings where the response text in the training data
has no semantic annotations, and thus decoding is
into plain text. As shown in Figure 3 (appendix),
using auto–tree accuracy, ST-RMR can improve
data efficiency when constrained decoding cannot
be used. Note, however, that decoding into plain
text consistently trails in auto–tree accuracy com-
pared to decoding into annotated text.

3.3 How Does Self-Training Help?
Theoretically, self-training should be more helpful
when the base model can produce higher quality
pseudo-labeled data. As shown in Figures 1 and 2,
tree accuracy on pseudo-labeled samples generated
by ST-CD is much higher than other self-training
methods, which illustrates why it yields much bet-
ter tree accuracy and BLEU scores on the test set.
Also note that the pseudo-labeled tree accuracy is
much lower than the test tree accuracy for ST-VAN
and ST-RMR. This may be because the unlabeled
MRs are created by deletion and thus are somewhat
atypical in comparison to the train and test sets.

3.4 Significance Tests
Although the gains in tree accuracy are large with
vanilla decoding, to confirm that the gains in Fig-
ure 1 and 2 are significant, we have run McNemar’s
test (McNemar, 1947) comparing ST-CD against
LBL as well as ST-VAN. Even when using LSTMs
with 100% of the labeled data, the gain in tree accu-
racy from 94.2% with LBL to 96.6% with ST-CD
is highly significant (p=4.30e-15), as is the gain
from 95.7% with ST-VAN to 96.6% with ST-CD
(p=0.0003). For BART, when using 100% of the
labeled data, the gain in tree accuracy from 98.01%

with LBL to 99.26% with ST-CD is highly signifi-
cant (p=1.52e-7), as is the gain from 98.53% with
ST-VAN to 99.26% with ST-CD (p=2.94e-4). Nat-
urally, the gains when using less labeled data are
also highly significant. Most interestingly, using
only 2% of the labeled data with BART ST-CD is
not significantly different than using 100% of the
labeled data with BART LBL (p=0.68285).

3.5 Expert Evaluation of Correctness
In their experiments, Balakrishnan et al. (2019)
found that tree accuracy differences reliably indi-
cated differences in human evaluations of correct-
ness, and in particular that tree accuracy failures
nearly always indicated actual correctness errors.
To verify these findings in our own targeted ex-
pert evaluation, we had two authors (both linguists)
judge the correctness of the LSTM and BART mod-
els self-trained with constrained decoding using
partial parallel data against the supervised base-
line using the same partial parallel data and the
best supervised model using all the parallel data,
where the judges were blind to which model was
which. Correctness was judged against the refer-
ence text for 50 randomly selected pairs in each
condition where the items differed in tree accuracy.
For each pair, the judges indicated whether the first
item was better than, the same as or worse than
the second item. 3-way agreement was 79% for
correctness between the judges; moreover, when
excluding any ‘same’ judgments, the judges agreed
in all but one case. After the judgments were col-
lected, we calculated how well they agreed with
tree accuracy, excluding the indeterminate ‘same’
judgments. Agreement was quite high, reaching

92

90% for one judge and 88% for the other. (Further
details are in Appendix B.) Given this high level of
agreement with the automatic tree accuracy mea-
sure along with the highly significant differences
in tree accuracy, we focused our human evaluation
on investigating whether the observed differences
in BLEU scores indicated important differences in
grammaticality.

3.6 Human Evaluation of Grammaticality

While the BART ST-CD-02 and LSTM ST-CD-
20 models achieved comparable or better levels of
tree accuracy in comparison to their LBL-100 (full-
data) counterparts, they trailed somewhat in BLEU
scores. Looking at the outputs of the self-trained
models with the worst BLEU scores, we found that
the responses were mostly good, only suffering
from clear grammaticality issues infrequently. To
confirm these observations, we conducted a human
evaluation using the responses generated by the
BART ST-CD-02 and LSTM ST-CD-20 models on
333 randomly selected test items, along with the
responses for the same items for the best and worst
supervised models by BLEU score, namely BART
LBL-100 and LSTM LBL-01. Mixed in with the
responses of each model were 75 check items, 25
of which were grammatical and 50 of which we
intentionally made ungrammatical.

Using these samples, we ran an experiment on
Amazon Mechanical Turk involving 16 unique par-
ticipants. The participants in the experiment were
pre-filtered by selecting those with an approval rate
of at least 95%. Each participant was shown our
grammaticality guidelines, which were based on
Arun et al.’s (2020) and available for review at all
times during the experiment. They were subse-
quently asked to take a quiz. Those who scored
80% or more on the quiz were selected for further
participation. To encourage careful engagement
with the task, we offered bonus payments to those
who performed well on the check items. The ex-
periments were carried out with Institutional Re-
view Board approval, and all participants were paid
above minimum wage for our locale.

Agreement with the check items was quite
robust, with all participants well above chance,
though there were some outliers with respect to
check item agreement. This indicates that the judg-
ments were somewhat noisy. Each item received
3 judgments, and the items were assigned the ma-
jority judgment for analysis purposes. Judgments

of ungrammaticality were accompanied by brief
reasons; discrepancies between judgments primar-
ily reflected difficulty in applying the guidelines
regarding punctuation.

Our results indicate that 4.8% of the BART ST-
CD-02 items were judged ungrammatical, not far
from the error rates of 3.9% for LSTM ST-CD-
20 and 3.0% for BART LBL-100. By contrast,
11.4% of the LSTM LBL-01 items were judged
ungrammatical. Pairwise comparisons using Mc-
Nemar’s test only revealed statistically significant
differences for the LSTM LBL-01 model: it was
judged significantly worse than the 3 other models
(p < 0.003 in all cases), while none of the other
systems were significantly different (p > 0.3 in all
cases).

3.7 Qualitative Analysis
The most frequent grammaticality issue, especially
for LSTM ST-CD-20, was missing punctuation
between independent clauses, as shown in (a) in Ta-
ble 2. Other errors included occasional agreement
errors or missing constituents, as in (b). Example
correctness errors appear in Table 3; they usually
involved missing information, but sometimes also
repeated or extra information.

3.8 E2E Confirmation
We also evaluate our strategies on the enhanced
E2E dataset. As shown in Figure 4 in Appendix, we
can draw the same general conclusions regarding
data efficiency as with the conversational weather
dataset.6 Both constrained decoding and reverse
model reranking improve upon vanilla self-training,
with constrained decoding being more effective
when using less parallel data. Notably, for LSTM
models, with vanilla decoding at runtime, tree ac-
curacy and BLEU of using self-training with con-
strained decoding and 20% of the parallel data (ST-
CD-20) are essentially identical to the supervised
model using all the available data (LBL-100). For
BART models, the performance of ST-CD-02 is
also very similar to the one of LBL-100: While
the BLEU score of ST-CD-02 is slightly lower
than that of LBL-100, it is still very high, and the
tree accuracy of ST-CD-02 is slightly higher than
the tree accuracy of LBL-100.

6Note that the BLEU scores here are calculated in the same
generous way as in Balakrishnan et al.’s (2019) evaluation.
In particular, since multiple test MRs in the enhanced data
have the same original MR, we select the best generation
of the same original MR using NLTK’s (Bird et al., 2009)
implementation of sentence BLEU on multi-references.

93

Index System Error Reason
(a) LSTM ST-CD-20 No , the forecast does not call for sunny

skies expect partly cloudy skies
Punctuation is missing before expect.

(b) BART ST-CD-02 Today in ARG CITY will have a high
of ARG TEMP HIGH and a low of
ARG TEMP LOW

Missing subject.

Table 2: Examples of grammaticality errors

Index System Error Reference
(a) LSTM LBL-20 Yes , it will be mostly sunny today in

your area
Yes , it will be mostly sunny today and
ARG WEEKDAY in your area

(b) LSTM LBL-100 Yes , light rain is likely today ,
and light thunderstorms and rain are
likely on ARG WEEKDAY and light
thunderstorms and rain are likely on
ARG WEEKDAY

Yes , light rain is likely today .
ARG WEEKDAY will also have light
rain and light thunderstorms and rain are
likely on ARG WEEKDAY

Table 3: Examples of correctness errors

4 Related Work

There is a much more established tradition of us-
ing self-training in parsing, where McClosky et al.
(2006) and subsequently others have shown that
that self-training can yield substantially improved
parsing accuracy. In NLG, Kedzie and McKeown
(2019) and Qader et al. (2019) pursue self-training
for data efficiency but only using flat input repre-
sentations and without constrained decoding, as
noted earlier. Qader et al. (2019) develop a so-
phisticated, joint method of self-training NLG and
NLU models. Kedzie and McKeown (2019) make
use of noise injection sampling and NLU models to
create new MR-text pairs, where the new MRs of-
ten contain fewer slots than the original MR; here,
we similarly create new, simpler MRs, but do so
directly by just deleting nodes in the input trees.
Likewise, our general approach to self-training (He
et al., 2020) is much simpler than in Chang et al.’s
(2021) work, where they generate new text samples
using GPT-2 (unconditioned on any input) then pair
them with data samples. Earlier, Chisholm et al.
(2017) train NLG and NLU models that share pa-
rameters to reduce the risk of hallucination. Our
iterative method of training forward and reverse
seq2seq models instead draws from Yee et al.’s
(2019) reverse model reranking approach and is
much simpler to implement. Additionally, Nie et al.
(2019) apply self-training to a NLU model to re-
duce the noise in the original MR-text pairs in order
to reduce the hallucination problem in NLG, but
they do not investigate data efficiency issues. Also
related is work on back-translation (Sennrich et al.,
2016) in MT, which starts from the assumption that

there is much target side data; by contrast, self-
training assumes there is much source side data,
as is the case with our task (where new unlabeled
MRs can be easily created).

More recent work takes advantage of pre-trained
language models to develop few-shot NLG meth-
ods. Chen et al. (2019) show impressive results
with just 200 training items using a specialized ta-
ble encoder with GPT-2, while Peng et al. (2020)
use cross-domain training (an orthogonal approach)
together with GPT-2; neither investigates more
challenging compositional inputs. Although Arun
et al. (2020) do use BART on compositional in-
puts, their tree accuracy levels are much lower even
when using considerably more data.

More generally, reverse (or reconstructor) mod-
els have taken on greater theoretical interest thanks
to Rational Speech Act (RSA) theory (Frank et al.,
2009) and have recently proved useful in NLG
(Fried et al., 2018; Shen et al., 2019). Our ap-
proach differs in using reverse models during self-
training rather than at runtime. Work on combining
parsing and generation for ambiguity avoidance
goes back much farther (Neumann and van No-
ord, 1992), with managing the trade-off between
fluency and ambiguity avoidance a more recent
topic (Duan and White, 2014) that we also leave
for future work. Constrained decoding (Balakrish-
nan et al., 2019) is inspired by coverage tracking
in grammar-based approaches to realization (Kay,
1996; Carroll and Oepen, 2005; White, 2006); its
use during self-training is novel to this work.

94

5 Conclusion and Future Work

In this paper, we have shown that using self-
training with constrained decoding in composi-
tional neural NLG can deliver large gains in data
efficiency, enabling seq2seq models to achieve sat-
isfactory quality using vanilla decoding with much
less annotated data. The idea of using constrained
decoding with self-training rather than for runtime
inference is a very simple one, but ours is the first
paper to investigate the idea, and we show via thor-
ough experimentation and evaluation that it works
remarkably well. In our experiments, we found that
LSTM models trained from scratch can increase
data efficiency by a factor of at least 5, while pre-
trained BART models yielded a 50 times increase,
achieving essentially comparable levels of correct-
ness and grammaticality using only 2% of the exist-
ing training data. As such, the approach promises
to help pave the way towards developing systems
with mere hundreds rather than tens of thousands
of annotated samples, potentially eliminating the
need for crowdsourcing in system development.
In future work, it would be exploring ways of at
least partially automatically adding semantic anno-
tations to the target texts using methods that treat
such annotations as latent (Shen et al., 2020; Xu
et al., 2021) to facilitate using our approach on a
new task or dataset.

Acknowledgements

We thank that the Ohio Super Computer Cen-
ter (Center, 1987) supports us sufficient compu-
tational devices for training many large models in
our experiments. This research was supported by
a collaborative open science research agreement
between Facebook and The Ohio State University.
The last author is a paid consultant for Facebook.

References
Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini

Challa, Pinar Donmez, Peyman Heidari, Hakan Inan,
Shashank Jain, Anuj Kumar, Shawn Mei, Karthik
Mohan, and Michael White. 2020. Best practices
for data-efficient modeling in NLG:how to train
production-ready neural models with less data. In
Proceedings of the 28th International Conference on
Computational Linguistics: Industry Track, pages
64–77, Online. International Committee on Compu-
tational Linguistics.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019. Constrained

decoding for neural NLG from compositional repre-
sentations in task-oriented dialogue. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 831–844, Florence,
Italy. Association for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. ” O’Reilly Media,
Inc.”.

Giuseppe Carenini and Johanna D. Moore. 2006. Gener-
ating and evaluating evaluative arguments. Artificial
Intelligence, 170:925–952.

John Carroll and Stefan Oepen. 2005. High efficiency
realization for a wide-coverage unification grammar.
In Proc. IJCNLP-05.

Ohio Supercomputer Center. 1987. Ohio supercomputer
center.

Ernie Chang, Xiaoyu Shen, Dawei Zhu, Vera Demberg,
and Hui Su. 2021. Neural data-to-text generation
with LM-based text augmentation. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Vol-
ume, pages 758–768, Online. Association for Com-
putational Linguistics.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2019. Few-shot nlg with
pre-trained language model.

Andrew Chisholm, Will Radford, and Ben Hachey. 2017.
Learning to generate one-sentence biographies from
Wikidata. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
633–642, Valencia, Spain. Association for Computa-
tional Linguistics.

Vera Demberg, Andi Winterboer, and Johanna D Moore.
2011. A strategy for information presentation in
spoken dialog systems. Computational Linguistics,
37(3):489–539.

Manjuan Duan and Michael White. 2014. That’s not
what I meant! Using parsers to avoid structural ambi-
guities in generated text. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 413–423,
Baltimore, Maryland. Association for Computational
Linguistics.

Ondřej Dušek and Filip Jurcicek. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 45–51.
Association for Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG Challenge. In
Proc. of the 11th International Conference on Natu-
ral Language Generation, pages 322–328, Tilburg,

95

The Netherlands. Association for Computational Lin-
guistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2019. Evaluating the state-of-the-art of end-to-end
natural language generation: The E2E NLG Chal-
lenge. arXiv preprint arXiv:1901.11528.

Michael Frank, Noah Goodman, Peter Lai, and Joshua
Tenenbaum. 2009. Informative communication in
word production and word learning. In Proceedings
of the Annual Meeting of the Cognitive Science Soci-
ety, pages 1228–1233.

Daniel Fried, Jacob Andreas, and Dan Klein. 2018. Uni-
fied pragmatic models for generating and following
instructions. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1951–1963,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation. In International Conference on
Learning Representations.

Martin Kay. 1996. Chart generation. In Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics, pages 200–204, Santa Cruz,
California, USA. Association for Computational Lin-
guistics.

Chris Kedzie and Kathleen McKeown. 2019. A good
sample is hard to find: Noise injection sampling and
self-training for neural language generation models.
In Proceedings of the 12th International Conference
on Natural Language Generation, pages 584–593,
Tokyo, Japan. Association for Computational Lin-
guistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the Human Language Technology Conference
of the NAACL, Main Conference, pages 152–159,
New York City, USA. Association for Computational
Linguistics.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Hongyuan Mei, Mohit Bansal, and R. Matthew Wal-
ter. 2016. What to talk about and how? selective
generation using lstms with coarse-to-fine alignment.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 720–730. Association for Computational Lin-
guistics.

Gunter Neumann and Gertjan van Noord. 1992. Self-
monitoring with reversible grammars. In COLING
1992 Volume 2: The 15th International Conference
on Computational Linguistics, pages 700–706.

Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and
Chin-Yew Lin. 2019. A simple recipe towards re-
ducing hallucination in neural surface realisation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2673–
2679, Florence, Italy. Association for Computational
Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for task-
oriented dialog.

Raheel Qader, François Portet, and Cyril Labbé. 2019.
Semi-supervised neural text generation by joint learn-
ing of natural language generation and natural lan-
guage understanding models. In Proceedings of the
12th International Conference on Natural Language
Generation, pages 552–562, Tokyo, Japan. Associa-
tion for Computational Linguistics.

Jinfeng Rao, Kartikeya Upasani, Anusha Balakrishnan,
Michael White, Anuj Kumar, and Rajen Subba. 2019.
A tree-to-sequence model for neural NLG in task-
oriented dialog. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 95–100, Tokyo, Japan. Association for Com-
putational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96,
Berlin, Germany. Association for Computational Lin-
guistics.

96

Sheng Shen, Daniel Fried, Jacob Andreas, and Dan
Klein. 2019. Pragmatically informative text gener-
ation. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4060–4067, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu, and Di-
etrich Klakow. 2020. Neural data-to-text generation
via jointly learning the segmentation and correspon-
dence. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7155–7165, Online. Association for Computational
Linguistics.

Marilyn Walker, Amanda Stent, Francois Mairesse, and
Rashmi Prasad. 2007. Individual and domain adap-
tation in sentence planning for dialogue. Journal of
Artificial Intelligence Research (JAIR), 30:413–456.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
M. Lina Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016. Multi-domain neu-
ral network language generation for spoken dialogue
systems. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 120–129. Association for Com-
putational Linguistics.

Michael White. 2006. Efficient realization of coordinate
structures in combinatory categorial grammar. Re-
search on Language and Computation, 4(1):39–75.

Michael White, Robert A. J. Clark, and Johanna D.
Moore. 2010. Generating tailored, comparative de-
scriptions with contextually appropriate intonation.
Computational Linguistics, 36(2):159–201.

Xinnuo Xu, Ondřej Dušek, Verena Rieser, and Ioannis
Konstas. 2021. AggGen: Ordering and aggregating
while generating. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1419–1434, Online. Association for
Computational Linguistics.

Kyra Yee, Yann Dauphin, and Michael Auli. 2019.
Simple and effective noisy channel modeling for
neural machine translation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5696–5701, Hong Kong,
China. Association for Computational Linguistics.

A Reproducibility Details

For LSTM models, the word embedding and hid-
den size dimensions are 300 and 128 respectively,
and the decoder output embedding size is 512. The

dropout rate for both encoder and decoder is 0.2.
There are no more than 128 sentences in a batch.
Training uses early stopping when the validation
loss has not improved for the last 20 epochs. The
learning rate is 0.001, and the scheduler is ReduceL-
ROnPlateau whose factor is 0.1 and patience is
3. The maximum output length is 2 times source
length plus 50, and the beam size is 5. The loss
function is optimized with Adam (Kingma and Ba,
2014), where β1 = 0.9, β2 = 0.999 and ε = 10−8.

For BART models, we use the BART-Large
model available in the fairseq, which 12 encoder
and decoder layers.7 The dropout rate for both en-
coder and decoder is 0.1. There are no more than
2048 tokens in a batch. Training uses early stop-
ping when the validation loss has not improved for
the last 20 epochs. The learning rate is 0.00003,
and the scheduler is polynomial decay with 1000
warm updates. The maximum output length is 1024.
The loss function is optimized with Adam (Kingma
and Ba, 2014), where β1 = 0.9, β2 = 0.999 and
ε = 10−8.

For every experiment, the computing infrastruc-
ture we used is an NVIDIA V100 GPU and an
Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz
CPU. The numbers of trainable parameters of
LSTM models for weather and E2E datasets are
2,212,928 and 3,079,256 respectively. Training
a LSTM model on the full weather dataset takes
around 0.5k seconds for 38 epochs. Training
a LSTM model on the pseudo-labeled weather
dataset takes around 3.4k seconds for 57 epochs.
Training and validation loss at convergence is
around 1.8. The speed of vanilla decoding was
37,973 tokens/s, and the speed of constrained de-
coding was 532.61 tokens/s. The numbers of
trainable parameters of BART models for weather
and E2E datasets are both 406,290,432. Train-
ing a BART model on the full weather dataset
takes around 10k seconds for 21 epochs. Train-
ing a BART model on the pseudo-labeled weather
dataset takes around 42k seconds for 20 epochs.
Training and validation loss at convergence is
around 2.1. The speed of vanilla decoding
was 25.17 responses/s, or 1565.75 tokens/s, and
the speed of constrained decoding was 1.82 re-
sponses/s, or 113.92 tokens/s.

The source code and data for reproduc-
ing all experiments in this paper are submit-
ted in the supplementary materials and will

7https://github.com/pytorch/fairseq/tree/master/examples/bart

97

be released upon acceptance. The depen-
dencies are specified in requirements.txt.
Code usage instructions are in README.md and
self-training/README.md.

B Details on Expert Evaluation of
Correctness

Table 4 shows the detailed breakdown of agreement
between the expert judges and tree accuracy. We
can observe that agreement with tree accuracy is
higher with LSTM models than with BART, and
higher where there is a significant difference in tree
accuracy than in the one case where there was no
significant difference (BART ST-CD-02 vs. BART
LBL-100). For this comparison, there were rela-
tively few discrepancies in tree accuracy to sample
from, and the items in question likely represent
somewhat unusual cases. In examining the hand-
ful of cases where the judges agreed but did not
agree with tree accuracy, about half were real er-
rors where BART’s words did not match the non-
terminals (influenced by its pre-trained knowledge),
while the other half had (presumably rare) errors
in the input or reference. It is not surprising that
tree accuracy would be somewhat less reliable with
BART, as it relies on its pre-trained knowledge as
well as the input in making generation choices. For
example, in one case the BART ST-CD-02 model
output, “It’s not expected to be warm tomorrow
morning in your area. The temperature will drop
to ARG TEMP tomorrow.” Here, it seems that
BART inferred that if it won’t be warm tomorrow,
that may well be because the temperature is drop-
ping. However, “will drop” is not part of the input
and may or may not be factual. Since these words
appear outside of the non-terminal signaling the
low temperature in the output, they are not checked
by tree accuracy, and thus this error is missed.

LSTM
ST-CD-20 vs.

LBL-20 LBL-100

Judge-1 36/39 26/29

Judge-2 40/40 25/27

BART
ST-CD-02 vs.

LBL-02 LBL-100

Judge-1 36/37 21/31

Judge-2 36/37 18/29

Table 4: Agreement rate of human evaluation of correct-
ness with tree accuracy (excluding indeterminate ‘same’
judgments)

98

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

20

40

60

80

100

#Training Samples

A
ut

o–
Tr

ee
A

cc
ur

ac
y

LSTM

PLN-LBL
PLN-ST-VAN
PLN-ST-RMR

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

48

54

60

66

72

78

#Training Samples

B
L

E
U

LSTM

PLN-LBL
PLN-ST-VAN
PLN-ST-RMR

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

60

80

#Training Samples

A
ut

o–
Tr

ee
A

cc
ur

ac
y

BART

PLN-LBL
PLN-ST-VAN
PLN-ST-RMR

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

66

72

78

#Training Samples

B
L

E
U

BART

PLN-LBL
PLN-ST-VAN
PLN-ST-RMR

Figure 3: Auto–tree accuracy and BLEU scores of LSTM and BART models and two self-training methods by
parallel training data size with vanilla decoding of plain (PLN) text on the conversational weather dataset. For
comparison, auto–tree accuracy of LSTM and BART on the test set references are 92.85 and 93.18 respectively.

99

420
%1

841
%2

2103
%5

4206
%10

8412
%20

21030
%50

42061
%100

0

20

40

60

80

100

#Training Samples

Tr
ee

A
cc

ur
ac

y

LSTM

LBL
ST-VAN
ST-RMR
ST-CD

420
%1

841
%2

2103
%5

4206
%10

8412
%20

21030
%50

42061
%100

60

65

70

75

#Training Samples

B
L

E
U

LSTM

LBL
ST-VAN
ST-RMR
ST-CD

420
%1

841
%2

2103
%5

4206
%10

8412
%20

21030
%50

42061
%100

20

40

60

80

100

#Training Samples

Tr
ee

A
cc

ur
ac

y

BART

LBL
ST-VAN
ST-RMR
ST-CD

420
%1

841
%2

2103
%5

4206
%10

8412
%20

21030
%50

42061
%100

91

91.5

92

92.5

93

93.5

#Training Samples

B
L

E
U

BART

LBL
ST-VAN
ST-RMR
ST-CD

Figure 4: Tree accuracy and BLEU scores of LSTM and BART models and two self-training strategies by parallel
training data size with vanilla decoding on the enhanced E2E dataset. The self-training results here are measured on
the first iteration.

100

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

87

90

93

96

99

#Training Samples

Tr
ee

A
cc

ur
ac

y

LSTM on Weather Dataset

LBL
ST-VAN
ST-RMR
ST-CD

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

55

60

65

70

75

80

#Training Samples

B
L

E
U

LSTM on Weather Dataset

LBL
ST-VAN
ST-RMR
ST-CD

420
%1

841
%2

2103
%5

4206
%10

8412
%20

21030
%50

42061
%100

20

40

60

80

100

#Training Samples

Tr
ee

A
cc

ur
ac

y

LSTM on E2E Dataset

LBL
ST-VAN
ST-RMR
ST-CD

420
%1

841
%2

2103
%5

4206
%10

8412
%20

21030
%50

42061
%100

63

66

69

72

75

78

#Training Samples

B
L

E
U

LSTM on E2E Dataset

LBL
ST-VAN
ST-RMR
ST-CD

Figure 5: Tree accuracy and BLEU scores of LSTM and two self-training strategies by parallel training data size
with constrained decoding at runtime on the conversational weather dataset and the enhanced E2E dataset. The
self-training results of the enhanced E2E dataset are measured on the first iteration.

101

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

94

95

96

97

98

99

100

#Training Samples

Tr
ee

A
cc

ur
ac

y

BART on Weather Dataset

LBL
ST-VAN
ST-RMR
ST-CD

253
%1

507
%2

1269
%5

2539
%10

5078
%20

12695
%50

25390
%100

68

70

72

74

76

78

#Training Samples

B
L

E
U

BART on Weather Dataset

LBL
ST-VAN
ST-RMR
ST-CD

420
%1

841
%2

2103
%5

4206
%10

8412
%20

21030
%50

42061
%100

97.5

98

98.5

99

99.5

100

#Training Samples

Tr
ee

A
cc

ur
ac

y

BART on E2E Dataset

LBL
ST-VAN
ST-RMR
ST-CD

420
%1

841
%2

2103
%5

4206
%10

8412
%20

21030
%50

42061
%100

91.5

92

92.5

93

93.5

#Training Samples

B
L

E
U

BART on E2E Dataset

LBL
ST-VAN
ST-RMR
ST-CD

Figure 6: Tree accuracy and BLEU scores of BART and two self-training strategies by parallel training data size
with constrained decoding at runtime on the conversational weather dataset and the enhanced E2E dataset. The
self-training results of the enhanced E2E dataset are measured on the first iteration.

102

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 103–113,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Generating Racing Game Commentary from Vision, Language, and
Structured Data

Tatsuya Ishigaki† Goran Topić† Yumi Hamazono†◦ Hiroshi Noji†⋄
Ichiro Kobayashi†◦ Yusuke Miyao†‡ Hiroya Takamura†

†National Institute of Advanced Industrial Science and Technology, Japan,
◦Ochanomizu University, ‡The University of Tokyo, ⋄LeepMind Inc.

{ishigaki.tatsuya, goran.topic, hamazono-yumi, noji, takamura.hiroya}@aist.go.jp,
koba@is.ocha.ac.jp, yusuke@is.s.u-tokyo.ac.jp

Abstract

We propose the task of automatically gener-
ating commentaries for races in a motor rac-
ing game, from vision, structured numerical,
and textual data. Commentaries provide infor-
mation to support spectators in understanding
events in races. Commentary generation mod-
els need to interpret the race situation and gen-
erate the correct content at the right moment.
We divide the task into two subtasks: utterance
timing identification and utterance generation.
Because existing datasets do not have such
alignments of data in multiple modalities, this
setting has not been explored in depth. In this
study, we introduce a new large-scale dataset
that contains aligned video data, structured
numerical data, and transcribed commentaries
that consist of 129,226 utterances in 1,389
races in a game. Our analysis reveals that
the characteristics of commentaries change de-
pending on time and viewpoints. Our experi-
ments on the subtasks show that it is still chal-
lenging for a state-of-the-art vision encoder to
capture useful information from videos to gen-
erate accurate commentaries. We make the
dataset and baseline implementation publicly
available for further research.1

1 Introduction

Live commentary plays an important role in
sports matches and video games; it makes spec-
tators more excited, more immersed, and bet-
ter informed about the matches or games (e.g.,
Schaffrath (2003)), as in the example of racing
game commentary “We are approaching the final
long straight. I wonder who is going to win!”.
Live commentary also enhances the value of on-
line videos and home videos. However, providing
a live commentary requires a certain level of com-
menting skills and knowledge of the target sports

1https://kirt.airc.aist.go.jp/
RacingCommentary

or video games; the majority of online videos
and home videos are left without live commen-
tary.2 The application of natural language gener-
ation technology would be a solution to this prob-
lem. Thus, we select the racing game domain as
an example, and propose a task of generating live
commentary on it.

Examples of utterances in a live commentary for
a racing game are shown in Figure 1. Live com-
mentaries should describe each important event
in the race at the moment when the event oc-
curs, within a short period of time. Thus, we
have to make decisions on when to speak and
how long/elaborately to speak, in addition to what
to say and how to say it, which have been long
studied. The importance of each event would
have to be assessed in the context of a compe-
tition in which participants are striving to win.
It suggests that what to say for race commen-
tary generation should be different from, for ex-
ample, image captioning. In this sense, the task
of live commentary generation contains inherent
limitations that are not addressed in well-studied
generation problems such as summary genera-
tion for basketball (Puduppully and Lapata, 2021),
and image/video captioning (Vinyals et al., 2015;
Yao et al., 2015); however, some techniques de-
veloped for such existing generation tasks are also
useful for live commentary generation.

As input, vision data, such as the videos shown
in Figure 1, are common in many tasks. How-
ever, it is not a trivial task to capture important
information from vision data, because many of the
frames in a race would be similar to each other,
unlike images for image captioning data. There-
fore, we propose the use of structured data, that
is, telemetry data, including the positions and the
speeds of cars, and the steering wheel angles. The

2For example, many gameplay videos on Twitch do not
have live commentary (https://www.twitch.tv).

103

Figure 1: Translated Examples of commentaries (original utterances in Japanese are in brackets). For the com-
mentaries on the top, the commentator is watching the race from the aerial viewpoint. For those at the bottom, the
commentator is watching the race through a camera just behind the driver.

assumption that such telemetry data are available
is not unrealistic. It is the general trend that many
sensors are used to obtain telemetry data even in
real sports matches and motor races. For exam-
ple, each race car in F1 races is monitored by 300
sensors.3 Additionally, players are tracked by GPS
technology during football matches to obtain posi-
tional data (Memmert and Raabe, 2018). We work
on video games because telemetry or vision data
are easier to obtain than in real sports. This can ad-
dress the huge demand in the gaming community
and serve as a favorable test bed for live commen-
tary generation. As a result, the task addressed in
this paper is the live commentary generation for
racing games from vision, structured, and textual
data.4

Live commentary generation has not been stud-
ied in-depth, partly because of the lack of datasets.
Thus, we create a new dataset for live commentary
generation, which includes 129,226 utterances of
live commentary, aligned with gameplay video
and telemetry data of racing game. The teleme-
try data contain the positions and speeds of race
cars and various types of information about cir-
cuits and cars. There are two types of live com-
mentary. One is provided by the game players
while playing and watching the racing game from
the virtual camera behind the car. The other is pro-
vided by another person watching the game from
a virtual helicopter. We analyze the differences in

3https://aws.amazon.com/f1/
4We include textual data as input because we use the pre-

vious utterances as additional input.

the characteristics of commentaries from different
viewpoints.

We split the live commentary generation into
two subtasks: the utterance timing identification
and utterance generation. We propose multimodal
models for these subtasks and also provide an em-
pirical evaluation. Our experiments suggest that
the use of telemetry data works well for this task,
whereas it is difficult for a state-of-the-art vision
encoder to extract useful information from race
videos, especially for utterance generation.

Our contributions are threefold: (1) we propose
a novel task of automatically generating motor
racing game commentaries, (2) we create a dataset
and analyze its characteristics, and (3) we propose
methods for this task and argue that combining
multimodal data is challenging, which is worth ex-
ploring in depth. We make the dataset and baseline
implementations publicly available to enhance fur-
ther studies on this task.

2 Related Work

Existing studies on commentary generation
can be divided into real-time commen-
tary (Taniguchi et al., 2019; Kim and Choi,
2020) and commentaries written after-
wards (Puduppully and Lapata, 2021). Our
focus is on the former. Live commentary
generation is formulated as the extraction
of tweets (Kubo et al., 2013), the combina-
tion of rules and keyword extraction from
videos (Kim and Choi, 2020) and neural network-
based data-to-text (Taniguchi et al., 2019). To

104

generate commentary in real-time, we need to
solve at least two tasks: timing identification and
utterance generation tasks. However, existing
studies focus on the latter, where the timings
are given, for example, minute-by-minute up-
dates (Kubo et al., 2013). Unlike baseball, the
timing identification task for race commentary is
not trivial because a race cannot be segmented
simply.

Our setting can be considered as a combi-
nation of two different research topics: video
captioning (Kim and Choi, 2020) and data-to-
text (Taniguchi et al., 2019). Various meth-
ods for encoding video frames have been ac-
tively studied (Dosovitskiy et al., 2021); com-
mentaries often include comments that focus on
the positional relation between cars, which re-
quires a more fine-grained understanding of video
frames. The performance of current vision en-
coders still needs to be evaluated. Data-to-
text is the task of converting structured data
into natural language, which has been applied
to the domain of finance (Murakami et al., 2017;
Aoki et al., 2018, 2021; Uehara et al., 2020),
weather forecast (Murakami et al., 2021), a sum-
mary of sports matches (Puduppully and Lapata,
2021; Iso et al., 2019) and live sports com-
mentary (Taniguchi et al., 2019). The inputs
used for existing studies are time-sequence
numerical data (Murakami et al., 2017), ta-
bles (Puduppully and Lapata, 2021; Gardent et al.,
2017) or simulated images (Murakami et al.,
2021). These models focus on neural network-
based approaches; however, data-to-text tasks
have been studied for a long time (see a survey
paper (Gatt and Krahmer, 2018) for details).

Existing studies on generation mostly focus on
generating text from a single viewpoint, i.e. they
generate objective descriptions of video frames in
video captioning, and a data-to-text model gen-
erates a text that focuses on the main content of
the input data. A few existing studies state that
live commentaries change depending on the view-
points of commentators. For example, Kubo et al.
(2013) found that the generated commentaries
on soccer matches are not objective, and these
are biased to mention more popular teams. The
viewpoints are the key to characteristic commen-
taries, but most studies have ignored the differ-
ence caused by the viewpoints that our dataset ad-
dresses.

Datasets play important roles in studies on
generation. Existing datasets for generation
tasks contain data in a single modality, such
as, videos (Zhou et al., 2018; Krishna et al.) or
structured data (Puduppully and Lapata, 2021;
Gardent et al., 2017). We propose a new large-
scale dataset that contains transcribed commen-
taries aligned with videos and structured numer-
ical data.

3 Dataset

We describe the procedure used to create our
dataset. We then show its statistics and the analy-
sis to characterize the task.

3.1 Procedure for creating our dataset

Collecting recordings and spoken commen-
taries: We hired five workers who regularly
play e-sports games. Thus, some of the work-
ers are familiar with playing racing games, but
some are not. They are not professional com-
mentators. As a racing game, we used Assetto
Corsa5. For each race consisting of two laps, one
worker plays while simultaneously commentating
it from the viewpoint of the virtual camera just be-
hind the car (driver’s view). Another worker is as-
signed to commentate the race from the viewpoint
of a virtual helicopter (aerial view), without play-
ing the game. Note that the commentaries are in
Japanese. Drivers used a physical steering con-
troller to achieve a situation close to real sports
competitions.

For both commentaries, we ask the commenta-
tors to mainly mention the car driven by the player;
however, the commentators could also mention
other cars if they found them worth mentioning.
Circuit maps, in which each turn is numbered,
are available to commentators so that they can re-
fer to them by numbers (e.g., Turn 15). Well-
known turns or straights are given names such as
Casanova for turn six in the Laguna Seca circuit.6

Collecting transcriptions of commentaries:
After the collection of recordings, we hired 149
workers on a crowdsourcing service, Lancers7, to
transcribe all the recordings. Workers are sup-
posed to transcribe the recordings and add the

5Assetto Corsa is a game title developed and published by
Kunos Simulazioni:
http://www.kunos-simulazioni.com

6The numbers and names are obtained from Wikipedia or
other websites that describe circuits.

7http://lancers.jp

105

Telemetry data types Example values
current lap [0..] 1
is current lap invalidated? false
lap time of current lap (ms) 256
lap time of previous lap (ms) 156164
progress on current lap [0, 1] 0.002780
projected diff. from best lap 0.0
speed (km/h) 177.693130
steer rotation (rad) -59.793526
world position (x, y, z) (m) (5.372770,

64.056038,
-749.219971)

position on track (L=−1, R=1) -0.515301
distance from ideal path (m) 0.854022

Table 1: List of collected structured telemetry data with
example values. The last two types of data are not from
the API, but are calculated by the authors.

start and end timestamps to each utterance. Ut-
terances are basically sentences, with some excep-
tions; some utterances do not form complete sen-
tences because they are truncated owing to speech
repair. Finally, we manually checked whether the
transcriptions aligned with the videos correctly.
Collecting structured telemetry data: We also
collected structured telemetry data. Using Assetto
Corsa’s API, we extracted various structured nu-
merical data, including the speeds of the cars par-
ticipating in the race, % of the progress over the
entire race, the angles of the steering wheel, and
other 13 types of numerical values. The full list of
the types of structured data collected is shown in
Table 1. We repeated the extraction of these values
every 0.01 seconds on average.

3.2 Statistics and Analysis

In total, the five workers had played 1,389 races.
1,084 out of the 1,389 races are given commen-
taries from both the drivers’ and aerial viewpoints.
The remaining 305 races are given only commen-
taries from the drivers’ viewpoints. Thus, we col-
lected a total of 2,473 video recordings aligned
with commentaries and multimodal data.8 The to-
tal duration of the recordings is 226 hours, and the
number of collected utterances is 129,226, which
is more than the number of descriptions in Ac-
tivityNet Captions dataset (Krishna et al.), a large
dataset for dense video captioning. Also, as a
non-English dataset, it might provide some valu-
able linguistic diversity, as most datasets are in En-
glish. On average, they produced an utterance with
a length of 2.73 seconds and then they kept silent

81,084+305 videos from driver’s viewpoints, and 1,084
videos from aerial viewpoints.

of unique circuits 4
of commentators 5
total # of races 1,389
total # of recordings 2,473
- driver’s viewpoint 1,389
- aerial viewpoint 1,084
total recording duration 226:37:53
- driver’s viewpoint 126:11:19
- aerial viewpoint 100:26:34
total # of utterances 129,226
avg. # of utterances per race 52.25
avg. # of characters per utterance 22.22
avg. length of an utterance 2.73s
avg. length of silence 3.46s

Table 2: Statistics of the dataset.

for 3.46 seconds. The other statistics are listed in
Table 2.

We manually designed labels for the utterances
to capture their characteristics. Each label is de-
fined as a pair of two sub-labels, target label and
the content label, as presented in Table 3.

The target label represents the target subject
of the utterance, such as the player’s car,
other cars, all cars, or the circuit.
For example, the utterance “All the cars now
start” is labeled as all cars, because it fo-
cuses on all the cars participating in the race,
whereas “The player is now approaching Turn15”
is labeled as the player’s car, because it
mentions only the target car. The content label
represents the content of the utterance, such as
the relative position, movement, lap
time and other content types as presented in
Table 3. As an example, the player is now
approaching Turn15 is labeled as the player’s
car:movement, because it mentions the movement
of the player’s car.

We randomly extracted 874 utterances from 20
videos, and then manually annotated them using
the listed labels. It should be noted that this man-
ual labelling task is performed under the multi-
label setting, which allows us to assign one or
more labels to an utterance. We analyze the distri-
butions of the labels to capture the characteristics
of the dataset. In this analysis, we are particularly
interested in (1) how the label distribution changes
over time, and (2) how the label distribution differs
depending on the commentator’s viewpoint.

How utterances change over time?
We split a race into quarters according to the time-
line (e.g., the first quarter corresponds to the inter-
val from the beginning of a race to the 25% point).

106

Target labels Example utterances
player’s car This was a very elegant

overtake by the player.
other cars The car behind just overtook

the player.
all cars All the cars has now started.
circuit Laguna Seca is well known

for its very long strait.
none Ah!
Content labels Example utterances
relative position The player is now at the

second making the distance
close to the first.

location on map The blue car is approaching
Turn2 and others follow.

lap time The player now crossed the
finish line at the time 3.15

previous event Maybe this mistake might
cause big impact on the time

future event Can the player successfully
pass the difficult Turn 15?

movement The player overtook the red
car on this long straight.

stable race All cars are stable without
any problems.

features All the cars are the same,
Porsche Macan.

greetings Ok, now I start my
commentary on this race.

reaction Oh!
others —

Table 3: List of sub-labels and example utterances. A
label assigned to an utterance is defined as a pair of
Target and Content sub-labels.

Figure 2 shows the label distributions for different
quarters. In the figure, the proportions of the la-
bels in the first quarter are represented by the tops
of the four bars, which are colored blue. Similarly,
the second (orange), third (black), and fourth (yel-
low) bars from the top represent the proportions in
the second, third, and fourth quarters, respectively.

For the first quarter indicated by the top bar for
each label, which are colored blue in the figure, the
labels with features (i.e., circuit:features, player’s
car:features and other cars:features) are frequent
compared with the other quarters. This suggests
that commentators often start the commentary by
mentioning the features of the circuit or the cars.

For the final quarter indicated by the bottom
bars, which are colored yellow, none:greetings
and player’s car:lap time are frequent, suggesting
that the commentators mention the elapsed time
after the cars crossed the finish line and finally
concluded the session with greetings.

Next, we focus on the differences between the
two middle quarters, indicated by the second and
third bars, which are colored orange and black.

Figure 2: Distribution over utterance labels in different
periods of timestamps

The proportion of player’s car:movement in the
second quarter (the second bars colored orange), is
higher than in the third quarter (the third bars col-
ored black). Thus, the commentators tend to men-
tion more facts in the second quarter. In contrast,
the third quarter (the third bars colored black)
contains more future event and previous event la-
bels that often include commentators’ comments,
concerns, or opinions on the previous and future
events. This suggests that there are more mentions
on the objective facts in the early stages of races,
whereas subjective utterances increase toward the
end of the races.

How do utterances differ depending on the
viewpoint?

　
We examined the differences between commen-

taries from two different viewpoints: the driver’s
and aerial. Figure 3 shows the label distribution,
where the upper bars colored orange correspond to
the driver’s viewpoint, and the lower bars colored
blue correspond to the aerial viewpoint.

The proportion of the player’car:location for
the aerial viewpoint is almost double of that of
the proportion of the same label for driver’s view-
point. This is because the commentators with
aerial viewpoint can capture the locations in maps
more easily, whereas commentators with driver’s

107

Figure 3: Distribution over utterance labels annotated
from different viewpoints: driver’s (the upper bars col-
ored orange) or aerial (the lower bars colored blue).

viewpoint cannot see the entire circuit. Addition-
ally, the proportion of player’s car:stable race
is very high for the aerial viewpoint. Because
the aerial viewpoint is farther from the cars than
the driver’s viewpoint, the commentaries from the
aerial viewpoint hardly mention slight movements
of the cars; they more often say that the race is
stable.

In contrast, the proportion of the player’s
car:previous event for the driver’s viewpoint is
higher than that of the aerial viewpoint. If the
commentaries are spoken by the players them-
selves, they often comment on the events that just
happened, e.g., “OK, yes, the car turned success-
fully!”.

The analysis above shows that the viewpoint in-
fluences the characteristics of the utterances.

4 Tasks and Models

We formulate a live commentary generation task
and introduce the baseline models as shown in Fig-
ure 4. We report the performances of the baseline
models for both subtasks to better understand the
commentary generation task.

4.1 Task Formulation

To generate a live commentary, one needs to find
multiple timepoints and generate an utterance at

each timepoint. We solve this task in a sequential
fashion; given the previous timepoint and its utter-
ance, we find the next timepoint and generate its
utterance, which will be solved below.

The task of timing identification is to determine
the timestamp t at which an utterance should be
generated. We formulate this problem as a binary
classification for each second. Given the timepoint
of the previously generated utterance, we itera-
tively classify each successive second according to
whether the second is the next timepoint for gen-
eration or not. If the second is classified as posi-
tive, the model goes on to the generation step. If
the second is classified as negative, the model goes
on to the classification of the next second. If the
model does not output positive for m seconds, the
next second is forced to be positive. We set m = 7,
which is double the average interval between two
consecutive utterances.

For the classification of each second, we en-
code a given tuple (V , D, T). V denotes a
sequence of the previous k video frames V =
(img1, ..., imgk) captured every second. We
set k = 10 in our experiments. We used
torchvision9 library to extract these images
from videos. S denotes the structured data
D = {D1, ..., DN} consisting of N sets of
the structured telemetry data, where each Dn =
{val1,n, ..., valk,n} consists of k values tracked at
each of the previous k seconds. T represents the
textual information, which is the previous utter-
ance in our setting.

The task of the utterance generation is to gener-
ate a sequence of characters as an utterance, given
the tuple of (V , D, T) for the given/estimated
timepoint. In other words, we use the same in-
formation for both the second classification above
and the utterance generation. We use a multimodal
encoder-decoder architecture to generate an utter-
ance.

4.2 Multi-modal Encoder
The models for both subtasks use the same net-
work for encoding the input vision, structured
telemetry and textual data. The encoded repre-
sentation is then used in the network for sub-
tasks. For video frames V , each video frame
is converted to an image embedding by using
Vision Transformer (Dosovitskiy et al., 2021)10.

9https://pytorch.org/vision
10We used an open implementation at https://

github.com/lucidrains/vit-pytorch.

108

Figure 4: Baseline models for the timing identification and commentary generation tasks. Each sequence of
numerical data i.e. speed, rotation, position and so on, is considered as a vector and we obtain a compressed
vector. Vision information is encoded by using Vision Transformer and LSTM-based encoder. Textual information
is encoded by using another LSTM-based encoder. The concatenated vector of the encoded numerical, vision and
textual information is passed to the models for sub-tasks.

The image embeddings are then sequentially
encoded by using a Long Short-term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997):
hi,V = LSTMV (hi−1,V , V iT (imgi)), where
ViT returns the output vector for the [CLS] to-
ken calculated by Vision Transformer. We treat
the final state hk,V of the LSTM as the representa-
tion of V . For each sequence Dn of the structured
data D tracked for the previous k seconds, we con-
sider the sequence Dn as a vector for the n-th type
of data in the structured telemetry data, and we
transform it into an another representation by us-
ing a linear transformation: dn = ReLU(DnWd+
b), where Wd is a weight matrix, b is a vec-
tor, and ReLU activates the vector. The concate-
nated vector of D1 to DN is the representation
of D. For textual input, we simply embed char-
acters in the textual input and then sequentially
encode the embeddings by using another LSTM:
hi,T = LSTMT (hi−1,T , embe(xi)), where embe
returns the character embedding. We treat the final
state of the LSTM as the representation for textual
input T . Finally, the concatenated vector of the
encoded representations of V , D, and T is passed
to the networks for the sub-tasks explained next.

4.3 Timing Identification Model

For the timing identification, the encoded rep-
resentation is passed to a network that con-
sists of a linear transformation and the soft-
max function: Softmax(encode([V ;D;T])Wt),

where encode() returns the outputs of the encoder
and Wt converts the concatenated vector to two-
dimensional vector that represents the scores for
the decisions to utter or not utter at this timepoint.
We obtain the probability distribution over deci-
sions by using the softmax function.

For training, we use the gold start timestamps
from commentators as positive instances. We use
the midpoint of the silence between consecutive
utterances as negative instances. We train this
classifier by using the cross-entropy loss. For test-
ing, we classify every second after the time at
which the previous utterance is given. We out-
put the timestamp first classified as positive by our
model.

4.4 Utterance Generation Model

This second subtask generates an utterance as a se-
quence of characters given an encoded represen-
tation V, S, and T . We use an encoder-decoder
architecture with an attention mechanism, which
consists of an LSTM-based decoder initialized by
the representation passed from the encoder:

hj,d = LSTMd(hj−1,dec, embd(yj−1)), (1)

aji =
exp(hj,dWhi,V)∑10
i=1 exp(hj,dWhi,V)

, (2)

cj =
∑

i

ajihi,V , (3)

oj = Softmax([hj,d; cj]Wd), (4)

109

where embd returns the embedding of a charac-
ter,11 cj is a vector produced by an attention mech-
anism over the outputs of LSTMV , and yj−1 is
the previously generated character. Wd is a ma-
trix that converts the concatenation [hj,d; cj] to a
vector of scores over the predefined vocabulary for
the target utterances, and Softmax converts it to
a probability distribution. This generator is trained
by using cross-entropy loss.

5 Experiments

We conduct experiments for the two subtasks to
further investigate the characteristics of the task.

5.1 Data and Parameters

We use 100 tuples of videos, commentaries, and
structured data for validation, another 100 tuples
for testing, and the remaining tuples for training.
For Vision Transformer, we set the number of
heads to six, the layer size to two, and each head is
represented as a 100-dimensional vector. The pa-
rameter for the patch size is 30×30. The dropout
rate was set to 0.1. Each type of telemetry data
is represented as a 10-dimensional vector. We use
three types of data i.e., speed, progress in a lap,
steer rotation, and position on track. The dimen-
sions of both the hidden states and input vectors to
the LSTMs in encoders are set to 100. Thus, the
dimension of the hidden state of the LSTM in the
decoder side is 230, which is the sum of the size
of the encoded images, textual information and
structured data. The size of the character embed-
dings in the decoder is set to 100. We use separate
vocabularies for the textual input and the target
text. We use Adam (Kingma and Ba, 2015) with
several initial learning rates ranging from 10−3 to
10−5 for optimizing parameters. We continue the
training iterations until the loss in the validation
dataset does not decrease for 10 epochs. We con-
duct the utterance generation experiments for the
gold timestamps.

5.2 Timing Identification

We evaluate the models by using the average gaps
in second between the gold timestamp and pre-
dicted timestamp. We propose a simple base-
line that outputs the timestamp after 3.46 seconds
from the end timestamp of the previous utterance.
3.46 is the average interval between two consecu-
tive utterances as shown in Table 4. As a result,

11Note embd is different from embe.

Model Avg. gap
baseline: average interval 3.66
struct 3.27
struct+text 3.26
struct+text+vision 3.12

Table 4: The average gap in seconds between the gold
and predicted timestamps. Lower values are better.

Model 10−3 10−4 10−5

struct 18.22 22.78 23.39
struct + text 18.03 23.78 23.86
struct + text + vision 17.49 22.58 24.01
only vision 0.30 2.74 7.46

Table 5: BLEU scores on the test dataset for the com-
pared models trained on different learning rates. The
model with the learning rate 10−5 achieves the best per-
formance on the validation dataset.

the average gap between the gold timestamps and
predicted timestamps obtained from the baseline
model was 3.66. When we use only structured
data as input, we obtained the average gap of 3.27
seconds. Adding textual information achieved a
slightly better value of 3.26, but the difference is
negligible. Adding vision information improves
the performance to 3.12.

5.3 Utterance Generation
We use BLEU (Papineni et al., 2002) to evalu-
ate the baseline models for this task. The scores
are shown in Table 5. The model based only on
telemetry data worked well. Adding textual infor-
mation improved BLEU score if the learning rate
is set to lower values i.e., 10−4 or 10−5. However,
we obtained a very low BLEU score when we used
only vision-based input. Adding vision informa-
tion to struct+text model degraded the score if the
learning rate is set to 10−3 or 10−4. Even with a
smaller learning rate, 10−5, vision information did
not significantly improve the performance.

6 Discussion

We list the gold and the utterances generated by
the model with learning rate 10−4 in Table 6. Gold
utterances often focus on relative position situa-
tions, as in Example 1, which requires capturing
the physical relations between cars. However, as
shown in the first example of a generated utterance
by data+text, we found only a few generated
utterances that mention the relative positions of

110

Example 1: timestamp: 00:55
Gold
The player is now following very close to the car ahead.
data+text
Now we’re on Turn 10, the player is now accelerating
data+text+vision
I want to step on the brakes firmly here.
Example 2: timestamp: 02:04 and 02:07
Gold
We are now approaching the chicane on Turn 11 and 12.
The player should properly use the curb and go on
a straight line here, and the player showed
stable race here.
data+text
The player should brake properly here.
The player should brake properly here.

Table 6: The gold and automatically generated com-
mentaries. Texts are translated from Japanese.

the player’s car and other cars. Integrating vision
information further reduces such utterances men-
tioning relative positions and other detailed infor-
mation, and also makes utterances less specific.
To generate utterances with detailed information,
a model must accurately capture the information
displayed in a small area of the image. However,
it may be too hard for the model to, for exam-
ple, capture the distance between the car driven
by the player and the car just behind, or the drastic
changes of speeds from the video frames shown in
Figure 1, whereas telemetry data provides the use-
ful information. From the perspective of studies
on vision, methods to properly capture such fea-
tures are worth exploring.

We also observed that generated commentaries
contain many repetitions of the same utterance, es-
pecially utterances generated by the model with
vision information. The utterances in Example 2
in Table 6 exemplifies repetitions. It should be
note that the two utterances are only three seconds
apart. The input to the model does not change
significantly during such a short period of time,
resulting in the two identical utterances. Some
mechanisms to increase the diversity of utterances
might alleviate this problem, which is a particular
challenge in commentary generation.

We found errors in the name of a country
e.g., Nürburgring in Germany was generated as
Nürburgring in Italy. Such errors are also known
as a common problem in other generation tasks.

7 Future Research Directions

Finally, we discuss the future directions. We
noticed that evaluation is very difficult for this

task. Only BLEU scores of course cannot cap-
ture the correctness because this evaluation ig-
nores the relation between a commentary and a
race represented in. However, manually check-
ing videos, language, structured data, and gen-
erated utterances would incur a huge labor cost.
An exploration into correct and efficient automatic
and manual evaluation methods that consider all
vision, language, and structured data should be
conducted in the future. For evaluation by using
BLEU, it might be helpful if we have multiple ref-
erence utterances for one timestamps. However, it
is difficult to collect multiple utterances simulta-
neously in this task because different commenta-
tors give utterances at different timings. We leave
them for an important future research direction.

Extensions of model would be considered as
one of the main steps to produce better commen-
taries. However, more importantly, we need to
explore an essential research question: “what is a
good commentary?”. Further analysis of the char-
acteristics that contributes to making commen-
taries better need to be conducted.

8 Conclusion

In this paper, we proposed the task of generating
commentaries for motor racing games. Our anal-
ysis reveals that the characteristics of utterances
change over time in a race, and such changes are
also caused by differences in viewpoints. They
also show that combining vision, language and
structured data is challenging, which worth study-
ing in depth. For future work, exploring better
methods to combine vision, language, and struc-
tured data will be a promising direction for future
work. We release the data to enhance further stud-
ies on generation tasks from multimodal inputs.

Acknowledgements

This paper is based on results obtained from a
project JPNP20006, commissioned by the New
Energy and Industrial Technology Development
Organization (NEDO). For experiments, compu-
tational resource of AI Bridging Cloud Infrastruc-
ture (ABCI) provided by National Institute of Ad-
vanced Industrial Science and Technology (AIST)
was used. We thank KUNOS Simulazioni for
granting us the permission to distribute our dataset
of Assetto Corsa.

111

References
Kasumi Aoki, Akira Miyazawa, Tatsuya Ishigaki, Tat-

suya Aoki, Hiroshi Noji, Keiichi Goshima, Hiroya
Takamura, Yusuke Miyao, and Ichiro Kobayashi.
2021. Controlling contents in data-to-document
generation with human-designed topic labels. Com-
puter Speech Language, 66:101154.

Tatsuya Aoki, Akira Miyazawa, Tatsuya Ishigaki, Kei-
ichi Goshima, Kasumi Aoki, Ichiro Kobayashi, Hi-
roya Takamura, and Yusuke Miyao. 2018. Generat-
ing market comments referring to external resources.
In Proceedings of the 11th International Conference
on Natural Language Generation, pages 135–139.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations, pages 1–21.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating train-
ing corpora for nlg micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 179–188.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. J. Artif. Int. Res.,
61(1):65–170.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi
Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke
Miyao, Naoaki Okazaki, and Hiroya Takamura.
2019. Learning to select, track, and generate for
data-to-text. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2102–2113.

Byeong Jo Kim and Y. Choi. 2020. Automatic baseball
commentary generation using deep learning. Pro-
ceedings of the 35th Annual ACM Symposium on Ap-
plied Computing, page 1056–1065.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei,
and Juan Carlos Niebles. Dense-captioning events
in videos. In International Conference on Computer
Vision (ICCV), pages 706–715.

Mitsumasa Kubo, Ryohei Sasano, Hiroya Takamura,
and Manabu Okumura. 2013. Generating live sports
updates from twitter by finding good reporters. In

2013 IEEE/WIC/ACM International Joint Confer-
ences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), volume 1, pages 527–534.

Daniel Memmert and Dominik Raabe. 2018. Data an-
alytics in football: Positional data collection, mod-
elling and analysis. Routledge.

Soichiro Murakami, Sora Tanaka, Masatsugu Hangyo,
Hidetaka Kamigaito, Kotaro Funakoshi, Hiroya
Takamura, and Manabu Okumura. 2021. Generat-
ing weather comments from meteorological simu-
lations. In Proceedings of the 16th Conference of
the European Chapter of the Association for Com-
putational Linguistics (EACL): Main Volume, pages
1462–1473.

Soichiro Murakami, Akihiko Watanabe, Akira
Miyazawa, Keiichi Goshima, Toshihiko Yanase, Hi-
roya Takamura, and Yusuke Miyao. 2017. Learning
to generate market comments from stock prices.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1374–1384.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Ratish Puduppully and Mirella Lapata. 2021. Data-
to-text generation with macro planning. Transac-
tions of the Association for Computational Linguis-
tics, 9(0):510–527.

Michael Schaffrath. 2003. Mehr als 1:0! Bedeu-
tung des Live-Kommentars bei Fußballubertragun-
gen– eine explorative Fallstudie [more than 1:0! the
importance of live commentary on football matches
– an exploratory case study]. Medien und Kommu-
nikationswissenschaft, 51.

Yasufumi Taniguchi, Yukun Feng, Hiroya Takamura,
and Manabu Okumura. 2019. Generating live
soccer-match commentary from play data. Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, 33(1):7096–7103.

Yui Uehara, Tatsuya Ishigaki, Kasumi Aoki, Hiroshi
Noji, Keiichi Goshima, Ichiro Kobayashi, Hiroya
Takamura, and Yusuke Miyao. 2020. Learning with
contrastive examples for data-to-text generation. In
Proceedings of the 28th International Conference on
Computational Linguistics (COLING2020).

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 3156–3164.

Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Bal-
las, Christopher Pal, Hugo Larochelle, and Aaron
Courville. 2015. Describing videos by exploiting
temporal structure. In 2015 IEEE International

112

Conference on Computer Vision (ICCV), pages
4507–4515.

Luowei Zhou, Chenliang Xu, and Jason J Corso. 2018.
Towards automatic learning of procedures from web
instructional videos. In AAAI Conference on Artifi-
cial Intelligence, pages 7590–7598.

113

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 114–127,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Explaining Decision-Tree Predictions by Addressing Potential Conflicts
between Predictions and Plausible Expectations

Sameen Maruf† Ingrid Zukerman† Ehud Reiter‡ Gholamreza Haffari†
†Dept. of Data Science and AI, Faculty of IT, Monash University, Victoria, Australia

‡Dept. of Computing Science, University of Aberdeen, Scotland, UK
†{firstname.lastname}@monash.edu ‡e.reiter@abdn.ac.uk

Abstract

We offer an approach to explain Decision Tree
(DT) predictions by addressing potential con-
flicts between aspects of these predictions and
plausible expectations licensed by background
information. We define four types of conflicts,
operationalize their identification, and specify
explanatory schemas that address them. Our
human evaluation focused on the effect of ex-
planations on users’ understanding of a DT’s
reasoning and their willingness to act on its
predictions. The results show that (1) explana-
tions that address potential conflicts are consid-
ered at least as good as baseline explanations
that just follow a DT path; and (2) the conflict-
based explanations are deemed especially valu-
able when users’ expectations disagree with
the DT’s predictions.

1 Introduction
Machine Learning (ML) models have become in-
creasingly accurate in recent times, leading to their
widespread adoption by decision makers in a vari-
ety of vital domains, including healthcare, defense
and energy. This underscores the need for explana-
tions of the outcomes of these models that support
decision making by practitioners.

ML models may be classified into transparent
and opaque models based on their interpretabil-
ity (Doshi-Velez and Kim, 2017). Transparent mod-
els are “interpretable by a Machine Learning ex-
pert or a statistician” (Biran and McKeown, 2017).
These models, e.g., Decision Trees (DTs), deci-
sion rules and linear models, are built on the basis
of interpretable features, which are typically ob-
tained through feature engineering. Transparent
models are often less accurate than opaque mod-
els, in particular neural networks, provided large
training datasets are available. Nonetheless, it is
necessary to explain transparent models because
(1) large datasets may not always be available, as is

the case in our evaluation datasets (§ 4.1); (2) it is
common practice to clarify the outcomes of opaque
models by approximating them with transparent
models (§ 2); and (3) even if these transparent mod-
els are understandable by ML experts, they may
still be unclear to practitioners.

In this paper, we generate textual explanations of
predictions made by a particular transparent model:
DT. Our explanations address potential conflicts
between aspects of these predictions and plausible
expectations licensed by background information
(i.e., expectations that “make sense” in light of this
information). Specifically, we identify four types
of conflicts whereby events that appeared unlikely
or likely on the basis of background information
happened or did not happen respectively; we then
specify schemas that address these conflicts (§ 3).

We generated explanations for two datasets: Tele-
com and Nursery. In Telecom, a DT predicts
whether a customer will churn (leave) or stay with
the company based on their profile (e.g., whether
they have a phone service and what are their
monthly charges); in Nursery, a DT predicts the
acceptance status of a child to a childcare center
on the basis of the circumstances of the child and
their family (e.g., how satisfactory are the current
childcare arrangements and how demanding is the
parents’ employment). The bottom part of Table 1
illustrates an explanation generated for an instance
in the Nursery dataset. The explanation addresses
a potential conflict between (a) a plausible expecta-
tion that a child with a good childcare situation is
likely to be Wait listed, and (b) the DT’s prediction
that the child will be Priority accepted.

Our human evaluation of the explanations gener-
ated for the two datasets (§ 4) considers users’ over-
all preferences for different explanation types, and
the effect of explanations on two explanatory goals:
users’ understanding of the DT’s reasoning, and

114

Feature Value
Parents’ employment: Challenging
Current childcare: Good
Child’s health: Average
From the data, one might expect that children with good
current childcare will be a great deal more likely to get
Wait listed than to get a Priority acceptance (54% vs 11%).
However, the AI system has learned from the data that among
children with challenging parents’ employment and aver-
age health, those with good current childcare are almost
certain to get a Priority acceptance (close to 100%).

Table 1: Explanation for the prediction of an instance
in the Nursery dataset (bottom part); features used in
the prediction and their values (top part).

their willingness to act on its predictions.1 In addi-
tion, users rated the explanations on completeness,
and on the presence of extraneous information.

The main findings of our user study are: (1) ex-
planations that address potential conflicts are gener-
ally considered at least as good as baseline explana-
tions that just follow a DT path; and (2) the conflict-
based explanations are deemed especially valuable
when users’ expectations disagree with DT pre-
dictions. We stress that these findings pertain to
explanations that address conflicts due to plausible
expectations from background information. We do
not claim that these explanations address actual
user expectations.

2 Related Work
In 1990-2000, explanations derived from knowl-
edge bases were enhanced by addressing aspects of
users’ reasoning. Specifically, Zukerman and Mc-
Conachy (1993) and Horacek (1997) considered po-
tential inferences from explanations, omitting eas-
ily inferable information and addressing erroneous
inferences; Korb et al. (1997) took into account rea-
soning fallacies when explaining the reasoning of
Bayesian Networks; and Stone (2000) generated in-
structions from which users could draw appropriate
inferences about actions to take. Recently, Krause
and Vossen (2020) identified additional triggers
that should be addressed in explanations.

Current research on explanation generation fo-
cuses on explaining the predictions made by ML
models – a sub-field called Explainable AI (XAI).
In particular, neural networks have received a lot
of attention owing to their superior performance on
one hand, and their opaqueness on the other hand.
A common first step in explaining the predictions

1The participants in our study were told that they have an
AI, but they were not informed about the specifics of the ML
model. Other explanatory objectives include enhancing trust
in the system, and helping debug a system (Reiter, 2019).

of neural networks is to build a local surrogate
explainer model that uses a transparent model to
approximate the neighbourhood of an instance of
interest. Linear regression (Ribeiro et al., 2016;
Štrumbelj and Kononenko, 2014; Lundberg and
Lee, 2017), decision rules (Ribeiro et al., 2018)
and DTs (van der Waa et al., 2018; Guidotti et al.,
2019; Sokol and Flach, 2020a) have been employed
for this purpose.

A DT’s prediction is generally explained by
tracing the path from the root to a predicted out-
come (Guidotti et al., 2019; Stepin et al., 2020). Re-
cently, researchers have generated class-contrastive
counterfactual explanations to enhance the expla-
nations of DT predictions. Stepin et al. (2020)
generated explanations that have a factual and a
counterfactual component; the former is the DT
trace, while the latter was found by ranking all the
paths leading to alternative outcomes according to
their distance from the factual explanation. Sokol
and Flach (2020b) studied counterfactual explana-
tions for DTs in an interactive system where users
could change or remove features, or request an ex-
planation for a hypothetical instance. Counterfac-
tual explanations were generated by representing
the tree structure as binary meta-features, and min-
imizing an L1-like metric to retrieve the shortest
statement. However, these works do not determine
when a counterfactual enhancement is required.

The need for an enhancement was studied in (Bi-
ran and McKeown, 2017) — they identified and
addressed unexpected effects of individual features
on predictions made by logistic regression. How-
ever, they did not consider unexpected predictions.

Reiter (2019) argued that good explanations
must be written for a specific purpose and audience,
have a narrative structure, and use vague language
to communicate uncertainty. The explanations gen-
erated in (Sokol and Flach, 2020b) and (Biran and
McKeown, 2017) have a narrative structure, and
only those in (Biran and McKeown, 2017) use
vague language to convey strength of evidence.

The approach described in this paper comple-
ments explanations by addressing both unexpected
predictions and unexpected effects of features,
thereby enhancing their narrative structure. In ad-
dition, we leverage the work of Elsaesser and Hen-
rion (1989) to address Reiter’s desideratum of using
vague language to convey probabilities.

Finally, and more broadly, expectation-theory
posits that the surprisingness of an event may stem

115

from a discrepancy between the state of the world
and propositions that are deducible from presented
information (Ortony and Partridge, 1987). Itti and
Baldi (2009) offer a Bayesian formulation of the in-
fluence of surprisingness on visual attention shifts
in terms of the difference between prior and pos-
terior probabilities. In our research, we employ a
probabilistic formulation to identify potential con-
flicts between plausible expectations and aspects
of DT predictions.

3 Justifying DT predictions
In this work, we explain the outcome predicted
by a DT for sample instances, where an instance
comprises a set of features, each associated with
a value, and an outcome is a discrete class. For
example, the top of Table 1 shows the features
and values of a Nursery instance;2 the DT then
classifies this instance into one of three classes:
Reject, Wait list and Priority accept.

Like Biran and McKeown’s (2017) approach,
ours hinges on identifying discrepancies, but it dif-
fers from their approach in that (1) we propose
addressing potential conflicts as a guiding princi-
ple for selecting content that complements explana-
tions of DT predictions; (2) these conflicts pertain
to predicted outcomes and to the impact of vari-
ables; and (3) we identify these conflicts by com-
paring aspects of a DT prediction with plausible
expectations derived from probabilistic relations.

3.1 Potential Conflicts
First, we define potential conflicts, and their build-
ing blocks: plausible expectations and aspects of
a DT prediction. We then specify language-based
probabilistic relations that are the basis for plausi-
ble expectations, and describe the identification of
potential conflicts.

Plausible expectations pertain to the outcome and
to the impact of a value j of feature xi, denoted
xi,j . They are derived from prior and posterior
probabilities of outcomes by means of relations
R1-R3 and associated constraints (Table 2).
R1. Posterior(C|xi,j) vs Prior(C)
R2. Posterior(C ′|xi,j) vs Prior(C ′)
R3. Posterior(C ′|xi,j) vs Posterior(C|xi,j)
where Prior(c) is the prior probability of class c,
Posterior(c|xi,j) is the probability of class c given

2Sample features for the evaluation datasets and their val-
ues appear in Table 4; the DT feature values for the Nursery
dataset are described in Table 10, Appendix A.

feature value xi,j , C is the class predicted by a
DT, and C ′ is an alternative class with the highest
Posterior probability. The posterior probability of
a class c is calculated from training data for each
feature value xi,j . If it is high, it licenses an expec-
tation for xi,j to yield class c; and if it is low, the
expectation is for xi,j not to yield class c. For exam-
ple, if according to the data, children with ordinary
parents’ employment have a lower probability of
getting a Priority acceptance to the childcare cen-
ter than children in the general population (R1),
it is plausible to expect a child with such parents’
employment not to be Priority accepted.3

Aspects of a DT Prediction pertain to the class C
Predicted by the DT, and the Impact of feature
value xi,j on this class, denoted Impact(xi,j , C).
Impact is TRUE if xi,j influences the Predicted
class C — for a DT, this happens when xi,j is in
the path to C; Impact is FALSE otherwise.
A potential conflict takes place when an expected
outcome differs from the class predicted by a DT
(R4), or when a feature value that was expected to
have an impact does not (R5).4

R4. Plausible outcome 6= Predicted class C
R5. Plausible impact of xi,j 6= Impact(xi,j , C)

In our example, a potential conflict ensues be-
cause, contrary to the expectation, the class Pre-
dicted for the child is Priority accept (R4).

It is worth noting that relations R1-R3 and R4
are model agnostic: R1-R3 depend on probabilities
obtained from the data, and R4 depends on R1-R3
and the Predicted class. However, the determina-
tion of the Impact of a variable in R5 depends on
the model, e.g., as seen above, variable impact for
DTs is determined by path membership.

The values of relations R1-R3 are obtained from
discretized probabilistic relations (§ 3.1.1).

3.1.1 Discretizing probabilistic relations
To generate explanations that use language to com-
municate relative probabilities, we harness the re-
search in (Elsaesser and Henrion, 1989), which

3Our formalism assumes that users are aware of the prior
and posterior probabilities of outcomes (they were given this
information in our evaluation, § 4.2), and employs these prob-
abilities as the basis for explaining DT predictions. Hence, it
differs from probabilistic models, such as Bayesian Networks
or Naı̈ve Bayes, which use probabilities to infer outcomes.

4Biran and McKeown (2017) consider situations where a
variable may be expected to have a high or a low impact. But
in a probabilistic formulation, expecting an event with low
probability is tantamount to expecting this event not to happen
with high probability.

116

R4 R5

Conflict name Relations licensing plausible expectations Plausible Predicted Plausible Impact(xi,j , C)outcome class impact of xi,j

Plausible¬C / R1: Post(C|xi,j) < , ' Prior(C) ¬C C TRUE TRUE
PredictC Post(C|xi,j) < Post(¬C|xi,j)

— R1: Post(C|xi,j) > Prior(C)
C C TRUE

TRUE
PlausibleC / ∀Ck 6= C Post(C|xi,j) > Post(Ck|xi,j) FALSEPredictC-xi,jNoImpact ∃xm,n Post(C|xi,j) > Post(C|xm,n)

PlausibleC′ / R1: Post(C|xi,j) < , ' Prior(C)
C′ C TRUE

TRUE
PredictC “vanilla” R2: Post(C′|xi,j) > Prior(C′)
PlausibleC′ / R3: Post(C′|xi,j) > Post(C|xi,j) FALSEPredictC-xi,jNoImpact ∀Ck 6= C′ Post(C′|xi,j) > Post(Ck|xi,j)

Table 2: Definition of potential conflicts (explanations appear in Tables 1 and 3): C denotes the Predicted class,
and C ′ denotes an alternative class that has the highest Posterior probability (Post is shorthand for Posterior); the
colours of (in)equalities match those in Figure 1; text in Column 4 indicates surprise about the plausible outcome
in Column 3, and text in Column 6 expresses surprise about the plausible impact of xi,j in Column 5.

Figure 1: Verbal mapping of relative probabilities.

maps probability differences into verbal expres-
sions. Figure 1 depicts their empirically derived
phrase-selection function, which achieved a 72%
accuracy compared to people’s actual usage. For
example, if the probability of event E1 is p1 = 0.4,
and that of event E2 is p2 = 0.8 (dashed red lines
in Figure 1), the phrase “E2 is a great deal more
likely than E1” is selected.

Following a small pilot study to validate these
expressions for our explanations, we merged the in-
termediate expressions “somewhat more/less” and
“quite a bit more/less” in Figure 1 into simply
“more/less”. The resultant six-phrase mapping is
used to define the wording for relations R1-R3.

3.1.2 Identifying Potential Conflicts

Table 2 displays the potential conflicts addressed
by our explanations. Each segment represents a
potential conflict, with the surprises boxed in red.
Column 1 shows the name of the conflict, Column 2
displays the relations that license plausible expecta-
tions for an outcome and for the impact of feature
value xi,j (the colour-coded relations are computed

as specified in Figure 1, while the constraints are
calculated using point probabilities); Column 3
presents the plausible expected outcome derived
from the relations defining the conflict (Column 2);
Column 4 shows the actual Predicted class C; Col-
umn 5 displays the plausible expected impact of
xi,j — a feature value that satisfies the relations
defining a conflict (Column 2) is always expected
to have an impact; and Column 6 shows the actual
Impact(xi,j , C). Relation R4 is calculated by com-
paring the values of Columns 3 and 4, and Relation
R5 is obtained from Columns 5 and 6.

We now describe each conflict illustrated with
examples from the Nursery dataset.

Plausible¬C/PredictC (top segment in Table 2).
This conflict arises when it is plausible to expect
that in light of xi,j , class C will not happen (Col-
umn 3), but surprisingly, C is Predicted (Column 4).
The expectation is plausible because the posterior
probability of class C given xi,j is less than or
equal to its prior probability (R1), and also lower
than the posterior probability of ¬C (Column 2).
For this conflict, we only examined the case where
Impact(xi,j , C)=TRUE, i.e., xi,j is in the DT path.
The FALSE case was disregarded, as the ensuing
potential conflict seemed weak. However, for com-
pleteness, this case should be revisited in the future.
Example (full text in Table 3): In the Nursery
dataset, children with critical current childcare are
less likely to be Wait listed than applicants overall
(R1: Posterior < Prior). However, in the context
of other information about a particular child, hav-
ing critical current childcare gets them Wait listed
(R4: Plausible outcome ¬C 6= Predicted class C).5

5As seen in Table 10, Appendix A, the term “critical child-
care” indicates high insecurity in obtaining this service.

117

Schema Sample Generated Explanations for the Nursery dataset
Conflict-based (outcome only): Plausible¬C/PredictC
Preamble: x∗i,j + R1 + C From the data, one might expect that children with critical current childcare will be less likely

than applicants overall to get Wait listed (19% vs 34%).

Resolution: Path + x∗i,j + C
However, the AI system has learned from the data that among children with ordinary parents’
employment, somewhat problematic social situation and good health, those with critical
current childcare are almost certain to get Wait listed (close to 100%).

Conflict-based (impact of feature value only): PlausibleC/PredictC-xi,jNoImpact

Preamble: x∗i,j + R1 + C From the data, one might expect that children with challenging parents’ employment will be
more likely than applicants overall to get a Priority acceptance (46% vs 32%).

Resolution: x∗i + R5 + Path + C
However, the AI system has learned from the data that the parents’ employment has no effect
on the outcome in this situation, and that children with very critical current childcare and
good health are almost certain to get a Priority acceptance (close to 100%).

Conflict-based (outcome and impact of feature value): PlausibleC′/PredictC-xi,jNoImpact

Preamble: x∗i,j + R3 + C′ + C From the data, one might expect that children with ordinary parents’ employment will be
more likely to get Wait listed than to get a Priority acceptance (47% vs 19%).

Resolution: x∗i + R5 + Path + C
However, the AI system has learned from the data that the parents’ employment has no effect
on the outcome in this situation, and that children with very critical current childcare and
average health are almost certain to get a Priority acceptance (close to 100%).

Basic (no conflict): counterpart of PlausibleC′/PredictC-xi,jNoImpact

Path + C The AI system has learned from the data that children with very critical current childcare
and average health are almost certain to get a Priority acceptance (close to 100%).

Table 3: Schemas that address three of the potential conflicts defined in Table 2 and Basic schema (our baseline),
with sample explanations; relative probabilities are described in Figure 1; the selection of a pivot feature value is
described in § 3.2; font denotes feature values and features in the DT path, and Classes.

PlausibleC/PredictC-xi,jNoImpact (bottom of
second segment in Table 2). This conflict occurs
when a feature value xi,j is expected to have an
impact (Column 5), but it has no effect on the
Predicted class, i.e., it is not in the DT path (Col-
umn 6). The expectation for xi,j to have an impact
arises when the posterior probability of class C
in light of xi,j is higher than its prior probabil-
ity (R1) and the posterior probabilities of all the
other classes, and it is also higher than the posterior
probability of class C in light of at least one other
feature value in the current DT path — xi,j cannot
be the “weakest” among the mentioned features
(Column 2). Here, the plausible expectation for
class C matches the DT’s prediction, i.e., there is
no conflict about the expected outcome.
Example (full text in Table 3): In the Nursery
dataset, children with challenging parents’ employ-
ment are more likely to get Priority accepted than
the general population (R1: Posterior > Prior),
but parents’ employment is not in the DT path (R5:
Plausible impact 6= actual Impact).
PlausibleC ′/PredictC (third segment in Table 2).
Here, an alternative outcome C ′ is a plausible ex-
pectation from xi,j (Column 3), but surprisingly,
class C is Predicted (Column 4). This conflict re-
sembles Plausible¬C/PredictC in that the poste-
rior probability of class C in light of xi,j is rel-
atively low, i.e., ¬C is plausible (R1). However,
PlausibleC ′/PredictC goes further, nominating a
potential alternative class C ′. The expectation for

C ′ is plausible because its posterior probability is
higher than its prior (R2) and the posterior of C
(R3), and C ′ has the highest posterior probability
among all the classes (Column 2). This conflict
has two variants: “vanilla” – only the Predicted
class is unexpected (top of the third segment); and
xi,jNoImpact – both the Predicted class and the
lack of impact of xi,j (Column 6) are unexpected
(bottom of the third segment).
Example of the first variant (full text in Table 1;
the second variant appears in Table 3): In the Nurs-
ery dataset, children with good current childcare
are more likely to get Wait listed than Priority ac-
cepted (R3: Posterior(C ′) > Posterior(C)). How-
ever, a particular child with certain feature values
and good current childcare gets Priority accepted
(R4: Plausible outcome C ′ 6= Predicted class C).

3.2 Generating Conflict-based Explanations

The inputs to the explanation generator are: an
instance, a Predicted class and a set of conflicts.
At present, our explanations address a potential
conflict with respect to one feature value only.6

Thus, for each conflict type, we first select a pivot
feature value (denoted x∗i,j), and then realize our
explanation. We do not select a particular conflict
type for an instance, as making this determination
is one of the aims of our evaluation (§ 4.3.3).

6In the future, we will consider higher-dimensional spaces,
which may require addressing several features with conflicts
or adopting a different strategy, e.g., an interactive approach.

118

3.2.1 Selecting a pivot feature value
If several feature values qualify for a poten-
tial conflict type, we choose the strongest in
terms of word mapping, e.g., “a great deal
more” is stronger than “more”. Ties are bro-
ken as follows: for Plausible¬C/PredictC and
PlausibleC/PredictC-xi,jNoImpact, we choose the
x∗i,j with the maximum absolute difference between
Posterior(C|x∗i,j) and Prior(C) for the Predicted
class C. For the PlausibleC ′/PredictC variants, we
select the x∗i,j with the maximum difference be-
tween Posterior(C ′|x∗i,j) and Posterior(C|x∗i,j).
3.2.2 Realizing explanations
A Conflict-based explanation has two main parts:
Preamble, which presents a plausible expectation
from the pivot feature value x∗i,j ; and Resolution,
which describes how this expectation is thwarted.
Table 3 displays schemas that address three poten-
tial conflicts, and one Basic schema (which is our
baseline), together with sample explanations; an
explanation that illustrates PlausibleC ′/PredictC
“vanilla” appears in Table 1 (the schema for this
potential conflict is [Preamble: x∗i,j + R3 + C ′ + C;
Resolution: Path + x∗i,j + C]). Since the focus of
our research is on content selection, the explana-
tions are realized by means of domain-independent
programmable templates.
The Preamble presents probabilistic relations that
license plausible expectations. The preambles of
Plausible¬C/PredictC and PlausibleC/PredictC-
xi,jNoImpact describe relation R1; and those of
the PlausibleC ′/PredictC variants convey R3.
The Resolution has two components: (1) the fea-
ture values in the DT path that lead to the Predicted
class C, which also constitutes the Basic baseline
explanation (Guidotti et al., 2019; Stepin et al.,
2020); and (2) the impact of x∗i,j , or lack thereof,
in the context of the other feature values in the DT
path. The features in the DT path are presented in
a pre-established order (Table 4), except for x∗i,j ,
whose placement is determined by the schemas:
when x∗i,j is in the DT path, it appears right before
the Predicted class; otherwise, the lack of impact
of x∗i is announced at the start of the Resolution.

4 Empirical Evaluation
Our evaluation considers two main questions:
(Q1) How do Conflict-based explanations com-
pare to Basic baseline explanations? (Q2) Which
types of Conflict-based explanations are preferred
to Basic explanations, if any?

Nursery
Classes: Priority accept, Wait list, Reject
parents’ employment: challenging, somewhat difficult, ordinary
current childcare: very critical, critical, insufficient, sufficient, good
housing condition: inadequate, somewhat inadequate, adequate
social situation: problematic, somewhat problematic, unproblematic
child’s health: poor, average, good

Telecom
Classes: Stay, Churn (leave the company)
senior citizen: yes, no phone service: yes, no
internet service: Fiber optic, DSL, no
online security: yes, NA (no internet service), no
tenure (months with company): 1 month, 72 months
monthly charges: $19, $117

Table 4: Classes, sample features (in the presentation
order used in our explanations) and values in the evalu-
ation datasets; the feature values in the Nursery DT are
described in Table 10, Appendix A.

Next, we describe our datasets and classifier,
followed by our experimental design and results.7

4.1 Datasets
We used two datasets, which were pre-processed
as described in Appendix A: Nursery (Olave et al.,
1989), which has 12630 instances and three classes;
and Telecom, which has 3302 instances and two
classes. These datasets were chosen due to their
diverse character, and the differences in number
and types of features and predicted classes. Both
datasets were split into 80% training and 20% test
sets using proportional sampling (we did not cross-
validate, as average classifier accuracy is tangential
to this research).

We employed the J48 classifier (Quinlan, 1993)
in WEKA (Frank et al., 2016) to learn DTs. It pro-
duced a DT with 47 nodes for the Nursery dataset
(93% accuracy on the test set) and a DT with 41
nodes for Telecom (80% accuracy on the test set).8

78% of the Nursery test samples and all the Tele-
com test samples had at least one potential conflict.

4.2 Experiment Design
Our experiment starts with a demographic ques-
tionnaire followed by the body of the survey.

The body of the survey begins with a narrative
immersion, where participants are told that they are
the director of a childcare center (Nursery) or the
sales representative of a telecommunications com-
pany (Telecom), and that they have purchased an
AI system to help them predict the acceptance sta-
tus of prospective pupils (Nursery) or whether cus-

7We have addressed the recommendations for human eval-
uation in (Howcroft et al., 2020). The experiment and data are
available at https://doi.org/10.26180/15147462.

8Users are informed of a DT’s overall accuracy, but not
about its accuracy for individual predictions — in the future we
will study the inclusion of this information in an explanation.

119

tomers will churn (leave) or stay (Telecom). The
participants are then given a brief account of how
an AI makes predictions, and shown the features
and values that are input to the AI (illustrated in
Table 4) — a screenshot of the introductory nar-
rative for the Nursery dataset appears in Figure 2,
Appendix D. Next, a sequence of scenarios is pre-
sented in random order, each pertaining to a differ-
ent family/customer — a screenshot of a Nursery
scenario appears in Figure 3, Appendix D. Between
scenarios, a short version of the Matching Familiar
Figures Test (MFFT) (Cairns and Cammock, 1978)
is shown as a filler.

Scenario description. We chose scenarios with
the strongest available potential conflict (using a
procedure similar to that in § 3.2.1), and diverse
pivot and explanatory variables. Scenarios with-
out conflicts were excluded from our evaluation, as
they warrant only a Basic explanation. To ensure
that all the potential conflicts in Table 2 are rep-
resented, we chose eight Nursery scenarios (four
each for Wait list and Priority accept)9 and ten
Telecom scenarios (five each for Stay and Churn).

Each scenario begins by showing a set of fea-
tures such as those in Table 4, together with their
values for a particular family/customer and the
Prior and Posterior probabilities of the possible
classes. Users are then asked to make an educated
guess about the predicted class, after which they
are shown the prediction made by the DT.

Next, users are given two side-by-side expla-
nations for this prediction: Conflict-based versus
Basic. The selection of a side (left or right) for an
explanation type is randomized between scenarios,
but all the participants see the same side-by-side
configuration for a given scenario.

Users’ views about explanations. Users are
then asked to enter their level of agree-
ment on a 5-point Likert scale (‘Strongly dis-
agree’:1 to ‘Strongly agree’:5) with statements
about four explanatory attributes: complete-
ness of an explanation and presence of mislead-
ing/contradictory/irrelevant information, as well
as the understandability of the AI’s reasoning and
their willingness to act on the prediction on the
basis of an explanation (exact statements appear in
the screenshot in Figure 3, Appendix D). The first
three attributes come from Hoffman et al.’s (2018)
Explanation Satisfaction Scale, and the third and

9Examples for Reject were not presented, as there was only
one reason to reject applicants, viz poor health.

Question Option Nursery Telecom
Gender Male / Female 12 / 28 25 / 17
Age 18-34 years old 33 37
Ethnicity Asian / Caucasian 17 / 17 28 / 4
English proficiency Medium / High 5 / 36 5 / 37
Education Bachelor / Master 13 / 13 14 / 22
ML expertise Low / Med-High 27 / 14 18 / 24
Domain familiarity Yes / No 9 / 32 31 / 11

Table 5: Descriptive statistics: for gender, age, ethnic-
ity and education, we present the options that had most
participants; domain familiarity was self-rated.

fourth attributes are our explanatory goals (§ 1).
Participants are also asked which explanation(s)
they prefer, if any.

To detect unreliable responses, we inserted an
attention question, where we asked users to indicate
whether a neutral statement about the background
information in the scenario was true or false.
Participant cohorts. To avoid participant fa-
tigue, we conducted a separate experiment for each
dataset — details appear in Appendix B. The sur-
veys were implemented in the Qualtrics survey soft-
ware, and conducted on SONA.

We obtained a total of 83 valid responses out
of 109 — 41 for Nursery and 42 for Telecom (re-
sponses were validated based on the answers to the
attention questions and the total time spent on the
experiment). Table 5 shows the statistics for the
Nursery and the Telecom cohorts.

4.3 Results

To answer Q1, we compared Conflict-based expla-
nations with Basic ones for each dataset in terms
of the four explanatory attributes mentioned above,
and user preferences (§ 4.3.1). We also analyzed
the influence of various independent variables on
users’ ratings of Conflict-based explanations com-
pared to Basic ones (§ 4.3.2). To answer Q2, we
analyzed how individual Conflict-based explana-
tions compare to their Basic counterparts (§ 4.3.3).

Statistical significance for the ratings of the four
attributes for Conflict-based versus Basic explana-
tions was obtained using Wilcoxon signed-rank
test; a one- and two-proportion Z-test was respec-
tively used for the proportion of preference counts
within one population and between two popula-
tions. Statistical significances were adjusted with
Holm-Bonferroni correction for multiple compar-
isons (Holm, 1979).

4.3.1 Conflict-based vs Basic explanations
Our results show that for the Nursery dataset (top of
Table 6), Conflict-based explanations are deemed

120

Attribute Conflict-based Basic Stat.
Mean (SD) Mean (SD) Sig.

Nursery
Complete 3.43 (0.97) 3.00 (0.98) < 0.001
Misleading... 2.72 (1.00) 2.55 (0.89) < 0.05
Understandable 3.61 (1.04) 3.02 (1.03) < 0.001
Willingness to act 3.56 (1.01) 3.23 (1.01) < 0.001

Telecom
Complete 3.22 (0.99) 2.93 (0.97) < 0.001
Misleading... 3.00 (1.14) 2.81 (1.05) –
Understandable 3.49 (0.92) 3.33 (0.87) –
Willingness to act 3.16 (0.99) 3.09 (0.94) –

Table 6: Comparison between explanation types:
scores and statistical significances (Wilcoxon signed-
rank test); a lower score is better for Misleading... , and
a higher score is better for the other attributes.

Count
χ2 Stat.Conflict- Basic Both None Total Sig.based

Nursery 112 45 13 35 205 28.59 < 0.001
Telecom 117 78 11 46 252 7.80 < 0.01

Table 7: Preference for an explanation type: χ2 statis-
tic and statistical significances (one-proportion Z-test)
calculated from clear preferences for Conflict-based/
Basic explanations.

significantly more complete, understandable and
enticing to act on a DT’s prediction than Basic
explanations. However, Conflict-based explana-
tions are also deemed more misleading/contradic-
tory/irrelevant than Basic explanations. For Tele-
com (bottom of Table 6), Conflict-based explana-
tions are considered significantly more complete
than Basic explanations, but equivalent for the
other three attributes.

In terms of preferences, for both datasets, the ma-
jority of users prefer Conflict-based explanations
to Basic ones (Table 7). However, the two datasets
differ significantly in the proportions of preferences
for Conflict-based explanations (two-proportion Z-
test, p-value < 0.05; proportions calculated from
the data in Table 7), with a higher percentage of
users preferring the Conflict-based explanations for
the Nursery dataset.

4.3.2 Influence of independent variables
Our experiment has several independent variables,
including predicted outcome, pivot feature, expla-
nation length and (dis)agreement between an ex-
pected and a predicted class. The first two variables
are scenario-specific, and hence offer no opportuni-
ties to draw generalizable conclusions.

Regarding explanation length, Lombrozo (2016)
reported that users generally prefer longer explana-
tions, in particular when they include jargon. How-

Attribute Predict vs Conflict-based Basic Stat.
Expect Mean (SD) Mean (SD) Sig.

Nursery

Complete Pred=Exp 3.41 (0.96) 3.04 (0.97)<0.01
Pred 6=Exp 3.48 (0.99) 2.90 (0.99)<0.01

Misleading... Pred=Exp 2.80 (1.03) 2.54 (0.90)<0.05
Pred 6=Exp 2.57 (0.92) 2.57 (0.86) –

Understand- Pred=Exp 3.61 (1.07) 3.20 (0.99)<0.01
able Pred 6=Exp 3.61 (0.97) 2.66 (1.01)<0.001
Willingness Pred=Exp 3.64 (0.95) 3.41 (0.98)<0.05
to act Pred 6=Exp 3.40 (1.12) 2.87 (0.98)<0.01

Telecom

Complete Pred=Exp 3.18 (0.97) 2.99 (0.95) –
Pred 6=Exp 3.35 (1.04) 2.72 (1.01)<0.01

Misleading... Pred=Exp 3.08 (1.14) 2.83 (1.05) –
Pred 6=Exp 2.75 (1.10) 2.75 (1.08) –

Understand- Pred=Exp 3.45 (0.90) 3.35 (0.86) –
able Pred 6=Exp 3.62 (0.98) 3.25 (0.93) –
Willingness Pred=Exp 3.14 (0.97) 3.17 (0.90) –
to act Pred 6=Exp 3.25 (1.07) 2.83 (1.04)<0.05

Table 8: Effect of (dis)agreement between users’ expec-
tations and DT predictions: scores and statistical signif-
icances (Wilcoxon signed-rank test).

ever, in our case, length is highly correlated with ex-
planation type — Conflict-based explanations have
60 words on average in both Nursery and Telecom,
and Basic explanations have 29 words. Hence, we
cannot analyze length separately from explanation
type. Nonetheless, our results suggest that length
cannot be the only factor influencing users’ views,
as some types of Conflict-based explanations have
similar preferences to Basic explanations (Table 9).

Interestingly, our analysis shows that (dis)agree-
ment between users’ expectations according to
their survey answers and the class Predicted by
the DT has a significant influence on the ratings
of Conflict-based explanations compared to Basic
ones (users’ answers disagreed with a Predicted
class when they selected a different class or Can’t
Decide – see options in Figure 3, Appendix D).

For the Nursery dataset, the general results ob-
tained for Conflict-based versus Basic explana-
tions hold for completeness, understandability and
willingness to act on predictions for both agree-
ment and disagreement between users’ expecta-
tions and DT predictions (top of Table 8). However,
Conflict-based explanations were deemed to con-
tain more misleading/contradictory/irrelevant infor-
mation than Basic ones only when users’ expecta-
tions matched DT predictions. This suggests that
the additional information provided by Conflict-
based explanations is welcome when a prediction
is not as expected.

For the Telecom dataset, Conflict-based explana-
tions were considered more complete and enticing

121

Nursery Telecom

Basic vs Conflict-based Count
χ2 Stat. Count

χ2 Stat.
ConflictBasicBothNoneTotal Sig. ConflictBasicBothNoneTotal Sig.

Basic vs Plausible¬C/PredictC 33 12 3 14 62 9.80< 0.01 46 21 2 15 84 9.33< 0.01
Basic vs PlausibleC/PredictC-xi,jNoImp 8 6 1 6 21 0.29 – 14 20 2 6 42 1.06 –
Basic vs PlausibleC′/PredictC “vanilla” 33 13 6 9 61 8.70< 0.01 23 6 3 10 42 8.53< 0.05
Basic vs PlausibleC′/PredictC-xi,jNoImp 38 14 3 6 61 11.08< 0.01 34 31 4 15 84 0.14 –

Table 9: Preference for individual explanation types: χ2 statistic and statistical significances (one-proportion Z-
test) calculated from clear preferences for Conflict-based/Basic explanations (NoImp is shorthand for No Impact).

to act only when users’ expectations differed from
DT predictions (bottom of Table 8).

In terms of preferences, most users preferred
Conflict-based explanations to Basic ones for the
Nursery dataset, regardless of the agreement be-
tween users’ expectations and DT predictions
(p-value<0.001, Table 12 in Appendix C). How-
ever, for Telecom, Conflict-based explanations
were preferred only when users’ expectations dis-
agreed with DT predictions (p-value<0.001).

4.3.3 Individual Conflict-based explanations
Our comparison between individual Conflict-based
explanations and their Basic counterparts shows
that a statistically significantly higher propor-
tion of users preferred Plausible¬C/PredictC and
PlausibleC ′/PredictC “vanilla” to Basic explana-
tions for both Nursery and Telecom (Table 9).
But PlausibleC ′/PredictC-xi,jNoImpact was pre-
ferred to its Basic counterpart only for the Nurs-
ery dataset, where it had the largest margin. Fi-
nally, PlausibleC/PredictC-xi,jNoImpact, which
addresses a conflict with respect to variable impact
only, was deemed equivalent to its Basic counter-
part for both datasets. However, according to (Bi-
ran and McKeown, 2017), users were more satis-
fied with explanations about unexpected variable
impacts than no explanation. This suggests that
further studies are required to determine the condi-
tions for explaining unexpected variable impacts.

The results in Table 9 indicate that if a DT
prediction has several qualifying conflicts, they
should be prioritized in the following order:
Plausible¬C/PredictC � PlausibleC ′/PredictC
“vanilla” � PlausibleC ′/PredictC-xi,jNoImpact.

5 Conclusion
Our approach for explaining DT predictions ad-
dresses potential conflicts between aspects of these
predictions and plausible expectations licensed by
background information. To this effect it opera-
tionalizes the identification of four types of con-
flicts, and specifies schemas for generating expla-
nations that address these conflicts. Our approach

is model agnostic, except for the determination of
the actual impact of a variable, which is readily
available in most ML models.

Our evaluation on the Nursery and Telecom
datasets shows that (1) explanations addressing po-
tential conflicts between DT predictions and plau-
sible expectations from background information
are considered at least as good as baseline explana-
tions; and (2) the Conflict-based explanations are
deemed especially valuable when users’ expecta-
tions disagree with DT predictions.

These insights are of practical import, since
users’ expectations are often not available to ex-
planation systems, and Conflict-based explanations
provide clear benefits, or at worst are neutral, re-
gardless of the particulars of these expectations.

Our approach has the following limitations,
which we propose to address in the future: (1) it
does not perform feature selection to reduce long
paths in a DT; (2) Conflict-based explanations ad-
dress only one pivot feature; and (3) the expla-
nations omit information about DT accuracy for
particular instances.

Our evaluation has the following limitations:
(1) we cannot divorce length from explanation type,
as Conflict-based explanations are about twice as
long as Basic ones; (2) the cohorts for the two
datasets had different demographics, so, given the
size of our population, it is not possible to attribute
differences in our results for each dataset to domain
or demographic differences; and (3) we could not
recruit participants with relevant experience, but
in light of our narrative immersion and the general
accessibility of the concepts in the explanations,
we believe that our results are informative.

Acknowledgments

This research was supported in part by grant
DP190100006 from the Australian Research Coun-
cil. We thank Marko Bohanec, one of the creators
of the Nursery dataset, for helping us understand
the features and their values. We also thank the
anonymous reviewers for their helpful comments.

122

References
Or Biran and Kathleen McKeown. 2017. Human-

centric justification of Machine Learning predic-
tions. In IJCAI’17, pages 1461–1467, Melbourne,
Australia.

Ed Cairns and Tommy Cammock. 1978. Development
of a more reliable version of the Matching Familiar
Figures test. Developmental Psychology, 14(5):555–
560.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable Machine Learning.
Arxiv:1702.08608.

Christopher Elsaesser and Max Henrion. 1989. Ver-
bal expressions for probability updates: How much
more probable is “much more probable”? In
UAI’89, pages 319–330, Windsor, Canada.

Eibe Frank, Mark A. Hall, and Ian H. Witten. 2016.
The WEKA workbench. In Online Appendix for

“Data Mining: Practical Machine Learning Tools
and Techniques (Fourth ed.)”. Morgan Kaufmann
Publishers, San Francisco, California.

Riccardo Guidotti, Anna Monreale, Fosca Giannotti,
Dino Pedreschi, Salvatore Ruggieri, and Franco
Turini. 2019. Factual and counterfactual explana-
tions for black box decision making. IEEE Intelli-
gent Systems, 34(6):14–23.

Robert R. Hoffman, Shane T. Mueller, Gary Klein, and
Jordan Litman. 2018. Metrics for explainable AI:
Challenges and prospects. Arxiv:1812.04608.

Sture Holm. 1979. A simple sequentially rejective mul-
tiple test procedure. Scandinavian Journal of Statis-
tics, 6(2):65–70.

Helmut Horacek. 1997. A model for adapting explana-
tions to the user’s likely inferences. User Modeling
and User-Adapted Interaction, 7(1):1–55.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation:
NLG needs evaluation sheets and standardised def-
initions. In INLG2020, pages 169–182, Dublin, Ire-
land.

Laurent Itti and Pierre Baldi. 2009. Bayesian sur-
prise attracts human attention. Vision Research,
49(10):1295–1306.

Kevin B. Korb, Richard McConachy, and Ingrid Zuker-
man. 1997. A cognitive model of argumentation. In
CogSci 1997, pages 400–405, Stanford, California.

Lea Krause and Piek Vossen. 2020. When to explain:
Identifying explanation triggers in human-agent in-
teraction. In NL4XAI’2020, pages 55–60, Dublin,
Ireland.

Tania Lombrozo. 2016. Explanatory preferences shape
learning and inference. Trends in Cognitive Sci-
ences, 20(10):748–759.

Scott M. Lundberg and Su-In Lee. 2017. A uni-
fied approach to interpreting model predictions. In
NIPS’17, pages 4768–4777, Long Beach, Califor-
nia.

Manuel Olave, Vladislav Rajkovic, and Marko Bo-
hanec. 1989. An application for admission in public
school systems. In I.Th.M. Snellen, W.B.H.J. van de
Donk, and J.-P. Baquiast, editors, Expert Systems in
Public Administration, chapter 10, pages 145–160.
Elsevier.

Andrew Ortony and Derek Partridge. 1987. Surprising-
ness and expectation failure: What’s the difference?
In IJCAI’87, page 106–108, Milan, Italy.

J. Ross Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, San Fran-
cisco, California.

Ehud Reiter. 2019. Natural language generation chal-
lenges for explainable AI. In NL4XAI’2019, pages
3–7, Tokyo, Japan.

Marco T. Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “Why should I trust you?”: Explaining the
predictions of any classifier. In KDD’16, pages
1135–1144, San Francisco, California.

Marco T. Ribeiro, Sameer Singh, and Carlos Guestrin.
2018. Anchors: High-precision model-agnostic ex-
planations. In AAAI-18, pages 1527–1535, New Or-
leans, Louisiana.

Kacper Sokol and Peter Flach. 2020a. LIME-
tree: Interactively customisable explanations based
on local surrogate multi-output regression trees.
Arxiv:2005.01427.

Kacper Sokol and Peter Flach. 2020b. One expla-
nation does not fit all: The promise of interactive
explanations for Machine Learning transparency.
Arxiv:2001.09734.

Ilia Stepin, Jose M. Alonso, Alejandro Catala, and
Martin Pereira. 2020. Generation and evaluation
of factual and counterfactual explanations for deci-
sion trees and fuzzy rule-based classifiers. In WCCI,
pages 1–8, Glasgow, Scotland.

Matthew Stone. 2000. Towards a computational ac-
count of knowledge, action and inference in in-
structions. Journal of Language and Computation,
1:231–246.

Erik Štrumbelj and Igor Kononenko. 2014. Explaining
prediction models and individual predictions with
feature contributions. Knowledge and Information
Systems, 41(3):647–665.

Jasper van der Waa, Marcel Robeer, Jurriaan van
Diggelen, Matthieu Brinkhuis, and Mark Neerincx.
2018. Contrastive explanations with local Foil Trees.
In WHI’2018, pages 41–46, Stockholm, Sweden.

Ingrid Zukerman and Richard McConachy. 1993. Gen-
erating concise discourse that addresses a user’s in-
ferences. In IJCAI’93, pages 1202–1207, Chambery,
France.

123

A Datasets
Feature value Description

Parents’ employment
challenging frequent relocations, transfers, long leaves of absence; parents are not employed in the school district

and need to travel more than one hour for work.
somewhat difficult hard working conditions that allow for an early retirement (e.g., miners, policemen, soldiers), night

work, additional work engagements.
ordinary normal condition.

Current childcare
very critical there is no possibility of childcare with family, and previous level of childcare was inadequate (child

does not live with parents, problematic private care).
critical there is no possibility of childcare with family, and previous level of care was less than adequate

(frequent change of care, termination of care, alternate care by parents, occasional care).
insufficient no possibility of childcare with family (both parents or single parent work full-time or are full-time

students, no alternative care with relatives), but previous level of care was adequate (with own family,
adequate private care, educational care organizations).

sufficient childcare is possible with some relatives (healthy and unemployed grandparents living in the school
district, other able-bodied and unemployed members of the household).

good normal condition (childcare is possible in the family – father or mother unemployed and able to care).
Housing condition

inadequate subleased or emergency housing; cramped; has lack of sanitation facilities or water.
somewhat inadequate subleased or cramped apartment.
adequate normal condition.

Social situation
problematic inadequate educational ability of parents (gross neglect of education and care, violence); inadequate

family relationships (serious conflicts between parents, between grandparents, between parents and
grandparents, more severe forms of disturbance of parents or other family members); social and
antisocial forms of restraining behavior by parents and other family members (alcoholism and other
addictions, delinquency, quitting, etc).

somewhat problematic less than adequate educational ability of parents (uneven, inconsistent education, excessive difficulty
or indulgence, neurotic reaction of parents); less than adequate family relationships (milder forms of
parental personality disorders, privileged or neglected children, family conflicts).

unproblematic normal condition.
Child’s health

poor admission is not recommended due to the health conditions of the child.
average the child has a mental or physical disorder that influences their admission status; the child’s development

is affected by health conditions of family members.
good normal condition (healthy).

Table 10: Description of feature values in the Nursery DT; all the feature values for current childcare, housing
condition, social situation and child’s health, except the value defined as normal, require the opinion of relevant
professional services.

The Nursery dataset originally had five classes,
three of which account for about 97% of the
instances; we therefore removed the other two
classes, which resulted in a balanced dataset with
12630 instances. The classes, features and feature
values in the dataset were originally in Slovenian,
and their English translation in (Olave et al., 1989)
was somewhat peculiar. With the help of one of
the authors of the original paper, we recoded the
features and feature values in the Nursery domain
to those in Table 4, and the names of the retained
classes to Reject, Wait list and Priority accept. The
recoded feature values are described in Table 10.

The Telecom dataset had only two classes, Stay
and Churn, but it was imbalanced towards Stay
(73%). The DT had an accuracy of 79% when
trained with a cost-sensitive setting for imbalanced
datasets. This accuracy is comparable to those
reported in Kaggle for several predictive models.

However, in order to avoid biasing participants’
class expectations, we decided to even out the
class distribution. To this effect, we retained only
customers with a month-to-month contract, which
had both outcomes, and randomly removed half
of the incorrectly predicted cases. This yielded a
more balanced dataset (60% Stay) and a slightly
improved DT accuracy of 80% (trained without the
cost-sensitive setting).

Table 11 shows final classes in the two datasets
and the breakdown of the training/test sets.

Partition Nursery Telecom

Reject Wait Priority Total Stay Churn Totallist accept
Training 3485 3414 3205 10104 1596 1057 2653
Testing 835 852 839 2526 390 259 649
Total 4320 4266 4044 12630 1986 1316 3302

Table 11: Breakdown of classes for the training set and
the test set for the Nursery and Telecom datasets.

124

B Experiment Design

The scenarios studied in this paper compare
Conflict-based explanations with Basic explana-
tions for two datasets. However, our experiment
contains additional scenarios, which compare two
Conflict-based explanations. To limit the duration
of an experiment to less than 1 hour, the experiment
for each dataset was split into two parts — each
part was shown to a different group of participants.
• Each Nursery group was shown five scenar-

ios that compare Conflict-based explanations
with Basic explanations, and two scenarios that
compare two Conflict-based explanations; two
of the former scenarios were common to both
Nursery groups.

• Each Telecom group was shown six scenarios
that compare Conflict-based explanations with
Basic explanations, and one scenario that com-
pares two Conflict-based explanations; as for
Nursery, two of the former scenarios were com-
mon to both groups.

The common scenarios were used to determine
whether the two participant groups for a particular
dataset behave similarly. To this effect, we per-
formed a two-proportion Z-test on preference for
Conflict-based explanations in the common scenar-
ios; we found no statistically significant differences
between the preferences of the two Nursery groups
(p-value = 0.714) or the preferences of the two
Telecom groups (p-value = 0.388).

C Results

Predict Count
χ2 Stat.vs Conflict-BasicBothNoneTotal Sig.Expect based

NurseryPred=Exp 74 35 9 20 138 13.95< 0.001
Pred 6=Exp 38 10 4 15 67 16.33< 0.001

TelecomPred=Exp 78 72 8 34 192 0.24 –
Pred 6=Exp 39 6 3 12 60 24.20< 0.001

Table 12: Preferences broken up by (dis)agreement
between users’ expectations and DT predictions: χ2

statistic and statistical significances (one-proportion Z-
test) calculated from clear preferences for Conflict-
based/Basic explanations.

125

D Screenshots from the Nursery survey

Figure 2: Narrative immersion for the Nursery survey.

126

Figure 3: Background information about the Nicholson family scenario; question about the expected outcome;
model prediction (displayed after an outcome has been selected); PlausibleC ′/PredictC explanation “vanilla” (A)
and Basic explanation (B) for this scenario; attention question; preferences for explanations; features that determine
expectations; request for suggestions.

127

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 128–139,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Formulating Neural Sentence Ordering as the Asymmetric Traveling
Salesman Problem

Vishal Keswani
Indian Institute of Technology, Kanpur

vkeswani@iitk.ac.in

Harsh Jhamtani
Carnegie Mellon University
jharsh@cs.cmu.edu

Abstract
The task of Sentence Ordering refers to re-
arranging a set of given sentences in a co-
herent ordering. Prior work (Prabhumoye
et al., 2020) models this as an optimal graph
traversal (with sentences as nodes, and edges
as local constraints) using topological sorting.
However, such an approach has major limita-
tions – it cannot handle the presence of cycles
in the resulting graphs and considers only the
binary presence/absence of edges rather than
a more granular score. In this work, we pro-
pose an alternate formulation of this task as
a classic combinatorial optimization problem
popular as the Traveling Salesman Problem (or
TSP in short). Compared to the previous ap-
proach of using topological sorting, our pro-
posed technique gracefully handles the pres-
ence of cycles and is more expressive since it
takes into account real-valued constraint/edge
scores rather than just the presence/absence
of edges. Our experiments demonstrate im-
proved handling of such cyclic cases in result-
ing graphs. Additionally, we highlight how
model accuracy can be sensitive to the order-
ing of input sentences when using such graphs-
based formulations. Finally, we note that our
approach requires only lightweight fine-tuning
of a classification layer built on pre-trained
BERT sentence encoder to identify local rela-
tionships.

1 Introduction

A logical and coherent structure is an important
characteristic of easily comprehensible text. As
such, modeling the structure of coherent texts has
been an important problem in NLP (Barzilay and
Elhadad, 2002). In this paper, we work on the task
of sentence ordering, wherein given an unordered
set of sentences, the aim is to generate the most
coherent ordering among them (Table 1). It es-
sentially arises in situations where the information
available in parts (sentences) is to be presented as a

Input

s1: Our son really likes his new bike.
s2: It’s almost Christmas time.
s3: They really love what they got.
s4: We had a very fun time.
s5: The Children begin to open their presents.

Correct Output Sequence: s2 → s5 → s3 → s1 → s4

Table 1: An instance of the Sentence Order Generation
Task. Given a set of incoherently arranged sentences as
input, the goal is to output a coherent ordering. (Story
from the SIND dataset)

whole in a coherent and logical ordering. Correctly
ordering sentences has applications for summariza-
tion (Barzilay and Elhadad, 2002; Nallapati et al.,
2017; Narayan et al., 2018), constructing natural
language explanations (Jhamtani and Clark, 2020),
automatic scoring of an essay (Attali and Burstein,
2006; Farag et al., 2018; Amorim et al., 2018), and
automatic generation and evaluation of a narrative
(See et al., 2019; Jhamtani and Berg-Kirkpatrick,
2020; Gangal et al., 2021; Sakaguchi et al., 2021).

Much prior work has formulated sentence or-
dering as a sequence prediction task (Gong et al.,
2016; Cui et al., 2020), by first encoding the in-
put sentences, and then predicting the ordering or
numbering of the sentences. There have also been
attempts to model the task as a ranking problem
(Kumar et al., 2020). More recently, Prabhumoye
et al. (2020) model this as a constraint-solving prob-
lem, wherein they first identify the relative order-
ing between pairs of sentences using a BERT-based
(Devlin et al., 2019) classifier. Thereafter, they
formulate it as performing a topological sort on a
graph, wherein each sentence is a node in a graph,
and each directed edge represents a pairwise con-
straint. Compared to prior work, it simplifies the
decoding process by using a graph traversal for-
mulation. However, the topological sort algorithm
used for translating constraints into the final order

128

leads to major limitations. Firstly, it cannot han-
dle cycles in the resulting graph, and picks some
arbitrary ordering in such cases (Figure 1). Our
analysis shows that cycles were present in more
than 54% of the graphs across the four datasets un-
der consideration. Secondly, though the underlying
classifier can provide more fine-grained scores, the
scores are discretized/binarized to run the topologi-
cal sorting algorithm. This leads to a loss of useful
information in the decoding process.

In this work, we propose a reformulation of Neu-
ral Sentence Ordering as the classical Traveling
Salesman Problem, while leveraging the recent
progress in large pre-trained models such as BERT.
We build upon the classification model used in Prab-
humoye et al. (2020) and overcome the limitations
in their approach by making better use of the infor-
mation yielded by the classifier, taking into account
global dependencies by employing a combinato-
rial minimization objective, and working with an
overall framework that can handle cycles in the
resulting graph.

Our contributions can be summarized as fol-
lows. Firstly, we provide a novel formulation of
the sentence ordering task as the Traveling Sales-
man problem. Compared to the previous graph-
based approach of using topological sorting, our
proposed technique gracefully handles the presence
of cyclic constraints. Moreover, it is more expres-
sive since it admits real-valued soft constraints as
opposed to hard binary constraints. Secondly, ex-
periments with multiple datasets demonstrate im-
proved results under some setups compared to the
baselines using alternative graph-based formula-
tion. Finally, we observe how certain choices in
data pre-processing in graph-based approaches for
sentence ordering can affect accuracy scores. We
propose and use a more robust data processing and
evaluation. The code is publicly available. 1

2 Background

In this section, we first formally describe the task
of Sentence Ordering. Then we discuss its formu-
lation as a constrained graph traversal, and discuss
limitations of prior formulations of the task as a
graph traversal problem.

2.1 Problem Formulation

Consider an ‘unordered’ set of n sentences: S =
{s1, s2, ..., sn}. Our aim is to find a permutation

1https://github.com/vkeswani/BerTSP

s1 Getting ready to dive from the pier.
s2 A dive into the cold lake.
s3 Two friends enjoy the refreshing lake.
s4 Noodles at the ready for a fun fight.ww�

s1 → s2 s1 → s3 s1 → s4 s2 → s1
s2 → s3 s2 → s4 s3 → s1 s3 → s2
s3 → s4 s4 → s1 s4 → s2 s4 → s3

n2 − n = 12 ordered pairs possible in this caseww�
BERT Sentence-Pair Classification Model

Outputs probability P for ordered-pair si → sj :
Label L = I(P > 0.5)L = I(P > 0.5) & Distance D = 1− PD = 1− Pww�

LL Pair P DD

11 s1 → s2 0.8 0.20.2
0 s1 → s3 0.2 0.80.8
11 s1 → s4 0.5 0.50.5
0 s2 → s1 0.0 1.01.0
11 s2 → s3 0.8 0.20.2
0 s2 → s4 0.2 0.80.8
11 s3 → s1 0.6 0.40.4
0 s3 → s2 0.1 0.90.9
11 s3 → s4 0.8 0.20.2
0 s4 → s1 0.4 0.60.6
11 s4 → s2 0.5 0.50.5
0 s4 → s3 0.2 0.80.8ww�

ww�
s1 //

��

s2

��
s4

==

s3oo

aa

⇓

s1

0.50.5

0.20.2 ++

0.80.8

��

s2

0.20.2

1.01.0
kk

0.80.8

vv
s4

0.60.6

JJ

0.80.8 ++

0.50.5

66

s3

0.90.9

JJ

0.20.2
kk

0.40.4

WW

s1 s2

��
s4

==

s3

aa

ww�
ww�

Topological SortTopological Sort
s4 → s2 → s3 → s1s4 → s2 → s3 → s1

ATSP SolverATSP Solver
s1 → s2 → s3 → s4s1 → s2 → s3 → s4

Figure 1: Graph-traversal based formulation for
sentence ordering task: Such approaches first com-
pute local pairwise constraints using next sentence pre-
diction probability from a fine-tuned BERT classifier.
(a) Topological Sort (Prabhumoye et al., 2020) dis-
cretizes the edges (0/1) and then runs topological sort-
ing to get the final output sequence. However, such
an approach is likely to pick an arbitrary ordering
in the case of cycles. (b) In the proposed Travel-
ing Salesman ATSP formulation, classifier probabili-
ties are used to derive soft constraint scores between
pairs of nodes, thus making use of more expressive fine-
grained scores.

129

P = {i1i2...in} such that the resulting ‘ordered’
sequence is S∗ = {si1 , si2 , ..., sin} is coherent.

Formulation as a Graph Traversal: Prabhu-
moye et al. (2020) propose to first identify binary
constraints between all pairs of sentences. More
specifically, given a pair of sentences {si,sj}, they
aim to extract whether si should follow sj or the
other way around. Thereafter, they decode the
global ordering by treating the decoding as topo-
logical sorting in a graph, wherein sentences are
treated as nodes, and pairwise constraints denote
presence/absence of edges (i.e. there is an edge
from si to sj if a constraint states that sj should
follow si.). A high-level outline of this approach is
shown in Figure 1.

2.2 Topological Sorting and its Limitations

To the best of our knowledge, (Prabhumoye et al.,
2020) is the only work till now that utilizes a graph
based formulation of Sentence Order Prediction on
top of pairwise scores from a BERT-based classifier.
Though it succeeds in achieving a light and efficient
method for this task with minimal training, there
are some inherent issues in this approach which
we discuss below. Next, we will describe these
limitations.

Discretization of edges: Prior work utilizes a
BERT based classifier to predict local ordering con-
straints between pairs of sentences. However, to
run the topological sorting, the classifier proba-
bility is converted a 0/1 prediction, which gov-
erns merely the direction of the edge i.e. the fine-
grained probability scores are thereafter not used.
This leads to loss of valuable information about the
likelihood of the edge, thus making it a significant
issue. Since only binary constraints are learned and
no score is attached to any order, it misses out on
learning a rich global structure.

Cyclic constraints: The Topological Sort algo-
rithm inherently cannot deal with cycles as it oper-
ates only on DAGs (Directed Acyclic Graphs). To
deal with such cases, one can pick an arbitrary or-
dering of the nodes and edges, and delete edges that
result in any cycles. However, such an approach
will pick random orderings at best. For example,
in Figure 1, the resulting graph has cycles, and the
final output is a random ordering among the nodes.

Neutral pairs: To determine the direction of the
edge between a pair of nodes, prior work feeds the

pair of sentences to the classifier either as s1 → s2
or as s2 → s1 (both are equally likely). For in-
stance, if s1 → s2 is selected, the classifier pre-
dicts P (s1 → s2). If P (s1 → s2) > 0.5, then
the edge is directed from s1 to s2 in the graph (i.e.
s1 → s2). Otherwise, it is directed from s2 to s1
(i.e. s2 → s1). Due to the lack of information
in some sentence pairs or the limited efficacy of
the classifier, the left out possibility is also prob-
able. In such cases, both P (s1 → s2) > 0.5 and
P (s2 → s1) > 0.5 are possible. We call such pairs
neutral. The baseline approach does not consider
breaking ties for neutral pairs. Datasets contain
up to 50% samples with one or more neutral pairs.
Note that s1 → s2 and s2 → s1 are not comple-
mentary events. Both lead to different input repre-
sentations being fed to the classifier giving rise to
different outputs (Section 3.3).

3 Sentence Ordering as the Traveling
Salesman Problem

As mentioned previously, our objective is to work
with soft constraints rather than binary constraints.
To enable the use of such soft constraints, we cast
the sentence ordering task as a Traveling Salesman
traversal with respect to the graph denoting sen-
tences as nodes, and constraints as edges. In the
rest of this section, we first briefly describe the
Traveling Salesman Problem (TSP) (Section 3.1),
then describe how we reduce the sentences order-
ing as TSP (Section 3.2). Thereafter, we discuss
the procedure to identify soft constraints using a
classifier built on BERT representations. Finally,
we discuss the solutions to solve TSP given a graph
(Section 3.4).

3.1 Traveling Salesman Problem

The Traveling Salesman Problem is one of the more
well-known problems studied in combinatorial op-
timization. In terms of graph theory, given an undi-
rected weighted graph, it aims to find the shortest
Hamiltonian Cycle, i.e. the cycle with the least
weight that visits each node of the graph exactly
once. Additionally, for our purpose and other prac-
tical applications, the graph is complete. Formally,
we are given a complete undirected weighted graph
G = (V,E,W) where V denotes the set of ver-
tices, E denotes the set of edges and W denotes
the matrix containing weights for every edge.
V = {vi} ∀i∈{1,2,...,n}
E = {eij} ∀i,j∈{1,2,...,n}

130

W = {wij} ∀i,j∈{1,2,...,n}
For G and a source vertex vs (s ∈ {1, 2, ..., n}),

we need to find a cyclic permutation or a Hamil-
tonian cycle P = {si1i2...in−1} for which the fol-
lowing summation is minimized:

wsi1 + wi1i2 + ...+ win−2in−1 + win−1s

Since the permutation is cyclic, the summation is
independent of the choice of s. This is the formu-
lation of symmetric TSP for which wij = wji, i.e.
distance from vi to vj is exactly the same as the
distance from vj to vi. However, for some practical
applications including ours, the two distances may
not be equal. This is the case of asymmetric TSP.

3.2 Asymmetric TSP and Sentence Ordering
In the Asymmetric formulation of the Traveling
Salesman Problem, wij 6= wji. These cases may
arise in case of one-way traffic, accidental block-
age, etc. The graph is still complete but directed
with two edges between each pair of vertices in
either direction. For the purpose of Sentence Or-
dering, we train a classifier that learns the probabil-
ity of sentence i being followed by sentence j in
the correct order and vice-versa. These probabili-
ties give us the weights for the two edges between
nodes vi and vj . Since the traditional TSP is pro-
posed as a distance/cost minimization problem, a
high probability should correspond to low distance.
Hence, we use the probability of the complement
(i.e. 1− P) as the weight.

wij = 1− P (si → sj)
wji = 1− P (sj → si)

Since the ground truth for the classifier is 1 for
a correct pair-order and 0 for an incorrect pair-
order, it is reflected in the predicted probabilities
and hence, P (si → sj) 6= P (sj → si). Intuitively,
if sentence i is followed by sentence j in the correct
order, the distance from i to j should be less than
the distance from j to i, i.e. wij < wji. TSP re-
quires the source to be pre-specified, for which we
introduce a dummy node (Additional description
about dummy node can be found in Appendix).

This way, each sentence serves as a vertex of
graph G and the probabilities serve as entries of
the weight matrix W . We use W to find the exact
or heuristic solutions of the asymmetric TSP which
eventually results in the correct Sentence Ordering.

In the TSP formulation, all of the issues with
topological sorting are overcome. Firstly, the solu-
tion for TSP is independent of the order in which
the input sentences are fed, hence preventing any

sensitivity to the order in which sentences are pro-
cessed. The graph constructed for every sample is
cyclic and it does not have an inherent issue with
cycles. This is reflected in its performance on sam-
ples with cycle(s) (table 2). Secondly, in the case
of asymmetric TSP, weighted edges in both direc-
tions are required. This way both P (s1 → s2) and
P (s2 → s1) make it to the weight matrix and the
ambiguity of neutral pairs (local relationship) is
resolved via their dependencies with other nodes
(global relationship). Thirdly, since exact prob-
ability values are used as weights to arrive at a
final order, there is no loss of information via dis-
cretization. Lastly, the order with the minimum
cost arrangement is chosen which takes care of the
global context. We refer to our method as BerTSP.

3.3 Learning Soft Constraints
We leverage BERT (Devlin et al., 2019) base-
uncased configuration to obtain sentence pair rep-
resentations. Specifically, we train a multi-layer
feed-forward neural network that operates on sen-
tence representation from pre-trained BERT, and
makes a binary prediction about the relative order-
ing of the sentence pair. For every pair, it gives the
probability of the first sentence (si) being followed
by the second sentence (sj). This way we obtain
P (si → sj) and consequently wij . It differs from
(Prabhumoye et al., 2020) as it makes a prediction
for either direction for a sentence pair (si → sj
and sj → si) while Prabhumoye et al. (2020) pick
any one direction with a probability of 0.5 and use
the binary label to define a constraint (unweighted
edge). This way, for a set of n sentences, we obtain
2×Cn

2 = n2−n scores which serve as off-diagonal
elements of the distance matrix (diagonal elements
are set to 0 as P (si → si) = 0). This matrix is aug-
mented with a row and a column of 0s to account
for the dummy node discussed in the previous sec-
tion and appendix. This augmented matrix serves
as input for TSP.

In practice, we use the ’BertForSequence-
Classification’ module (Wolf et al., 2019)
which takes the following sequence as input
[ti1, t

i
2, ..., t

i
n,‘SEP’, tj1, t

j
2, ..., t

j
m]. Here, the tis

represent tokens of sentence i and tjs represent
tokens of sentence j. ’SEP’ represents the separa-
tor which is a special token used by BERT.

3.4 Solution of ATSP
To produce an ordered sequence from the learned
weight matrices, we delve into exact and approxi-

131

mate solutions to the Asymmetric TSP. The exact
solution involves starting from the source node and
calculating the cost of all permutations for the re-
maining nodes. This method is straightforward
but expensive with a runtime complexity of O(n!),
where n is the number of sentences in the para-
graph. Note that the above-mentioned complexity
is only for the decoding process – the soft con-
straint computation involves running BERT only
once per sentence i.e. number of forward passes on
BERT scales linearly with the number of sentences
(O(n)).

Approximation Algorithm for solving TSP:
The popular approximate solvers available for TSP
pose some limitations for our problem. They
mainly focus on minimizing cost without regard
to order. Their efficacy relies on the fraction of
cost added to the optimal cost. They require as-
sumptions such as triangle inequality. Hence, we
consider a lightweight heuristic solution for the
TSP problem where we simply sort the nodes
(sentences) in the increasing order of the sum
of soft-constraint scores arising at a given node.
For example, for ith node, the computed score is∑j!=i

j P (si → sj) . (Additional details about the
employed approximation are provided in the ap-
pendix.) Since this process involves simple sorting,
its runtime complexity for n sentences is O(nlogn)
(Same as the worst-case complexity for the topo-
logical sorting). We refer to this version of our
method as BerTSP-Approx.

Ensemble Approach: Since the exact solution
is expensive but generally more accurate while the
above-mentioned approximation is computation-
ally much cheaper but slightly less accurate in prac-
tice, we use a combination of these two as per the
following criteria: We use the exact solution for
samples with up to 10 sentences and the heuris-
tic approximation for samples with more than 10
sentences. This gives us a practical solution that
is feasible and almost optimal. We refer to this
version of our method as BerTSP-Ensemble.

4 Experiments

4.1 Datasets

Stories: We use the textual portion of the Sequen-
tial Image Narrative Dataset or SIND (Huang et al.)
which has been used in most of the previous studies
on Sentence Ordering. It contains stories (image
captions) with 5 sentences each.

Abstracts: We experiment on three research pa-
per abstracts datasets, namely NIPS, AAN, and
NSF, commonly used for this task. These are
derived from NIPS conference papers, ACL An-
thology Network corpus and NSF research award
abstract dataset respectively (Logeswaran et al.,
2018). (See appendix for data-split information.)

4.2 Evaluation
We employ the following five metrics to evaluate
our approach. For all these metrics, a higher value
corresponds to better performance.

Perfect Match Ratio (PMR) (Chen et al., 2016)
measures the percentage of predicted orders that
exactly match the correct order. It does not discount
for minor differences.

Sentence Accuracy (ACC) (Logeswaran et al.,
2018) measures the number of sentences having
correct absolute positions in the predicted order. It
is less strict than PMR.

Kendall’s Tau (TAU) (Lapata, 2003) or Tau ac-
counts for the pairwise relative order of sentences.
Tau=1-2I/T where I represents the number of incor-
rect pair-orders in the predicted order and T rep-
resents total number of pair-orders in the correct
order.

Rouge-S (R-S) (Chen et al., 2016) measures the
number of skip-bigrams with the correct relative or-
dering in the predicted order as a percentage of the
total number of skip-bigrams in the correct order.
Here, skip-bigrams are pairs of sentences which
may or may not be consecutive in the respective
orders.

Longest Common Subsequence (LCS) (Gong
et al., 2016) calculates the percentage of the longest
common subsequence (not necessarily consecutive)
between the predicted and the correct orders.

4.3 Call for Careful Data Pre-processing
We observe a potential risk of ground truth la-
bel leakage when employing graph-based methods.
More specifically, if indexing of nodes (sentences)
is performed in the same ordering as ground truth
sequence, then the graph algorithms can inadver-
tently exploit this information. We demonstrate
this through an illustrated example in Figure 2,
wherein we show how the results of topological
sorting change when indexing order of nodes is
changed. In other words, if the input sentences

132

——–any edge in the graph – – –edge in a detected cycle - - - -edge deleted to break the cycle
(A) Correct: {0, 1, 2, 3, 4} Predicted: {0, 1, 2, 3, 4}

0 1 2 3 4

a. Initial graph, made from constraints

0 1 2 3 4

b. Step 1: Cycle detected, s2 → s0 deleted

0 1 2 3 4

c. Step 2: Cycle detected, s4 → s2 deleted

0 1 2 3 4

d. Final acyclic graph, input to Topo. Sort

Figure 2: Need for careful data pre-processing and eval-
uation: When dealing with cycles in a graph, consider an
implementation to handle cycles that always traverses nodes
in the order t = {0, 1, 2, 3, 4}. For every node j ∈ t, cycle de-
tection begins from j and if an edge sk → sj is encountered,
it is deleted. As the traversal is in ascending order, for every
deleted edge sk → sj j < k. Hence, edges that oppose the
ascending order (t) are deleted and t is always favored. (A) In
this case, the correct order is the same as t. Since t is favored,
the predicted order is correct. (B) In this case, the correct
order is the reverse of t (the rest of graph e is equivalent to a).
Since t is favored, the predicted order is incorrect.

are indexed/fed as per the ground truth ordering,
there is an information leak from the index num-
bers. To analyze the potential impact of such a
pre-processing issue, we feed the input in the exact
reverse of the correct order {n−1, n−2, ..., 0}, and
present corresponding results for B-TSort (Prabhu-
moye et al., 2020) in Table 2. We observe that the
accuracy values for methods like B-TSort can vary
a lot based on the index ordering. From a practi-
cal use perspective, we are interested in analyzing
the worst-case results across orderings. So from
this point onward, we report results for B-TSort
considering worst performance across orderings.

4.4 Results

We experiment with both variants of the proposed
method. Additionally, we consider B-TSort method
(Prabhumoye et al., 2020) as a baseline. (To the

(B) Correct: {4, 3, 2, 1, 0} Predicted: {0, 2, 4, 3, 1}

4 3 2 1 0

e. Initial graph a. with reversed indices

4 3 2 1 0

f. Step 1: Cycle detected, s1 → s0 deleted

4 3 2 1 0

g. Step 2: Cycle detected, s4 → s0 deleted

4 3 2 1 0

h. Step 3: Cycle detected, s3 → s0 deleted

4 3 2 1 0

i. Step 4: Cycle detected, s3 → s2 deleted

4 3 2 1 0

j. Final acyclic graph, is different from d.

best of our knowledge, Prabhumoye et al. (2020) is
the only work till now that delves into Graph The-
ory for Sentence Order Prediction like us.). We do
not compare against non-graph based formulations
since our aim is to improve upon the limitations of
prior graph traversal based formulations.

We present the performance of B-TSort and
BerTSP on the subsets of data that have cycles
(as per discrete edge-based graphs used in B-TSort)
in Table 2. The results demonstrate that the output
of B-TSort varies as per the index ordering. Since
the variation in the 3 presented outputs is very high,
we prefer to use the worst-case output with BerTSP
instead of the average case, henceforth. As shown
in the table, we obtain significant worst-case im-
provements for both BerTSP-Approx and BerTSP-
Ensemble, particularly the Perfect Match Ratio.

In Table 3, we present the results for whole

133

PMR ACC TAU R-S LCS PMR ACC TAU R-S LCS

SIND - 12.74% AAN - 12.84%

B-TSort
Correct 26.71 55.37 0.64 81.88 78.97 28.87 57.42 0.79 87.54 81.18
Shuffled 12.08 39.39 0.42 70.94 70.91 11.79 43.66 0.65 81.98 74.87
Reverse 0.00 27.42 0.18 59.05 63.63 0.00 33.01 0.52 76.35 70.22

BerTSP
Approx 7.14 38.70 0.41 70.78 68.82 6.84 42.74 0.63 80.56 71.79
Ensemble 12.42 39.19 0.41 70.62 71.06 12.50 43.26 0.64 80.89 74.50

NIPS - 17.41% NSF - 70.47%

B-TSort
Correct 25.71 54.64 0.78 87.45 80.18 4.44 31.72 0.65 82.02 66.71
Shuffled 12.00 43.50 0.67 82.97 74.71 1.61 22.99 0.51 76.18 60.64
Reverse 0.00 33.93 0.56 78.01 70.54 0.00 19.18 0.37 70.30 58.05

BerTSP
Approx 10.00 44.11 0.64 82.24 71.96 0.75 20.98 0.45 71.76 54.23
Ensemble 14.29 43.39 0.64 81.48 72.32 1.65 20.92 0.44 71.49 54.76

Table 2: Results for data subset containing cycles as per graph representations used in B-TSort: Percentage of cyclic
cases and comparison of performance when using topological sorting on cyclic cases for three orderings in which inputs are fed:
first is the correct order {0, 1, ..., n− 1}, second is randomly shuffled order, and the third is the reverse of the correct order, i.e.
{n− 1, n− 2, ..., 0}. The results demonstrate that if not properly handled, method outputs can depend highly on the indexing
order of nodes. The two variants of BerTSP improve significantly on the reverse ordering output as depicted in the table.

datasets, comparing B-TSort and BerTSP on the
worst case. We observe that BerTSP outperforms
B-TSort on all metrics across all datasets (except
LCS on NSF dataset). The improvements are also

Model PMR ACC TAU R-S LCS

SIND

B-TSort 16.28 48.29 0.54 77.04 75.08
BerTSP-Approx 17.01 49.96 0.57 78.65 75.60
BerTSP-Ensemble 19.54 49.75 0.56 78.11 76.35

NIPS

B-TSort 27.36 56.42 0.77 86.91 81.01
BerTSP-Approx 32.09 59.86 0.79 88.27 81.75
BerTSP-Ensemble 32.59 59.36 0.79 87.75 81.79

AAN

B-TSort 46.67 64.54 0.79 86.61 83.81
BerTSP-Approx 48.09 66.44 0.81 87.81 84.19
BerTSP-Ensemble 48.81 66.41 0.81 87.59 84.57

NSF

B-TSort 6.84 24.22 0.45 71.32 61.05
BerTSP-Approx 6.99 25.57 0.50 72.61 57.69
BerTSP-Ensemble 7.79 25.11 0.48 72.17 58.02

Table 3: Result for B-TSort and BerTSP on all 4
datasets. Both BerTSP-Approx and BerTSP-Ensemble
outperform the baseline B-TSort for overall dataset re-
sults. (Results for BTSort are different from Prab-
humoye et al. (2020) since we analyze the worst-
case results considering all possible orderings for pre-
processing (Section 4.3)).

statistically significant with p < 0.05. It achieves
up to 20% improvement on Perfect Match Ratio,
11% on Kendall Tau and 6% on position-wise Sen-
tence Accuracy. It also improves on Rouge-S and
LCS. Since these two metrics do not penalize gaps,
their values are on the higher end and consequently,
the improvements are less as compared to the other
metrics. We also provide some qualitative exam-
ples in the appendix.

We also note that both the variants of the pro-
posed method outperform B-TSort. Among the
two, BerTSP-Ensemble is consistently better as per
PMR. For all the other metrics, both show competi-
tive performance and BerTSP-Approx even beats
BerTSP-Ensemble for some metrics/datasets. This
shows that our simple heuristic approach works
pretty well even though it is computationally inex-
pensive. This could be attributed to the fact that
averages (or sums, equivalent in this case) tend to
discount the bad predictions. They regress the over-
all representation of a sentence towards the good
predictions (correctly predicted pair-orders) if they
are in majority. This way we get a single-valued
representation for a sentence that has information
from both the local and global contexts.

5 Analysis and Discussions

In this section, we analyze our model on additional
parameters including scalability, end-point perfor-
mance, and displacement. Note that in this section,
we use the BerTSP-Approx method for comparison

134

Dataset Model PMR ACC TAU R-S LCS

NIPS B-TSort 0.00 28.30 0.59 78.67 63.52
BerTSP 0.00 34.59 0.67 83.11 64.15

AAN B-TSort 0.00 28.48 0.53 74.63 65.63
BerTSP 0.00 29.41 0.55 76.06 64.09

NSF B-TSort 0.04 17.29 0.41 70.96 56.43
BerTSP 0.01 17.96 0.45 71.69 51.31

Table 4: Results for cases with more than 10 sentences.

with B-TSort as the BerTSP-Approx variant can be
uniformly applied across all the datasets under con-
sideration, as opposed to BerTSP-Ensemble which
is a mixture of two methods.

5.1 Longer Sequences

To compare the scalability of models, we present
the results for samples with more than 10 sentences.
NIPS, AAN, and NSF qualify for this analysis
while SIND doesn’t as all samples in SIND have
exactly 5 sentences. Table 4 shows the results on
all metrics. BerTSP is dominant over B-TSort. For
NIPS, we obtain a 22% improvement in position-
wise sentence accuracy and 14% in Kendall Tau as
compared to 6% and 3% respectively for all sam-
ples showing that the relative improvement is more
for longer sequences.

5.2 First and Last Sentences

Table 5 shows the accuracy of prediction of first
and last sentences of the sequence. This analysis
is important as the end-points are crucial positions
of the sequence and the first prediction is often
decisive to the prediction of the rest of the sequence.
BerTSP clearly overtakes B-TSort across all the
datasets. For the NSF dataset which primarily has
longer sequences (mean length ∼ 9), it achieves
improvements of 10% and 16% on the prediction
of first and last sentences respectively showing its
efficacy for longer sequences.

5.3 Sentence Displacement

We perform sentence displacement analysis where
we find the percentage of sentences for which the
predicted position is within a window W (forward
or backward) of its position in the correct order. For
instance, if the correct position is 5 and W = 1,
the predicted position should be within 4 to 6 to
be included in the percentage. Naturally, a larger
window allows for more displacement and hence

Model First Last First Last

Dataset SIND NIPS

B-TSort 77.19 57.03 89.55 74.38
BerTSP 78.85 59.33 92.54 74.63

Dataset AAN NSF

B-TSort 88.76 78.78 61.13 40.55
BerTSP 90.10 79.55 66.95 47.13

Table 5: Prediction accuracy for first and last sentences.

the percentage is higher compared to smaller win-
dows. Table 6 shows the results for W = 1, 2, 3.
BerTSP clearly outperforms B-TSort across all
datasets and window sizes. The improvement is
generally more pronounced for smaller window
sizes. Note that this metric is essentially a gener-
alization of position-wise Sentence Accuracy for
which W = 0.

5.4 Qualitative Examples
We also present three examples from the SIND
captions dataset where BerTSP improves on
B-TSort. The predicted orders for each example
by B-TSort and BerTSP are also shown (Table 7).

6 Related Work

In the recent past, numerous neural approaches
have been proposed for Sentence Ordering. Chen
et al. (2016) used a pairwise ranking model (Zheng
et al., 2007) that assigns a score to the relative or-
dering of every pair of sentences. Prabhumoye
et al. (2020) train a classifier to predict an order
constraint between any two sentences and use sort-
ing based on these constraints to predict the final
order. Zhu et al. (2021) construct multiple con-
straint graphs which are integrated into sentence
representations by Graph Isomorphism Networks
and ranked via ListMLE. The use of a pointer de-
coder for sequential prediction (Gong et al., 2016;
Logeswaran et al., 2018; Wang and Wan, 2019; Oh
et al., 2019) along with an intermediate paragraph
encoder (Cui et al., 2018; Yin et al., 2019, 2020;
Cui et al., 2020) for better capturing the global de-
pendencies has been proposed in many variants.
Kumar et al. (2020) replace the pointer decoder
with a feed-forward neural network and use rank-
ing loss to enable simultaneous prediction of scores
for all sentences.

The pairwise approaches generally suffer from
lack of global interactions while pointer-based ap-

135

Dataset SIND NIPS AAN NSF

Model W=1 W=2 W=3 W=1 W=2 W=3 W=1 W=2 W=3 W=1 W=2 W=3

B-TSort 79.44 93.20 98.69 85.19 93.35 97.02 87.64 92.82 97.77 49.29 64.55 74.59
BerTSP 81.28 94.37 99.11 86.08 94.35 97.72 88.81 95.78 98.19 49.57 64.62 74.48

Table 6: Results of displacement analysis of sentences on all datasets (W=Window size)

Example 1
s1: We went to the park and a deer followed us.
s2: We pet it and took pictures with it.
s3: Then we traveled to the marvelous hotel.
s4: The grounds were so immaculate.
s5: We also got great pictures of the outside decor.

B-TSort: s2 → s1 → s3 → s5 → s4

BerTSP: s1 → s2 → s3 → s4 → s5

Example 2
s1: I went on vacation last year.
s2: It was a beautiful place.
s3: There were a lot of flower stores.
s4: The buildings were very old.
s5: There were a lot of other tourists there too.

B-TSort: s1 → s3 → s2 → s5 → s4

BerTSP: s1 → s2 → s3 → s5 → s4

Example 3
s1: There were many people at the protest.
s2: They had many signs.
s3: And flags as well.
s4: They did not like the war.
s5: And made this known before leaving.

B-TSort: s1 → s2 → s3 → s5 → s4

BerTSP: s1 → s2 → s3 → s4 → s5

Table 7: Qualitative comparison of B-TSort & BerTSP

proaches lag in utilizing the local pairwise context.
The more recent works try to overcome this by in-
corporating the local relative ordering information
into the pointer decoder (Yin et al., 2020; Cui et al.,
2020). Also, likelihood-based decoding is prone to
degeneration (Holtzman et al., 2020) especially for
longer sequences of sentences and paragraph en-
coders can only capture limited information from
every sentence. Lastly, the large memory require-
ment is the underlying issue with common neural
approaches. In particular, (Cui et al., 2020) show
better results compared to our approach (BerTSP)
but methods such as BerTSP are much more mem-
ory efficient (Prabhumoye et al., 2020).

We have proposed a Traveling Salesman Prob-
lem based formulation for sentence ordering. The

use of such graph-based optimizations have been
explored in past work in NLP such as ARM-to-text
generation (Song et al., 2016), opinion summa-
rization (Nishikawa et al., 2010), multi-document
summarization (Al-Saleh and Menai, 2018), etc.

7 Conclusion

We demonstrate the potential of a simpler, cheaper
yet effective approach for the task of Sentence Or-
dering. Our reformulation of the task as an asym-
metric TSP allows for the application of exact and
heuristic graphical algorithms which are lighter
and more transparent as opposed to heavier neural
approaches.

Future Work: In place of BERT, use of alterna-
tive model architectures like Albert, XLNet and
BART may provide better sentence representations
for sentence ordering as their language modeling
objectives better align with this task. In the de-
coding part, more heuristic-based or neural-based
approaches to combinatorial optimization may pro-
vide better alternatives.

Acknowledgments

We thank anonymous INLG reviewers for provid-
ing valuable feedback.

Ethics Statement

We do not see any major ethical concerns arising
out of our work. Our work focuses only on finding
the coherent ordering of sentences.

References
Asma Al-Saleh and Mohamed El Bachir Menai. 2018.

Solving multi-document summarization as an orien-
teering problem. Algorithms, 11(7):96.

Evelin Amorim, Marcia Cançado, and Adriano Veloso.
2018. Automated essay scoring in the presence of
biased ratings. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
229–237.

136

Yigal Attali and Jill Burstein. 2006. Automated essay
scoring with e-rater® v. 2. The Journal of Technol-
ogy, Learning and Assessment, 4(3).

Regina Barzilay and Noemie Elhadad. 2002. Inferring
strategies for sentence ordering in multidocument
news summarization. Journal of Artificial Intelli-
gence Research, 17:35–55.

Xinchi Chen, Xipeng Qiu, and Xuanjing Huang.
2016. Neural sentence ordering. arXiv preprint
arXiv:1607.06952.

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei
Zhang. 2018. Deep attentive sentence ordering net-
work. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4340–4349, Brussels, Belgium. Association
for Computational Linguistics.

Baiyun Cui, Yingming Li, and Zhongfei Zhang. 2020.
BERT-enhanced relational sentence ordering net-
work. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6310–6320, Online. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Youmna Farag, Helen Yannakoudakis, and Ted Briscoe.
2018. Neural automated essay scoring and coher-
ence modeling for adversarially crafted input. arXiv
preprint arXiv:1804.06898.

Varun Gangal, Steven Y. Feng, Eduard H. Hovy, and
Teruko Mitamura. 2021. NAREOR: the narrative re-
ordering problem. CoRR, abs/2104.06669.

Jingjing Gong, Xinchi Chen, Xipeng Qiu, and Xu-
anjing Huang. 2016. End-to-end neural sentence
ordering using pointer network. arXiv preprint
arXiv:1611.04953.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Ting-Hao Kenneth Huang, Francis Ferraro, Nasrin
Mostafazadeh, Ishan Misra, Aishwarya Agrawal, Ja-
cob Devlin, Ross Girshick, Xiaodong He, Pushmeet
Kohli, and Dhruv Batra. et almbox. 2016. visual sto-
rytelling. In 15th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL 2016).

Harsh Jhamtani and Taylor Berg-Kirkpatrick. 2020.
Narrative text generation with a latent discrete plan.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
EMNLP 2020, Online Event, 16-20 November 2020,
volume EMNLP 2020 of Findings of ACL, pages
3637–3650.

Harsh Jhamtani and Peter Clark. 2020. Learning to ex-
plain: Datasets and models for identifying valid rea-
soning chains in multihop question-answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 137–
150.

Pawan Kumar, Dhanajit Brahma, Harish Karnick, and
Piyush Rai. 2020. Deep attentive ranking net-
works for learning to order sentences. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8115–8122.

Mirella Lapata. 2003. Probabilistic text structuring:
Experiments with sentence ordering. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 545–552.

Lajanugen Logeswaran, Honglak Lee, and Dragomir
Radev. 2018. Sentence ordering and coherence mod-
eling using recurrent neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 32.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. arXiv preprint
arXiv:1802.08636.

Hitoshi Nishikawa, Takaaki Hasegawa, Yoshihiro Mat-
suo, and Genichiro Kikui. 2010. Opinion summa-
rization with integer linear programming formula-
tion for sentence extraction and ordering. In Coling
2010: Posters, pages 910–918.

Byungkook Oh, Seungmin Seo, Cheolheon Shin, Eu-
nju Jo, and Kyong-Ho Lee. 2019. Topic-guided co-
herence modeling for sentence ordering by preserv-
ing global and local information. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2273–2283, Hong Kong,
China. Association for Computational Linguistics.

Shrimai Prabhumoye, Ruslan Salakhutdinov, and
Alan W Black. 2020. Topological sort for sentence
ordering. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

137

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le
Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proscript: Partially ordered scripts gen-
eration via pre-trained language models. CoRR,
abs/2104.08251.

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D. Manning. 2019. Do
massively pretrained language models make better
storytellers?

Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo
Wang, and Daniel Gildea. 2016. Amr-to-text genera-
tion as a traveling salesman problem. arXiv preprint
arXiv:1609.07451.

Tianming Wang and Xiaojun Wan. 2019. Hierarchi-
cal attention networks for sentence ordering. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 33(01):7184–7191.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Yongjing Yin, Fandong Meng, Jinsong Su, Yubin Ge,
Lingeng Song, Jie Zhou, and Jiebo Luo. 2020.
Enhancing pointer network for sentence ordering
with pairwise ordering predictions. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):9482–9489.

Yongjing Yin, Linfeng Song, Jinsong Su, Jiali Zeng,
Chulun Zhou, and Jiebo Luo. 2019. Graph-based
neural sentence ordering. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI-19, pages 5387–5393. In-
ternational Joint Conferences on Artificial Intelli-
gence Organization.

Zhaohui Zheng, Keke Chen, Gordon Sun, and
Hongyuan Zha. 2007. A regression framework for
learning ranking functions using relative relevance
judgments. In Proceedings of the 30th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 287–
294.

Yutao Zhu, Kun Zhou, Jian-Yun Nie, Shengchao Liu,
and Zhicheng Dou. 2021. Neural sentence ordering
based on constraint graphs. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(16):14656–
14664.

138

A Additional Method Details

A.1 Dummy Node for ATSP:

TSP requires the source to be pre-specified. Since it
finds a cycle, the choice of the source s is irrelevant.
But for our purpose, we need to find an order which
is inherently not cyclic. To deal with this, we intro-
duce an additional node in the graph, vn+1, which
is at 0 distance from all other vertices in either di-
rection, i.e. w(n+1)i = wi(n+1) = 0, ∀ i. This
dummy node serves as the source from which the
cycle begins and consequently terminates. Since it
is at 0 distance from all nodes, its addition does not
affect the minimization process.

A.2 Heuristic solution for TSP:

We propose a heuristic solution that is cheap and
accounts for the order along with the cost. Con-
sider the unaugmented weight matrix: W = {wij}
∀i,j∈{1,2,...,n} where wij = 1 − P (si → sj). Con-
sider the following sum of probabilities:
P (si → s2) + P (si → s3) + ...+ P (si → sn)

If this sum is high, si has a high probability of oc-
curring before {1, 2, ..., i − 1, i + 1, ..., n} in the
predicted sequence. Consequently, if we take the
sum of complement probabilities, the lower the
sum, the higher is the probability of si occurring
before {1, 2, ..., i− 1, i+1, ..., n} in the predicted
sequence. This complementary sum is nothing but
the row-sum of row i of matrix W :

wi1 + wi1 + ...+ win (wii = 0)
Hence, we take the row-sums of all rows in W and
sort them in ascending order. This gives us the
predicted order. Since it involves simple sorting,
its runtime complexity is O(nlogn).

B Implementation details

The code for the sentence-pair encoder and the eval-
uation metrics is derived from (Prabhumoye et al.,
2020)2. The hyperparameters values are also taken
from this work. The experiments are conducted on
GeForce RTX 2080 Ti GPU. Our code3 is written
using Pytorch deep learning framework.

2https://github.com/shrimai/
Topological-Sort-for-Sentence-Ordering

3https://github.com/vkeswani/BerTSP

Dataset Mean Length Train Dev Test
SIND 5 40155 4990 5055
NIPS 6 2448 409 402
AAN 5 8569 962 2626
NSF 9 96070 10185 21580

Table 8: Descriptive statistics of the four datasets con-
sidered

C Data

C.1 Access
The SIND captions dataset is available online4.
Note that the Stories of Images-in-Sequence (SIS)
portion is the one relevant to our task. The abstract
datasets, NIPS, AAN, and NSF, were obtained from
Logeswaran et al. (2018).

C.1.1 Descriptive Statistics
We present the mean length and the split of the four
datasets into train, development, and test sets in
table 8.

4https://visionandlanguage.net/VIST/
dataset.html

139

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 140–153,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Underreporting of errors in NLG output, and what to do about it

Emiel van Miltenburg,1∗ Miruna Clinciu,2,3,4 Ondřej Dušek,5 Dimitra Gkatzia,6
Stephanie Inglis,7 Leo Leppänen,8 Saad Mahamood,9 Emma Manning,10

Stephanie Schoch,11 Craig Thomson,7 and Luou Wen12

1Tilburg University, 2Edinburgh Centre for Robotics, 3Heriot-Watt University,
4University of Edinburgh, 5Charles University, Prague, 6Edinburgh Napier University,

7University of Aberdeen, 8University of Helsinki, 9trivago N.V., 10Georgetown University,
11University of Virginia, 12University of Cambridge

Contact: c.w.j.vanmiltenburg@tilburguniversity.edu

Abstract
We observe a severe under-reporting of the dif-
ferent kinds of errors that Natural Language
Generation systems make. This is a problem,
because mistakes are an important indicator of
where systems should still be improved. If
authors only report overall performance met-
rics, the research community is left in the dark
about the specific weaknesses that are exhib-
ited by ‘state-of-the-art’ research. Next to
quantifying the extent of error under-reporting,
this position paper provides recommendations
for error identification, analysis and reporting.

1 Introduction

This paper turned out very differently from the one
we had initially intended to write. Our original
intention was to write an overview of the different
kinds of errors that appear in the output of different
kinds of Natural Language Generation (NLG) sys-
tems, and to develop a general taxonomy of NLG
output errors, based on the publications that have
appeared at previous INLG conferences (similar
to Howcroft et al. 2020; Belz et al. 2020). This,
however, turned out to be impossible. The reason?
There is a severe under-reporting of the different
kinds of errors that NLG systems make. By this
assertion, we mean that authors neither include any
error analysis nor provide any examples of errors
made by the system, and they do not make refer-
ence to different kinds of errors that may appear in
the output. The latter is a lower bar than carrying
out an error analysis, which requires a more system-
atic approach where several outputs are sampled
and analysed for the presence of errors, which are
then categorised (ideally through a formal proce-
dure with multiple annotators). Section 3 provides
more detailed statistics about error reporting in dif-
ferent years of INLG (and ENLG), and the amount

∗This project was led by the first author. Remaining
authors are presented in alphabetical order.

of papers that discuss the kinds of errors that may
appear in NLG output.

The fact that errors are under-reported in the
NLG literature is probably unsurprising to experi-
enced researchers in this area. The lack of reporting
of negative results in AI has been a well-known is-
sue for many years (Reiter et al., 2003). With the
classic NLG example being the reporting of nega-
tive results for the STOP project on smoking ces-
sation (Reiter et al., 2001, 2003). But even going
in with (relatively) low expectations, it was con-
fronting just to see how little we as a community
look at the mistakes that our systems make.

We believe that it is both necessary and possible
to improve our ways. One of the reasons why it
is necessary to provide more error analyses (see
§2.2 for more), is that otherwise, it is unclear what
are the strengths and weaknesses of current NLG
systems. In what follows, we provide guidance on
how to gain more insight into system behavior.

This paper provides a general framework to carry
out error analyses. First we cover the terminology
and related literature (§2), after which we quantify
the problem of under-reporting (§3). Following
up on this, we provide recommendations on how
to carry out an error analysis (§4). We acknowl-
edge that there are barriers to a more widespread
adoption of error analyses, and discuss some ways
to overcome them (§5). Our code and data are
provided as supplementary materials.

2 Background: NLG systems and errors

2.1 Defining errors

There are many ways in which a given NLG system
can fail. Therefore it can be difficult to exactly de-
fine all the different types of errors that can possibly
occur. Whilst error analyses in past NLG literature
were not sufficient for us to create a taxonomy, we
will instead propose high-level distinctions to help

140

bring clarity within the NLG research community.
This paper focuses on text errors, which we

define as countable instances of things that went
wrong, as identified from the generated text.1 Text
errors apply when something is incorrect in the
generated text with respect to the data, an external
knowledge source, or the communicative goal.

Through our focus on text errors, we only look
at the product (what comes out) of an NLG sys-
tem, so that we can compare the result of different
kinds of systems (e.g., rule-based pipelines versus
neural end-to-end systems), with error categories
that are independent of the process (how the text is
produced).2 For completeness, we discuss errors
related to the production process in §2.3.

By error analysis we mean the identification
and categorisation of errors, after which statistics
about the distribution of error categories are re-
ported. It is an annotation process (Pustejovsky
and Stubbs, 2012; Ide and Pustejovsky, 2017), sim-
ilar to Quantitative Content Analysis in the social
sciences (Krippendorff, 2018; Neuendorf, 2017).3

Error analysis can be carried out during develop-
ment (to see what kinds of mistakes the system is
currently making), as the last part of a study (eval-
uating a new system that you are presenting), or as
a standalone study (comparing different systems).
The latter option requires output data to be avail-
able, ideally for both the validation and test sets. A
rich source of output data is the GEM shared task
(Gehrmann et al., 2021).

Text errors can be categorised in several different
types, including factual errors (e.g. incorrect num-
ber; Thomson and Reiter 2020), and errors related
to form (spelling, grammaticality), style (formal
versus informal, empathetic versus neutral), or be-
havior (over- and under-specification). Some of
these are universally wrong, while others may be
‘contextually wrong’ with respect to the task suc-

1We use the term ‘text’ to refer to any expression of natural
language. For example, sign language (as in Mazzei 2015)
would be considered ‘text’ under this definition.

2By focusing on countable instances of things that went
wrong in the output text, we also exclude issues such as bias
and low output diversity, that are global properties of the
collection of outputs that a system produces for a given amount
of inputs, rather than being identifiable in individual outputs.

3There has been some effort to automate this process. For
example, Shimorina et al. (2021) describe an automatic er-
ror analysis procedure for shallow surface realisation, and
Stevens-Guille et al. (2020) automate the detection of repeti-
tions, omissions, and hallucinations. However, for many NLG
tasks, this kind of automation is still out of reach, given the
wide range of possible correct outputs that are available in
language generation tasks.

cess or for a particular design goal. For example,
formal texts aren’t wrong per se, but if the goal is
to produce informal texts, then any semblance of
formality may be considered incorrect.

It may be possible to relate different kinds of
errors to the different dimensions of text quality
identified by Belz et al. (2020). What is crucial
here, is that we are able to identify the specific
thing which went wrong, rather than just generate
a number that is representative of overall quality.

2.2 Why do authors need to report errors?

There is a need for realism in the NLG community.
By providing examples of different kinds of errors,
we can show the complexity of the task(s) at hand,
and the challenges that still lie ahead. This also
helps set realistic expectations for users of NLG
technology, and people who might otherwise build
on top of our work. A similar argument has been
put forward by Mitchell et al. (2019), arguing for
‘model cards’ that provide, inter alia, performance
metrics based on quantitative evaluation methods.
We encourage authors to also look at the data and
provide examples of where systems produce errors.
Under-reporting the types of errors that a system
makes is harmful because it leaves us unable to
fully appreciate the system’s performance.

While some errors may be detected automati-
cally, e.g., using information extraction techniques
(Wiseman et al., 2017) or manually defined rules
(Dušek et al., 2018), others are harder or impossible
to identify if not reported. We rely on researchers to
communicate the less obvious errors to the reader,
to avoid them going unnoticed and causing harm
for subsequent users of the technology.

Reporting errors is also useful when compar-
ing different implementation paradigms, such as
pipeline-based data-to-text systems versus neural
end-to-end systems. It is important to ask where
systems fall short, because different systems may
have different shortcomings. One example of this
is the E2E challenge, where systems with similar
human rating scores show very different behavior
(Dušek et al., 2020).

Finally, human and automatic evaluation met-
rics, or at least the ones that generate some kind of
intrinsic rating, are too coarse-grained to capture
relevant information. They are general evaluations
of system performance that estimate an average-
case performance across a limited set of abstract
dimensions (if they measure anything meaningful

141

at all; see Reiter 2018). We don’t usually know
the worst-case performance, and we don’t know
what kinds of errors cause the metrics or ratings
to be sub-optimal. Additionally, the general lack
of extrinsic evaluations among NLG researchers
(Gkatzia and Mahamood, 2015) means that in some
cases we only have a partial understanding of the
possible errors for a given system.

2.3 Levels of analysis

As noted above, our focus on errors in the out-
put text is essential to facilitate framework-neutral
comparisons between the performance of different
systems. When categorizing the errors made by
different systems, it is important to be careful with
terms such as hallucination and omission, since
these are process-level (pertaining to the system)
rather than product-level (pertaining to the output)
descriptions of the errors.4 Process-level descrip-
tions are problematic because we cannot reliably
determine how an error came about, based on the
output alone.5 We can distinguish between at least
two causes of errors, which we define below: sys-
tem problems and data problems. While these prob-
lems should be dealt with, we do not consider them
to be the subject of error analysis.

System problems can be defined as the malfunc-
tioning of one or several components in a given
system, or the malfunctioning of the system as a
whole. System problems in rule/template-based
systems could be considered as synonymous to
‘bugs,’ which are either semantic and/or syntactic in
nature. If the system has operated in a mode other
than intended (e.g., as spotted through an error anal-
ysis), the problem has to be identified, and then cor-
rected. Identifying and solving such problems may
require close involvement of domain experts for
systems that incorporate significant domain knowl-
edge or expertise (Mahamood and Reiter, 2012).
Van Deemter and Reiter (2018) provide further
discussion of how errors could occur at different
stages of the NLG pipeline system. System prob-
lems in end-to-end systems are harder to identify,

4Furthermore, terms like hallucination may be seen as
unnecessary anthropomorphisms that trivialise mental illness.

5A further reason to avoid process-level descriptors is that
they are often strongly associated with one type of approach.
For example, the term ‘hallucination’ is almost exclusively
used with end-to-end systems, as it is common for these sys-
tems to add phrases in the output text that are not grounded in
the input. In our experience, pipeline systems are hardly ever
referred to as ‘hallucinating.’ As such, it is better to avoid the
term and instead talk about concrete phenomena in the output.

but recent work on interpretability/explainability
aims to improve this (Gilpin et al., 2019).

Data problems are inaccuracies in the input that
are reflected in the output. For example: when a
player scored three goals in a real-world sports
game, but only one goal is recorded (for whatever
reason) in the data, even a perfect NLG system will
generate an error in its summary of the match. Such
errors may be identified as factual errors by cross-
referencing the input data with external sources.
They can then be further diagnosed as data errors
by tracing back the errors to the data source.

3 Under-reporting of errors

We examined different *NLG conferences to de-
termine the amount of papers that describe (types
of) output errors, and the amount of papers that
actually provide a manual error analysis.

3.1 Approach

We selected all the papers from three SIGGEN
conferences, five years apart from each other:
INLG2010, ENLG2015, and INLG2020. We split
up the papers such that all authors looked at a selec-
tion of papers from one of these conferences, and
informally marked all papers that discuss NLG er-
rors in some way. These papers helped us define the
terms ‘error’ and ‘error analysis’ more precisely.

In a second round of annotation, multiple anno-
tators categorised all papers as ‘amenable’ or ‘not
amenable’ to an error analysis. A paper is amenable
to an error analysis if one of its primary contribu-
tions is presenting an NLG system that produces
some form of output text. So, NLG experiments are
amenable to an error analysis, while survey papers
are not.6 For all amenable papers, the annotator
indicated whether the paper (a) mentions any er-
rors in the output and (b) whether it contains an
error analysis.7 We encouraged discussion between
annotators whenever they felt uncertain (details in
Appendix A). The annotations for each paper were
subsequently checked by one other annotator, after
which any disagreements were adjudicated through

6Examples of other kinds of papers that are not amenable
include evaluation papers, shared task proposals, papers which
analyze patterns in human-produced language, and papers
which describe a component in ongoing NLG work which
does not yet produce textual output (e.g. a ranking module).

7As defined in § 2, errors are (countable) instances of some-
thing that is wrong about the output. An ‘error mention’ is a
reference to such an instance or a class of such instances. Error
analyses are formalised procedures through which annotators
identify and categorise errors in the output.

142

Venue Total Amenable Error mention Error analysis Percentage with error analysis

INLG2010 37 16 6 0 0%
ENLG2015 28 20 4 1 5%
INLG2020 46 35 19 4 11%

Table 1: Annotation results for different SIGGEN conferences, showing the percentage of amenable papers that
included error analyses. Upon further inspection, most error mentions are relatively general/superficial.

a group discussion.

3.2 Results

Table 1 provides an overview of our results. We
found that only five papers at the selected *NLG
conferences provide an error analysis,8 and more
than half of the papers fail to mention any errors
in the output. This means that the INLG com-
munity is systematically under-informed about the
weaknesses of existing approaches. In light of our
original goal, it does not seem to be a fruitful exer-
cise to survey all SIGGEN papers if so few authors
discuss any output errors. Instead, we need a cul-
ture change where authors discuss the output of
their systems in more detail. Once this practice
is more common, we can start to make generalisa-
tions about the different kinds of errors that NLG
systems make. To facilitate this culture change, we
give a set of recommendations for error analysis.

4 Recommendations for error analysis

We provide general recommendations for carrying
out an error analysis, summarized in Figure 1.

4.1 Setting expectations

Before starting, it is important to be clear about
your goals and expectations for the study.

Goal Generally speaking, the goal of an error
analysis is to find and quantify system errors sta-
tistically, to allow a thorough comparison of differ-
ent systems, and to help the reader understand the
shortcomings of your system. But your personal
goals and interests may differ. For example, you
may only be interested in grammatical errors, and
less so in factual errors.

Expected errors When starting an error analy-
sis, you may already have some ideas about what
kinds of errors might appear in the outputs of dif-
ferent systems. These ideas may stem from the
literature (theoretical limitations, or discussions of
errors), from your personal experience as an NLG

8Summaries of these error analyses are in Appendix B.

researcher, or it might just be an impression you
have from talking to others. You might also have
particular expectations about what the distribution
of errors will look like.

Both goals and expectations may bias your study,
and cause you to overlook particular kinds of errors.
But if you are aware of these biases, you may be
able to take them into account, and later check if the
results confirm your original expectations. Hence,
it may be useful to preregister your study, so as to
make your thoughts and plans explicit (Haven and
Grootel, 2019; van Miltenburg et al., 2021). This
also makes it easier for others to check whether
they agree with the assumptions behind your study.

4.2 Set-up

Given your goals and expectations, there are several
design choices that you have to make, in order to
carry out your study.

Systems and outputs Since error analysis is rela-
tively labor-intensive, it may not be feasible to look
at a wide array of different systems. In that case,
you could pre-select a smaller number of models,
either based on automatic metric scores, or based
on specific model features you are interested in. Al-
ternatively, you could see to what extent the model
outputs overlap, given the same input. If two mod-
els produce exactly the same output, you only need
to annotate that output once.

Number of outputs Ideally, the number of out-
puts should be based on a power analysis to provide
meaningful comparisons (Card et al., 2020; van der
Lee et al., 2021), but other considerations, such as
time and budget, may be taken into account.

Sample selection Regarding the selection of ex-
amples to analyze, there are three basic alterna-
tives: The most basic is random sampling from
the validation/test outputs. Another option is se-
lecting specific kinds of inputs and analysing all
corresponding outputs. Here, inputs known to be
difficult/adversarial or inputs specifically target-
ing system properties or features may be selected

143

• Pre-select by automatic eval.
or research question
• Check statistical power

• Random sample order
• No model identification for

annotators

Three options:
a) Top-down (theory-based)
b) Bottom-up (from data)
c) Expand existing taxonomy

• Annotators: adequate number
& expertise
• Unit: token/word/phrase
• Majority vote vs. any error

• Compare outputs to inputs
• Trace errors back to source
• Address errors in next version

Annotate errorsSelect models & samples Shuffle & Blind Categorize errors

Enlarge sample & annotator pool

• Start with a small pilot
• Increase as guidelines are stable

& IAA is good enough

Create guidelines & examples

• Include definitions & examples
• Borderline cases
• Use to train further annotators

Identify error source

• Generate error frequency table.
• Compute overall IAA scores.
• Compute IAA per error/annotator
• Create confusion matrix.

Assess & Report

Figure 1: Flowchart depicting recommended analysis steps, as described in §4. IAA stands for Inter-Annotator
Agreement, as measured through Cohen’s kappa or Krippendorff’s alpha, for example.

(Ribeiro et al., 2020). Finally, examples to analyze
may also be selected based on quantitative values:
automatic metric scores or ratings in a preceding
general human evaluation. This way, error anal-
ysis can provide explanation for the automatic or
human scores. The most suitable option depends
on your specific use case: While random selection
gives the least biased picture of the model perfor-
mance, selecting specifically hard and/or low-rated
samples may be more efficient. Also note that the
sample selection should always be independent of
any samples you may have previously examined
during system development, since any errors for
those cases are likely to have been resolved already
(although you cannot be sure until you have verified
these cases as well).

Presentation The order of the items should be
randomized (to reduce possible order effects), and
if multiple system variants are considered, the an-
notators must not know which system produced
which output (to minimise annotator bias).

Interface The efficiency of any annotation task
depends on the quality of the interface. With the
right interface, annotators may be able to anno-
tate more data in a shorter time frame. Monarch
(2021, Chapter 11) provides recommendations on
interface design based on principles from the field
of Human-Computer Interaction (HCI). Once you
have a working interface, it is important to test the
interface and obtain feedback from annotators to
see whether it can be made more intuitive or effi-
cient (e.g. by adding keyboard shortcuts to perform
common operations).9

9Note that keyboard operations are generally quicker than
using the mouse (Monarch, 2021).

Annotators and the annotation process The
annotation process can be split into two parts: iden-
tifying the errors (§4.3), and categorising the errors
(§4.4). These can either be carried out sequentially
(first identify, then categorize) or simultaneously
(asking annotators to both identify and categorize
errors at the same time). The choices you make
here also impact annotator requirements, and the
evaluation of the annotation procedure.

Number of annotators Generally speaking, hav-
ing more annotators reduces the prevalence of the
individual bias (Artstein and Poesio, 2005). This
is particularly relevant if we want to detect all the
errors in the output data. Having more annotators
means that we are less likely to overlook individual
instances of errors. Once those errors are identified,
it may make more sense to rely on a smaller set of
well-trained annotators to categorise the different
errors. In the ideal situation, all errors are anno-
tated by (at least) two judges so as to be able to
detect and resolve any disagreements afterwards. If
this is not possible, then you should at least double-
annotate a large enough sample to reliably estimate
inter-annotator agreement.10

Role of the annotators Ideally, the annotators
should be independent of the authors reporting the
error analysis (Neuendorf, 2017), to ensure that the
results are not influenced by any personal biases
about the systems involved, and that the annota-
tions are indeed based on the guidelines themselves
rather than on discussions between the authors. If
this is not feasible, then the authors should at least
ensure that they remain ignorant of the identity of

10See Krippendorff 2011 for a reference table to determine
the sample size for Krippendorff’s α. Similar studies exist for
Cohen’s κ, e.g. Flack et al. 1988; Sim and Wright 2005.

144

the system that produced the relevant outputs.

Degree of expertise Depending on the complex-
ity of the annotation guidelines, the error analysis
may require expertise in linguistics (in the case
of a theory-driven error categorisation scheme),
or the relevant application area (with a context-
driven error categorisation scheme). For example,
Mahamood and Reiter (2012) worked with nurses
to identify errors in reports generated for parents
of neonatal infants. Taking into consideration the
costly process of selecting domain expert annota-
tors and the importance of quality control, non-
domain experts might be also considered, ensuring
their qualification through (intensive) training (Art-
stein and Poesio, 2005; Carlson et al., 2001).11

Compensation and treatment of workers If an-
notators are hired, either directly or via a crowd-
sourcing platform such as MTurk, they should be
compensated and treated fairly (Fort et al., 2011).
Silberman et al. (2018) provide useful guidelines
for the treatment of crowd-workers. The authors
note that they should at least be paid the mini-
mum wage, they should be paid promptly, and they
should be treated with respect. This means you
should be ready to answer questions about the an-
notation task, and to streamline the task based on
worker feedback. If you use human participants to
annotate the data, you likely also need to apply for
approval by an Institutional Review Board (IRB).

Training Annotators should receive training to
be able to carry out the error analysis, but the
amount of training depends on the difficulty of
the task (which depends, among other factors, on
the coding units (see §4.3), and the number of error
types to distinguish). They should be provided with
the annotation guidelines (§4.5), and then be asked
to annotate texts where the errors are known (but
not visible). The solutions would ideally be cre-
ated by experts, although in some cases, solutions
created by researchers may be sufficient (Thomson
and Reiter, 2020). It should be decided in advance
what the threshold is to accept annotators for the
reaming work, and, if they fail, whether to provide
additional training or find other candidates. Note
that annotators should also be compensated for tak-
ing part in the training (see previous paragraph).

11At least on the MTurk platform, Requesters can set the
entrance requirements for their tasks such that only Workers
who passed a qualifying test may carry out annotation tasks.

4.3 Identifying the errors
Error identification focuses on discovering all er-
rors in the chosen output samples (as defined in the
introduction). Previously, Popović (2020) asked
error annotators to identify issues with comprehen-
sibility and adequacy in machine-translated text.
Similarly, Freitag et al. (2021) proposed a manual
error annotation task where the annotators identi-
fied and highlighted errors within each segment in
a document, taking into account the document’s
context as well as the severity of the errors.

The major challenge in this annotation step is
how to determine the units of analysis; should an-
notators mark individual tokens, phrases, or con-
stituents as being incorrect, or can they just freely
highlight any sequence of words? In content analy-
sis, this is called unitizing, and having an agreed-
upon unit of analysis makes it easier to process the
annotations and compute inter-annotator agreement
(Krippendorff et al., 2016).12 What is the right unit
may depend on the task at hand, and as such is
beyond the scope of this paper.13

A final question is what to do when there is dis-
agreement between annotators about what counts
as an error or not. When working with multiple an-
notators, it may be possible to use majority voting,
but one might also be inclusive and keep all the
identified errors for further annotation. The error
categorization phase may then include a category
for those instances that are not errors after all.

4.4 Categorizing errors
There are three ways to develop an error categori-
sation system:

1. Top-down approaches use existing theory to
derive different types of errors. For example, Hi-
gashinaka et al. (2015a) develop an error taxonomy
based on Grice’s (1975) Maxims of conversation.
And the top levels of Costa et al.’s (2015) error
taxonomy14 are based on general linguistic theory,
inspired by Dulay et al. (1982).

2. Bottom-up approaches first identify different
12Though note that Krippendorff et al. do provide a metric

to compute inter-annotator agreement for annotators who use
units of different lengths.

13One interesting solution to the problem of unitization is
provided by Pagnoni et al. (2021), who do not identify indi-
vidual errors, but do allow annotators to “check all types that
apply” at the sentence level. The downside of this approach is
that it is not fine-grained enough to be able to count individual
instances of errors, but you do get an overall impression of the
error distribution based on the sentence count for each type.

14Orthography, Lexis, Grammar, Semantic, and Discourse.

145

errors in the output, and then try to develop coher-
ent categories of errors based on the different kinds
of attested errors. An example of this is provided
by Higashinaka et al. (2015b), who use a clustering
algorithm to automatically group errors based on
comments from the annotators (verbal descriptions
of the nature of the mistakes that were made). Of
course, you do not have to use a clustering algo-
rithm. You can also manually sort the errors into
different groups (either digitally15 or physically16).

3. Expanding on existing taxonomies: here
we make use of other researchers’ efforts to catego-
rize different kinds of errors, by adding, removing,
or merging different categories. For example, Costa
et al. (2015) describe how different taxonomies of
errors in Machine Translation build on each other.
In NLG, if you are working on data-to-text, then
you could take Thomson and Reiter’s (2020) tax-
onomy as a starting point. Alternatively, Dou et al.
(2021) present a crowd-sourced error annotation
schema called SCARECROW. For image captioning,
there is a more specific taxonomy provided by van
Miltenburg and Elliott (2017). Future work may
also investigate the possibility of merging all of
these taxonomies and relating the categories to the
quality criteria identified by Belz et al. (2020).

The problem of error ambiguity To be able to
categorize different kinds of errors, we often rely
on the edit-distance heuristic. That is: we say that
the text contains particular kinds of errors, because
fixing those errors will give us the desired output.
With this reasoning, we take the mental ‘shortest
path’ towards the closest correct text.17 This at
least gives us a set of ‘perceived errors’ in the text,
that provides a useful starting point for future re-
search. However, during the process of identifying
errors, we may find that there are multiple ‘short-
est paths’ that lead to a correct utterance, resulting
in error ambiguity (see, e.g., Van Miltenburg and
Elliott 2017; Thomson and Reiter 2020, §3.3).

For example, if the output text from a sports sum-
mary system notes that Player A scored 2 points,
while in fact Player A scored 1 point and Player B

15E.g. via a program like Excel, MaxQDA or Atlas.ti, or a
website like https://www.well-sorted.org.

16A good example of this pile sorting method is provided by
Yeh et al. (2014). Blanchard and Banerji (2016) give further
recommendations.

17Note that we don’t know whether the errors we identified
are actually the ones that the system internally made. This
would require further investigation, tracing back the origins of
each different instance of an error.

scored 2 points, should we say that this is a number
error (2 instead of 1) or a person error (Player A in-
stead of B)? This example also shows the fragility
of the distinction between product and process. It is
very tempting to look at what the system did to de-
termine the right category, but it is unclear whether
the ‘true error category’ is always knowable.

There are multiple ways to address the problem
of error ambiguity. For instance, we may award par-
tial credit (1/n error categories), mark both types
of errors as applying in this situation (overgeneralis-
ing, to be on the safe side), or count all ambiguous
cases to separately report on them in the overall fre-
quency table. Another solution, used by Thomson
and Reiter (2020) is to provide the annotators with
a fixed preference order (NAME, NUMBER, WORD,
CONTEXT), so that similar cases are resolved in a
similar fashion.

4.5 Writing annotation guidelines

Once you have determined an error identification
strategy and developed an error categorisation sys-
tem, you should describe these in a clear set of an-
notation guidelines. At the very least, these guide-
lines should contain relevant definitions (of each
error category, and of errors in general), along with
a set of examples, so that annotators can easily rec-
ognize different types of errors. For clarity, you
may wish to add examples of borderline cases with
an explanation of why they should be categorized
in a particular way.

Pilot The development of a categorisation sys-
tem and matching guidelines is an iterative process.
This means that you will need to carry out multiple
pilot studies in order to end up with a reliable set of
guidelines,18 that is easily understood by the anno-
tators, and provides full coverage of the data. Pilot
studies are also important to determine how long
the annotation will take. This is not just practical
to plan your study, but also essential to determine
how much crowd-workers should be paid per task,
so that you are able to guarantee a minimum wage.

4.6 Assessment

Annotators and annotations can be assessed during
or after the error analysis.19

18As determined by an inter-annotator agreement that ex-
ceeds a particular threshold, e.g. Krippendorff’s α ≥ 0.8.

19And in many cases, the annotators will already have been
assessed during the training phase, using the same measures.

146

During the error analysis Particularly with
crowd-sourced annotations it is common to in-
clude gold-standard items in the annotation task,
so that it is possible to flag annotators who provide
too many incorrect responses. It is also possible
to carry out an intermediate assessment of inter-
annotator agreement (IAA), described in more de-
tail below. This is particularly relevant for larger
projects, where annotators may diverge over time.

After the error analysis You can compute IAA
scores (e.g., Cohen’s κ or Krippendorff’s α, see:
Cohen 1960; Krippendorff 1970, 2018), to show
the overall reliability of the annotations, the pair-
wise agreement between different annotators, and
the reliability of the annotations for each error type.
You can also produce a confusion matrix; a table
that takes one of the annotators (or the adjudicated
annotations after discussion) as a reference, and
provides counts for how often errors from a partic-
ular category were annotated as belonging to any
of the error categories (Pustejovsky and Stubbs,
2012). This shows all disagreements at a glance.

Any analysis of (dis)agreement or IAA scores
requires there to be overlap between the annotators.
This overlap should be large enough to reliably
identify any issues with either the guidelines or
the annotators. Low agreement between annotators
may be addressed by having an adjudication round,
where the annotators (or an expert judge) resolve
any disagreements; rejecting the work of unreliable
annotators; or revising the task or the annotation
guidelines, followed by another annotation round
(Pustejovsky and Stubbs, 2012).

4.7 Reporting

We recommend that authors should provide a table
reporting the frequency of each error type, along
with the relevant IAA scores. The main text should
at least provide the overall IAA score, while IAA
scores for the separate error categories could also
be provided in the appendix. For completeness, it
is also useful to include a confusion matrix, but
this can also be put in the appendix. The main
text should provide a discussion of both the fre-
quency table, as well as the IAA scores. What
might explain the distribution of errors? What do
the examples from the Other-category look like?
And how should we interpret the IAA score? Partic-
ularly with low IAA scores, it is reasonable to ask
why the scores are so low, and how this could be
improved. Reasons for low IAA scores include: un-

clear annotation guidelines, ambiguity in the data,
and having one or more unreliable annotator(s).
The final annotation guidelines should be provided
as supplementary materials with your final report.
All annotations and output data (e.g. train, vali-
dation, and test outputs, possibly with confidence
scores) should of course also be shared.

5 (Overcoming) barriers to adoption

One reason why authors may feel hesitant about
providing an error analysis is that it takes up sig-
nificantly more space than the inclusion of some
overall performance statistics. The current page
limits in our field may be too tight to include an
error analysis. Relegating error analyses to the ap-
pendix does not feel right, considering the amount
of work that goes into providing such an analysis.
Given the effort that goes into an error analysis,
authors have to make trade-offs in their time spent
doing research. If papers can easily get accepted
without any error analysis, it is understandable that
this additional step is often avoided. How can we
encourage other NLG researchers to provide more
error analyses, or even just examples of errors?

Improving our standards We should adopt re-
porting guidelines that stress the importance of
error analysis in papers reporting NLG experi-
ments. The NLP community is already adopting
such guidelines to improve the reproducibility of
published work (see Dodge et al.’s (2019) repro-
ducibility checklist that authors for EMNLP2020
need to fill in). We should also stress the impor-
tance of error reporting in our reviewing forms;
authors should be rewarded for providing insight-
ful analyses of the outputs of their systems. One
notable example here is COLING 2018, which ex-
plicitly asked about error analyses in their review-
ing form for NLP engineering experiments, and
had a ‘Best Error Analysis’ award.20,21

Making space for error analyses We should
make space for error analyses. The page limit in
*ACL conferences is already expanding to incor-
porate ethics statements, to describe the broader
impact of our research. This suggests that we have
reached the limits of what fits inside standard pa-
pers, and an expansion is warranted. An alternative
is to publish more journal papers, where there is
more space to fit an error analysis, but then we as

20https://coling2018.org/paper-types/
21http://coling2018.org/index.html%3Fp=1558.html

147

a community also need to encourage and increase
our appreciation of journal submissions.

Spreading the word Finally, we should inform
others about how to carry out a proper error anal-
ysis. If this is a problem of exposure, then we
should have a conversation about the importance
of error reporting. This paper is an attempt to get
the conversation started.

6 Follow-up work

What should you do after you have carried out an
error analysis? We identify three directions for
follow-up studies.

Errors in inputs An additional step can be
added during the identification of errors which fo-
cuses on observing the system inputs and their rela-
tion to the errors. Errors in the generated text may
occur due to semantically noisy (Dušek et al., 2019)
or incorrect system input (Clinciu et al., 2021);
for instance, input data values might be inaccu-
rate or the input might not be updated due to a
recent change (e.g., new president). To pinpoint
the source of the errors, we encourage authors to
look at their input data jointly with the output, so
that errors in inputs can be identified as such.

Building new evaluation sets Once you have
identified different kinds of errors, you can try to
trace the origin of those errors in your NLG model,
or posit a hypothesis about what kinds of inputs
cause the system to produce faulty output. But how
can you tell whether the problem is really solved?
Or how can you stimulate research in this direc-
tion? One solution, following McCoy et al. (2019),
is to construct a new evaluation set based on the
(suspected) properties of the errors you have iden-
tified. Future research, knowing the scope of the
problem from your error analysis, can then use this
benchmark to measure progress towards a solution.

Scales and types of errors Error types and hu-
man evaluation scales are closely related. For ex-
ample, if there are different kinds of grammatical
errors in a text, we expect human grammaticality
ratings to go down as well. But the relation between
errors and human ratings is not always as transpar-
ent as with grammaticality. Van Miltenburg et al.
(2020) show that different kinds of semantic errors
have a different impact on the perceived overall

quality of image descriptions.22 Future research
should aim to explore the connection between the
two in more detail, so that there is a clearer link be-
tween different kinds of errors and different quality
criteria (Belz et al., 2020).

7 Conclusion

Having found that NLG papers tend to underreport
errors, we have motivated why authors should carry
out error analyses, and provided a guide on how to
carry out such analyses. We hope that this paper
paves the way for more in-depth discussions of
errors in NLG output.

Acknowledgements

We would like to thank Emily Bender and the
anonymous reviewers for their feedback. Dim-
itra Gkatzia’s contribution was supported under
the EPSRC projects CiViL (EP/T014598/1) and
NLG for Low-resource Domains (EP/T024917/1).
Miruna Clinciu’s contribution is supported by the
EPSRC Centre for Doctoral Training in Robotics
and Autonomous Systems at Heriot-Watt Univer-
sity and the University of Edinburgh. Miruna
Clinciu’s PhD is funded by Schlumberger Cam-
bridge Research Limited (EP/L016834/1, 2018-
2021). Ondřej Dušek’s contribution was supported
by Charles University grant PRIMUS/19/SCI/10.
Craig Thomson’s work is supported under an EP-
SRC NPIF studentship grant (EP/R512412/1). Leo
Leppänen’s work has been supported by the Euro-
pean Union’s Horizon 2020 research and innova-
tion program under grant 825153 (EMBEDDIA).

References
Imen Akermi, Johannes Heinecke, and Frédéric

Herledan. 2020. Tansformer based natural language
generation for question-answering. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 349–359, Dublin, Ireland.
Association for Computational Linguistics.

Ron Artstein and Massimo Poesio. 2005. Bias de-
creases in proportion to the number of annotators.
Proceedings of FG-MoL.

Cristina Barros and Elena Lloret. 2015. Input seed fea-
tures for guiding the generation process: A statistical
approach for Spanish. In Proceedings of the 15th Eu-
ropean Workshop on Natural Language Generation

22Relatedly, Freitag et al. (2021) ask annotators to rate the
severity of errors in machine translation output, rather than
simply marking errors.

148

(ENLG), pages 9–17, Brighton, UK. Association for
Computational Linguistics.

David Beauchemin, Nicolas Garneau, Eve Gaumond,
Pierre-Luc Déziel, Richard Khoury, and Luc Lam-
ontagne. 2020. Generating intelligible plumitifs de-
scriptions: Use case application with ethical consid-
erations. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
15–21, Dublin, Ireland. Association for Computa-
tional Linguistics.

Anya Belz, Simon Mille, and David M. Howcroft.
2020. Disentangling the properties of human eval-
uation methods: A classification system to support
comparability, meta-evaluation and reproducibility
testing. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
183–194, Dublin, Ireland. Association for Computa-
tional Linguistics.

Emily M. Bender, Leon Derczynski, and Pierre Is-
abelle, editors. 2018. Proceedings of the 27th Inter-
national Conference on Computational Linguistics.
Association for Computational Linguistics, Santa Fe,
New Mexico, USA.

Simon J. Blanchard and Ishani Banerji. 2016.
Evidence-based recommendations for designing
free-sorting experiments. Behavior Research Meth-
ods, 48(4):1318–1336.

Dallas Card, Peter Henderson, Urvashi Khandelwal,
Robin Jia, Kyle Mahowald, and Dan Jurafsky. 2020.
With little power comes great responsibility. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9263–9274, Online. Association for Computa-
tional Linguistics.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2001. Building a discourse-tagged cor-
pus in the framework of Rhetorical Structure Theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue - Volume 16, SIGDIAL ’01,
page 1–10.

Miruna-Adriana Clinciu, Dimitra Gkatzia, and Saad
Mahamood. 2021. It’s commonsense, isn’t it?
demystifying human evaluations in commonsense-
enhanced NLG systems. In Proceedings of the
Workshop on Human Evaluation of NLP Systems
(HumEval), pages 1–12, Online. Association for
Computational Linguistics.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Ângela Costa, Wang Ling, Tiago Luı́s, Rui Correia, and
Luı́sa Coheur. 2015. A linguistically motivated tax-
onomy for machine translation error analysis. Ma-
chine Translation, 29(2):127–161.

Kees van Deemter and Ehud Reiter. 2018. Lying and
computational linguistics. In Jörg Meibauer, editor,
The Oxford Handbook of Lying. Oxford University
Press.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2185–
2194, Hong Kong, China. Association for Computa-
tional Linguistics.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah A. Smith, and Yejin Choi. 2021. Scarecrow:
A framework for scrutinizing machine text.

Heidi C. Dulay, Marina K. Burt, and Stephen D.
Krashen. 1982. Language two. New York : Oxford
University Press.

Ondřej Dušek, David M. Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Inter-
national Conference on Natural Language Genera-
tion, pages 421–426, Tokyo, Japan. Association for
Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG challenge. In
Proceedings of the 11th International Conference
on Natural Language Generation, pages 322–328,
Tilburg University, The Netherlands. Association for
Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Chal-
lenge. Computer Speech & Language, 59:123–156.

Virginia F Flack, AA Afifi, PA Lachenbruch, and HJA
Schouten. 1988. Sample size determinations for the
two rater kappa statistic. Psychometrika, 53(3):321–
325.

Karën Fort, Gilles Adda, and K. Bretonnel Cohen.
2011. Last words: Amazon Mechanical Turk: Gold
mine or coal mine? Computational Linguistics,
37(2):413–420.

Markus Freitag, George Foster, David Grangier, Viresh
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021.
Experts, errors, and context: A large-scale study of
human evaluation for machine translation.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Ag-
garwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
Chandu, Miruna Clinciu, Dipanjan Das, Kaustubh D.
Dhole, Wanyu Du, Esin Durmus, Ondřej Dušek,
Chris Emezue, Varun Gangal, Cristina Garbacea,
Tatsunori Hashimoto, Yufang Hou, Yacine Jernite,
Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mihir
Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan,

149

Mounica Maddela, Khyati Mahajan, Saad Ma-
hamood, Bodhisattwa Prasad Majumder, Pedro Hen-
rique Martins, Angelina McMillan-Major, Simon
Mille, Emiel van Miltenburg, Moin Nadeem, Shashi
Narayan, Vitaly Nikolaev, Rubungo Andre Niy-
ongabo, Salomey Osei, Ankur Parikh, Laura Perez-
Beltrachini, Niranjan Ramesh Rao, Vikas Raunak,
Juan Diego Rodriguez, Sashank Santhanam, João
Sedoc, Thibault Sellam, Samira Shaikh, Anasta-
sia Shimorina, Marco Antonio Sobrevilla Cabezudo,
Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi
Yang, Akhila Yerukola, and Jiawei Zhou. 2021. The
gem benchmark: Natural language generation, its
evaluation and metrics.

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Ba-
jwa, Michael Specter, and Lalana Kagal. 2019. Ex-
plaining explanations: An overview of interpretabil-
ity of machine learning. In Proceedings - 2018 IEEE
5th International Conference on Data Science and
Advanced Analytics, DSAA 2018.

Dimitra Gkatzia and Saad Mahamood. 2015. A Snap-
shot of NLG Evaluation Practices 2005-2014. In
Proceedings of the 15th European Workshop on Nat-
ural Language Generation (ENLG), pages 57–60.

H. P. Grice. 1975. Logic and Conversation, pages 41 –
58. Brill, Leiden, The Netherlands.

Tamarinde L. Haven and Dr. Leonie Van Grootel. 2019.
Preregistering qualitative research. Accountability
in Research, 26(3):229–244. PMID: 30741570.

Ryuichiro Higashinaka, Kotaro Funakoshi, Masahiro
Araki, Hiroshi Tsukahara, Yuka Kobayashi, and
Masahiro Mizukami. 2015a. Towards taxonomy of
errors in chat-oriented dialogue systems. In Pro-
ceedings of the 16th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
87–95, Prague, Czech Republic. Association for
Computational Linguistics.

Ryuichiro Higashinaka, Masahiro Mizukami, Kotaro
Funakoshi, Masahiro Araki, Hiroshi Tsukahara, and
Yuka Kobayashi. 2015b. Fatal or not? finding errors
that lead to dialogue breakdowns in chat-oriented di-
alogue systems. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2243–2248, Lisbon, Portugal. As-
sociation for Computational Linguistics.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation:
NLG needs evaluation sheets and standardised def-
initions. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
169–182, Dublin, Ireland. Association for Computa-
tional Linguistics.

Nancy Ide and James Pustejovsky, editors. 2017. Hand-
book of linguistic annotation. Springer. ISBN 978-
94-024-1426-4.

Taichi Kato, Rei Miyata, and Satoshi Sato. 2020.
BERT-based simplification of Japanese sentence-
ending predicates in descriptive text. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 242–251, Dublin, Ireland.
Association for Computational Linguistics.

Klaus Krippendorff. 1970. Bivariate agreement coeffi-
cients for reliability of data. Sociological methodol-
ogy, 2:139–150.

Klaus Krippendorff. 2011. Agreement and information
in the reliability of coding. Communication Meth-
ods and Measures, 5(2):93–112.

Klaus Krippendorff. 2018. Content Analysis: An In-
troduction to Its Methodology, fourth edition edition.
SAGE Publications, Inc.

Klaus Krippendorff, Yann Mathet, Stéphane Bouvry,
and Antoine Widlöcher. 2016. On the reliability
of unitizing textual continua: Further developments.
Quality & Quantity, 50(6):2347–2364.

Zewang Kuanzhuo, Li Lin, and Zhao Weina. 2020.
SimpleNLG-TI: Adapting SimpleNLG to Tibetan.
In Proceedings of the 13th International Confer-
ence on Natural Language Generation, pages 86–90,
Dublin, Ireland. Association for Computational Lin-
guistics.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
and Emiel Krahmer. 2021. Human evaluation of au-
tomatically generated text: Current trends and best
practice guidelines. Computer Speech & Language,
67:101–151.

Saad Mahamood and Ehud Reiter. 2012. Working with
clinicians to improve a patient-information NLG sys-
tem. In INLG 2012 Proceedings of the Seventh Inter-
national Natural Language Generation Conference,
pages 100–104.

Alessandro Mazzei. 2015. Translating Italian to LIS
in the rail stations. In Proceedings of the 15th Eu-
ropean Workshop on Natural Language Generation
(ENLG), pages 76–80, Brighton, UK. Association
for Computational Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Emiel van Miltenburg and Desmond Elliott. 2017.
Room for improvement in automatic image descrip-
tion: an error analysis. CoRR, abs/1704.04198.

Emiel van Miltenburg, Chris van der Lee, and Emiel
Krahmer. 2021. Preregistering NLP research. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

150

pages 613–623, Online. Association for Computa-
tional Linguistics.

Emiel van Miltenburg, Wei-Ting Lu, Emiel Krahmer,
Albert Gatt, Guanyi Chen, Lin Li, and Kees van
Deemter. 2020. Gradations of error severity in au-
tomatic image descriptions. In Proceedings of the
13th International Conference on Natural Language
Generation, pages 398–411, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model cards for model reporting. In
Proceedings of the conference on fairness, account-
ability, and transparency, pages 220–229.

Robert (Munro) Monarch. 2021. Human-in-the-Loop
Machine Learning. Manning Publications Co., Shel-
ter Island, New York. ISBN 9781617296741.

Adrian Muscat and Anja Belz. 2015. Generating de-
scriptions of spatial relations between objects in
images. In Proceedings of the 15th European
Workshop on Natural Language Generation (ENLG),
pages 100–104, Brighton, UK. Association for Com-
putational Linguistics.

Kimberly A. Neuendorf. 2017. The Content Analysis
Guidebook. SAGE Publications. Second edition,
ISBN 9781412979474.

Jason Obeid and Enamul Hoque. 2020. Chart-to-text:
Generating natural language descriptions for charts
by adapting the transformer model. In Proceedings
of the 13th International Conference on Natural Lan-
guage Generation, pages 138–147, Dublin, Ireland.
Association for Computational Linguistics.

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia
Tsvetkov. 2021. Understanding factuality in abstrac-
tive summarization with FRANK: A benchmark for
factuality metrics. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 4812–4829, Online. As-
sociation for Computational Linguistics.

Maja Popović. 2020. Informative manual evalua-
tion of machine translation output. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5059–5069, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

James Pustejovsky and Amber Stubbs. 2012. Nat-
ural Language Annotation for Machine Learning:
A guide to corpus-building for applications. ”
O’Reilly Media, Inc.”.

Ehud Reiter. 2018. A structured review of the validity
of BLEU. Computational Linguistics, 44(3):393–
401.

Ehud Reiter, Roma Robertson, A. Scott Lennox, and
Liesl Osman. 2001. Using a randomised controlled
clinical trial to evaluate an NLG system. In Pro-
ceedings of the 39th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 442–
449, Toulouse, France. Association for Computa-
tional Linguistics.

Ehud Reiter, Roma Robertson, and Liesl M. Osman.
2003. Lessons from a failure: Generating tailored
smoking cessation letters. Artificial Intelligence,
144(1):41–58.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Anastasia Shimorina, Yannick Parmentier, and Claire
Gardent. 2021. An error analysis framework for
shallow surface realisation. Transactions of the As-
sociation for Computational Linguistics, 9.

M. S. Silberman, B. Tomlinson, R. LaPlante, J. Ross,
L. Irani, and A. Zaldivar. 2018. Responsible re-
search with crowds: Pay crowdworkers at least min-
imum wage. Commun. ACM, 61(3):39–41.

Julius Sim and Chris C Wright. 2005. The Kappa
Statistic in Reliability Studies: Use, Interpretation,
and Sample Size Requirements. Physical Therapy,
85(3):257–268.

Symon Stevens-Guille, Aleksandre Maskharashvili,
Amy Isard, Xintong Li, and Michael White. 2020.
Neural NLG for methodius: From RST meaning rep-
resentations to texts. In Proceedings of the 13th In-
ternational Conference on Natural Language Gener-
ation, pages 306–315, Dublin, Ireland. Association
for Computational Linguistics.

Mariët Theune, Ruud Koolen, and Emiel Krahmer.
2010. Cross-linguistic attribute selection for REG:
Comparing Dutch and English. In Proceedings of
the 6th International Natural Language Generation
Conference.

Craig Thomson and Ehud Reiter. 2020. A gold stan-
dard methodology for evaluating accuracy in data-
to-text systems. In Proceedings of the 13th Inter-
national Conference on Natural Language Genera-
tion, pages 158–168, Dublin, Ireland. Association
for Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

151

Hung-Wen Yeh, Byron J Gajewski, David G Perdue,
Angel Cully, Lance Cully, K Allen Greiner, Won S
Choi, and Christine Makosy Daley. 2014. Sorting it
out: Pile sorting as a mixed methodology for explor-
ing barriers to cancer screening. Quality & quantity,
48(5):2569–2587.

A Annotation

A.1 Procedure and definitions
We annotated all papers from INLG2010,
ENLG2015, and INLG2020 in two rounds. Round
1 was an informal procedure where we generally
checked whether the papers mentioned any errors
at all (broadly construed, without defining the term
‘error’). Following this, we determined our formal
annotation procedure, based on the example papers:
first check if the paper is amenable. If so, check
if it (a) mentions any errors in the output or (b)
contains an error analysis. We used the following
definitions:

Amenable A paper is amenable to an error anal-
ysis if one of its primary contributions is presenting
an NLG system that produces some form of out-
put text. So, NLG experiments are amenable to an
error analysis, while survey papers are not.

Error Errors are (countable) instances of some-
thing that is wrong about the output.

Error mention An ‘error mention’ is a refer-
ence to such an instance or a class of such instances.

Error analysis Error analyses are defined as
formalised procedures through which annotators
identify and categorise errors in the output.

A.2 Discussion points
The most discussion took place on the topic of
amenability. Are papers that just generate preposi-
tions (Muscat and Belz, 2015) or attributes for re-
ferring expressions (Theune et al., 2010) amenable
to error analysis? And what about different ver-
sions of SimpleNLG? (E.g., Kuanzhuo et al. 2020.)
Although these topics feel different from, say, data-
to-text systems, we believe it should be possible to
carry out an error analysis in these contexts as well.
In the end, amenability for us is just an artificial
construct to address the (potential) criticism that
we cannot just report the amount of error analyses
as a proportion of all *NLG papers. As such, our
definition for amenability is just a quick heuris-
tic. Determining whether a paper really benefits
from an error analysis is a more complex issue, that
depends on many contextual factors.

B Papers containing error analyses

Below is a brief summary of the error analyses that
we found in our annotation study.

1. Barros and Lloret (2015) investigate the use
of different seed features for controlled neural NLG.
They analysed all the outputs of their model, and
categorised them based on existing lists of common
grammatical errors and drafting errors.

2. Akermi et al. (2020) explore the use of pre-
trained transformers for question-answering. They
conducted a human evaluation study, asking 20
native speakers to indicate the presence of errors in
the outputs of a French and English system. These
errors were categorised as: extra words, grammar,
missing words, wrong preposition, word order.

3. Beauchemin et al. (2020) aim to generate ex-
planations of plumitifs (dockets), based on the text
of the dockets themselves. Following the identifi-
cation of different errors (defined by the authors
as “the lack of realizing a specific part (accused,
plaintiff or list of charges paragraphs), instead of
evaluating the textual generation,” they trace the
source of the error back to either an earlier informa-
tion extraction step, or to the generation procedure.

4. Kato et al. (2020) present a BERT-based ap-
proach to simplify Japanese sentence-ending predi-
cates. They took a bottom-up approach to classify
the 140 cases where their model could not gener-
ate any acceptable cases. The authors then relate
the error types to different stages of the generation
process, and to the general architecture of their
system.

5. Obeid and Hoque (2020) present a neural
NLG model for automatically providing natural
language descriptions of information visualisations
(i.e., charts). They manually assessed 50 output
examples, and highlighted the different errors in
the text. The authors find that, despite their efforts
to prevent it, their model still suffers from halluci-
nation. They identify two kinds of hallucination:
either the model associates an existing value with
the wrong data point, or it simply predicts an irrel-
evant token.

A notable exception is the paper by Thomson
and Reiter (2020), who carry out an error analysis
of existing output data from three different systems.
This paper was not considered amenable, because

152

it does not present an NLG system of its own, and
thus it was not included in our counts. But even
if we were to count this paper among the error
analyses, the trend remains the same: very few
papers discuss errors in NLG output.

153

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 154–166,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

What can Neural Referential Form Selectors Learn?

Guanyi Chen♠∗, Fahime Same♥∗, and Kees van Deemter♠
♠Department of Information and Computing Sciences, Utrecht University

♥Department of Linguistics, University of Cologne
g.chen@uu.nl, f.same@uni-koeln.de, c.j.vandeemter@uu.nl

Abstract

Despite achieving encouraging results, neural
Referring Expression Generation models are
often thought to lack transparency. We probed
neural Referential Form Selection (RFS) mod-
els to find out to what extent the linguistic fea-
tures influencing the RE form are learnt and
captured by state-of-the-art RFS models. The
results of 8 probing tasks show that all the
defined features were learnt to some extent.
The probing tasks pertaining to referential sta-
tus and syntactic position exhibited the high-
est performance. The lowest performance was
achieved by the probing models designed to
predict discourse structure properties beyond
the sentence level.

1 Introduction

Referring Expression Generation (REG) is one of
the main stages of classic Natural Language Gener-
ation (NLG) pipeline (Reiter and Dale, 2000; Krah-
mer and van Deemter, 2012; van Deemter, 2016).
REG studies are concerned with two different tasks.
The goal of the classic REG task (also called one-
shot REG), is to find a set of attributes to single out
a referent from a set of competing referents. The
second REG task (henceforth discourse REG) is
concerned with the generation of referring expres-
sions (RE) in discourse context. Belz and Varges
(2007) phrase it as follows: Given an intended ref-
erent and a discourse context, how do we generate
appropriate referential expressions (REs) to refer
to the referent at different points in the discourse?

Classic discourse REG was usually understood
as a two-step procedure. In the first step, the ref-
erential form (RF, i.e, the syntactic type) is deter-
mined. For instance, when referring to Joe Biden
at a given point in a discourse, the first step is to de-
cide whether to use a proper name (“Joe Biden”), a

∗ Equal contribution

description (“the president of the USA”), a demon-
strative (“this person”) or a pronoun (“he”). The
second step is to determine the RE content, that is,
to choose between all the different ways in which a
given form can be realised. For instance, to gener-
ate a description of Joe Biden, one needs to decide
whether to only mention his job (e.g., The presi-
dent entered the Oval Office.), or to mention the
country as well (e.g., The president of the United
states arrived in Cornwall for the G7 Summit.)

In earlier works, computational linguists linked
REG to linguistic theories and built discourse REG
systems on the basis of linguistic features. For
example, Henschel et al. (2000) investigated the
impact of 3 linguistic features namely recency, sub-
jecthood, and discourse status on pronominaliza-
tion, i.e. deciding whether the RE should be re-
alised as a pronoun. Using these features, they used
the notion of local focus as a criterion for detecting
the set of referents that can be pronominalised. The
same holds for feature-based models (see Belz et al.
(2010) for an overview) where models are trained
on linguistically encoded data.

More recently, a number of neural network-
based REG models have been presented (Cas-
tro Ferreira et al., 2018a; Cao and Cheung, 2019;
Cunha et al., 2020), where they propose to gener-
ate REs in an End2End manner without any feature
engineering. They all used a benchmark dataset
called WebNLG. These models generally follow the
sequence-to-sequence framework (Sutskever et al.,
2014), where there is an encoder for encoding the
given discourse, and a decoder responsible for gen-
erating REs using the encoded information. The
evaluation results suggested that these neural meth-
ods perform well not only for selecting the proper
RFs, but also for producing fluent REs. However,
it was unclear to what extent these neural models
can encode linguistic features.

To conduct model inspection, we introduce a

154

Triples: (AWH Engineering College, country, India), (Kerala, leaderName, Kochi), (AWH Engineering College,
academicStaffSize, 250), (AWH Engineering College, state, Kerala), (AWH Engineering College, city, “Kuttikkattoor”),
(India, river, Ganges)

Text: AWH Engineering College is in Kuttikkattoor, India in the state of Kerala. The school has 250 employees and
Kerala is ruled by Kochi. The Ganges River is also found in India.

Delexicialised Text:
Pre-context: AWH Engineering College is in “Kuttikkattoor” , India in the state of Kerala .
Target Entity: AWH Engineering College
Pos-context: has 250 employees and Kerala is ruled by Kochi . The Ganges River is also found in India .

Table 1: An example data from the WebNLG corpus. In the delexicalised text, every entity is underlined.

series of probing tasks. Using probing tasks is
a well-established method to analyse whether a
model’s latent representation encodes specific in-
formation. This approach has been widely used for
analysing models in machine translation (Belinkov
et al., 2017), language modelling (Giulianelli et al.,
2018), relation extraction (Alt et al., 2020), and
so on. Additionally, there had been various works
on coreference resolution and bridging anaphora
(Sorodoc et al., 2020; Pandit and Hou, 2021) which,
similar to this paper, target the understanding of
reference. More precisely, for a probing task, a
diagnostic classifier is trained on representations
from the model. Its performance embodies how
well those representations encode the information
associated with the probing task. The aim of this
paper is to understand what linguistic features neu-
ral models encode when modelling REs.

Our main focus is on the encoding of linguistic
features in the representations. In the linguistic tra-
dition, the majority of RE production studies focus
on Referential Form Selection (RFS), rather than
RE content realisation. Our focus in the present
work is likewise on RFS. To tackle RFS, we adopt
the state-the-of-the-art neural REG model of (Cas-
tro Ferreira et al., 2018a). Additionally, to make
comparison, we also propose (1) a strong baseline
that uses only a single encoder (while Castro Fer-
reira et al. (2018a) used multiple encoders); and
(2) to leverage pre-trained word embeddings (e.g.,
GloVe) or language models (e.g., BERT).

Therefore, in this paper, we first introduce the
task of RFS on the basis of WebNLG corpus, and
propose a number of neural models to tackle the
task. Subsequently, we introduce 8 probing tasks,
each of which is associated with a linguistic feature
influencing the choice of RF. We examine our RFS
models on these probing tasks in order to interpret
and explain their behaviour. The code of each RFS
model and the probing classifier is available at:

github.com/a-quei/probe-neuralreg.

2 Background

2.1 Discourse REG
Given a text whose REs have not yet been gen-
erated, and given the intended referent for each
of these REs, the discourse REG task is to build
an algorithm that generates all these REs. So far,
this task has attracted many research efforts (e.g.,
Hendrickx et al. (2008); Greenbacker and McCoy
(2009)) and it has been used in the GREC shared
tasks (Belz et al., 2010).

More recently, this task was formulated into a
format that goes together well with deep learn-
ing: Castro Ferreira et al. (2018a) introduced the
End2End REG task, built a corresponding dataset
based on WebNLG (Castro Ferreira et al., 2018b),
and constructed NeuralREG models.

The WebNLG corpus was originally designed to
assess the performance of NLG systems (Gardent
et al., 2017). Each sample in this corpus contains a
knowledge base described by a Resource Descrip-
tion Framework (RDF) triple (Table 1). Castro Fer-
reira et al. (2018a) and Castro Ferreira et al. (2018b)
enriched and delexicalised the corpus to fit the dis-
course REG task. Table 1 shows a text created from
a RDF, and its corresponding delexicalised version.

Taking the delexicalised text in Ta-
ble 1 as an example, given the entity
“AWH Engineering College”, REG chooses
a RE based on that entity and its pre-context
(“AWH Engineering College is in “Kuttikkattoor” ,
India in the state of Kerala . ”) and its pos-context
(“has 250 employees and Kerala is ruled by Kochi .
The Ganges River is also found in India .”).

2.2 Factors that Influence RE Production
Languages display a large inventory of expressions
for referring to entities (von Heusinger and Schu-
macher, 2019). In linguistics, the realisation choice

155

a speaker makes has been associated with the acces-
sibility, i.e. activation of mental representations of
a referent at a particular point in discourse: attenu-
ated forms such as pronouns are often used to refer
to highly accessible or highly activated referents,
while richer forms such as descriptions and proper
names are employed in referring to less accessible
ones (Ariel, 1990; Gundel et al., 1993). Due to
the central role of referring in communication, a
wealth of research has tried to assess the influence
of different features modulating the accessibility of
a referent. von Heusinger and Schumacher (2019)
refer to these features as prominence-lending cues,
meaning that they increase the prominence status
of their respective referents to some extent. In this
section, we merely talk about the ones which will
be taken up in our probing experiments, and will
not further discuss cues such as animacy (Fuku-
mura and van Gompel, 2011), competition (Arnold,
2010) and coherence relations (Kehler et al., 2008).

Referential status or givenness has been widely
discussed in the literature (see Chafe (1976); Prince
(1981)). When a new character is introduced into
the discourse, the chance that this happens by
means of a pronoun is slim (unless the referent
is situationally given). Pronouns are reserved for
referring to previously introduced (or given) refer-
ents.

Recency, another well-studied cue, is defined
as the distance between the target referent and its
antecedent. If a referent is not too far apart from
its antecedent, then reduced forms are typically
employed to refer to it.

There are also intra-clausal cues such as gram-
matical role (Brennan, 1995) and thematic role
(Arnold, 2001) which impact the prominence status
of referents. For instance, the subject of a sentence
is perceived to be more prominent than the object.

Discourse-structural features affect the organisa-
tional aspects of discourse. Centering-based the-
ories (Grosz et al., 1995) often use the notion of
local focus to account for pronominalisation. Lo-
cal focus takes the current and previous utterance
into account. Global focus, on the other hand, situ-
ates a referent in a larger space, namely the whole
text or a discourse segment (Hinterwimmer, 2019).
Concepts such as the importance of a referent or fa-
miliarity are associated with the global prominence
status of entities (Siddharthan et al., 2011).

Type Classes

4-Way Demonstrative, Description, Proper
Name, Pronoun

3-Way Description, Proper Name, Pronoun
2-Way Non-pronominal, Pronominal

Table 2: 3 different types of RF classification.

3 Neural Referential Form Selection

In this section, we define the task of RFS built on
the WebNLG dataset, and introduce a number of
NeuralRFS models.

3.1 The RFS Task

Akin to REG, given the previous context x(pre) =
{w1, w2, ..., wi−1} (where w is either a word or
a delexicalised entity label), the target referent
w(r) = {wi}, and the post context w(pos) =
{wi, wi+1, ..., wn}, a RFS algorithm aims at find-
ing the proper RF f̂ from a set of K candidate RFs
F = {fk}Kk=1.

Regarding the possible RFs for the RFS task, we
test 3 different classifications, depicted in Table 2.
Due to the small number of demonstrative noun
phrases in the dataset, we decided to also conduct
a 3-way classification in which descriptions and
demonstratives are merged. Also, most emphasis
in the linguistic literature is on the pronominalisa-
tion issue. Therefore, we also included a 2-way
classification task in the study.

As stated, the main goal of the paper is to un-
derstand which linguistic features are encoded by
RFS neural models. Additionally, we were curious
whether models trained solely for pronominalisa-
tion capture different contextual features in com-
parison with the other two classifications.

3.2 NeuralRFS Models

We build NeuralRFS models by (1) adopting the
best NeuralREG model from Castro Ferreira et al.
(2018a), and (2) proposing a new alternative which
is simpler, and can easier incorporate pre-trained
representations.

ConATT. We adopt the CATT model from Cas-
tro Ferreira et al. (2018a), which achieves the best
performance on REG among the models they tested
in their study. Given the inputs, we first use Bidi-
rectional GRU (BiGRU, Cho et al., 2014) to en-
code x(pre) as well as x(pos). Formally, for each
k ∈ [pre, pos], we encode x(k) to h(k) with a Bi-
GRU: h(k) = BiGRU(x(k)). Subsequently, differ-

156

4-way 3-way 2-way

Model Precision Recall F1 Precision Recall F1 Precision Recall F1

XGBoost 53.77 51.98 51.55 71.27 69.24 68.34 86.64 82.76 84.57

c-RNN 68.79 62.95 64.96 84.49 82.52 83.63 90.31 88.01 89.09
+GloVe 69.10 63.90 65.40 84.29 82.55 83.30 89.33 88.02 88.63
+BERT 62.63 61.80 62.15 83.02 81.44 82.15 90.98 88.00 89.42

ConATT 67.42 62.39 64.07 85.04 82.21 83.53 89.30 89.19 89.23
+GloVe 65.98 62.49 63.67 83.62 81.41 82.45 89.60 88.06 88.80

Table 3: Evaluation results of our RFS systems on WEBNLG. Best results are boldfaced, whereas the second best
results are underlined.

ent from Castro Ferreira et al. (2018a), we encode
h(k) into the context representation c(k) using self-
attention (Yang et al., 2016). Concretely, given the
totalN steps in h(k), we first calculate the attention
weight α(k)

j at each step j by:

e
(k)
j = v(k)Ta tanh(W (k)

a h
(k)
j), (1)

α
(k)
j =

exp(e
(k)
j)

∑N
n=1 exp(e

(k)
n)

, (2)

where va is the attention vector and Wa is the
weight in the attention layer. The context repre-
sentation of x(k) is then the weighted sum of h(k):

c(k) =
N∑

j=1

α
(k)
j h(k). (3)

After obtaining c(pre) and c(pos), we concatenate
them with the target entity embedding x(r), and
pass it through a feed forward network to obtain
the final representation:

R = ReLU(Wf [c
(pre), x(r), c(pos)]), (4)

where Wf is the weights in the feedforward layer.
R is also used as the input of the probing classifiers
(section 4). R is then fed for making the final
prediction:

P (f |x(pre), x(r), x(pos)) = Softmax(WcR), (5)

where Wc is the weight in the output layer.

c-RNN. In addition to ConATT, we also try a
simpler yet effective structure, which uses only a
single BiGRU. We name the framework it follows
as the centred recurrent neural networks (hence-
forth c-RNN). Specifically, instead of using two
separate BiGRUs to encode pre- and pos-contexts,

we first concatenate x(pre), x(r), and x(pos), and
then encode them together:

h = BiGRU([x(pre), x(r), x(pos)]). (6)

Suppose that the target entity is in position i of the
concatenated sequence, we extract the i-th repre-
sentation from hi for obtainingR = ReLU(Wfhi).
After obtaining R, the rest of the procedure is the
same as ConATT.

Pre-training. As a secondary objective of this
study, we want to see whether RFS can benefit from
pre-trained word embeddings and language models,
whose effectiveness has not yet been explored in
REG1. For both c-RNN and ConATT, we try the
GloVe embeddings (Pennington et al., 2014) to see
how pre-trained word embeddings contribute to the
choice of RF. For c-RNN, we try to stake it on the
BERT (Devlin et al., 2019) model. In order to let
BERT better encode the delexicalised entity labels,
we first re-train BERT as a masked language model
on the training data of WebNLG. We then freeze the
parameters of BERT and use the model to encode
the input, which is then fed into c-RNN2.

Machine Learning (ML) based Model We
used XGBoost (Chen and Guestrin, 2016) from
the family of Gradient Boosting Decision Trees to
train RFS classifiers. 5-fold-cross-validation was
used to train the models. The classifiers were first
trained on a wide range of features obtained from
the WebNLG corpus (16 features). After running a
variable importance analysis, we selected a subset
of features for the final models. The detailed list of
features are presented in Appendix A.

1Previously, only Cao and Cheung (2019) used pre-trained
embeddings, but no ablation study was done.

2We also explored other ways of using BERT, such as
using only BERT plus a feed forward layer to obtain h, or not
freezing parameters of BERT while training. The resulting
models had low performance in all cases.

157

Figure 1: Confusion Matrices for 4-way classification results of XGBoost (left) and c-RNN+GloVe (right),
where PRO, PN, DES, and DEM are pronoun, proper name, description and demonstrative respectively.

3.3 Evaluation

Implementation Details. We tuned hyper-
parameters of each of our models on the
development set and chose the setting with the best
macro F1 score. For the BERT model, we used
the cased BERT-BASE3 and added all entity labels
into the vocabulary to avoid tokenisation. When
re-training BERT on WebNLG, we set the masking
probability to 0.15 and trained it for 25 epochs.

For the XGBoost models, we set the learning
rate to 0.05, the minimum split loss to 0.01, the
maximum depth of a tree to 5, and the sub-sample
ratio of the training instances to 0.5.

We report the macro averaged precision, recall,
and F1 on the test set. We run each model for 5
times, and report the averaged performance. As
for the dataset, we use the v1.5 of WebNLG (Cas-
tro Ferreira et al., 2019) and use only seen entities.

Results. Table 3 shows the results of different
classification tasks. Generally, all neural variants
outperform the machine learning baseline. The per-
formance difference is small in the case of binary
classification, while it is much bigger for 3- and
4-way classifications. This is because the 2-way
classification (i.e., pronominalisation) has clearly
less complexity than the other two alternatives, and,
thus, the feature set used by the baseline results in
almost similar outcomes to neural models.

Comparing neural variants to each other, the
results show that the simpler c-RNN wins over
ConATT in 4-way classification, and has on par
performance with ConATT for 3- and 2-way classi-
fications. One possible explanation is that ConATT
first breaks down the input into three pieces (i.e.,
the target entity as well as pre- and pos-context),

3huggingface.co/bert-base-cased

encodes them separately, and merges the encoded
representations back before being sent to make pre-
dictions. This “divide and merge” procedure might
hinder the model from learning some useful infor-
mation.

Regarding the effectiveness of incorporating pre-
trained models, GloVe embeddings have positive
impact on c-RNN only in case of 4-way predic-
tions, and have no contribution to 2- and 3-way
classifications. Moreover, it has negative effect
on ConATT: the performance diminishes when
GloVe is used. It is surprising to see that in case
of c-RNN, BERT has negative effect on 4- and 3-
way predictions (the F1 score reduced from 64.86
and 83.63 to 62.15 and 82.15 respectively). For
pronominalisation, BERT slightly boosts the perfor-
mance (from 89.09 to 89.42), but this boost is not
as much as BERT’s boosting effect on other NLP
tasks. This is probably because although BERT
was re-trained on WebNLG delexicalised sentences,
the entity labels still function as noise for BERT.

To obtain insights into the behaviours of the deep
learning and classic ML-based models for RFS, we
depict the confusion matrices of XGBoost and the
best performing neural model c-RNN+GloVe in
Figure 1 for the 4-way classification. The confu-
sion matrices suggest that both models do a good
job in selecting pronouns and proper names (that
is why the performance difference in the 2-way
classification is small), and both perform poorly
in choosing demonstratives (probably due to the
fact that demonstratives are extremely infrequent
in WebNLG). The main difference between the
two models is in distinguishing proper names from
descriptions. The XGBoost model wrongly pre-
dicted the descriptions as proper names in 62.58%
of the cases, while the neural c-RNN+GloVe

158

model did this wrong prediction in 20.18% of
the times. This difference in the performance of
the two models might be because the neural mod-
els learnt some useful features from the discourse
which are not covered in our feature engineering
procedure. Furthermore, after looking into the
WebNLG dataset, we noticed that various RE cases
are annotated incorrectly. For example, WebNLG

annotates “United States” as a proper name, and
“the United States” as a description. The incor-
rect annotations might increase the confusion be-
tween choosing description and proper name in
both XGBoost and c-RNN+GloVe.

4 Probing RFS models

We use a logistic regression classifier as our prob-
ing classifier. Concretely, for each input, we first
use a model discussed in section 3 to obtain its
representation R. As mentioned in section 3, we
ran each model five times and reported their av-
eraged scores. For the probing tasks, we use the
representations of the models with the best RFS
performance on the development set.

4.1 Probing Tasks
Following our observations in section 2.2, we for-
mulate the following probing tasks.

Referential Status. The referential status of the
target entity influences the choice of RF in both
linguistic (Chafe, 1976; Gundel et al., 1993) and
computational studies (Castro Ferreira et al., 2016).
In this study, we define referential status on two lev-
els: discourse-level and sentence-level. The former
(DisStat) has two possible values: (a) discourse-
old (i.e., the entity has appeared in the previous dis-
course) and (b) discourse-new (i.e., the entity has
not appeared in the previous discourse). Sentence-
level referential status (SenStat) also consists of
two values: (a) sentence-new (i.e., the RE is the
first mention of the entity in the sentence), and (b)
sentence-old (i.e., the RE is not the first mention).

Syntactic Position. Entities in subject position
are more likely to be pronominalised than in object
position (Brennan, 1995; Arnold, 2010). Therefore,
in the syntax probing task (henceforth Syn), we do
binary classification: subject or object.

Recency. Recency has been used as a vital fea-
ture in many of the previous REG or RFS sys-
tems (Greenbacker and McCoy, 2009; Kibrik et al.,
2016). It measures the distance between the target

entity and its closest antecedent. There are various
ways of estimating the recency of a target entity
given its context. We hereby use two measures:
(1) the number of sentences between the target en-
tity and its antecedent (DistAnt), which consists of
four possible values: the entity and its antecedent
are (a) in the same sentence, (b) one sentence away,
(c) more than one sentence away, and (d) the en-
tity is a first mention (to distinguish first mentions
from subsequent mentions). (2) whether there is
an intervening referent between the target and its
nearest antecedent (IntRef) (Greenbacker and Mc-
Coy, 2009). In other words, it checks whether the
target and the preceding RE are coreferential. This
feature has three possible values: (a) the target en-
tity is a first mention, (b) the previous RE refers
to the same entity, and (c) the previous RE refers
to a different entity. Note that the existence of in-
tervening markables might signal the existence of
a competition (if the intervening referent has the
same animacy and gender values as the target RE).

Discourse Structure Prominence. As men-
tioned in section 2, the “organizational” proper-
ties of discourse may influence the prominence
status of the entities. We introduce three probing
tasks capturing different properties of the discourse.
(1) Local prominence (LocPro): The idea of lo-
cal prominence is coming from Centering Theory
(Grosz et al., 1995). It is a hybrid feature of Dis-
Stat and Syn. Concretely, we use the implementa-
tion of Henschel et al. (2000): an entity is locally
prominent if it is “discourse-old” and “realised as
subject”. It is a binary feature with two possible
values: (a) locally prominent, and (b) not locally
prominent. (2) Global prominence (GloPro): This
feature is based on the notion of global salience
in Siddharthan et al. (2011), asking whether the
entity is a minor or major referent in the text. Ac-
cording to them, “the frequency features are likely
to give a good indication of the global salience
of a referent in the document” (p. 820). We de-
fine a binary feature in which the most frequent
entity in a text is marked as globally prominent. (3)
Meta-prominence (MetaPro): In line with global
prominence, we also want to explore to what ex-
tent prominence beyond a single text (e.g. on a
text collection level) may impact the way people
refer. In the context of the current circumstances,
the sentence “I received my vaccine today” is un-
ambiguous, and the RE my vaccine needs no extra
modification (e.g. my COVID-19 vaccine); how-

159

Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro MetaPro

Random - 49.57
(41.83)

33.11
(22.87)

49.65
(48.99)

25.19
(14.90)

33.30
(22.92)

50.05
(49.84)

49.75
(48.02)

25.24
(25.20)

Majority - 86.91
(46.50)

86.91
(31.00)

61.27
(37.99)

86.91
(23.25)

86.91
(31.00)

56.28
(36.01)

68.49
(40.65)

28.12
(10.97)

c-RNN
4-way 85.16

(84.06)
93.28

(73.72)
94.16

(85.34)
92.84

(53.84)
91.71

(55.43)
83.37

(82.92)
70.62

(56.00)
44.76

(42.32)

3-way 84.78
(83.72)

92.59
(72.60)

93.50
(83.60)

92.58
(54.78)

91.24
(53.21)

82.17
(81.67)

70.87
(56.70)

45.42
(41.79)

2-way 88.84
(88.04)

92.77
(73.84)

93.49
(84.00)

92.53
(54.93)

91.01
(52.31)

86.08
(85.69)

71.24
(59.98)

44.32
(41.65)

c-RNN
+GloVe

4-way 85.84
(84.85)

93.58
(74.59)

94.56
(87.04)

93.30
(55.67)

92.06
(55.93)

83.71
(83.20)

70.55
(53.53)

44.23
(41.71)

3-way 85.09
(83.89)

91.89
(67.24)

93.23
(82.48)

91.72
(50.94)

90.92
(51.17)

82.08
(81.44)

70.20
(52.49)

45.58
(42.34)

2-way 88.88
(88.02)

92.38
(71.25)

93.32
(82.67)

92.25
(53.67)

90.94
(51.43)

85.81
(85.22)

71.78
(63.17)

44.92
(41.03)

c-RNN
+BERT

4-way 95.85
(90.64)

94.41
(78.04)

84.05
(82.71)

93.60
(56.91)

92.27
(54.30)

82.03
(81.67)

71.04
(54.24)

45.27
(43.07)

3-way 94.00
(84.80)

92.74
(72.29)

85.12
(84.08)

92.57
(54.21)

91.28
(53.25)

82.92
(82.53)

71.69
(57.31)

43.64
(42.80)

2-way 94.59
(87.28)

92.94
(69.69)

85.75
(84.74)

92.50
(54.19)

92.06
(54.88)

83.27
(82.77)

73.80
(63.07)

41.05
(40.75)

ConATT
4-way 94.86

(87.81)
94.12

(77.11)
88.64

(88.00)
93.69

(57.09)
92.11

(55.88)
86.93

(86.34)
72.22

(60.15)
48.37

(46.14)

3-way 93.91
(84.39)

93.15
(74.19)

87.43
(86.66)

92.93
(55.26)

91.35
(54.09)

85.32
(84.56)

72.61
(60.61)

49.35
(47.47)

2-way 93.74
(84.20)

92.78
(73.18)

89.01
(88.44)

92.50
(53.98)

91.19
(53.64)

87.05
(86.75)

70.65
(56.39)

44.24
(41.81)

ConATT
+GloVe

4-way 94.86
(87.82)

94.10
(77.70)

87.98
(87.24)

93.66
(57.52)

92.10
(55.22)

86.06
(85.69)

71.94
(58.54)

53.19
(49.94)

3-way 93.79
(84.35)

92.78
(72.83)

89.54
(88.91)

92.59
(54.23)

91.39
(51.96)

87.09
(86.80)

71.91
(59.05)

49.27
(46.36)

2-way 93.81
(84.38)

92.86
(73.21)

87.69
(86.96)

92.84
(56.14)

91.50
(53.33)

85.61
(85.27)

72.48
(62.46)

44.47
(39.63)

Table 4: Results of each probing task. Results are reported in the format of A(B), where A is the accuracy and B is
the macro F1.

ever, a couple of years from now, a richer RE may
be needed to refer to the vaccine. The idea be-
hind this exploratory feature is that people might
use less semantic content to refer to the referents
which are well known outside of the text. Based
on the number of mentions of a target entity in
the whole WebNLG, four possible values, each of
which representing an interval, are assigned to each
RE: (a) [0, 50), (b) [50, 150), (c) [150, 290), and (d)
[290,∞). For example, the category [0, 50) con-
tains those entities that occur fewer than 50 times
in the corpus.

4.2 Importance Analysis

We conducted a feature importance analysis to find
out which features used in the probing tasks had
the highest contributions to the feature-based ML
models. This analysis functions as a sanity check
to find out whether the representations have learnt

Figure 2: Feature importance of XGBoost classifiers
for 4-way predictions. Higher loss shows greater impor-
tance of a feature. Results for 2-way and 3-way classi-
fication can be found in the Appendix B.

the features contributing the most to the RFS task.

To assess the importance of the features used
in the probing tasks, we train XGBoost models,
only using features from section 4.1, and calculate

160

the model-agnostic permutation-based variable im-
portance of each model (Biecek and Burzykowski,
2021). Concretely, we measure the extent to which
the performance changes if we remove one of the
features. Figure 2 depicts the performance change
for each feature. According to the figure, DisStat
and Syn contribute the most. LocPro is the least im-
portant feature because it is a hybrid combination
of DisStat and Syn. Removing it while keeping
DisStat and Syn will not hurt the performance of
the model a lot. Considering that DisStat and Syn
are both highly vital features, LocPro is much more
important than what the experiment suggests. In
addition to DisStat and Syn probing tasks, we also
expect high performance for the LocPro task.

4.3 Probing Results

We mentioned earlier that we conduct probing tasks
to find out whether the RFS models’ latent repre-
sentations encode the features mentioned in section
4.1. High performance in probing tasks would in-
dicate that the features are encoded in the latent
representations of the models.

We evaluate probing tasks using the accuracy
and macro-averaged F1 scores. Each probing clas-
sifier was trained 5 times. We report the aver-
aged value. Additionally, we use 2 baselines: (1)
random: it randomly assigns a label to each input;
and (2) majority: it assigns the most frequent
label in the given probing task to the inputs.

Results of Each Probing Task. Compared to the
random baseline, all neural models have achieved
higher performance on all tasks. (1) Referential
status and syntactic position: all models exhibit
consistently high performance on DisStat, SenStat,
and Syn. This shows that, at least for the WebNLG

corpus, all neural models can learn information
of referential status and syntactic position; (2) Re-
cency (i.e., DistAnt and IntRef): all models per-
form worse compared to the referential status and
syntax probes. Although they do not have bad ac-
curacy scores, their F1 scores are lower than that
of DisStat, SenStat, and Syn, and are closer to the
baselines. This finding is consistent with the re-
sults of section 4.2, where DistAnt and IntRef were
found to be less important (comparing to DisStat
and Syn). One possible explanation is that, in the
WebNLG corpus, 67% of the documents contain
only one sentence, making recency-related features
play less role. As another possible explanation, in
line with the previous probing works on corefer-

ence and bridging anaphora (Sorodoc et al., 2020;
Pandit and Hou, 2021), models have more difficulty
capturing long-distance properties; (3) Discourse
structure prominence: since LocPro is a hybrid of
DisStat and Syn, all models handled it to a large
degree. Meanwhile, neural models appear to han-
dle GloPro and MetaPro worse than other features
since the performance of their corresponding prob-
ing tasks is closer to the baselines4. These results
are in contrast with the importance analysis results,
which suggested that both GloPro and MetaPro are
important features (ranking 3 and 4 in Figure 2).
Learning GloPro and MetaPro requires a model to
have an overall understanding of the whole input
document or the whole corpus, which the neural
models might not be able to acquire.

Comparing c-RNN and ConATT. In section 3,
we concluded that the c-RNN model works better
than ConATT on 4-way RF classification. Never-
theless, when probing, we observed that ConATT
does a better job in many tasks, including Dis-
Stat, LocPro, GloPro, and MetaPro. To under-
stand why, we looked into the WebNLG dataset and
found that 86.91% of the REs in WebNLG are first
mentions, and 21% of the documents talk about
the entity “United States”. This suggests that REs
in WebNLG are not representative of the realistic
use of REs. Therefore, although ConATT learns
more contextual features, it still has a lower per-
formance. ConATT’s better learning of referential
status (i.e., DisStat) is probably a benefit of us-
ing self-attention, which helps the model capture
longer dependencies than RNNs.

The Effect of Pre-training. As mentioned ear-
lier, the secondary objective of this study is to find
out whether RFS can benefit from pre-trained word
embeddings and language models. The effect of
incorporating the GloVe embeddings is not sig-
nificant to c-RNN and ConATT. The major con-
tribution of BERT is helping with learning DisStat
(which is, again, probably a result of using self-
attention). Akin to the above discussion, since the
majority of the entities in WebNLG are first men-
tions, the increased accuracy boost in the DisStat
task is not enough to boost the overall performance
of RFS.

Comparing Different RF Classifications. It
also appears that models learn different infor-

4Note that, for MetaPro, the Majority has low F1 score
because the distribution of the values of MatePro is balanced.

161

mation using different label sets (classes). For
example, 2-way classification (i.e., pronominal-
isation) helps c-RNN learn more about referen-
tial status. But in case of models with attention
mechanism (i.e., ConATT, ConATT+GloVe and
c-RNN+BERT models), referential status is learnt
better in 4-way classification models. Also, in case
of ConATT(+GloVe), we observe that more fine-
grained classifications help the model learn more
about meta prominence (i.e., MetaPro).

5 Conclusion

Our aim is to understand whether neural models
capture the features associated with the task of RFS.
To this end, we defined 8 probing tasks in which we
focused on referential status, syntactic position, re-
cency, and discourse structure. The probing results
suggest that the probe classifiers always performed
better than the random and the majority base-
lines. The performance was consistently good in
the tasks associated with referential status, syntax
and local prominence.

It is worth noting that probing has its own short-
comings. For instance, on the one hand, low prob-
ing performance does not always mean the feature
is not encoded, but could also mean that such a
feature does not matter to RFS. To mitigate this
issue, we conducted a complementary ML-based
variable importance analysis; in this analysis, dis-
course status and syntactic position came out as the
factors with the highest contributions. These fea-
tures were also predicted very well in the probing
tasks. However, these results should still be taken
with a pinch of salt: the variable importance has
been conducted on the ML model and not on the
neural models. We cannot be certain that the same
features contribute to all the models similarly: a
feature might be quite important in the machine
learning model, but not as important in the neural
models. On the other hand, some researches have
questioned the validity of probing methods. They
found out that it is difficult to distinguish between
“learning the probing task” and “extracting the en-
coded linguistic information” (Hewitt and Liang,
2019; Kunz and Kuhlmann, 2020) for a probing
classifier. This suggests that higher performance
of a probing classifier does not necessarily mean
more linguistic information has been encoded. This
prevents us from directly quantifying how well the
linguistic information has been learnt using the per-
formance of probing classifiers and requires us to

make conclusions more carefully.
From our probing efforts, we conclude that: (1)

All neural models have learnt some information
about the features associated with the probing tasks,
but how well they have learnt this information is yet
to be assessed; (2) The WebNLG corpus, which has
often been used for the study of discourse REG, is
not ideally suitable for studying discourse-related
aspects of RFS, because the texts are too short and
the majority of REs are first mentions. This leads to
bias in the evaluation of RFS and REG algorithms;
(3) When it comes to the question of how well a
RFS feature can be learnt, it matters what neural
architecture and label set are used, and whether
the model is pre-trained or not. Using an attention
mechanism and more fine-grained label sets help
a model learn more information; (4) All models
perform poorly in terms of learning those features,
such as GloPro and MetaPro, that do not derive
from the text itself but from the wider context in
which it is written and read. We believe that future
models should take these lessons into considera-
tion.

In future, we plan to extend the current study
from three angles. First, we plan to conduct exper-
iments on different corpora. The WebNLG corpus
used in this study consists predominantly of ex-
tremely short documents with an average length
of only 1.4 sentences/document; consequently the
majority of REs are first mentions. We hope
to find a more representative distribution of uses
of referring expressions in other corpora such as
OntoNotes (Hovy et al., 2006), which contain
longer texts. Secondly, we plan to conduct ex-
periments on other languages than English, in par-
ticular ones that favour zero pronouns (e.g., Chi-
nese (Chen et al., 2018)), because these pose new
challenges for the task of RFS. Thirdly, we plan
to design new probing tasks on the basis of other
factors that could influence RFS, such as animacy,
competition and positional attributes (see Same and
van Deemter (2020) for an overview).

Acknowledgements

We thank the anonymous reviewers for their help-
ful comments. Guanyi Chen is supported by China
Scholarship Council (No.201907720022). Fahime
Same is supported by the German Research Foun-
dation (DFG)– Project-ID 281511265 – SFB 1252
“Prominence in Language”.

162

References
Christoph Alt, Aleksandra Gabryszak, and Leonhard

Hennig. 2020. Probing linguistic features of
sentence-level representations in neural relation ex-
traction. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1534–1545, Online. Association for Computa-
tional Linguistics.

Mira Ariel. 1990. Accessing Noun-Phrase Antecedents.
Routledge.

Jennifer E Arnold. 2001. The effect of thematic roles
on pronoun use and frequency of reference continu-
ation. Discourse processes, 31(2):137–162.

Jennifer E Arnold. 2010. How speakers refer: The role
of accessibility. Language and Linguistics Compass,
4(4):187–203.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do neu-
ral machine translation models learn about morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 861–872, Vancouver,
Canada. Association for Computational Linguistics.

Anja Belz, Eric Kow, Jette Viethen, and Albert Gatt.
2010. Generating referring expressions in context:
The GREC task evaluation challenges. In Empiri-
cal Methods in Natural Language Generation: Data-
oriented Methods and Empirical Evaluation, vol-
ume 5790 of Lecture Notes in Computer Science,
pages 294–327. Springer.

Anja Belz and Sebastian Varges. 2007. Generation of
repeated references to discourse entities. In Proceed-
ings of the Eleventh European Workshop on Natu-
ral Language Generation (ENLG 07), pages 9–16,
Saarbrücken, Germany. DFKI GmbH.

Przemyslaw Biecek and Tomasz Burzykowski. 2021.
Explanatory model analysis: explore, explain, and
examine predictive models. CRC Press.

Susan E Brennan. 1995. Centering attention in
discourse. Language and Cognitive processes,
10(2):137–167.

Meng Cao and Jackie Chi Kit Cheung. 2019. Refer-
ring expression generation using entity profiles. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3163–
3172, Hong Kong, China. Association for Computa-
tional Linguistics.

Thiago Castro Ferreira, Emiel Krahmer, and Sander
Wubben. 2016. Towards more variation in text gen-
eration: Developing and evaluating variation models
for choice of referential form. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages

568–577, Berlin, Germany. Association for Compu-
tational Linguistics.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552–562, Hong
Kong, China. Association for Computational Lin-
guistics.

Thiago Castro Ferreira, Diego Moussallem, Ákos
Kádár, Sander Wubben, and Emiel Krahmer. 2018a.
NeuralREG: An end-to-end approach to referring ex-
pression generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1959–
1969, Melbourne, Australia. Association for Compu-
tational Linguistics.

Thiago Castro Ferreira, Diego Moussallem, Emiel
Krahmer, and Sander Wubben. 2018b. Enriching
the WebNLG corpus. In Proceedings of the 11th In-
ternational Conference on Natural Language Gen-
eration, pages 171–176, Tilburg University, The
Netherlands. Association for Computational Lin-
guistics.

Wallace Chafe. 1976. Givenness, contrastiveness, defi-
niteness, subjects, topics, and point of view. Subject
and topic.

Guanyi Chen, Kees van Deemter, and Chenghua Lin.
2018. Modelling pro-drop with the rational speech
acts model. In Proceedings of the 11th International
Conference on Natural Language Generation, pages
159–164, Tilburg University, The Netherlands. Asso-
ciation for Computational Linguistics.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD
’16, page 785–794, New York, NY, USA. Associa-
tion for Computing Machinery.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Rossana Cunha, Thiago Castro Ferreira, Adriana
Pagano, and Fabio Alves. 2020. Referring to what
you know and do not know: Making referring ex-
pression generation models generalize to unseen en-
tities. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2261–

163

2272, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Kees van Deemter. 2016. Computational models of re-
ferring: a study in cognitive science. MIT Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kumiko Fukumura and Roger PG van Gompel. 2011.
The effect of animacy on the choice of referring
expression. Language and cognitive processes,
26(10):1472–1504.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating train-
ing corpora for NLG micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 179–188, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Un-
der the hood: Using diagnostic classifiers to in-
vestigate and improve how language models track
agreement information. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 240–248,
Brussels, Belgium. Association for Computational
Linguistics.

Charles Greenbacker and Kathleen McCoy. 2009.
UDel: generating referring expressions guided by
psycholinguistic findings. In Proceedings of the
2009 Workshop on Language Generation and Sum-
marisation, pages 101–102. Association for Compu-
tational Linguistics.

Barbara J. Grosz, Aravind K. Joshi, and Scott Wein-
stein. 1995. Centering: A framework for model-
ing the local coherence of discourse. Computational
Linguistics, 21(2):203–225.

Jeanette K Gundel, Nancy Hedberg, and Ron Zacharski.
1993. Cognitive status and the form of referring ex-
pressions in discourse. Language, pages 274–307.

Iris Hendrickx, Walter Daelemans, Kim Luyckx, Roser
Morante, and Vincent Van Asch. 2008. CNTS:
Memory-based learning of generating repeated refer-
ences. In Proceedings of the Fifth International Nat-
ural Language Generation Conference, pages 194–
95, Salt Fork, Ohio, USA. Association for Computa-
tional Linguistics.

Renate Henschel, Hua Cheng, and Massimo Poesio.
2000. Pronominalization revisited. In Proceedings

of the 18th conference on Computational linguistics-
Volume 1, pages 306–312. Association for Computa-
tional Linguistics.

Klaus von Heusinger and Petra B Schumacher. 2019.
Discourse prominence: Definition and application.
Journal of Pragmatics, 154:117–127.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743, Hong
Kong, China. Association for Computational Lin-
guistics.

Stefan Hinterwimmer. 2019. Prominent protagonists.
Journal of Pragmatics, 154:79–91.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 57–60,
New York City, USA. Association for Computa-
tional Linguistics.

Andrew Kehler, Laura Kertz, Hannah Rohde, and Jef-
frey L Elman. 2008. Coherence and coreference re-
visited. Journal of semantics, 25(1):1–44.

Andrej A. Kibrik, Mariya V. Khudyakova, Grigory B.
Dobrov, Anastasia Linnik, and Dmitrij A. Zalmanov.
2016. Referential choice: Predictability and its lim-
its. Frontiers in Psychology, 7:1429.

Emiel Krahmer and Kees van Deemter. 2012. Compu-
tational generation of referring expressions: A sur-
vey. Computational Linguistics, 38(1):173–218.

Jenny Kunz and Marco Kuhlmann. 2020. Classifier
probes may just learn from linear context features.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 5136–5146,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Onkar Pandit and Yufang Hou. 2021. Probing for bridg-
ing inference in transformer language models. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4153–4163, Online. Association for Compu-
tational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Ellen F Prince. 1981. Towards a taxonomy of given-
new information. Radical pragmatics.

164

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Studies in Natural
Language Processing. Cambridge University Press.

Fahime Same and Kees van Deemter. 2020. A lin-
guistic perspective on reference: Choosing a fea-
ture set for generating referring expressions in con-
text. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 4575–
4586, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Advaith Siddharthan, Ani Nenkova, and Kathleen
McKeown. 2011. Information status distinctions
and referring expressions: An empirical study of
references to people in news summaries. Computa-
tional Linguistics, 37(4):811–842.

Ionut-Teodor Sorodoc, Kristina Gulordava, and
Gemma Boleda. 2020. Probing for referential
information in language models. In Proceedings
of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4177–4189,
Online. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, volume 27. Curran Associates, Inc.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

A Further details on the XGBoost
models

As mentioned earlier, for the RFS task, we firstly
created the XGBoost models using a wide selec-
tion of features. Afterwards, we ran a variable
importance analysis on the models, and chose a
smaller subset of features for each classifier. The
selected features are presented in Table 5.

B Further results of importance analysis

Figure 3 depicts the variable importance results
for the 2-way and 3-way classification tasks. As
mentioned in the paper, there is a high degree of
agreement between the ordering of the variables in
the 3 models.

To get a better idea about the contribution of
each variable to the decisions made by the mod-
els, Figure 4 demonstrates the shapley values for
100 random orderings of explanatory variables
in the 4-way classification model. The figure
clearly shows that the model has failed to learn the
demonstrative class. For other decisions, the
model majorly uses 2 features, namely DisStat
(referential status) and Syn (syntactic role).

165

Feature Definition 2-way 3-way 4-way

Syn Description is provided in the main text. 3 3 3
Entity Values: Person, Organisation, Location, Number, Other 3 3 3
Gender Values: male/female/other 3 3 3
DisStat Description is provided in the main text. 3 3 3
SenStat Description is provided in the main text. - 3 3
DistAnt S Description is provided in the main text (DistAnt). 3 3 3
DistAnt W Distance in number of words (5 quantiles) 3 - 3
Sent 1 Does RE appear in the first sentence? 3 3 3
MetaPro Description is provided in the main text. 3 3 3
GloPro Description is provided in the main text. 3 3 3

Table 5: Features used in the XGBoost models.

Figure 3: Feature Importance of the XGBoost 2-way (left figure) and 3-way (right figure) predictions.

Figure 4: Shapley values with box plots for 100 random orderings of explanatory variables in the XGBoost 4-class
model.

166

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 167–171,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

HI-CMLM: Improve CMLM with Hybrid Decoder Input

Minghan Wang1, Jiaxin Guo1, Yuxia Wang2, Yimeng Chen1, Chang Su1,
Daimeng Wei1, Min Zhang1, Shimin Tao1, Hao Yang1

1Huawei Translation Services Center, Beijing, China
2University of Melbourne, Melbourne, Australia

{wangminghan,guojiaxin1,chenyimeng,suchang8,
weidaimeng,zhangmin186,taoshimin,yanghao30}@huawei.com

yuxiaw@student.unimelb.edu.au

Abstract

Mask-predict CMLM (Ghazvininejad et al.,
2019) has achieved stunning performance
among non-autoregressive NMT models, but
we find that the mechanism of predicting all
of the target words only depending on the hid-
den state of [MASK] is not effective and effi-
cient in initial iterations of refinement, result-
ing in ungrammatical repetitions and slow con-
vergence. In this work, we mitigate this prob-
lem by combining copied source with embed-
dings of [MASK] in decoder. Notably. it’s
not a straightforward copying that is shown
to be useless, but a novel heuristic hybrid
strategy — fence-mask. Experimental results
show that it gains consistent boosts on both
WMT14 En↔De and WMT16 En↔Ro corpus
by 0.5 BLEU on average, and 1 BLEU for less-
informative short sentences. This reveals that
incorporating additional information by proper
strategies is beneficial to improve CMLM, par-
ticularly translation quality of short texts and
speeding up early-stage convergence.

1 Introduction

In neural machine translation (NMT), autoregres-
sive models decode tokens one-by-one: p(Y |X) =∏T

i p(yi|y≤i|X), which ensures the robustness of
intrinsic language models but slows down the in-
ference. Non-autoregressive models break the de-
pendency between adjacent tokens: p(Y |X) =∏T

i p(yi|X), enabling to generate all outputs in
parallel.

Recent years have witnessed impressive ad-
vances in non-autoregressive models, such as fully-
NAT and its variants (Gu et al., 2018; Guo et al.,
2019; Wang et al., 2019), insertion-based models
(Stern et al., 2019; Gu et al., 2019) and iterative
refinement models (Lee et al., 2018; Ghazvininejad
et al., 2019). Mask-predict CMLM (CMLM) stands
out of them owing to both significantly-fast infer-
ence and remarkable performance (Ghazvininejad

et al., 2019). It extends the masked language model
(Devlin et al., 2019) and enables it to solving gen-
eration tasks with iterative refinement. In each
step, the model decodes target conditioned on m
well-predicted tokens with high confidence and
(L−m)×[MASK], where L is the length of target
(see Section 2 for details). This mechanism leads
to the issue that it’s liable to generate repeated to-
kens and slow down the convergence in early-stage
iterations. We speculate this is because the pro-
portion of useful tokens, i.e. m→ 0, is too small
to provide enough information for the next step
prediction. Intuitively, the model tends to predict
similar or even identical tokens when observing
[MASK] only and constantly.

To alleviate this problem, we ameliorate CMLM
by incorporating additional information from
source embedding into the decoder input (HI-
CMLM in short). Experimental results show that it
gains consistent boosts on both WMT14 En↔De
and WMT16 En↔Ro corpus by 0.5 BLEU on av-
erage, and 1 BLEU for less-informative short sen-
tences. This reveals that incorporating additional
information by proper strategies is beneficial to im-
proving CMLM, particularly translation quality of
short texts and speeding up the convergence of the
first four iterations, compared with CMLM.

2 Conditional Masked Language Models

2.1 Model

The architecture of CMLM is a standard encoder-
decoder Transformer (Vaswani et al., 2017) without
the decoder self-attention mask because the depen-
dency on left tokens has been removed. Formally,
given source/target pair (X,Y), the model first pre-
dicts the target length based on X before decoding,
with objective function:

LLEN = logP (L|X; θ). (1)

167

In token prediction at step t, the model refines
unobserved tokens Y (t)

mask by minimizing MLM loss:

LMLM =
∑

yi∈Y (t)
mask

logP (yi|X,Y (t)
obs ; θ). (2)

based on a sequence consisting of observed tokens
Y

(t)
obs and masked tokens Y (t)

mask. The total loss func-
tion is the sum of length loss and MLM loss:

L = LMLM + LLEN. (3)

2.2 Mask-predict Decoding
The decoder runs a mask operation, followed by
predict for T iterations. In each iteration t, it masks
the k tokens with the lowest probability scores,
where k is determined by a linear decay function
of t: k = L × T−t

T . Observed tokens Y (t+1)
obs and

masked tokens Y (t+1)
mask are updated by:

Y
(t+1)

mask = arg min(p
(t)
i , k) (4)

Y
(t+1)

obs = Y (t) \ Y (t+1)
mask , (5)

where p(t)i is the probability score when the model
predicts token yi at step t:

y
(t)
i = arg maxP (yi = w|X,Y (t)

obs) (6)

p
(t)
i = maxP (yi = w|X,Y (t)

obs), (7)

2.3 Training Strategy
To simulate the decoding process in each step, the
ground truth target is corrupted by randomly replac-
ing several tokens with [MASK]. The number and
the position of the [MASK] follows the uniform
distribution so that every token has equal chance
to be masked. Then, the model has to recover the
corrupted sequence.

2.4 Rethinking Effectiveness of Mask
In mask-predict, what should be highlighted is that
for the first iteration: t = 0 → k = L, the model
masks all the tokens, thus it predicts entire target
sequence merely depending on a full sequence of
[MASK] of length L. This leads to the fact that
the decoder always requires more than 5 refinement
iterations to converge, which is significantly against
the original intention to be faster.

We speculate this may result from following rea-
sons: 1) The proportion of Yobs is too small to
support the masked language model generating flu-
ency sentences and 2) The representation of Ymask

is less informative and distinguishable, and the con-
secutive [MASK] padding form exacerbates the
situation because of lacking useful information in-
ferred from surrounding tokens. We hypothesize
that proper initialization of Y (t)

obs (t ≤ 3) may be
beneficial to speeding up refinement, and improv-
ing the final performance. But the question is what
initialization would be helpful? Put differently,
how to incorporate additional information to Ymask
to ameliorate prediction in initial steps.

3 Method

In this section, we propose three hybrid approaches
to incorporate source embeddings and describe
modifications on training strategy accordingly.

3.1 Copy of Source Embedding

The most straightforward method is to mix mask
tokens with the source embedding. To address the
inconsistency of length, we follow the prior work
by uniform copy or soft copy (Gu et al., 2018; Lee
et al., 2018; Guo et al., 2019; Wang et al., 2019) but
with a modified copy function which copies tokens
according to their relative position instead of the
absolute position. We denote the copy function as
zi = Φ(e):

dij = −| i
LY
− j

LX
| (8)

αij =
exp(dij)/τ∑LX
j exp(dij)/τ

(9)

zi =

LX∑

j

αij · ej , (10)

where dij is the distance between the target token yi
and source token xj normalized by specific length,
αij represents the weight and ej is the embedding
of source xj . τ is the temperature of the softmax
function set as 0.2 in our experiment.

3.2 Hybrid Strategy

We compare three strategies to mix copied source
embeddings with masks (denoted as Z and M
for simplicity) with the baseline (All mask) —
All copied, Weighted Sum and our heuristically-
proposed Fence Replace, as shown in Figure 1.

All Mask: It’s exactly same as CMLM, served
as baseline.

168

(c) Weighted Sum

(b) All Copied

(d) Fence Replace

(a) All Mask

Replace

y2

ReplaceWeighted Sum

+ + + +

Figure 1: The hybrid strategy.

All Copied: We replace all embeddings of mask
with copied source embedding added with position
embedding, which is equivalent to entirely using
the information from source.

Weighted Sum: It mixes the information by
adding M and Z elementwise with a certain
weight. We test 4 combinations ranging from 0.2
to 0.8 for M and Z with the stride set as 0.2, i.e.
(0.2, 0.4, 0.6, 0.8)M + (0.8, 0.6, 0.4, 0.2)Z and re-
port the best result where the weights are 0.6 and
0.4 for M and Z, respectively.

Fence Replace: During experiments, we find it’s
important to dynamically change the volume of in-
formation added to the decoder input with addition
of Yobs. Concretely, Z may become noise instead
of useful signals when Yobs has been fully capable
to support MLM independently.

Therefore, we propose to replace the masked
tokens at odd positions with half of Z exploited,
avoiding the decoder input to incorporate too much
information and ultimately act as noise. More for-
mally, we first define a mask (0, 1, 0, 1, ..., 0, 1)
like a fence with length of L and apply it to stagger
the M and Z into a mixed embedding Z ′, where
odd positions are filled with Z and even positions
are filled with M . Finally, we replace the embed-
ding of Ymask with the mixed embedding of specific
positions.

3.3 Training
To fit the proposed method and meanwhile take
full advantage of the masked language model, we
modify the training strategy by randomly replacing
the subset of the original masked token with the
copied source embedding, so that the proportion
of corrupted tokens can be unchanged. We apply
this method to train the model under all hybrid

strategies, including All Mask, for convenient com-
parison, so it differs from the original CMLM in
training.

4 Experiments

4.1 Experimental Setup

We evaluate HI-CMLMs with the proposed hybrid
strategies on standard machine translation bench-
marks including WMT14 En↔De and WMT16
En↔Ro in both directions.

Datasets The sizes of the dataset are 4.5M and
610k for En↔De and En↔Ro respectively. We
create the knowledge distilled data as suggested
in (Gu et al., 2018; Zhou et al., 2020) with same
configurations. BPE (Sennrich et al., 2016) is used
for tokenization with the vocabulary size set to 42k
and 40k for En↔De and En↔Ro.

Model Configurations We apply the same
weight initialization method and configurations
on hyperparameters as prior work: nlayers =
12, nheads = 8, dhidden = 512, dFFN = 2048
(Ghazvininejad et al., 2019; Vaswani et al., 2017).
Our model is trained on 4 Tesla V100 GPUs with
the max batch size of 8k tokens per card. Adam
(Kingma and Ba, 2015) is used for optimization.
The learning rate warms-up for 20k steps to 5e-4
and decays with the inversed-sqrt schedular. We
implement models in the experiment with fairseq
(Ott et al., 2019).

4.2 Results and Analysis

Table 1 shows the performance of the proposed
HI-CMLM with the BLEU score (Papineni et al.,
2002). For each language pair, the model obtains
consistent improvements with the Fence Replace,
but no gains with another two.

169

Model En-De De-En En-Ro Ro-En

Transformer (Vaswani et al., 2017) 27.30 - - -
Transformer (Our Implementation) 27.72 32.04 34.03 33.93

CMLM (Ghazvininejad et al., 2019) 27.03 30.53 33.08 33.31
CMLM (Our Implementation) 26.89 30.71 32.94 33.07

HI-CMLM + All Mask 27.01 30.74 32.89 33.03
HI-CMLM + All Copied 26.76 30.82 32.74 32.95
HI-CMLM + Weighted Sum 26.81 30.79 32.80 33.14
HI-CMLM + Fence Replace 27.42 (+0.53) 31.32 (+0.61) 33.36 (+0.42) 33.51 (+0.44)

Table 1: The performance of the AT teacher, the baseline CMLM, and the HI-CMLM with different hybrid strate-
gies.

Length CMLM HI-CMLM (Fence Replace)

Overall 26.89 27.42 (+0.53)
[0,10) 22.24 23.27 (+1.03)
[10,23) 26.46 26.98 (+0.52)
[23,+∞) 27.61 27.81 (+0.20)

Table 2: BLEU scores of target sentences with different
lengths at the 10-th step.

18

20

22

24

26

28

1 2 3 4 5 6 7 8 9 1 0

B
LE

U

STEP

CMLM

Hi-CMLM（All Mask）

Hi-CMLM（All Copied）

Hi-CMLM（Weighted Sum）

Hi-CMLM（Fence Replace）

Figure 2: BLEU scores of every step with max iter=10
for all hybrid strategies as well as the baseline.

To further investigate why Fence Replace stands
out, we draw outputs of each step for four strate-
gies in Figure 2 with max iter=10. It shows from
step 4, the model with All Copied and Weighted
Sum strategy start to fall back to the All Mask level,
which means for the later steps, the added infor-
mation turns into noise, but can be appropriately
controlled by the Fence Replace. We empirically
explain how it controls below.

Results on different length targets We evalu-
ate performance of Fence Replace over three bins
based on the length of targets: [0, 10), [10, 23), and
[23,∞). Table 2 shows more gains are obtained on
short sentences. Intuitively, we guess the benefits
result from the enhanced condition of p(yi|X), by
complementing sparse X of short sentences with
informative mix(Z,M) in early steps. But if so,

0.25

0.30

0.35

0.40

0.45

0.50

0 2 4 6 8

Z%

Ly

[0,10)

[10,23)

[23,+∞）

Figure 3: The proportion of copied source embedding
within the masked area for sentences with different
length when applying the Fence Replace strategy.

why All Copied and Weighted Sum do not work?
We show it’s not the whole story. In Figure 3,

the proportion of Z actually used for replacement
has been reduced from step 6 for all length bins due
to the sparsity of re-masked tokens, particularly for
shorter sentences, it’s much less than 50% that is
pre-determined by fence and dropped faster. So the
outstanding performance of Fence Replace is not
only attributed to incorporated source embedding
but the significantly-reduced proportion of Z in
later steps as well, effectively avoiding Z from
acting as noise.

This comprehensively reveals that the Fence Re-
place can flexibly balance the information feed to
decoder inputs, more signals in early-stage refine-
ment and less information in later steps.

5 Conclusion

We present HI-CMLM, an extension of CMLM by
mixing source embedding with a hybrid strategy
— Fence Replace, which can appropriately balance
the information applied to the model. It achieves
consistent improvements on two benchmarks in
both directions, particularly short sentences.

170

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 6111–
6120. Association for Computational Linguistics.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O. K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. Open-
Review.net.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 11179–11189.

Junliang Guo, Xu Tan, Di He, Tao Qin, Linli Xu,
and Tie-Yan Liu. 2019. Non-autoregressive neu-
ral machine translation with enhanced decoder in-
put. In The Thirty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Confer-
ence, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019, pages 3723–3730. AAAI Press.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Bel-
gium, October 31 - November 4, 2018, pages 1173–
1182. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and

Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for
Computer Linguistics.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Pro-
ceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages
5976–5985. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
The Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019, pages 5377–5384. AAAI Press.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2020. Understanding knowledge distillation in non-
autoregressive machine translation. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

171

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 172–176,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Using BERT for choosing classifiers in Mandarin

Jani J. Järnfors♠, Guanyi Chen♠, Kees van Deemter♠ and Rint Sybesma♣
♠Utrecht University ♣Leiden University

j.j.jarnfors@students.uu.nl {g.chen, c.j.vandeemter}@uu.nl
r.p.e.sybesma@hum.leidenuniv.nl

Abstract

Choosing the most suitable classifier in a lin-
guistic context is a well-known problem in the
production of Mandarin and many other lan-
guages. The present paper proposes a solu-
tion based on BERT, compares this solution
to previous neural and rule-based models, and
argues that the BERT model performs partic-
ularly well on those difficult cases where the
classifier adds information to the text.

1 Introduction

The grammar of Mandarin and certain other Chi-
nese languages requires that, in a number of syn-
tactic positions, a noun must be preceded by a clas-
sifier word. Classifiers often give a rough indi-
cation of the kind of entity denoted by the noun.
For example, the classifier “只” (zhı̄) in the Noun
Phrase (NP) “一只狗” (yı̀ zhı̄ gǒu; a dog) indi-
cates the noun “狗” (gǒu; dog) is an animal. It is
worth noting that, in addition to Mandarin, clas-
sifiers also play a critical role in a few other lan-
guages, especially the East Asian languages, such
as Korean, Japanese, and Vietnamese (Aikhenvald,
2000). Generally speaking, it is, in many ways, not
unlike types in functional programming languages
like Haskell, which add to each function defined by
the programmer a broad semantic categorisation of
that function (Thompson, 2011).

Mandarin contains a large number of classifiers,
and although the choice of classifier is limited by
the (head) noun with which the classifier is asso-
ciated, this may still leave several options, which
may sometimes produce a different meaning, e.g.,

(a) 一个电脑/一台电脑
yı́ gè diànnǎo / yı́ tái diànnǎo
‘a computer’

(b) 一个老师/一位老师
yı́ gè lǎoshı̄ / yı́ wèi lǎoshı̄

‘a teacher’
(c) 一个人/一群人

yı́ gè rén / yı́ qún rén
‘a person / people’

(d) 一杯咖啡/一听咖啡
yı̀ bēi kāfēi / yı̀ tı̄ng kāfēi
‘a cup/can of coffee’

Although each of these cases involves classifier
choice, the problem of choosing a classifier is likely
to be more challenging in those cases, such as (b)-
(d), where the classifier adds information, for exam-
ple, in terms of politeness ((b), neutral vs. polite),
number ((c), singular vs. plural), or quantity ((d),
a cup vs. a can of coffee). This is perhaps clear-
est in the case of (d), where “杯” (bēi; cup) and
“听” (tı̄ng; can) indicate different containers, and
consequently different quantities, of coffee; these
classifiers are known as measure words, as opposed
to the “pure” classifiers of (a)-(c).

Researchers have asked what determines the
choice of classifier, constructing algorithms that
predict what classifier suits a given discourse con-
text. The most sophisticated model we are aware
of is Peinelt et al. (2017). Ambitiously, these au-
thors decided to deal with classifiers of all different
types, also including measure words for instance,
which are difficult to predict because they add infor-
mation. They approached the problem as follows:
Given a sentence in which a classifier is yet to be
realised, and the head noun is flagged, predict the
missing classifier. For example, in the input:

(1) 一〈CL〉精彩的〈h〉球赛〈/h〉
yı̀ 〈CL〉 jı̄ngcǎi de 〈h〉qiúsài〈/h〉
‘a wonderful ball game’

〈CL〉 indicates where the missing classifier is and
the 〈h〉 tag pair flags the head noun. The authors
construct a large-scale classifier dataset, namely

172

Figure 1: Sketch of our BERT-based Classifier selection models: predicting the classifier by unmasking the
[MASK] (left); predicting the classifier as classification (right).

ChineseClassifierDataset1 (henceforth, CCD) by ex-
tracting and filtering data from publicly available
Chinese corpora. They did experiments on their
CCD corpus with several baselines, including a rule-
based system, two machine learning based system,
and a LSTM-based system (Hochreiter and Schmid-
huber, 1997). An initial evaluation study indicated
that the LSTM achieved the best performance.

Our own work takes the same perspective
as Peinelt et al. (2017). But although the perfor-
mance of the model of Peinelt et al. is encour-
aging, it still leaves considerable room for im-
provement; in particular, the question comes up
whether BERT, with its superior ability to take
context into account, might perform better. In
addition, the model of Peinelt et al. offers only
limited insight, because it does not distinguish be-
tween different types of classifiers. In other words,
the performance of the model may mask impor-
tant differences between different types of classi-
fier choice. A good way to address this limitation
would be to make use of an existing categorisation
of classifier types. But although linguists generally
agree that “true” (or “sortal”) classifiers should be
distinguished from measure words (Croft, 1994;
Cheng and Sybesma, 1999), there exist subtle dis-
agreements regarding exactly how these sub-types
should be defined, and what further divisions be-
tween sub-types should be taken into account. Sub-
types are often described by example, without com-
putationally implementable criteria or explicit lists
of classifiers (Zhang, 2013). To our knowledge,
Her and Lai (2012) are the only ones to provide
comprehensive lists of classifiers of various sub-
types, and in what follows we will make use of
these lists.

1github.com/wuningxi/
ChineseClassifierDataset

In Section 2, we introduce two different BERT-
based models, one of which uses word masking and
one of which performs classification. In Section
3, we report on our comprehensive evaluation ex-
periments, in which we compare our BERT-based
models with each other and with several baselines,
using the CCD dataset.

2 Choosing Classifiers using BERT

We use BERT to accomplish the task of choosing
classifiers in two ways: an unsupervised way (i.e.,
predicting classifiers by unmasking masked tokens)
and a supervised way (i.e., fine-tuning BERT on
the task of classifier prediction).

2.1 Unmasking Masked Classifiers

In order to assess how well BERT, as a masked
language model, can model classifiers, we tried
to use BERT without any fine-tuning on the task
of classifier selection. Specifically, as shown in
Figure 1 (left), we replace the classifier indicator
〈CL〉 with the [MASK] symbol of BERT and ask
BERT to unmask it. 2 The unmasked token serves
as the predicted classifier. (Note that addressing the
classifier selection task in this way will sometimes
produce words that are not classifiers.) We refer to
this model as MLM.

2.2 Classifying Classifiers

Additionally, we test BERT in its classic use. To do
this, we fine-tune BERT on the CCD as a multi-class
classification task, where there are 172 classes (i.e.,
172 classifier words) in total, and make a prediction
with the help of the [CLS] symbol (see Figure 1
(right)). We refer to this model as BERT.

2Since our experiments suggested that the head flag (i.e.,
〈h〉 and 〈/h〉) makes no contribution to classifier selection, we
drop it to speed up the prediction.

173

2.3 Research Questions

At the start of our research, we formulated the fol-
lowing hypotheses and research questions.

1. Since BERTmodels context closely and is pre-
trained on large scale corpora, we expect it to
outperform other models;

2. How do the two BERT-based models com-
pare? Although we expect BERT to outper-
form MLM, we were curious to see how well
MLM performs.

3. We are curious how well BERT can handle
classifiers that add information (concretely,
in this paper: measure words, plurality, and
politeness).

3 Experiments

3.1 Setup

Dataset. In total, there are 681,102 sentences in
the CCD dataset. We split the dataset into training
(60%), development (20%), and test (20%) sets
following Peinelt et al. (2017).

Baselines. We tried several baseline models pro-
posed in Peinelt et al. (2017), including: (1) a rule
based model (Rule): given a head noun, assign
the most frequent classifier associated with it in
the training data. If two or more classifiers are
equally frequent, one of the classifiers is randomly
assigned. If the head noun does not appear in the
training data, then the classifier “个” (gè) (which
is particularly frequent and often seen as a “de-
fault” classifier) is assigned; (2) a LSTM model: for
this model, we use a bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997; Schuster and Paliwal,
1997) to encode the input; it makes predictions us-
ing the hidden representation of the last time step.

Metrics. We evaluate each model in terms of ac-
curacy, macro-averaged precision, recall, and F1.
Additionally, since the distribution of the CCD is
skewed (e.g., more than 25% of the sentences use
“个” (gè)), we also report the weighted averaged
precision, recall, and F1.

Implementation Details. For BERT, we use the
“bert-base-chinese” version3. When fine-tuning, we
set the learning rate to 2e-5 and batch size to 150.
For the LSTM, we set the batch size to 256, the

3huggingface.co/bert-base-chinese

hidden size to 300, and the learning rate to 2e-
5. We use pre-trained Chinese word embeddings
from Li et al. (2018)4.

3.2 Results and Analysis

Table 1 charts the performance of each model. The
results confirm the assumption of our first research
question that BERT performs the best, defeating
all models on all metrics with large margins. For
example, for accuracy, compared to the second
best model LSTM, BERT boosts performance from
70.44% to 81.71%. Considering its simplicity, the
rule-based system achieved a considerably good
performance, with higher macro-averaged preci-
sion, recall, and F1 than LSTM and with a similar
accuracy as MLM. This also confirms the viability
of a dictionary-based classifier selector, such as
the one embedded in a previous Chinese surface
realiser (Chen et al., 2018)).
MLM, as a model without any training on CCD,

performs remarkably well. It receives the second
best weighted average as well as micro-averaged
F1 (in line with our second research question).
Note that, as was mentioned, there is no guaran-
tee that the outputs of MLM are classifiers. Con-
cretely, during testing, MLM produces 1566 word
types that are not classifiers. This is one of the
reasons why its fine-tuned version, BERT, has a
major improvement on the (macro-averaged and
weighted averaged) recall scores as well as the ac-
curacy. Nonetheless, it surprised us that MLM can
produce a greater variety of classifiers than all other
models. More specifically, out of 172 classifiers
available in CCD, MLM has correctly produced 160
different classifiers, comparing to the 140 of Rule,
108 of LSTM, and 136 of BERT. This suggests MLM
can sometimes handle rarely seen classifiers.

Regarding the last research question, we looked
into measure words, plurality, and politeness re-
spectively. First, we categorise classifiers in CCD

into three sub-categories: true classifiers, measure
words, and dual classifiers (i.e., classifiers that can
function either as true classifiers or as measure
words) based on the lists provided by Her and Lai
(2012)5. Table 2 breaks down the performance into
different sub-types of classifiers. As we can see,

4These are word embeddings trained by skip-
gram on 9 large Chinese corpora with 300 dimen-
sions. It is available at: github.com/Embedding/
Chinese-Word-Vectors

5These classifier lists were constructed on the basis of the
Mandarin Daily Dictionary of Chinese Classifiers (MDDCC).

174

Macro-averaged Weighted-averaged

Model Accuracy Precision Recall F1 Precision Recall F1

Rule 61.89 34.87 20.50 23.39 58.23 61.90 58.24
LSTM 70.44 33.11 20.12 22.48 67.90 70.44 68.12
MLM 62.22 51.91 33.40 37.68 77.28 62.23 68.21
BERT 81.71 52.86 38.10 40.77 80.70 81.71 80.77

Table 1: Evaluation Results of each model on CCD. The best results are boldfaced, whereas the second best are
underlined. MLM is the model that uses BERT as a masked language model, while BERT is the fine-tuned BERT.

Category Frequency Accuracy

True Classifier 85,917 87.8
Dual Classifier 10,817 65.2
Measure Words 11,317 61.1

Table 2: BERT’s performance on different types of clas-
sifiers; frequency of each type in the CCD test set.

although measure words appear more frequently
in CCD than dual classifiers, they still receive a
significantly lower accuracy.

Second, for politeness, the only frequent
enough6 politeness classifier is “位” (wèi), which
expresses politeness when referring to a person.
“位” appears 6737 times in the training data, but
only obtains a recall score of 59.87%, which is low
compared to equally frequent classifiers (classifiers
with frequencies in the range of [5000, 8000) have
a average recall score of 77.84%). The confusion
matrix7, shows that it is highly likely to be con-
fused with its neutral alternative “个” (gè).

Third, regarding plurality, we pick out frequent-
enough classifiers that only convey the meaning of
plurality8, including “群” (qún), “堆” (duı̄), “些”
(xiē), “套” (tào), “对” (duı̀), and “双” (shuāng).
Their recall scores are 52.51% (2453), 52.12%
(1914), 56.51% (1910), 34.57% (1308), 62.39%
(1321), and 76.49% (806), respectively, where the
number in brackets is the frequency of that clas-
sifier in the training set. Meanwhile, the average
recall of the range [800, 1500) and [1500, 3000)
are 61.48% and 76.97%. It is interesting that BERT
does a relatively good job for handling plural clas-

6We define a classifier is frequent enough if it appears
more than 50 times in the training set.

7The full confusion matrix is too large to print here but,
together with the system outputs, is available at: github.
com/a-quei/bert-chinese-classifier

8Some classifiers have multiple meanings, one of which
expresses plurality.

sifiers meaning “pair” (i.e., “对”, and “双”) while
failing to handle plural classifiers meaning “mul-
tiple” (i.e., “群”, “堆”, “些”, and “套”). All in all,
classifiers that add information regarding measure-
ment, plurality and politeness could not be prop-
erly selected. One explanation is that their con-
text cannot provide enough information to pick the
right classifier. Thus, for the last research question,
BERT does not work well on handling classifiers
that add information.

Distance between the Classifier and the Head
Noun. We also explore factors that might influ-
ence the decisions of BERT. First, we consider
the distance between the classifier and the head
noun. For instance, for example (1), there is a
pre-modifier consisting of two words between the
classifier “场” (chǎng) and the head noun “球赛”
(qiúsài; football match). Thus, the distance for
example (1) is 2. We expect that the larger the dis-
tance is, the worse BERT performs. In our experi-
ments, for correct predictions, the average distance
(in terms of the number of words) is 1.04 while for
incorrect predictions it is 1.15. An un-paired t-test
confirms that distance has a negative effect on the
model’s performance (p < .001).

4 Discussion

We conclude that (1) contextualised pre-trained
models (i.e., BERT and MLM) perform remarkably
well on the task of choosing classifiers in Mandarin,
and fine-tuning helps improve the recall of choos-
ing classifiers; (2) a simple rule-based system has
respectable performance; (3) in terms of accuracy,
a pre-trained masked language model (i.e., MLM)
was able to select proper classifiers about equally
well as the above rule-based system; (4) BERT
struggles to predict classifiers that add information
(measurement, plurality, politeness).

The last finding confirms our (linguistically well-

175

established) expectation that some classifier occur-
rences cannot be predicted from their linguistic con-
text alone since they themselves carry additional
information. Since the choice of classifier is not de-
terministic (e.g., consider the choice between “个”
and “台” in example (a)), the type of corpus evalua-
tion that was performed in this paper arguably does
not “tell the whole story” regarding the quality of
the different models. To remedy this issue, we plan
two further experiments, each of which starts from
the observation that the classifier that was chosen
in a given linguistic context in the corpus will often
not be the only felicitous choice.

One experiment will focus on speakers. We will
ask several participants to choose classifiers given
a linguistic context. By comparing the outcomes
of such an elicitation experiment with the CCD cor-
pus, we will obtain a better understanding of the
variations that exist between speakers and of the
difficulty of the task that we have set our algorithms.
By thus asking multiple participants to accomplish
the same task as our algorithms, we will obtain
a new corpus, in which each linguistic context is
associated with a bag of (1 or more) possible clas-
sifiers. This new dataset will enable us to conduct
a new, non-deterministic evaluation of the models.

Another additional experiment will have human
readers judge the acceptability of each classifier
choice that is made by a given model. Reader ex-
periments of this kind are a standard tool in judging
the quality of decisions taken by a natural language
generation algorithm (e.g. van der Lee et al. (2019))
and will give rise to a new set of analyses analo-
gous to the ones in the present paper, which will
give us a better understanding of the quality of the
decisions that are taken by each model.

In the future, we also plan to extend the models
we tested in this study. For example, regarding the
pre-trained language model, a promising candidate
to investigate is ERNIE (Sun et al., 2020), which
has proved to be more powerful in modelling Man-
darin Chinese. Regarding the unsupervised MLM
setting, the following option would be worth try-
ing: instead of choosing the most probable word
type from the whole vocabulary, one could ask the
model to output the most probable classifier from
all classifiers.

References
Alexandra Y. Aikhenvald. 2000. Classifiers. a typology

of noun categorization devices. NewYork: Oxford

University Press.

Guanyi Chen, Kees van Deemter, and Chenghua Lin.
2018. SimpleNLG-ZH: a linguistic realisation en-
gine for Mandarin. In Proceedings of the 11th Inter-
national Conference on Natural Language Genera-
tion, pages 57–66, Tilburg University, The Nether-
lands. Association for Computational Linguistics.

Lisa Lai-Shen Cheng and Rint Sybesma. 1999. Bare
and not-so-bare nouns and the structure of np. Lin-
guistic inquiry, 30(4):509–542.

William Croft. 1994. Semantic universals in classifier
systems. Word, 45(2):145–171.

One-Soon Her and Wan-Jun Lai. 2012. Classifiers:
The many ways to profile’one’—a case study of tai-
wan mandarin. International Journal of Computer
Processing Of Languages, 24(01):79–94.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368, Tokyo, Japan. Association for Com-
putational Linguistics.

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu, and
Xiaoyong Du. 2018. Analogical reasoning on Chi-
nese morphological and semantic relations. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 138–143, Melbourne, Australia. As-
sociation for Computational Linguistics.

Nicole Peinelt, Maria Liakata, and Shu-Kai Hsieh.
2017. ClassifierGuesser: A context-based classifier
prediction system for Chinese language learners. In
Proceedings of the IJCNLP 2017, System Demon-
strations, pages 41–44, Tapei, Taiwan. Association
for Computational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. ERNIE
2.0: A continual pre-training framework for lan-
guage understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 8968–8975.

Simon Thompson. 2011. Haskell: the craft of func-
tional programming, third edition. Addison-Wesley.
More information at www.haskellcraft.com.

Niina Ning Zhang. 2013. Classifier Structures in Man-
darin Chinese, volume 263. Walter de Gruyter.

176

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 177–183,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Enriching the E2E dataset
Thiago Castro Ferreira

aiXplain, inc.
Federal University of Minas Gerais

thiagocf05@ufmg.br

Helena Vaz
Federal University of Minas Gerais

Belo Horizonte, Brazil
lenavaz13@gmail.com

Brian Davis
ADAPT Research Centre
Dublin City University

brian.davis@adaptcentre.ie

Adriana Pagano
Federal University of Minas Gerais

Belo Horizonte, Brazil
apagano@ufmg.br

Abstract

This study introduces an enriched version of
the E2E dataset, one of the most popular
language resources for data-to-text NLG. We
extract intermediate representations for popu-
lar pipeline tasks such as discourse ordering,
text structuring, lexicalization and referring
expression generation, enabling researchers
to rapidly develop and evaluate their data-to-
text pipeline systems. The intermediate rep-
resentations are extracted by aligning non-
linguistic and text representations through a
process called delexicalization, which consists
in replacing input referring expressions to enti-
ties/attributes with placeholders. The enriched
dataset is publicly available.1

1 Introduction

Data-to-text NLG is the computational task which
aims to generate text from non-linguistic data (Re-
iter and Dale, 2000; Gatt and Krahmer, 2018). Ap-
plications of this task have become increasingly
common, such as RDF-to-text (Castro Ferreira
et al., 2020), AMR-to-text (Ribeiro et al., 2019),
dialogue response generation (Dušek et al., 2018),
robot-journalism (Rosa Teixeira et al., 2020), etc.

The growth of the field can be partially explained
by increasing availability of focused data-to-text re-
sources, such as WebNLG (Gardent et al., 2017b,a),
E2E (Novikova et al., 2017; Dušek et al., 2018),
ROTOWIRE (Wiseman et al., 2017), GenWiki (Jin
et al., 2020) and KELM (Agarwal et al., 2021).

As with other automatic text generation fields,
such as Machine Translation, significant advances
in deep learning (Cho et al., 2014; Sutskever et al.,
2014), along with an increasing number of data-to-
text resources, have resulted in upsurge in neural
end-to-end applications targeted towards data-to-
text NLGk (Gardent and Narayan, 2018). Hence,

1https://github.com/ThiagoCF05/
EnrichedE2E

given a corpus consisting of pairs between a mean-
ing representation (MR) and its corresponding tex-
tual verbalization, a deep learning approach is usu-
ally trained in an end-to-end style, learning implicit
parameters to convert the input MR into textual
output. Although these approaches have shown to
generate more fluent output, they also pose prob-
lems and challenges, in particular with respect to
the semantic adequacy and overall faithfulness of
the text (Wang et al., 2020). For example, some
studies have shown that neural end-to-end data-to-
text approaches may hallucinate (Rohrbach et al.,
2018; Wang et al., 2018), i.e. adding information
in the text which are not contained in the input
data or which are untrue. This is not a trivial is-
sue, given that accuracy of the generated output
is in general considered more important than its
fluency (Reiter and Belz, 2009). More importantly
poor semantic adequacy is in particular unaccept-
able for practical applications (Dale, 2020). Fur-
thermore, Castro Ferreira et al. (2019) has shown
that traditional pipeline data-to-text systems (Re-
iter and Dale, 2000), which generate text from data
in several explicit intermediate steps, may gener-
alize better to new domains and in turn generate
more semantically adequate text than end-to-end
approaches in the context of the WebNLG corpus.

Although the current data-resources have ben-
efited the development of end-to-end neural mod-
els, the same can not be said for pipeline systems,
since these resources usually only consist of raw
meaning representations and their final verbaliza-
tions. Aiming to decrease data sparsity and make
data-to-text models more generalizable and gener-
ate more adequate texts, many approaches aim to
extract alignments between the non-linguistic and
text representations, and then use these alignments
to build explicit intermediate representations for
a more controllable generation process (Juraska
et al., 2018; Xu et al., 2021). As examples, all

177

the data-driven participating models of the E2E
work by first converting the meaning representa-
tion into an intermediate template which is later
realized into the final text. This is also the case in
the WebNLG challenge, which makes use of the
eponymous dataset.

In order to make it easy for researchers to
rapidly develop and evaluate data-to-text pipeline
systems, Castro Ferreira et al. (2018b) enriched the
WebNLG corpus, one of the most popular data-to-
text resources. The study extracts intermediate rep-
resentations for popular pipeline tasks such as dis-
course ordering, text structuring, lexicalization and
referring expression generation. Intermediate rep-
resentations are automatically extracted by aligning
the non-linguistic and text representations through
a process called delexicalization, which consists of
replacing in the texts referring expressions to in-
put entities/attributes with placeholders. The same
extraction process with respect intermediate repre-
sentations above is applied to the recent CACAPO
dataset, which is both multilingual (Dutch and En-
glish) and multi-domain, containing up to 10,000
sentences (van der Lee et al., 2020).

Highly inspired by the work of Castro Ferreira
et al. (2018b) and van der Lee et al. (2020), our
study aims to delexicalize and provide pipeline in-
termediate representations for another very popular
data-to-text dataset: the E2E dataset. We believe
that the enriched version of the E2E will provide
another data-resource so researchers can better in-
vestigate data-driven pipeline systems, their sub-
tasks as well as its comparison with state-of-the-art
end-to-end systems.

2 The E2E Dataset

The E2E dataset is a resource initially constructed
for training end-to-end, data-to-text applications in
the restaurant domain. It consists of 50,602 English
verbalizations to 5,751 dialog-act-based meaning
representations (Novikova et al., 2017). The dataset
is split into training, validation and test sets in a
ratio of 76.5%, 8.5% and 15%, respectively.

An example of a pair between a meaning repre-
sentation (top) and its corresponding text (middle)
is depicted in Figure 1. Each meaning represen-
tation consists of 3-8 attribute-value pairs, picked
from a list of 8 attributes depicted in Table 1. Ver-
balizations were collected through crowd-sourcing
using pictures as stimuli. According to the cre-
ators, representing the inputs visually allowed the

Attribute Example Values
name The Punter, The Waterman, ...
eatType restaurant, pub
familyFriendly yes / no
priceRange cheap, high, moderate ...
food Indian, Japanese, Chinese ...
near Café Rouge, ...
area city center, riverside ...
customerRating low, average, high ...

Table 1: Attributes contained in a meaning representa-
tion of E2E and examples of values.

collection of more natural and informative human
references phrases than depicting meaning repre-
sentations (Dušek et al., 2018).

Although the crowd-workers were asked to ver-
balize all the information contained in the meaning
representation, the creators of the corpus decided
to do not penalize those who skipped some infor-
mation. For this reason, the corpus may also be
used to study experiments for the content selection
task of pipeline data-to-text systems.

The E2E dataset differs from the WebNLG
corpus, which focused on semantic variation, as
it leverages higher lexical and syntactical varia-
tions, having an average of 8.1 reference verbal-
izations per meaning representation. The corpus
is also bigger than other similar corpora such as
SFRest (Wen et al., 2015), a corpus in the domain
of Hotels and Restaurants with 5,192 verbaliza-
tions to 1,950 meaning representations; and Bagel
(Mairesse et al., 2010), with 404 texts verbalizing
202 meaning representations.

3 Delexicalization

Following the method used by Castro Ferreira et al.
(2018b) in the WebNLG corpus, we aimed to de-
crease the data sparsity of the corpus and to align a
meaning representation with its corresponding text
by delexicalizing the texts. The delexicalization
process works by replacing the referring expres-
sions to the values of the attributes for placehold-
ers representing the attributes. Figure 1 shows an
example of a meaning representation, the final ver-
balization and its delexicalized version (bottom).

The process was conducted differently for train-
ing and validation/test parts of the corpus as ex-
plained in the following sections.

3.1 Training Data
The process of delexicalizing the training data
started by string matching the values of the at-
tributes in the text and replacing them for the spe-

178

Attribute Value
name The Wrestlers
eatType coffee shop
food Japanese
priceRange less than £20
area riverside
familyFriendly no
near Raja Indian Cuisine

↓
Near Raja Indian Cuisine in Riverside is The Wrestlers. It is a Japanese restaurant, has reasonable prices but is not kid friendly.

↓
Near NEAR in AREA is NAME . NAME is a FOOD restaurant , has PRICERANGE prices but is

FAMILYFRIENDLY .

Figure 1: Example of the attribute-value pairs of a meaning representation (top), its corresponding verbalization
(middle) and a delexicalized template annotated in this study (bottom).

cific placeholder of the attribute i.e NAME or
EATTYPE etc. All the partial delexicalized tem-

plates were then manually reviewed and annotated
by students of linguistics.

Students The students of Linguistics were re-
cruited through a call which announce the task
offering university credits in exchange. In total,
10 students volunteered to conduct the annotation.

Website In order to facilitate the annotation, the
authors created a website, where, for each annota-
tion instance, the annotators were given access to
the input meaning representation, the delexicalized
meaning representation, the text and the delexical-
ized text to be reviewed and corrected. Moreover,
a checkbox was provided so the annotators could
indicate any problem in the data such as wrong
information or hallucination, i.e. verbalization of
information which is not contained in the meaning
representation.

3.2 Validation/Test Data

In order to accelerate the annotation of the valida-
tion and test sets of the corpus, we first trained
a Named Entity Recognition and Classification
(NERC) tool based on BERT (Bidirectional En-
coder Representations from Transformers) (Devlin
et al., 2019) using the annotated training data, ef-
fectively substituting placeholders for named en-
tities. We then replaced the referring expressions
which weren’t recognized by the NERC model by
string matching (and substituting) the attribute val-
ues within the text. Finally, to assure the quality
of the data, especially the test set, the authors man-
ually reviewed each instance of both parts of the
data.

NERC Settings Our NERC model consists of
the base, cased version (bert-base-cased) of
an English BERT encoder (Devlin et al., 2019)
based on the Transformer architecture (Vaswani
et al., 2017) with 12 layers, hidden dimensions of
768, 12 heads and 109M parameters in total. On top
of BERT, the model has a classifier consisting of a
projection layer with the Mish activation function
(Misra, 2020) and a softmax layer. The model was
trained in the train split of the enriched corpus for
20 epochs with early stop of 3 in an annotated
subset of the dev split. Learning rate and batch size
were set to 1e-5 and 64, respectively.

Given a text to be delexicalized, the model works
by first tokenizing it and encoding the tokens in
their context-sensitive embedding representations.
These embeddings are then fed into the classifier
head, which classifies each token. In order to know
whether each token is contained within a mention
of one of the 8 attributes and where each of these
mentions starts and ends in terms of tokens, we
used the IOB2 format, popular in NERC appli-
cations (Ramshaw and Marcus, 1995). In total,
the model classifies each token according to 17
classes2, one that indicates whether a token is not a
mention and 2 for each one of the attributes, point-
ing whether a mention starts (B-) and the remain-
ing tokens of the mention (I-).

4 Explicit Intermediate Representations

Based on the alignments between the meaning rep-
resentation and the text provided by the delexi-

2O, B-FOOD, I-FOOD, B-NAME, I-NAME,
B-EATTYPE, I-EATTYPE, B-FAMILYFRIENDLY,
I-FAMILYFRIENDLY, B-AREA, I-AREA,
B-CUSTOMERRATING, I-CUSTOMERRATING,
B-PRICERANGE, I-PRICERANGE, B-NEAR and I-NEAR

179

calization process, we can extract several explicit
intermediate representations that can help to study
several generation phenomenon as well as to build
traditional pipeline (rule based or data driven) data-
to-text systems, which may generate more adequate
texts and to generalize better for new domains (Cas-
tro Ferreira et al., 2019).

Similar to Castro Ferreira et al. (2018b), we
have enriched the E2E dataset with several inter-
mediate representations about content selection,
discourse ordering, text structuring, lexicalization
and referring expression generation. These interme-
diate representations could be used to study each
phenomenon as well as to develop a data-driven,
pipeline data-to-text system as envisaged by Cas-
tro Ferreira et al. (2019).

Content Selection is the task of deciding which
information should be verbalized. By comparing
the attributes contained in a meaning representation
and the presence or absence of their placeholders
in the delexicalized template, we are able to auto-
matically extract all the input content for a given
verbalisation. In the example of Figure 1 for in-
stance, we can see that the placeholder of the at-
tribute eatType (e.g. EATTYPE) is not present
in the delexicalized template, indicating that it was
not selected to be verbalized in the text.

Discourse Ordering is the task of sorting the
selected content in the order it should be verbalized.
By looking at the order of the placeholders in the
delexicalized text, we can extract this order. In
Figure 1, looking at the order of the placeholders
in the delexicalized template, we see that the sorted
list of attributes is: near, area, name, food,
priceRange and familyFriendly,

Text Structuring is the task within pipeline data-
to-text systems responsible for structuring the out-
puts of content selection and discourse ordering
into paragraphs and sentences. Using Stanza
(Qi et al., 2020), we tokenized the sentences of
each delexicalized template and considering their
placeholders, extracted the sentence plan for each
one the attributes verbalized. In Figure 1 for in-
stance, near, area, name were verbalized in the
first sentence, whereas food, priceRange and
familyFriendly in the second.

Lexicalization aims to find the proper phrases
and words to express the content to be included in
each sentence. To obtain lexicalization templates

similar to the ones used for the neural pipeline sys-
tem of Castro Ferreira et al. (2019), we again used
Stanza in the delexicalized templates to lemmatize
determiners and verbs and extract their correct mor-
phological inflection information. Then in these
templates, determiners and verbs were replaced by
their morphological inflection information and lem-
mas. For instance, for the delexicalized template
depicted in Figure 1, the lexicalization template
would be:

Near NEAR in AREA VP[Mood=Ind,
Number=Sing, Person=3, Tense=Pres, Verb-
Form=Fin] be NAME .
NAME VP[Mood=Ind, Number=Sing,

Person=3, Tense=Pres, VerbForm=Fin] be
DT[Definite=Ind, PronType=Art] a FOOD
restaurant , VP[Mood=Ind, Number=Sing,
Person=3, Tense=Pres, VerbForm=Fin] have
PRICERANGE prices but VP[Mood=Ind,

Number=Sing, Person=3, Tense=Pres, Verb-
Form=Fin] be FAMILYFRIENDLY .

Referring Expression Generation is the task re-
sponsible for generating the references to the enti-
ties present in the text (Castro Ferreira et al., 2018a).
In our case, these entities are the attributes of the
meaning representation. Following Castro Ferreira
et al. (2018b), we extract the referring expression
to the attributes by overlapping an original text
and its delexicalized version. In Figure 1, con-
tains examples of extracted references such as The
Wrestlers and It for the name attribute value The
Wrestlers in the meaning representation.

Surface Realization is responsible for taking the
last decisions to convert a non-linguistic data into
text. In this case, the correct morphological reali-
sation of determiners and verbs as well as detok-
enizing the text. For this step in specific, we did
not extract any kind of information, but refer to the
extensive literature that exists on morphological
inflection (McCarthy et al., 2019; Vylomova et al.,
2020). These tools can be used to correctly realize
our extracted lexicalization templates. Moreover,
detokenization is a task already solved with high
accuracy.

5 Conclusion

This work introduces the enriched version of the
E2E dataset (Novikova et al., 2017; Dušek et al.,
2018). Together with the enriched version of
WebNLG (Castro Ferreira et al., 2018b) and CA-
CAPO van der Lee et al. (2020), this resource
will help researchers to carefully investigate par-
ticular pipeline processes in data-to-text systems

180

in the levels of Macro- (e.g., Content Selection,
Discourse Ordering and Text Structuring), Micro-
planning (e.g., lexicalization, aggregation and re-
ferring expression generation) and Surface Realiza-
tion. In particular, we will be able to better analyse
how such subtasks could obtain better performance
when developed using a rule-based approach or a
specific/multitask data-driven system. Moreover,
in future work the community will be able to better
compare pipeline and end-to-end data-to-text sys-
tems in terms of generalization as well as fluency
and adequacy of their generated texts.

Acknowledgments

This research was partially funded by the Brazilian
agencies CNPq, CAPES, and FAPEMIG. In par-
ticular, the researchers were supported by CNPQ
grant No. 310630/2017-7, CAPES Post doctoral
grant No. 88887.508597/2020-00, and FAPEMIG
grant APQ-01.461-14. It was also funded by the
ADAPT Centre for Digital Content Technology
(https://www.adaptcentre.ie) which is funded
under the Science Foundation Ireland Research
Centres Programme (Grant 13/RC/2106 P2).

References
Oshin Agarwal, Heming Ge, Siamak Shakeri, and

Rami Al-Rfou. 2021. Knowledge graph based syn-
thetic corpus generation for knowledge-enhanced
language model pre-training.

Thiago Castro Ferreira, Claire Gardent, Nikolai
Ilinykh, Chris van der Lee, Simon Mille, Diego
Moussallem, and Anastasia Shimorina. 2020. The
2020 bilingual, bi-directional WebNLG+ shared
task: Overview and evaluation results (WebNLG+
2020). In Proceedings of the 3rd International Work-
shop on Natural Language Generation from the Se-
mantic Web (WebNLG+), pages 55–76, Dublin, Ire-
land (Virtual). Association for Computational Lin-
guistics.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552–562, Hong
Kong, China. Association for Computational Lin-
guistics.

Thiago Castro Ferreira, Diego Moussallem, Ákos
Kádár, Sander Wubben, and Emiel Krahmer. 2018a.

NeuralREG: An end-to-end approach to referring ex-
pression generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1959–
1969, Melbourne, Australia. Association for Compu-
tational Linguistics.

Thiago Castro Ferreira, Diego Moussallem, Emiel
Krahmer, and Sander Wubben. 2018b. Enriching
the WebNLG corpus. In Proceedings of the 11th In-
ternational Conference on Natural Language Gen-
eration, pages 171–176, Tilburg University, The
Netherlands. Association for Computational Lin-
guistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Robert Dale. 2020. Natural language generation: The
commercial state of the art in 2020. Natural Lan-
guage Engineering, 26(4):481–487.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG challenge. In
Proceedings of the 11th International Conference
on Natural Language Generation, pages 322–328,
Tilburg University, The Netherlands. Association for
Computational Linguistics.

Claire Gardent and Shashi Narayan. 2018. Deep learn-
ing approaches to text production. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Tutorial Abstracts, pages 4–9, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for NLG micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 179–188, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on

181

Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65–170.

Zhijing Jin, Qipeng Guo, Xipeng Qiu, and Zheng
Zhang. 2020. GenWiki: A dataset of 1.3 million
content-sharing text and graphs for unsupervised
graph-to-text generation. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 2398–2409, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden,
and Marilyn Walker. 2018. A deep ensemble model
with slot alignment for sequence-to-sequence natu-
ral language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 152–162, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Chris van der Lee, Chris Emmery, Sander Wubben,
and Emiel Krahmer. 2020. The CACAPO dataset:
A multilingual, multi-domain dataset for neural
pipeline and end-to-end data-to-text generation. In
Proceedings of the 13th International Conference on
Natural Language Generation, pages 68–79, Dublin,
Ireland. Association for Computational Linguistics.

François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon
Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation
using graphical models and active learning. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1552–
1561, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin, Gar-
rett Nicolai, Christo Kirov, Miikka Silfverberg, Sab-
rina J. Mielke, Jeffrey Heinz, Ryan Cotterell, and
Mans Hulden. 2019. The SIGMORPHON 2019
shared task: Morphological analysis in context and
cross-lingual transfer for inflection. In Proceedings
of the 16th Workshop on Computational Research in
Phonetics, Phonology, and Morphology, pages 229–
244, Florence, Italy. Association for Computational
Linguistics.

Diganta Misra. 2020. Mish: A Self Regularized Non-
Monotonic Activation Function. In 31st British Ma-
chine Vision Conference 2020, BMVC 2020, Virtual
Event, UK, September 7-10, 2020. BMVA Press.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,

pages 201–206, Saarbrücken, Germany. Association
for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–
108, Online. Association for Computational Linguis-
tics.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Ehud Reiter and Anja Belz. 2009. An investigation into
the validity of some metrics for automatically evalu-
ating natural language generation systems. Compu-
tational Linguistics, 35(4):529–558.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge Univer-
sity Press, New York, NY, USA.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3183–3194, Hong
Kong, China. Association for Computational Lin-
guistics.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object hal-
lucination in image captioning. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4035–4045, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

André Luiz Rosa Teixeira, João Campos, Rossana
Cunha, Thiago Castro Ferreira, Adriana Pagano, and
Fabio Cozman. 2020. DaMata: A robot-journalist
covering the Brazilian Amazon deforestation. In
Proceedings of the 13th International Conference
on Natural Language Generation, pages 103–106,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. NIPS, Montreal, CA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Attention
is All You Need. Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, page 6000–6010.

Ekaterina Vylomova, Jennifer White, Eliza-
beth Salesky, Sabrina J. Mielke, Shijie Wu,
Edoardo Maria Ponti, Rowan Hall Maudslay, Ran

182

Zmigrod, Josef Valvoda, Svetlana Toldova, Francis
Tyers, Elena Klyachko, Ilya Yegorov, Natalia
Krizhanovsky, Paula Czarnowska, Irene Nikkarinen,
Andrew Krizhanovsky, Tiago Pimentel, Lucas
Torroba Hennigen, Christo Kirov, Garrett Nicolai,
Adina Williams, Antonios Anastasopoulos, Hilaria
Cruz, Eleanor Chodroff, Ryan Cotterell, Miikka
Silfverberg, and Mans Hulden. 2020. SIGMOR-
PHON 2020 shared task 0: Typologically diverse
morphological inflection. In Proceedings of the
17th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 1–39, Online. Association for Computational
Linguistics.

Qingyun Wang, Xiaoman Pan, Lifu Huang, Boliang
Zhang, Zhiying Jiang, Heng Ji, and Kevin Knight.
2018. Describing a knowledge base. In Proceed-
ings of the 11th International Conference on Natu-
ral Language Generation, pages 10–21, Tilburg Uni-
versity, The Netherlands. Association for Computa-
tional Linguistics.

Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu,
and Changyou Chen. 2020. Towards faithful neural
table-to-text generation with content-matching con-
straints. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1072–1086, Online. Association for Computa-
tional Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Xinnuo Xu, Ondřej Dušek, Verena Rieser, and Ioannis
Konstas. 2021. Agggen: Ordering and aggregating
while generating.

183

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 184–200,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Goal-Oriented Script Construction

Qing Lyu∗ Li Zhang∗
University of Pennsylvania

{lyuqing,zharry,ccb}@seas.upenn.edu

Chris Callison-Burch

Abstract

The knowledge of scripts, common chains of
events in stereotypical scenarios, is a valu-
able asset for task-oriented natural language
understanding systems. We propose the Goal-
Oriented Script Construction task, where a
model produces a sequence of steps to accom-
plish a given goal. We pilot our task on the first
multilingual script learning dataset supporting
18 languages collected from wikiHow, a web-
site containing half a million how-to articles.
For baselines, we consider both a generation-
based approach using a language model and
a retrieval-based approach by first retrieving
the relevant steps from a large candidate pool
and then ordering them. We show that our
task is practical, feasible but challenging for
state-of-the-art Transformer models, and that
our methods can be readily deployed for var-
ious other datasets and domains with decent
zero-shot performance1.

1 Introduction

A script is a standardized sequence of events about
stereotypical activities (Feigenbaum et al., 1981).
For example, “go to a restaurant” typically in-
volves “order food”, “eat”, “pay the bill”, etc.
Such script knowledge has long been proposed as a
way to enhance AI systems (Abelson and Schank,
1977). Specifically, task-oriented dialog agents
may greatly benefit from the understanding of goal-
oriented scripts2. However, the evaluation of script
knowledge remains an open question (Chambers,
2017). Moreover, it is unclear whether current mod-
els can generate complete scripts. Such an ability
is in high demand for recent efforts to reason about

∗ Equal contribution.
1Our models and data are be available at https://

github.com/veronica320/wikihow-GOSC.
2https://developer.amazon.com/

alexaprize

Figure 1: An example script constructed by our Step-
Inference-Ordering pipeline in a zero-shot manner. The
input is a goal, and the output is an ordered list of steps.

complex events (Li et al., 2020; Wen et al., 2021)3.
We propose the task of Goal-Oriented Script

Construction (GOSC) to holistically evaluate a
model’s understanding of scripts. Given a goal
(or the name of a script), we ask the model to con-
struct the sequence of steps (or events in a script)
to achieve the goal. This task targets a model’s
ability to narrate an entire script, subsuming most
existing evaluation tasks. Our rationale is that a
model that understands some scripts (e.g. how to
“travel abroad” and “go to college”) should be able
to produce new ones (e.g. how to “study abroad”)
using the absorbed knowledge, close to how hu-
mans learn.

While almost all prior script learning work has
focused on English, we introduce a novel multilin-
gual corpus. Our corpus is collected from wikiHow
(wikihow.com), a website of how-to articles in 18
languages. The articles span a wide range of do-
mains, from commonplace activities like going to
a restaurant to more specific ones like protecting

3www.darpa.mil/program/knowledge-
directed-artificial-intelligence-reasoning
-over-schemas

184

oneself from the coronavirus.
We train and evaluate several baseline systems

on our GOSC task. First, we consider a generation-
based approach where a pretrained language model,
multilingual T5, is finetuned to produce scripts
from scratch. As an alternative, observing that
most desired steps can be drawn from the train-
ing scripts due to their magnitude and high cover-
age, we also propose a retrieval-based approach.
Concretely, we develop a Step-Inference-Ordering
pipeline using existing models to retrieve relevant
steps and order them. We also improve the pipeline
with techniques such as multitask learning. From
the experiments, the GOSC task proves challeng-
ing but feasible for state-of-the-art Transformers.
Furthermore, we show that our pipeline trained
on wikiHow can generalize to other datasets and
domains (see an example in Figure 1). On three
classic script corpora, OMICS, SMILE, and De-
Script, it achieves strong zero-shot performance. It
can also be directly deployed to construct scripts in
distant domains (e.g. military/political).

In this paper, we make several contributions:
1) We propose the GOSC task targeting the com-
prehensive understanding of scripts.
2) We introduce the first multilingual script learn-
ing dataset available in 18 languages.
3) We compare generation-based and retrieval-
based approaches using both automatic and human
judgments, which demonstrate the feasibility but
also the difficulty of GOSC.
4) We show that our approach can be readily ap-
plied to other datasets or other domains.

2 Related Work

The notion of scripts (Abelson and Schank, 1977),
or schemas (Rumelhart, 1975), encodes the knowl-
edge of standardized event sequences. We dissect
previous work on script learning into two lines,
narrative and procedural.

One line of work focuses on narrative scripts,
where declarative, or descriptive knowledge is dis-
tilled from narrative texts like news or stories (Mu-
jtaba and Mahapatra, 2019). Such scripts are not
goal-oriented, but descriptions of sequential events
(e.g. a traffic accident involves a collision, injuries,
police intervention, etc.). Chambers and Jurafsky
(2008) introduced the classic Narrative Cloze Test,
where a model is asked to fill in the blank given
a script with one missing event. Following the
task, a few papers made extensions on representa-

tion (Chambers and Jurafsky, 2009; Pichotta and
Mooney, 2014) or modeling (Jans et al., 2012; Pi-
chotta and Mooney, 2016a,c,b), achieving better
performance on Narrative Cloze. Meanwhile, other
work re-formalized Narrative Cloze as language
modeling (LM) (Rudinger et al., 2015) or multiple-
choice (Granroth-Wilding and Clark, 2016) tasks.
However, the evolving evaluation datasets contain
more spurious scripts, with many uninformative
events such as “say” or “be”, and the LMs tend to
capture such cues (Chambers, 2017).

The other line of work focuses on procedural
scripts, where events happen in a scenario, usu-
ally in order to achieve a goal. For example, to
“visit a doctor”, one should “make an appointment”,
“go to the hospital”, etc. To obtain data, Event Se-
quence Descriptions (ESD) are collected usually by
crowdsourcing, and are cleaned to produce scripts.
Thus, most such datasets are small-scale, includ-
ing OMICS (Singh et al., 2002), SMILE (Regneri
et al., 2010), the Li et al. (2012) corpus, and De-
Script (Wanzare et al., 2016). The evaluation tasks
are diverse, ranging from event clustering, event
ordering (Regneri et al., 2010), text-script align-
ment (Ostermann et al., 2017) and next event pre-
diction (Nguyen et al., 2017). There are also ef-
forts on domain extensions (Yagcioglu et al., 2018;
Berant et al., 2014) and modeling improvements
(Frermann et al., 2014; Modi and Titov, 2014).

In both lines, it still remains an open problem
what kind of automatic task most accurately evalu-
ates a system’s understanding of scripts. Most prior
work has designed tasks focusing on various frag-
mented pieces of such understanding. For example,
Narrative Cloze assesses a model’s knowledge for
completing a close-to-finished script. The ESD line
of work, on the other hand, evaluates script learning
systems with the aforementioned variety of tasks,
each touching upon a specific piece of script knowl-
edge nonetheless. Recent work has also brought
forth generation-based tasks, but mostly within an
open-ended/specialized domain like story or recipe
generation (Fan et al., 2018; Xu et al., 2020).

Regarding data source, wikiHow has been used
in multiple NLP efforts, including knowledge base
construction (Jung et al., 2010; Chu et al., 2017),
household activity prediction (Nguyen et al., 2017),
summarization (Koupaee and Wang, 2018; Ladhak
et al., 2020), event relation classification (Park and
Motahari Nezhad, 2018), and next passage com-
pletion (Zellers et al., 2019). A few recent papers

185

(Zhou et al., 2019; Zhang et al., 2020b) explored a
set of separate goal-step inference tasks, mostly in
binary-classification/multiple-choice formats, with
few negative candidates. Our task is more holistic
and realistic, simulating an open-ended scenario
with retrieval/generation settings. We combine two
of our existing modules from Zhang et al. (2020b)
into a baseline, but a successful GOSC system can
certainly include other functionalities (e.g. para-
phrase detection). Also similar is Zhang et al.
(2020a), which doesn’t include an extrinsic evalua-
tion on other datasets/domains though.

In summary, our work has the following impor-
tant differences with previous papers:
1) Existing tasks mostly evaluate fragmented pieces
of script knowledge, while GOSC is higher-level,
targeting the ability to invent new, complete scripts.
2) We are the first to study multilingual script learn-
ing. We evaluate several baselines and make im-
provements with techniques like multitask learning.
3) Our dataset improves upon the previous ones in
multiple ways, with higher quality than the mined
narrative scripts, lower cost and larger scale than
the crowdsourced ESDs.
4) The knowledge learned from our dataset
allows models to construct scripts in other
datasets/domains without training.

3 Goal Oriented Script Construction

We propose the Goal-Oriented Script Construction
(GOSC) task. Given a goal g, a system constructs
a complete script as an ordered list of steps S, with
a ground-truth reference T . As a hint of the desired
level of granularity, we also provide an expected
number of steps (or length of the script), l, as input.
Depending on whether the set of possible candidate
steps are given in advance, GOSC can happen in
two settings: Generation or Retrieval.

In the Generation setting, the model must gen-
erate the entire script from scratch.

In the Retrieval setting, a large set of candidate
steps C is given. The model must predict a subset
of steps S from C, and provide their ordering.

4 Multilingual WikiHow Corpus

Our previously wikiHow corpus (Zhang et al.,
2020b) is a collection of how-to articles in En-
glish (en). We extend this corpus by crawling
wikiHow in 17 other languages, including Spanish
(es), Portuguese (pt), Chinese (zh), German (de),
French (fr), Russian (ru), Italian (it), Indonesian

{
"title": "Eat at a Sit Down Restaurant",
"category": "FOOD AND ENTERTAINING",
"ordered": True,
"sections": [...
{
"section": "Ordering Out",
"steps": [...
"Order drinks first.",
"Ask about daily specials.",
"Look over the menu and place your
food order.", ...

],
}, ...]}

Figure 2: An abridged example script extracted from
the English wikiHow article “How to Eat at a Sit Down
Restaurant”.

(id), Dutch (nl), Arabic (ar), Vietnamese (vn), Thai
(th), Japanese (jp), Korean (ko), Czech (cz), Hindi
(hi), and Turkish (tr). The resulting multilingual
wikiHow corpus may be used in various tasks in
NLP and other fields.

For script learning, we extract from each wiki-
How article the following critical components to
form a goal-oriented script.
Goal: the title stripped of “How to”;
Section: the header of a “method” or a “part”
which contains multiple steps;4

Steps: the headlines of step paragraphs;
Category: the top-level wikiHow category.
An example wikiHow script is shown in Figure 2.

Our previous corpus provides labels of whether
each English article is ordered, predicted by a high-
precision classifier. We project these labels to other
languages using the cross-language links in each
wikiHow article. For articles without a match to
English, it defaults to unordered. In our task setup,
we only require the model to order the steps if an
article is ordered.

For all experiments below, we randomly hold out
10% articles in each language as the test set, and use
the remaining 90% for training and development.5

We use the corpus to construct a dataset for mul-
tilingual GOSC. For the Retrieval setting, the set
of candidate steps C are all the steps present in
the test set. However, we observe that not only the
large number of steps may render the evaluation
intractable, but most steps are also evidently distant
from the given goal. To conserve computing power,
we restrict C as all the steps from articles within

4We ignore this hierarchical relation and flatten all steps
in all Sections as the Steps of the script.

5See Appendix A for our corpus statistics.

186

Figure 3: Our Step-Inference-Ordering pipeline for the GOSC Retrieval task. An example ordered script is shown
with example steps in the input and output. Those that appear in the ground-truth script is in bold.

the same wikiHow category for each script.

5 Models

We develop two systems based on state-of-the-art
Transformers for the GOSC task.6

5.1 Generation Approach: Multilingual T5
For the Generation setting, we finetune mT5 (Xue
et al., 2021), a pretrained generation model that is
not only state-of-the-art on many tasks but also the
only available massively multilingual one to date.

During finetuning, we provide the goal of each
article in the training set as a prompt, and train
the model to generate the sequence of all the steps
conditioned on the goal. Therefore, the model’s
behavior is similar to completing the task of infer-
ring relevant steps and sorting them at once. At
inference time, the model generates a list of steps
given a goal in the test set.

5.2 Retrieval Approach:
Step-Inference-Ordering Pipeline

We then implement a Step-Inference-Ordering
pipeline for the Retrieval setting. Our pipeline con-
tains a Step Inference model to first gather the set
of desired steps, and a Step Ordering model to or-
der the steps in the set. These models are based on
our previous work (Zhang et al., 2020b). Under the
hood, the models are pretrained XLM-RoBERTa
(Conneau et al., 2020) or mBERT (Devlin et al.,
2019) for binary classification, both state-of-the-art
multilingual representations.

Our Step Inference model takes a goal and a
candidate step as input, and outputs whether the

6Reproducibility details can be found in Appendix C.

candidate is indeed a step toward the goal with a
confidence score. During training, for every script,
its goal forms a positive example along with each of
its steps. We then randomly sample 50 steps from
other scripts within the same wikiHow category
and pair them with the goal as negative examples.
The model predicts a label for each goal-step pair
with a cross-entropy loss. During evaluation, for
each script in the test set, every candidate step is
paired with the given goal as the model input. We
then rank all candidate steps based on the model
confidence scores decreasingly. Finally, the top l
steps are retained, where l is the required length.

Our Step Ordering model takes a goal and two
steps as input, and outputs which step happens first.
During training, we sample every pair of steps in
each ordered script as input to the model with a
cross-entropy loss. During evaluation, we give ev-
ery pair of retrieved steps as input, and count the
total number of times that a step is ranked before
others. We then sort all steps by this count to ap-
proximate their complete ordering.

An illustration of our Step-Inference-Ordering
pipeline is shown in Figure 3. We also consider
two additional variations.
Multitask Learning (MTL): The Step Inference
and the Step Ordering models share the encoder
layer, but have separate classifier layers. During
training, the MTL system is then presented with a
batch of examples from each task in an alternating
fashion. During evaluation, the corresponding clas-
sifier is used.
Cross-Lingual Zero-Shot Transfer (C0): While
there are abundant English training scripts, data
in some other languages are scarce. Hence, we

187

Figure 4: Detailed performance on each language from Table 2.

Lang. en es pt de fr ru

Perp. 17 11 24 97 46 79
Bert. .823 .702 .682 .677 .718 .682

Lang. it id zh nl ar vn

Perp. 116 269 13,249 955 746 97
Bert. .653 .692 .667 .690 .701 .695

Lang. th jp ko cz hi tr

Perp. 29,538 73,952 2,357 1,823 2,033 36,848
Bert. .701 .679 .692 .682 .704 .665

Table 1: Auto evaluation results for the Generation set-
ting (Perplexity and BERTScore F1 measure). The per-
formance of multilingual T5 is reported.

also attempt to directly evaluate the English-trained
models on non-English data.

6 In-Domain Evaluation

To demonstrate the performance of models on the
GOSC task, we evaluate them on our multilingual
wikiHow dataset using both automatic metrics and
human judgments. The ultimate utility for this
task is the extent to which a human can follow
the constructed steps to accomplish the given goal.
As direct user studies might be costly and hard
to standardize, we carefully choose measures that
adhere to this utility. By default, all models are
trained and evaluated on the same language.

7Multitask XLM-R and cross-lingual zero-shot mBERT
are found to perform a lot worse and thus omitted.

Model English only Avg. all lang.s
Acc. Kendall’s τ Acc. Kendall’s τ

mBERT .256 .369 .286 .198
mBERT MTL .253 .371 .283 .226
XLM-R .258 .372 .317 .075
XLM-R C0 - - .291 .264

Table 2: Auto evaluation results for the Retrieval set-
ting (Accuracy and Kendall’s Tau). The performance
of mBERT and XLM-RoBERTa, along with their mul-
titask (MTL) and crosslingual zero-shot transfer (C0)
variations, are reported 7.

6.1 Auto Evaluation for Generation Setting

To automatically evaluate models in the Genera-
tion Setting, we report perplexity and BERTScore
(Zhang et al., 2019), as two frequently used metrics
for evaluating text generation.

The mean perplexity of mT5 on the test set of
each language is shown in Table 1. The results
show a large range of variation. To see if perplexity
correlates with the data size, we conduct a Spear-
man’s rank correlation two-tailed test. We find a
Spearman’s ρ of−0.856 and a p-value of 1e−5 be-
tween the perplexity and the number of articles in
each language in our dataset; we find a Spearman’s
ρ of −0.669 and a p-value of 2e − 4 between the
perplexity and the number of tokens in each lan-
guage in the mC4 corpus where mT5 is pretrained
on. These statistics suggest a significant correla-
tion between perplexity and data size, while other
typological factors are open to investigation.

Table 1 also shows the BERTScore F1 measure

188

of the generated scripts compared against the gold
scripts. Except for English (.82), the performance
across different languages varies within a relatively
small margin (.65 - .72). However, we notice that
as a metric based on the token-level pairwise sim-
ilarity, BERTScore may not be the most suitable
metric to evaluate scripts. It is best designed for
aligned texts (e.g. a machine-translated sentence
and a human-translated one), whereas in scripts,
certain candidate steps might not have aligned ref-
erence steps. Moreover, BERTScore does not mea-
sure whether the ordering among steps is correct.
To address these flaws, we further perform human
evaluation in Section 6.3.

6.2 Auto Evaluation for Retrieval Setting

To automatically evaluate models in the Retrieval
Setting, we first calculate accuracy, i.e. the per-
centage of predicted steps that exist in the ground-
truth steps. To account for the ordering of steps, we
also compute Kendall’s τ between the overlapping
steps in the prediction and the ground-truth.

The performance of our Step Inference-Ordering
pipeline using mBERT and XLM-RoBERTa8 on
all 18 languages are shown in Figure 4. Complete
results can be found in Appendix D. Across lan-
guages, the results are generally similar with a
large room for improvement. On average, our best
system constructs scripts with around 30% accu-
racy and around 0.2 Kendall’s τ compared to the
ground-truth. Compared to the baseline, our multi-
task and cross-lingual zero-shot variations demon-
strate significant improvement on ordering. This is
especially notable in low-resource languages. For
example, MTL on Korean and C0 on Thai both
outperform their baseline by 0.17 on Kendall’s τ .

6.3 Human Evaluation

To complement automatic evaluation, we ask 6 an-
notators9 to each edit 30 output scripts by the Step-
Inference-Ordering pipeline and mT5 in English,
French, Chinese, Japanese, Korean and Hindi, re-
spectively. The edit process consists of a sequence
of two possible actions: either 1) delete a generated
step entirely if it is irrelevant, nonsensical or not
a reasonable step of the given goal, or 2) move a
step somewhere else, if the order is incorrect. Then,

8XLM-RoBERTa is not able to converge on the training
data for Step Ordering for all but 3 languages using a large set
of hyperparameter combinations.

9The annotators are graduate students and native or profi-
cient speakers of the language assigned.

Retrieval: Step-Inference-Ordering pipeline

Language en fr zh jp ko hi
Correctness .70 .39 .50 .49 .45 .82
Completeness .70 .39 .50 .49 .45 .82
Orderliness .45 .38 .16 .12 .10 .75

Generation: mT5

Language en fr zh jp ko hi
Correctness .39 .51 .46 .40 .37 .49
Completeness .35 .40 .46 .30 .36 .41
Orderliness .82 .46 .60 .81 .69 .88

Table 3: Human judgments of correctness, complete-
ness and orderliness of the output of the Step-Inference-
Order pipeline and the mT5 model for the same set of
30 gold scripts, in six languages.

the generated script is evaluated against the edited
script in 3 aspects:
Correctness, approximated by the length (number
of steps) of the edited script over that of the origi-
nally constructed script (c.f. precision);
Completeness, approximated by the length of the
edited script over that of the ground-truth script (c.f.
recall);
Orderliness, approximated by Kendall’s τ be-
tween overlapping steps in the edited script and
the generated script.10

The results are shown in Table 3. While the con-
structed scripts in the Retrieval setting contain more
correct steps, their ordering is significantly worse
than those in the Generation setting. This suggests
that the generation model is better at producing flu-
ent texts, but can easily suffer from hallucination.

6.4 Qualitative Examples

To understand models’ behavior, we present two
representative scripts produced by the mBERT Re-
trieval model and the mT5 Generation model side
by side, accompanied by the ground-truth script,
shown in Figure 5.

The retrieved “Draw Santa Claus” script has a
high step accuracy (85%), with a reasonable or-
dering of drawing first the outline and then details.
The generation output is more off-track, hallucinat-
ing irrelevant details like “singing” and “scorpion”,
despite being on the general topic of drawing. It
also generates more repetitive steps (e.g. the head
is drawn twice), most of which are abridged.

As for “Make a Quotebook”, the retrieved script
10In this formulation, the correctness and completeness

of a retrieval-based model are equal, since the length of its
constructed script is equal to that of the ground truth script by
definition.

189

Figure 5: Two example scripts constructed by our Retrieval and Generation approaches.

has a 50% step accuracy. The third step, though
not in the gold reference, is similar enough to “find
some quotes”, suggesting that our exact match eval-
uation isn’t perfect. In the generated script, all
steps are also generally plausible, but some essen-
tial steps are missing (e.g. find a book, find quotes).
This suggests that the generation model dwells too
much on the details, ignoring the big picture.

These patterns in the two scripts are common
in the model outputs, a larger sample of which is
included in the Supplementary Materials.

7 Zero-shot Transfer Learning

To show the potential of our model for transfer
learning, we use the retrieval-based Step-Inference-
Ordering pipeline finetuned on wikiHow to con-
struct scripts for other datasets and domains. We
quantitatively evaluate our model on 4 other script
learning corpora, and qualitatively analyze some
constructed scripts in a case study.

7.1 Quantitative Evaluation
Since no multilingual script data are available yet,
we perform transfer learning experiments on 4
other English script corpora, OMICS (Singh et al.,
2002), SMILE (Regneri et al., 2010), DeScript
(Wanzare et al., 2016) 11, and the KAIROS Schema
Learning Corpus (LDC2020E25). The first 3 per-
tain to human activities, while the last is in the
military and political domain. They are all in the

11The above 3 corpora are all obtained from http://www.
coli.uni-saarland.de/projects/smile/

Corpus Corpus Stats. Results
Scenarios ESDs Acc. Kendall’s τ

SMILE 22 386 .435 .391
OMICS 175 9044 .346 .443
DeScript 40 4000 .414 .418
KAIROS 28 28 .589 .381

Table 4: The zero-shot GOSC Retrieval performance
of XLM-RoBERTa finetuned on wikiHow on 4 target
corpora.

format of different scenarios (e.g. “eat in a restau-
rant”, similar to our goal) each with a number of
event sequence descriptions (ESDs, similar to our
steps). Statistics for each corpus are in Table 4.

For each dataset, we select the ESD with the
most steps for every scenario as a representative
script to avoid duplication, thus converting the
dataset to a GOSC evaluation set under the Re-
trieval setting. We then use the XLM-RoBERTa-
based Step-Inference-Ordering pipeline trained on
our English wikiHow dataset to directly construct
scripts on each target set, and report its zero-shot
performance in Table 4. We see that 30% − 60%
steps are accurately retrieved, and around 40% are
correctly ordered. This is close to or even better
than the in-domain results on our English test set.
As a comparison, a random baseline would have
only 0.013 Accuracy and 0.004 τ on average. Both
facts indicate that the script knowledge learned
from our dataset is clearly non-trivial.

190

7.2 Case Study: The Bombing Attack Scripts

To explore if the knowledge about procedural
scripts learned from our data can also facilitate the
zero-shot learning of narrative scripts, we present
a case study in the context of the DARPA KAIROS
program12. One objective of KAIROS is to auto-
matically induce scripts from large-scale narrative
texts, especially in the military and political do-
main. We show that models trained on our data
of commonplace events can effectively transfer to
vastly different domains.

With the retrieval-based script construction
model finetuned on wikiHow, we construct five
scripts with different granularity levels under the
Improvised Explosive Device (IED) attack scenario:
“Roadside IED attack”, “Backpack IED attack”,
“Drone-brone IED attack”, “Car bombing IED at-
tack”, “IED attack”. We take the name of each
script as the input goal, and a collection of related
documents retrieved from Wikipedia and Voice of
America news as data sources for extracting step
candidates.

Our script construction approach has two compo-
nents. First, we extract all events according to the
KAIROS Event Ontology from the documents us-
ing OneIE (Lin et al., 2020). The ontology defines
68 event primitives, each represented by an event
type and multiple argument types, e.g. a Damage-
type event has arguments including Damager, Arti-
fact, Place, etc. OneIE extracts all event instances
of the predefined primitives from our source docu-
ments. Each event instance contains a trigger and
several arguments (e.g. Trigger: “destroy”, Dam-
ager: “a bomber”, Artifact: “the building”, ...). All
event instances form the candidate pool of steps for
our target script.

Since the events are represented as trigger-
arguments tuples, a conversion to the raw textual
form is needed before inputting them into our
model. This is done by automatically instantiat-
ing the corresponding event type template in the
ontology with the extracted arguments. If an ar-
gument is present in the extracted instance, we
directly fill it in the template; else, we fill in a
placeholder word (e.g.“some”, “someone”, depend-
ing on the argument type). For example, the tem-
plate of Damage-type events is “〈arg1〉 damaged
〈arg2〉 using 〈arg3〉 instrument”, which can be

12www.darpa.mil/program/knowledge-
directed-artificial-intelligence-reasoning
-over-schemas

Figure 6: An example narrative script produced by
our retrieval-based pipeline trained on wikiHow. Each
event is represented by its Event Type and an example
sentence.

instantiated as “A bomber damaged the building
using some instrument”). Next, we run the Step
Inference-Ordering Pipeline in Section 5.2 on the
candidate pool given the “goal”. The only mod-
ification is that since we don’t have a gold refer-
ence script length in this case, all retrieved steps
with a confidence score higher than a threshold
(default=0.95) are retained in the final script.

We manually evaluate the constructed scripts
with the metrics defined in Section 6.3, except Com-
pleteness as we don’t have gold references. The 5
constructed scripts have an average Correctness of
0.735 and Orderliness of 0.404. Despite the drastic
domain shift from wikiHow to KAIROS, our model
can still exploit its script knowledge to construct
scripts decently. An example script, “Roadside
IED attack”, is shown in Figure 6. All the steps
retrieved are sensible, and most are ordered with
a few exceptions (e.g. the ManufactureAssemble
event should precede all others).13

8 Limitations

Event representation: Our representation of
goals and steps as natural language sentences,
though containing richer information, brings the
extra difficulty in handling steps with similar mean-
ings. For example, “change strings frequently” and
“put on new strings regularly” have nearly identical
meanings and both are correct steps for the goal
“maintain a guitar”. Hence, both could be included
by a retrieval-based model, which is not desired.

13More details on the format of the script, all five con-
structed scripts, the event ontology, and a list of news docu-
ments used can be found in the Supplementary Materials.

191

Modeling: Since GOSC is a new task, there is no
previously established SOTA to compare with. We
build a strong baseline for each setting, but they are
clearly not the necessary or sufficient means to do
the task. For example, our Step-Inference-Ordering
pipeline would benefit from a paraphrasing mod-
ule that eliminates semantic duplicates in retrieved
steps. It also currently suffers from long run-time
especially with a large pool of candidates, since
it requires pairwise goal-step inference. An alter-
native is to filter out most irrelevant steps using
similarity-based heuristics in advance.
Evaluation: Under the retrieval-based setting, our
automatic evaluation metrics do not give credit
to inexact matches as discussed above, which
can also be addressed by a paraphrasing mod-
ule. Meanwhile, for the generation-based setting,
BERTScore, or other comparison-based metrics
like BLEU (Papineni et al., 2002) and METEOR
(Denkowski and Lavie, 2014), may not be the most
suitable metric to evaluate scripts. They are best de-
signed for aligned texts like translation pairs, and
do not measure whether the ordering among steps
is correct. While we complement it with manual
evaluation, only one human annotator is recruited
for each language, resulting in potential subjectiv-
ity. Alternatively, crowdsourcing-based evaluation
is costly and hard to standardize. Due to the com-
plexity of the GOSC task and its evaluation, we
suggest that future work investigate better means
of evaluation.

9 Conclusion and Future Work

We propose the first multilingual script learning
dataset and the first task to evaluate the holistic
understanding of scripts. By comprehensively eval-
uating model performances automatically and man-
ually, we show that state-of-the-art models can pro-
duce complete scripts both in- and out-of-domain,
with a large room for improvement. Future work
should investigate additional aspects of scripts,
such as usefulness, granularity, etc., as well as their
utility for downstream tasks that require automated
reasoning.

Acknowledgments

This research is based upon work supported in
part by the DARPA KAIROS Program (contract
FA8750-19-2-1004), the DARPA LwLL Program
(contract FA8750-19-2-0201), and the IARPA BET-
TER Program (contract 2019-19051600004). Ap-

proved for Public Release, Distribution Unlimited.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies, ei-
ther expressed or implied, of DARPA, IARPA, or
the U.S. Government.

Special thanks go to our annotators: Artemis
Panagopoulou, Daniel Joongwon Kim, Simmi
Mourya, and Liam Dugan. We also thank Daphne
Ippolito for the help on mT5; Ying Lin, Sha
Li, Zhenhailong Wang, Pengfei Yu, Tuan Lai,
Haoyang Wen, and Heng Ji for providing the source
documents and the OneIE results for our case study.
Finally, we appreciate the valuable feedback from
the anonymous reviewers.

References
Robert Abelson and Roger C Schank. 1977. Scripts,

plans, goals and understanding. An inquiry into hu-
man knowledge structures New Jersey, 10.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad Huang,
Peter Clark, and Christopher D Manning. 2014.
Modeling biological processes for reading compre-
hension. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1499–1510.

Nathanael Chambers. 2017. Behind the scenes of an
evolving event cloze test. In Proceedings of the 2nd
Workshop on Linking Models of Lexical, Sentential
and Discourse-level Semantics, pages 41–45.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of ACL-08: HLT, pages 789–797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 602–610.

Cuong Xuan Chu, Niket Tandon, and Gerhard Weikum.
2017. Distilling task knowledge from how-to com-
munities. In Proceedings of the 26th International
Conference on World Wide Web, pages 805–814.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

192

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Edward A Feigenbaum, Avron Barr, and Paul R Co-
hen. 1981. The handbook of artificial intelligence.
Addison-Wesley.

Lea Frermann, Ivan Titov, and Manfred Pinkal. 2014.
A hierarchical bayesian model for unsupervised in-
duction of script knowledge. In Proceedings of the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 49–
57.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 30.

Bram Jans, Steven Bethard, Ivan Vulić, and
Marie Francine Moens. 2012. Skip n-grams
and ranking functions for predicting script events.
In Proceedings of the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 336–344.

Yuchul Jung, Jihee Ryu, Kyung-min Kim, and Sung-
Hyon Myaeng. 2010. Automatic construction of a
large-scale situation ontology by mining how-to in-
structions from the web. Web Semantics: Science,
Services and Agents on the World Wide Web, 8(2-
3):110–124.

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
iHow: A large scale text summarization dataset.
ArXiv, abs/1810.09305.

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath-
leen McKeown. 2020. WikiLingua: A new bench-
mark dataset for cross-lingual abstractive summa-
rization. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4034–
4048, Online. Association for Computational Lin-
guistics.

Boyang Li, Stephen Lee-Urban, Darren Scott Appling,
and Mark O Riedl. 2012. Crowdsourcing narrative
intelligence. Advances in Cognitive systems, 2(1).

Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng
Ji, Jonathan May, Nathanael Chambers, and Clare
Voss. 2020. Connecting the dots: Event graph
schema induction with path language modeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 684–695.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009.

Ashutosh Modi and Ivan Titov. 2014. Inducing neu-
ral models of script knowledge. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning, pages 49–57.

Dena Mujtaba and Nihar Mahapatra. 2019. Recent
trends in natural language understanding for proce-
dural knowledge. In 2019 International Conference
on Computational Science and Computational Intel-
ligence (CSCI), pages 420–424. IEEE.

Dai Quoc Nguyen, Dat Quoc Nguyen, Cuong Xuan
Chu, Stefan Thater, and Manfred Pinkal. 2017. Se-
quence to sequence learning for event prediction. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 2:
Short Papers), pages 37–42, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Simon Ostermann, Michael Roth, Stefan Thater, and
Manfred Pinkal. 2017. Aligning script events with
narrative texts. In Proceedings of the 6th Joint Con-
ference on Lexical and Computational Semantics (*
SEM 2017), pages 128–134.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Hogun Park and Hamid Reza Motahari Nezhad. 2018.
Learning procedures from text: Codifying how-to
procedures in deep neural networks. In Companion
Proceedings of the The Web Conference 2018, pages
351–358.

Karl Pichotta and Raymond Mooney. 2014. Statisti-
cal script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 220–229.

Karl Pichotta and Raymond Mooney. 2016a. Statis-
tical script learning with recurrent neural networks.
In Proceedings of the Workshop on Uphill Battles in

193

Language Processing: Scaling Early Achievements
to Robust Methods, pages 11–16.

Karl Pichotta and Raymond Mooney. 2016b. Using
sentence-level lstm language models for script infer-
ence. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 279–289.

Karl Pichotta and Raymond J Mooney. 2016c. Learn-
ing statistical scripts with lstm recurrent neural net-
works. In AAAI, pages 2800–2806.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979–988.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681–1686.

David E Rumelhart. 1975. Notes on a schema for sto-
ries. In Representation and understanding, pages
211–236. Elsevier.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. In OTM Confederated International
Conferences” On the Move to Meaningful Internet
Systems”, pages 1223–1237. Springer.

Lilian DA Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2016. A crowdsourced
database of event sequence descriptions for the
acquisition of high-quality script knowledge. In
Proceedings of the tenth international conference
on language resources and evaluation (LREC’16),
pages 3494–3501.

Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha
Li, Xudong Lin, Ben Zhou, Manling Li, Haoyu
Wang, Hongming Zhang, Xiaodong Yu, Alexander
Dong, Zhenhailong Wang, Yi Fung, Piyush Mishra,
Qing Lyu, Dı́dac Surı́s, Brian Chen, Susan Windisch
Brown, Martha Palmer, Chris Callison-Burch, Carl
Vondrick, Jiawei Han, Dan Roth, Shih-Fu Chang,
and Heng Ji. 2021. RESIN: A dockerized schema-
guided cross-document cross-lingual cross-media in-
formation extraction and event tracking system. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies:
Demonstrations, pages 133–143, Online. Associa-
tion for Computational Linguistics.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020. MEGATRON-CNTRL: Control-
lable story generation with external knowledge us-
ing large-scale language models. In Proceedings of

the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 2831–
2845, Online. Association for Computational Lin-
guistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mt5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498.

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Na-
zli Ikizler-Cinbis. 2018. Recipeqa: A challenge
dataset for multimodal comprehension of cooking
recipes. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1358–1368.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4791–
4800, Florence, Italy. Association for Computational
Linguistics.

Hongming Zhang, Muhao Chen, Haoyu Wang,
Yangqiu Song, and Dan Roth. 2020a. Analogous
process structure induction for sub-event sequence
prediction. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1541–1550, Online. Associa-
tion for Computational Linguistics.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020b.
Reasoning about goals, steps, and temporal ordering
with WikiHow. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4630–4639, Online. As-
sociation for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yilun Zhou, Julie Shah, and Steven Schockaert. 2019.
Learning household task knowledge from WikiHow
descriptions. In Proceedings of the 5th Workshop on
Semantic Deep Learning (SemDeep-5), pages 50–56,
Macau, China. Association for Computational Lin-
guistics.

A Corpus Statistics

Table 5 shows the statistics of our multilingual wik-
iHow script corpus.

194

Language en es pt de fr ru it id zh

Num. articles 112,111 64,725 34,194 31,541 26,309 26,222 22,553 21,014 14,725
Num. ordered articles 54,852 26,620 7,408 10,681 6,834 5,335 4,308 5,536 4,784
Avg. num. of sections / article 2.5 2.6 3.1 2.7 2.9 3.1 3.1 2.9 2.8
Avg. num. of steps / article 13.7 14.4 16.1 15.1 15.7 16.4 16.2 16.0 15.4
Num. of articles for train/dev 100,900 58,253 30,775 28,387 23,679 23,600 20,298 18,913 13,253
Num. of articles for test 11,211 6,472 3,419 3,154 2,630 2,622 2,255 2,101 1,472

Language nl ar vn th jp ko cz hi tr

Num. articles 13,343 12,157 6,949 5,821 5,567 5,179 5,043 3,104 1,434
Num. ordered articles 2,113 2,567 1,157 1,244 1,209 917 920 888 520
Avg. num. of sections / article 3.1 3.0 3.2 3.1 3.1 3.2 3.1 3.0 3.2
Avg. num. of steps / article 16.2 16.4 17.1 17.7 16.8 17.5 16.4 16.8 19.2
Num. of articles for train/dev 12,009 10,942 6,255 5,239 5,011 4,662 4,539 2,794 1,291
Num. of articles for test 1,334 1,215 694 582 556 517 504 310 143

Table 5: Statistics of our multilingual wikiHow corpus by language, ordered by the number of articles in each
language. Each article is converted to a script, including all steps from all sections.

B Evaluation Details

In Section 3, we formalize the Goal-Oriented Script
Construction (GOSC) task as follows: Given a goal
g, the model is asked to construct a complete script
as an ordered list of steps S, with a ground-truth
reference T . As a hint of the desired level of granu-
larity, we also provide an expected number of steps
(or length of the script), l, as input.

In the Retrieval setting, a set of candidate steps
C is also available. We evaluate an output script
from two angles: content and ordering.

First, we calculate the accuracy, namely the per-
centage of predicted steps that exist in the ground-
truth. Denote si as the i-th step in S.

acc = (
l∑

i

[si ∈ T])/l

If the gold script is ordered, we further evaluate the
ordering of the constructed script by calculating
Kendall’s τ between the intersection of the pre-
dicted steps and the ground-truth steps.

τ =
NC(S ∩ T, T ∩ S)−ND(S ∩ T, T ∩ S)(

l
2

)

where NC is the number of concordant pairs, ND
the number of discordant pairs; A ∩B is used as a
special notation for the intersection of ordered lists,
denoting elements that appear in both A and B, in
the order of A.

It is likely that a model includes two modules: a
retrieval module and an ordering module. In this
case, it is sensible to separately evaluate these two
modules.

To evaluate the retrieval module independently,
assume that the model retrieves a large set of steps
R ranked by their relevance to the goal g. Denote
ri as the i-th step in R. We calculate recall and nor-
malized discounted cumulative gain14 at position
k. Assume k > l.

recallk = (
k∑

i

[ri ∈ T])/k

NDCGk =

∑k
i=1

2[ri∈T]−1
log2(i+1)∑l

i=1
21−1

log2(i+1) +
∑k

i=l+1
20−1

log2(i+1)

To evaluate the ordering module independently,
we directly give the model the set of ground-truth
steps to predict an ordering. We again use Kendall’s
τ to evaluate the ordered steps.

τ =
NC(T ′, T)−ND(T ′, T)(

l
2

)

where T ′ is the set ground-truth steps ordered by
the model.

In the Generation setting, a model is evaluated
using perplexity on the test set, following standard
practice.

perplexity(S) = exp (− L(S)

count of tokens in S
)

where L(S) is the log-likelihood of the sequence
of steps assigned by the model.

When evaluating a model on multiple scripts, all
aforementioned metrics are averaged.

14We set the true relevance of each predicted step as 1 if it
exists in the ground-truth steps, and 0 otherwise.

195

C Modeling Details

All our models are implemented using the Hugging-
Face Transformer service15. For all experiments,
we hold out 5% of the training data for develop-
ment.

The pretrained models we use include: the
bert-base-multilingual-uncased check-
point (168M parameters) for mBERT, the
xlm-roberta-base checkpoint (270M param-
eters) for XLM-RoBERTa, the roberta-base

checkpoint (125M parameters) for RoBERTa16,
and the mT5-Large checkpoint (1B parameters) for
mT517.

For mBERT, XLM-RoBERTa and RoBERTa, we
finetune the pretrained models on our dataset using
the standard SequenceClassification pipeline
on HuggingFace18. For mT5, we refer to the offi-
cial finetuning scripts19 from the project’s Github
repository.

For each in-domain evaluation experiment, we
perform grid search on learning rate from 1e− 5 to
5e−8, batch size from 16 to 128 whenever possible,
and the number of epochs from 3 to 10. As mBERT
and XLM-RoBERTa have a large number of hyper-
parameters, most of which remain default, we do
not list them here. Instead, the hyperparameter
values and pretrained models will be available pub-
licly via HuggingFace model sharing. We choose
the model with the highest validation performance
to be evaluated on the test set. For the Retrieval set-
ting, we consider the accuracy of contracted scripts;
for the Generation setting, we consider perplexity.

We run our experiments on an NVIDIA GeForce
RTX 2080 Ti GPU, with half-precision floating
point format (FP16) with O1 optimization. The
experiments in the Retrieval setting take 3 hours
to 5 days in the worst case for all languages. The
experiments in the Generation setting take 2 hours
to 1 day in the worst case for all languages.

15https://github.com/huggingface/
transformers

16The above 3 models are available at https://
huggingface.co/transformers/pretrained_
models.html

17https://github.com/google-research/
multilingual-t5

18https://huggingface.co/transformers/
model_doc/auto.html?highlight=
sequence%20classification#transformers.
AutoModelForSequenceClassification

19https://colab.research.google.
com/github/google-research/
text-to-text-transfer-transformer/blob/
master/notebooks/t5-trivia.ipynb

Lang. en es pt de fr ru

Acc. .253 .220 .248 .266 .248 .275
τ .371 .313 .225 .249 .269 .244

Lang. it id zh nl ar vn

Acc. .261 .293 .322 .288 .276 .311
τ .208 .195 .237 .184 .164 .183

Lang. th jp ko cz hi tr

Acc. .100 .325 .325 .310 .349 .415
τ .124 .220 .227 .293 .215 .148

Table 6: The GOSC Retrieval performance of multitask
learning mBERT. Results higher than those produced
by the single-task mBERT are in bold.

D Additional Results

Our complete in-domain evaluation results can be
found in Table 6, 7, and 8.

E More Qualitative Examples

Aside from the examples shown in Section 6.4, we
show 2 more example scripts constructed by the
mBERT baseline under the Retrieval setting in Sec-
tion 5.2 vs. those by the mT5 baseline under the
Generation setting in Section 5.1. For each script
name, the Retrieval output and the Generation out-
put are shown side by side. Please see Figure 7 and
8 for English examples, and Figure 9 and 10 for
Chinese ones.

For more examples, please see the Supplemen-
tary Materials. We include 20 examples for each
language for the in-domain evaluation, and all 5
examples for the out-of-domain case study on the
Bombing Attack scenario.

196

Lang.
Step Retrieval Ordering Script Construction

Recall@25 Recall@50 NDCG@25 NDCG@50 Kendall’s τ Accuracy Kendall’s τ

en .337 / .342 .424 / .429 .660 / .660 .648 / .648 .368 / .375 .256 / .258 .369 / .372
es .319 / .397 .403 / .786 .653 / .532 .642 / .571 .321 / .022 .246 / .216 .295 / .022
pt .313 / .319 .401 / .412 .679 / .672 .664 / .659 .207 / .212 .251 / .254 .186 / .202
de .337 / .350 .421 / .438 .687 / .707 .676 / .692 .260 / .026 .268 / .280 .276 / .048
fr .315 / .320 .405 / .411 .673 / .672 .661 / .659 .244 / .020 .248 / .250 .206 / .043
ru .336 / .353 .423 / .446 .701 / .715 .688 / .701 .181 / .042 .271 / .285 .207 / .006
it .332 / .333 .424 / .431 .700 / .705 .686 / .687 .184 / .035 .264 / .267 .218 / .081
id .351 / .383 .435 / .480 .712 / .744 .699 / .725 .190 / .011 .284 / .312 .182 / .026
zh .401 / .429 .498 / .536 .750 / .753 .732 / .737 .260 / .027 .319 / .340 .203 / .030
nl .354 / .382 .447 / .758 .721 / .546 .708 / .597 .179 / .011 .287 / .243 .156 / .075
ar .351 / .381 .447 / .485 .710 / .735 .694 / .717 .161 / .055 .288 / .311 .175 / .067
vn .381 / .436 .464 / .544 .769 / .784 .753 / .766 .170 / .171 .322 / .358 .206 / .152
th .146 / .448 .273 / .566 .330 / .784 .369 / .764 .106 / .056 .104 / .362 .149 / .048
jp .383 / .447 .487 / .579 .754 / .766 .732 / .751 .170 / .107 .308 / .356 .179 / .097
ko .381 / .435 .474 / .553 .762 / .780 .744 / .766 .154 / .044 .318 / .361 .056 / .068
cz .416 / .456 .532 / .582 .772 / .776 .751 / .758 .211 / -.007 .337 / .367 .190 / -.028
hi .421 / .484 .530 / .610 .782 / .814 .763 / .798 .156 / .029 .354 / .410 .138 / -.004
tr .509 / .577 .676 / .718 .859 / .881 .829 / .854 .154 / .014 .415 / .477 .176 / .047

Mean .355 / .404 .454 / .542 .704 / .724 .691 / .714 .204 / .069 .286 / .317 .198 / .075

Table 7: The GOSC Retrieval performance of mBERT and XLM-RoBERTa, divided by a slash in each cell. Both
the performance of individual modules and that of script construction are reported.

Lang.
Step Retrieval Ordering Script Construction

Recall@25 Recall@50 NDCG@25 NDCG@50 Kendall’s τ Accuracy Kendall’s τ

es 0.270 0.338 0.567 0.564 0.360 0.203 0.353
pt 0.265 0.339 0.595 0.590 0.276 0.212 0.310
de 0.271 0.346 0.556 0.558 0.264 0.206 0.285
fr 0.253 0.319 0.585 0.580 0.283 0.202 0.268
ru 0.313 0.390 0.672 0.661 0.252 0.258 0.284
it 0.264 0.338 0.575 0.574 0.268 0.210 0.317
id 0.338 0.424 0.681 0.670 0.321 0.277 0.293
zh 0.379 0.471 0.718 0.706 0.318 0.310 0.295
nl 0.340 0.424 0.684 0.673 0.280 0.280 0.263
ar 0.319 0.400 0.643 0.635 0.235 0.260 0.211
vn 0.392 0.480 0.748 0.733 0.249 0.333 0.255
th 0.418 0.520 0.771 0.753 0.307 0.356 0.320
jp 0.403 0.512 0.751 0.733 0.232 0.338 0.238
ko 0.391 0.485 0.767 0.749 0.182 0.336 0.218
cz 0.406 0.519 0.749 0.732 0.300 0.342 0.285
hi 0.449 0.557 0.770 0.754 0.205 0.384 0.187
tr 0.505 0.646 0.805 0.787 0.167 0.434 0.099

Mean 0.357 0.448 0.692 0.681 0.259 0.296 0.258

Table 8: The GOSC Retrieval performance of XLM-RoBERTa using cross-lingual zero-shot transfer trained on the
English data. Both the performance of individual modules and that of script construction are reported.

197

Figure 7: The “Ice an injured Ankle” script.

Figure 8: The “Solve a Simple Linear Inequality” script.

198

Figure 9: The “Run for the US President” script.

199

Figure 10: The “Play the Piano” script.

200

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 201–211,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

A Single Example Can Improve Zero-Shot Data Generation

Pavel Burnyshev1, Valentin Malykh1,2, Andrey Bout1, Ekaterina Artemova1,3, and Irina Piontkovskaya1

1Huawei Noah’s Ark Lab, Moscow, Russia
2Kazan Federal University, Kazan, Russia

3HSE University, Moscow, Russia
{burnyshev.pavel, malykh.valentin, bout.andrey, artemova.ekaterina, piontkovskaya.irina}@huawei.com

Abstract

Sub-tasks of intent classification, such as ro-
bustness to distribution shift, adaptation to spe-
cific user groups and personalization, out-of-
domain detection, require extensive and flex-
ible datasets for experiments and evaluation.
As collecting such datasets is time- and labor-
consuming, we propose to use text generation
methods to gather datasets. The generator
should be trained to generate utterances that
belong to the given intent. We explore two
approaches to generating task-oriented utter-
ances. In the zero-shot approach, the model
is trained to generate utterances from seen in-
tents and is further used to generate utterances
for intents unseen during training. In the one-
shot approach, the model is presented with a
single utterance from a test intent. We perform
a thorough automatic, and human evaluation
of the dataset generated utilizing two proposed
approaches. Our results reveal that the at-
tributes of the generated data are close to orig-
inal test sets, collected via crowd-sourcing.

1 Introduction

Training dialogue systems used by virtual assis-
tants in task-oriented applications requires large
annotated datasets. The core machine learning task
to every dialogue system is intent detection, which
aims to detect what the intention of the user is. New
intents emerge when new applications, supported
by the dialogue systems, are launched. However,
an extension to new intents may require annotating
additional data, which may be time-consuming and
costly. What is more, when developing a new dia-
logue system, one may face the cold start problem
if little training data is available. Open sources
provide general domain annotated datasets, primar-
ily collected via crowd-sourcing or released from
commercial systems, such as Snips NLU bench-
mark (Coucke et al., 2018). However, it is usually
problematic to gather more specific data from any
source, including user logs, protected by the pri-

vacy policy in real-life settings.

For all these reasons, we suggest a learnable ap-
proach to create training data for intent detection.
We simulate a real-life situation in which no anno-
tated data but rather only a short description of a
new intent is available. To this end, we propose to
use methods for zero-shot conditional text gener-
ation to generate plausible utterances from intent
descriptions. The generated utterances should be
in line with the intent’s meaning.

Our contributions are:

1. We propose a zero-shot generation method
to generate a task-oriented utterance from an
intent description;

2. We evaluate the generated utterances and
compare them to the original crowd-sourced
datasets. The proposed zero-shot method
achieves high scores in fluency and diversity
as per our human evaluation;

3. We provide experimental evidence of a seman-
tic shift when generating utterances for unseen
classes using the zero-shot approach;

4. We apply reinforcement learning for the one-
shot generation to eliminate the semantic shift
problem. The one-shot approach retains se-
mantic accuracy without sacrificing fluency
and diversity.

2 Related work

Conditional language modelling generalizes
the task of language modelling. Given some con-
ditioning context z, it assigns probabilities to a
sequence of tokens (Mikolov and Zweig, 2012).
Machine translation (Sutskever et al., 2014; Cho
et al., 2014) and image captioning (You et al., 2016)
are seen as typical conditional language modelling
tasks. More sophisticated tasks include text ab-
stractive summarization (Nallapati et al., 2017;
Narayan et al., 2019) and simplification (Zhang

201

and Lapata, 2017), generating textual comments to
source code (Richardson et al., 2017) and dialogue
modelling (Lowe et al., 2017). Structured data
may act as a conditioning context as well. Knowl-
edge base (KB) entries (Vougiouklis et al., 2018)
or DBPedia triples (Colin et al., 2016) serve as
condition to generated plausible factual sentences.
Neural models for conditional language modelling
rely on encoder-decoder architectures and can be
learned both jointly from scratch (Vaswani et al.,
2017) or by fine-tuning pre-trained encoder and
decoder models (Budzianowski and Vulić, 2019;
Lewis et al., 2020).

Zero-shot learning (ZSL) has formed as a rec-
ognized training paradigm with neural models be-
coming more potent in the majority of downstream
tasks. In the NLP domain, the ZSL scenario aims
at assigning a label to a piece of text based on the
label description. The learned classifier becomes
able to assign class labels, which were unseen dur-
ing the training time. The classification task is then
reformulated in the form of question answering
(Levy et al., 2017) or textual entailment (Yin et al.,
2019). Other techniques for ZSL leverage metric
learning and make use of capsule networks (Du
et al., 2019) and prototyping networks (Yu et al.,
2019).

Zero-shot conditional text generation implies
that the model is trained in such a way that it can
generalize to an unseen condition, for which only a
description is provided. A few recent works in this
direction show-case dialog generation from unseen
domains (Zhao and Eskenazi, 2018) and question
generation from KB’s from unseen predicates and
entity types (Elsahar et al., 2018). CTRL (Keskar
et al., 2019), pre-trained on so-called control codes,
which can be combined to govern style, content,
and surface form, provides for zero-shot generation
for unseen codes combinations. PPLM (Dathathri
et al., 2019) uses signals, representing the class,
e.g., bag-of-words, during inference, and can gener-
ate examples with given semantic attributes without
pre-training.

Training data generation can be treated as form
of data augmentation, a research direction being in-
creasingly in demand. It enlarges datasets for train-
ing neural models and help avoid labor-intensive
and costly manual annotation. Common tech-
niques for textual data augmentation include back-
translation (Sennrich et al., 2016), sampling from

latent distributions (Xia et al., 2021), simple heuris-
tics, such as synonym replacement (Wei and Zou,
2019) and oversampling (Chawla et al., 2002). Few-
shot text generation has been applied to natural lan-
guage generation from structured data, such as ta-
bles (Chen et al., 2020) and to intent detection data
augmentation (Xia et al., 2021). However, these
methods are incompatible with ZSL, requiring at
least a few labeled examples for the class being aug-
mented. An alternative approach suggests to use a
model to generate data for the target class based on
task-specific world knowledge (Chen et al., 2017)
and linguistic features (Iyyer et al., 2018).

Deep reinforcement learning (RL) methods
prove to be effective in a variety of NLP tasks.
Early works approach the tasks of machine trans-
lation (Grissom II et al., 2014), image captioning
(Rennie et al., 2017) and abstractive summariza-
tion (Paulus et al., 2017), assessed with not differen-
tiable metrics. (Wu et al., 2021) tries to improve the
quality of transformer-derived pre-trained models
for generation by leveraging proximal policy opti-
mization. Other applications of deep RL include
dialogue modeling (Li et al., 2016b) and open-
domain question answering (Wang et al., 2018).

3 Methods

Our main goal is to generate plausible and coherent
utterances, which relate to unseen intents, lever-
aging the description of the intent only. These
utterances should clearly express the desired intent.
For example, if conditioned on the intent “delivery
from the grocery store” the model should generate
an utterance close to “Hi! Please bring me milk
and eggs from the nearest convenience store” or
similar.

Two scenarios can be used to achieve this goal. In
the zero-shot scenario, we train the model on a
set of seen intents S to generate utterances. If the
generation model generalizes well, the utterances
generated for unseen intents U are diverse and flu-
ent and retain intents’ semantics. In the one-shot
scenario, we utilize one utterance per unseen in-
tent U to train the generation model and learn the
semantics of this particular intent.

3.1 Zero-shot generation

Our model as depicted in Figure 1) aims to generate
plausible utterances conditioned on the intent de-
scription. We fine-tune the GPT-2 medium model

202

(Radford et al., 2019) on task-oriented utterances,
collected from several NLU benchmarks (see Sec-
tion 5.1 for more details on the dataset).

Input
Utterance

Intent
description

Language Model

Output

I want to book a table

MASK MASK MASK MASK I want to book a table

[reserve restaurant]

Figure 1: Training setup. The input an intent descrip-
tion and an utterance concatenated, the output is the
utterance.

Our approach to fine-tuning the GPT-2 model fol-
lows (Budzianowski and Vulić, 2019). Two pieces
of information, the intent description and the utter-
ance are concatenated to form the input. More pre-
cisely, the input has the following format: [intent
description] utterance. During the training phase,
the model is presented with the output obtained
from the input by masking the intent description.
The output has the following format: <MASK>, . . .,
<MASK> utterance. The full list of intents is pro-
vided in Table 4 in Appendix.

Such input allows the model to pay attention to
intent tokens while generating. The standard lan-
guage modeling objective, negative log-likelihood
loss, is used to train the model:

L (θ) = −
∑

i

|x(i)|∑

t=1

log pθ

(
x
(i)
t |intent, x(i)<t

)
.

We fine-tuned the model for one epoch to avoid
over-fitting. Otherwise, the model tends to repeat
redundant semantic constructions of the input utter-
ances. At the same time, a bias towards the words
from the training set gets formed. The parameters
of the training used were set to the following val-
ues: batch size equals to 32, learning rate equals to
5e-5, the optimizer chosen is Adam (Kingma and
Ba, 2015) with default parameters.

3.2 One-shot Generation

Motivation. The zero-shot approach to conditional
generation may degrade or even fail if (i) the in-
tent description is too short to properly reflect the
semantics of the intent, (ii) the intent description

is ambiguous or contains ambiguous words. Pro-
duced utterances may distort the initial meaning
of the intent or be meaningless at all. The model
may generate an utterance “Count the number of
people in the United States” for the intent “cal-
culator”, or “Add a book by Shakespeare to the
calendar” for a “book reading” service. Although
such examples can be treated not as outliers but
rather as real-life whimsical utterances, this is not
the desired behavior for the generation model. We
address this phenomenon as Semantic Shift and
provide experimental evidence of it in Section 5.4.

Based on these observations, we hypothesize that
the problem could be solved if we provide a single
training example to improve models’ generaliza-
tion abilities. A single example can give the model
a clue about what the virtual assistant can do with
books and which entities our calculator is designed
to calculate by gaining better world knowledge.
For this purpose, we are moving from the zero-shot
to the one-shot setting. We propose a method for
improving zero-shot generation by leveraging just
one example.

Our approach is inspired by the recent TextGAIL
(Wu et al., 2021) approach. It addresses the prob-
lem of exposure bias in pre-trained language mod-
els and proposes a GAN-like style scheme for fine-
tuning GPT-2 to produce appropriate story end-
ings using a reinforcement algorithm. As a reward,
TextGAIL uses a discriminator output trained to
distinguish real samples from generated samples.
As we are limited in using learnable discriminators
because of the lack of training data, we propose an
objective function based on a similarity score. Our
objective function produces utterances, which are
close to the reference example. At the same time,
it forces the model to generate more diverse and
plausible utterances. Table 5 in Appendix provides
reference examples used for the one-shot genera-
tion method.

Method. After zero-shot fine-tuning, we perform
a one-shot model update for each intent separately.
We perform several steps of the Proximal Policy
Optimization algorithm (Schulman et al., 2017)
with the objective function described further.

Reward. Our reward function is based on
BERTScore (Zhang et al., 2019), which serves
as the measure of contextual similarity between
generated sentences and the reference example.

203

BERTScore correlates better with human judg-
ments than other existing metrics, used to control
semantics of generated texts and detect paraphrases.
Given a reference and a candidate sentence, we em-
bed them using RoBERTa model (Liu et al., 2019).
The BERTScore F1 calculated on top of these em-
beddings is used as a part of the final reward.

It is not enough to reward the model only for the
similarity of the generated utterance to the refer-
ence one. If so, the model tends to repeat the ref-
erence example and receives the maximal reword.
We add the negative sum of frequencies of all n-
grams in the utterance to the reward function, forc-
ing the model to generate less frequent sequences.

Given an intent I and a reference example xIref,
the reward for the sentence x is calculated by the
formula:

RI(x) = Rsim(x
I
ref, x) +Rdiv(x)

Rsim(x
I
ref, x) = BERTScore(xIref, x)

Rdiv(x) =
∑

s∈n-grams(x)

(−νs)

where νs is the n-gram frequency, calculated from
all the generated utterances inside one batch.

Objective function. First, we plug this reward into
standard PPO objective function, getting intent-
specific term L

policy
I (θ). Following the TextGAIL

approach, we add KL divergence with the model
without zero-shot fine-tuning to prevent forgetting
the information from the pre-trained model. We
add an entropy regularizer, making the distribution
smoother, which leads to more diverse and fluent
sentences. According to our experiments, this term
helps avoid similar prefixes for all generated sen-
tences as n-gram reward only does not cope with
this issue. The final generator objective for maxi-
mization in the one-shot scenario for the intent I
can be written as follows:

L(I; θ) =L
policy
I (θ) + Êt[βH(pθ;I(·|st))

−αKL[pθ;I(·|st), q(·|st)]],
where st is intent description, pθ;I is the con-
ditional distribution pθ(·|I)(distribution, derived
from model with updates from PPO policy), q is an
unconditional LM distribution, calculated by GPT-
2 language model without fine-tuning. The entropy
and KL are calculated per each token, while the
Lpolicy term is calculated for the whole sentence.

3.3 Decoding strategies

Recent studies show that a properly chosen decod-
ing strategy significantly improves consistency and
diversity metrics and human scores of generated
samples for multiple generation tasks, such as story
generation (Holtzman et al., 2019), open-domain
dialogues, and image captioning (Ippolito et al.,
2019). However, to the best of our knowledge, no
method proved to be a one-size-fits-all one. We
perform experiments with several decoding strate-
gies, which improve diversity while preserving the
desired meaning. We perform an experimental eval-
uation of different decoding parameters.

Beam Search, a standard decoding mechanism,
keeps the top b partial hypotheses at every time
step and eventually chooses the hypothesis that has
the overall highest probability.

Random Sampling (top-k) (Fan et al., 2018)
greedily samples at each time step one of the top-k
most likely tokens in the distribution.

Nucleus Sampling (top-p) (Holtzman et al., 2019)
samples from the most likely tokens whose cumu-
lative probability does not exceed p.

Post Decoding Clustering (Ippolito et al., 2019)
(i) clusters generated samples using BERT-based
similarity and (ii) selects samples with the highest
probability from each cluster. It can be combined
with any decoding strategy.

4 Performance evaluation

We use several quality metrics to assess the gener-
ated data: (i) we use multiple fluency and diversity
metrics, (ii) we account for the performance of the
classifiers trained on the generated data.

Fluency. We consider fluency dependent upon the
number of spelling and grammar mistakes: the
utterance is treated as a fluent one if there are no
misspellings and no grammar mistakes. We utilize
LanguageTool (Miłkowski, 2010), a free and open-
source grammar checker, to check spelling and
correct grammar mistakes.

Diversity. Following (Ippolito et al., 2019), we
consider two types of diversity metrics:

Dist-k (Li et al., 2016a) is the total number of
distinct k-grams divided by the total number of
produced tokens in all of the utterances for an in-
tent;

204

Ent-k (Zhang et al., 2018) is an entropy of k-
grams distribution. This metric takes into consid-
eration that infrequent k-grams contribute more to
diversity than frequent ones.

Accuracy. After we obtain a large amount of gen-
erated data, we train a RoBERTa-based classifier
(Liu et al., 2019) to distinguish between different in-
tents, based on the generated utterances. As usual,
we split the generated data into two parts so that the
first part is used for training, and the second part
serves as the held-out validation set to compute the
classification accuracy accclsf . High accclsf val-
ues mean that the intents are well distinguishable,
and the utterances that belong to the same intent
are semantically consistent.

Human evaluation We perform two crowd-
sourcing studies to evaluate the quality of generated
utterances, which aim at the evaluation of semantic
correctness and fluency.

First, we asked crowd workers to evaluate semantic
correctness. We gave crowd workers an utterance
and asked them to assign one of the four provided
intent descriptions; a correct option was among
them (i.e., the one used to generate this very ut-
terance). For the sake of completeness, we added
a fifth option, “none of above”. We assess the re-
sults of this study by two metrics, accuracy and
recall@4. Accuracy acccrowd measures the num-
ber of correct answers, while recall@4 measures
the number of answers which are different from the
last “none of above” option.

Second, we asked crowd workers to evaluate the
fluency of generated utterances. Crowd workers
were provided with an utterance and were asked to
score it on a Likert-type scale from 1 to 5, where (5)
means that the utterance sounds natural, (3) means
that the utterance contains some errors, (1) means
that it is hard or even impossible to understand the
utterance. We assess the results of this study by
computing the average score.

5 Zero-shot generation experiments

5.1 Data preparation

Data for fine-tuning. We combined two NLU
datasets, namely The Schema-Guided Dialogue
Dataset (SGD) (Rastogi et al., 2020) and Natu-
ral Language Understanding Benchmark (NLU-
bench) (Coucke et al., 2018) for the fine-tuning
stage. Both datasets have a two-level hierarchical

structure: they are organized according to services
(in SGD) or scenarios (in NLU-Bench). Each ser-
vice/scenario contains several intents, typically 2-5
intents per high-level class. For example, the ser-
vice Buses 1 is divided into two intents FindBus
and BuyBusTickets.

SGD dataset consists of multi-turn task-oriented
dialogues between user and system; each user utter-
ance is labeled by service and intent. We adopted
only those utterances from each dialog in which
a new intent arose, which means the user clearly
announced a new intention. This is a common tech-
nique to remove sentences that do not express any
intents. As a result, we got three utterances per
dialog on average.

As NLU-Bench consists of user utterances, each
marked up with a scenario and intent label, we
used it without filtering. Summary statistics of the
dataset used is provided in Table 1.

SGD NLU-
bench

Total

No. of utterances 49986 25607 75593
No. of services 32 18 50
No. of intents 67 68 135
Total tokens ∼550k ∼170k ∼720k
Unique tokens ∼10.8k ∼8.3k ∼17.4k

Table 1: The total number of utterances, intents, ser-
vices and words across datasets and final statistics of
our fine-tuning data.

Intent set for generation. For the evaluation of
our generation methods, we created a set of 38
services and 105 intents1 covering the most com-
mon requirements of a typical user of a modern
dialogue system. The set includes services dedi-
cated to browsing the Internet, adjusting mobile
device settings, searching for vehicles, and others.
To adopt a zero-shot setup, we split the data into
train and test sets in the following way. Some of
the services are unseen (s ∈ U), i.e., are present
in the test set only. There are no seen services in
the train set related to unseen services. The rest
of the services are seen, i.e., present in both train
and test set (s ∈ S), but different intents put in
train and test sets. For example, Flight services
are present in the train data and Plane service is

1The full list of services and intents in both sets presented
in the Appendix

205

Zero-shot generation

Decoding strategy
Automated metrics Human evaluation

accclsf Dist-4 Ent-4 acccrowd recall@4 Fluency score

Random Sampling (b = 4) 0.82 0.50 6.20 0.63 0.87 4.77
Nucleus Sampling (p = 0.6) + PDC 0.82 0.40 5.77 0.68 0.85 4.95
Beam Search (b = 3) + PDC 0.85 0.22 4.92 0.67 0.85 4.88
Beam Search (b = 3) 0.88 0.15 4.76 0.60 0.80 4.76
Nucleus Sampling (p = 0.4) 0.89 0.25 4.95 0.72 0.90 4.81

One-shot generation

Nucleus Sampling (p = 0.4) 0.94 0.39 5.88 0.78 0.91 4.86

Table 2: Decoding strategies for zero-shot and one-shot generation. PDC stands for Post Decoding Clustering.

acccrowd recall@4 Dist-4 Ent-4

SGD+NLU-bench 0.83 0.95 0.53 5.92

Table 3: Evaluation of the test dataset, created by merging and re-splitting two datasets under consideration.

used in the test set; from Music services, intents
Lookup song and Play song were used for training,
and Create playlist and Turn on music for a testing.
To form the intent description for fine-tuning and
generation, we join service and intent labels.

5.2 Evaluation

We generated 100 examples per intent using differ-
ent decoding strategies and their parameters. For
the more detailed evaluation, we picked up the gen-
eration methods of different decoding strategies
that achieved good scores (accclsf > 80% and
Ent-4 > 4). For these utterances, we performed
a human evaluation of semantic correctness and
diversity; Table 2 compares the decoding strategies
according to various quality metrics. For a more de-
tailed evaluation of decoding strategies, see Table
2 in Appendix.

To compare the diversity of human-generated ut-
terances to our generated utterances, we evaluate
the fine-tuning dataset withEnt-4 andDist-4 met-
rics. The semantics of generated data is assessed
by acccrowd and recall@4. We present metrics for
this dataset in Table 3.

5.3 Analysis and model comparison

Fluency. Spell checking results reveal the follow-
ing issues of the generated utterances. The major
issues are related to casing: an utterance may start
in lower case, the first-person singular personal
pronoun “I” is frequently generated in lower case,

too. Punctuation issues include missing quotes,
question marks, periods, or repeated punctuation
marks. Common mistakes are omitting of a hy-
phen in the word “Wi-Fi” and “e-mail” and con-
fusing definite and indefinite articles, as well as
confusing “a”/“an”. These issues are more or less
natural to humans and thus do not prevent further
use of generated utterances. The only unnatural
issues found by LanguageTool are phrase repeti-
tion in small numbers (4 errors of this type per
10000 utterances). For examples of fluency issues
in generated data, see Table 1 in Appendix.

Diversity. Table 4 shows examples of the phrases
generated by means of different decoding strategies,
conditioning on the intent Show message, along
with diversity metrics, Dist and Ent. Higher Ent
and Dist scores indeed correspond to a more di-
verse decoding strategy. At the same time, ex-
tremely high diversity may generate utterances un-
related to the intent, expressing non-clear meaning
and lack of common sense.

Diversity / Accuracy trade-off. Figure 2 shows
the trade-off between the diversity (Ent-4) and the
accuracy (accclsf) of the generated data.

Every point corresponds to sentences generated
using different zero-shot strategies. The human
level stands for the diversity and accuracy metrics
computed for the test set as is. The beam search
scores are mainly in the top-left corner of the plane,
leading to high accuracy and low diversity values.

206

Beam Search (3) Random Sampling (3) Nucleus Sampling (0.98)
Ent-4 = 4.26 Ent-4 = 5.93 Ent-4 = 6.86

i need to know what’s going on
with my phone

i want to see my messages in
the phone book

show me a message from jean lee
for my favorite apple company

i want you show me the mes-
sage from my phone

show me my most recent mes-
sages from my phone number

how can you tell me mike with the
message

i want you show me my mes-
sages on my phone

show me the messages from the
device i was using

could you check to see if my friends
are in a group that is gossiping

i want you to show my mes-
sages on my smart phone

show me the message from my
friend jane that i sent to her

list all messages in my bbq menu
from ausy

i want to read a new message
from my friend

can you please show me the
messages from my phone

just turn on the smart mute this mon-
day night

Table 4: Utterances, generated by different decoding strategies and the diversity scores of the decoding strategies.

4.0 4.5 5.0 5.5 6.0 6.5 7.0
Ent-4

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

b
b_k3

b_p0.3 b
b_k3

b_p0.3
k3 k4

k5

k8

p0.3

p0.4
p0.5

p0.6

p0.7

p0.8

p0.9

p0.98

p0.6

p0.7
p0.8

p0.9

p0.98p1.0

Human level
BeamSearch(b)
RandomSampling(top-k)
Nucleus Sampling(p)
w/o PDC
w/ PDC

Figure 2: The trade-off between diversity (Ent-4) and
accuracy.

Top-k Random Sampling strategy does not achieve
the highest levels of accuracy. Nucleus Sampling
can generate datasets with a large range of diver-
sity and accuracy scores, depending on the cho-
sen parameter. Post-decoding clustering increases
diversity for low-diverse decoding strategies and
decreases it for high-diverse ones, moving the gen-
erator closer to the human level.

Two ways to assess accuracy. Table 2 shows
that there is no clear correspondence between
automated accuracy accclsf and human accuracy
acccrowd. Therefore accclsf cannot serve as the
final measure for the semantic consistency of the
generator. The Semantic shift problem cannot be
captured by the automated accuracy accclsf : the

model generates examples which are consistent in-
side each class, and classes are well-separated, but
the generated examples do not correspond well to
the intent descriptions.

5.4 Semantic shift problem

The semantic consistency is crucial: how well do
the generated utterances correspond to the intent
description? In most cases, zero-shot generation
is quite reliable: acccrowd > 0.8 for 57% of in-
tents, recall@4 > 0.9 for 72% of intents. How-
ever, generated utterances are distinguishable from
other classes for some intents, but they do not com-
pletely correspond to the intent description. Several
generated utterances below illustrate this issue.

Intent: Buy train tickets
Utterance: I want to buy a bus ticket. I want to
leave on the 12th of this month.
Intent: Put default wallpapers
Utterance: Put the default wallpaper for the bed-
room. I want to see it on the wall.
Intent: Calculator Find sum
Utterance: I need to find a calculator. I need to
know the value of one dollar.

For example, The bias in the fine-tuning data
causes this issue. For example, travel-related in-
tents mainly correspond to bus travel. So the model
confuses buses and trains. In other cases, the model
gets wrong the intent description due to the lack of
world knowledge. E. g. the generated phrases for
Wallpaper may be related to wallpapers in a house;
utterances for Calculator may be related to finding
some numbers like the average price of houses in
the area.

207

Intent description and reference examples Undesirable meaning Zero-
shot

One-
shot

Intent description Train Buy train ticket
Reference Make a purchase of the train ticket, not
bus. Buy a train ticket for a specific date to some
location

Meaning Get bus ticket
Example I need a bus to go there.
I need to leave on the 3rd of this
month.

97 23

Intent description Wallpapers Put default wallpaper
Reference Change the background picture of the de-
vice display to the default one. Replace current back-
ground on the device with the default one

Meaning Put new wall cover in
a house
Example I want to put the wall-
paper for my bedroom on the
wall.

74 1

Intent description Calculator Find sum
Reference Compute, calculate the sum of the given
numbers. Open the calculator and compute the sum
of the following numbers

Meaning Find some amount of
money
Example I need to find the aver-
age price of a house.

57 0

Table 5: Evaluation of semantic shift reduction by one-shot generation. The first column contains intent description
and reference utterances used for one-shot generation. The second column shows examples of typical undesirable
meaning. The last two columns show the percentage of examples with given incorrect meaning among 100 gener-
ated utterances by zero-shot and one-shot generation. Nucleus sampling (p = 0.4) is used for both methods.

6 One-shot generation experiments

Based on human evaluation of zero-shot generated
data, we select Nucleus Sampling (p = 0.4) as the
best decoding strategy and apply it further in the
one-shot scenario. Indeed, Table 2 confirms that
the one-shot generation improves all evaluation
metrics, both human and automated. The resulting
one-shot utterances are more fluent than zero-shot
utterances. The classifier trained on one-shot utter-
ances has higher accuracy values when compared
to the one trained on zero-shot utterances.

At the same time, one-shot generation restricts the
semantics of the generated utterances and reduces
the semantic shift. To illustrate, how the problem of
semantic shift diminishes, we study several cases
where the zero-shot model tends to generate utter-
ances with undesirable meaning (see Section 5.4):
bus instead of train; wallpaper as a wall cover
instead of background picture; sum as amount of
money instead of number. Table 5 shows that after
one-shot fine-tuning, the number of utterances with
undesirable meaning becomes drastically lower;
for more examples, see Table 3 in Appendix.

7 Conclusion

In this paper, we have introduced zero-shot and one-
shot methods for generating utterances from intent
descriptions. We ensure the high quality of the

generated dataset by a range of different measures
for diversity, fluency, and semantic correctness, in-
cluding a crowd-sourcing study. We show that the
one-shot generation outperforms the zero-shot one
based on all metrics considered. Using only a sin-
gle utterance for an unseen intent to fine-tune the
model increases diversity and fluency. Moreover,
fine-tuning on a single utterance diminishes the
semantic shift problem and helps the model gain
better world knowledge.

Virtual assistants in real-life setup should be highly
adaptive. In some tasks, we need much more data
than is currently available: exploring model robust-
ness to distribution change, finding the best archi-
tecture, dealing with a fast-growing set of intents
(the number of intents could be thousands). If the
intents to support come from different providers,
they pose diverse semantics, style, and noises.
Adaptation to different user groups and individ-
ual users, having different intent usage distribution,
is another crucial problem. We need large-scale
and flexible datasets to approach these tasks, which
can hardly be collected via crowd-sourcing from
external sources.

Zero- or one-shot generation is an appealing tech-
nique. The model obtains the background knowl-
edge about the world and the domain during pre-
training. Next, only small amounts of data are

208

needed to fine-tune the model. State-of-the-art
pre-trained language models, fine-tuned in a zero-
or one-shot fashion, generate fluent and diverse
phrases close to real-life utterances. The meaning
of the intent and essential details, such as book ti-
tles, movie genres, expression of speech acts, or
emoticons, are preserved. What is more, manip-
ulating a decoding strategy makes it possible to
balance the generated utterances’ diversity, seman-
tic consistency, and correctness.

Our future work directions include assessing the
downstream performance of proposed generation
methods for an end-user application and evaluating
slot-filling performance. The proposed approach
can be tested to generate utterances specific to in-
terest groups.

Acknowledgements

Ekaterina Artemova is partially supported by the
framework of the HSE University Basic Research
Program.

References
Paweł Budzianowski and Ivan Vulić. 2019. Hello, it’s
gpt-2-how can i help you? towards the use of pretrained
language models for task-oriented dialogue systems. In
Proceedings of the 3rd Workshop on Neural Generation
and Translation, pages 15–22.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. SMOTE: synthetic
minority over-sampling technique. Journal of artificial
intelligence research, 16:321–357.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and
Jun Zhao. 2017. Automatically Labeled Data Genera-
tion for Large Scale Event Extraction. In Proceedings
of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
409–419.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020. Few-shot nlg with pre-
trained language model. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 183–190.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Sta-
tistical Machine Translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734.

Emilie Colin, Claire Gardent, Yassine M’rabet, Shashi
Narayan, and Laura Perez-Beltrachini. 2016. The
webnlg challenge: Generating text from dbpedia data.

In Proceedings of the 9th International Natural Lan-
guage Generation conference, pages 163–167.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. SNIPS Voice Plat-
form: an Embedded Spoken Language Understanding
System for Private-by-Design Voice Interfaces. arXiv
preprint arXiv:1805.10190.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and Play Language Mod-
els: A Simple Approach to Controlled Text Generation.
In International Conference on Learning Representa-
tions.

Chunning Du, Haifeng Sun, Jingyu Wang, Qi Qi,
Jianxin Liao, Chun Wang, and Bing Ma. 2019. In-
vestigating Capsule Network and Semantic Feature on
Hyperplanes for Text Classification. In Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 456–465.

Hady Elsahar, Christophe Gravier, and Frederique
Laforest. 2018. Zero-shot question generation from
knowledge graphs for unseen predicates and entity
types. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 218–228.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical Neural Story Generation. Proceedings of the
56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers).

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t Until the Fi-
nal Verb Wait: Reinforcement learning for Simultane-
ous Machine Translation. In Proceedings of the 2014
Conference on empirical methods in natural language
processing (EMNLP), pages 1342–1352.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The Curious Case of Neural Text
Degeneration. In International Conference on Learn-
ing Representations.

Daphne Ippolito, Reno Kriz, Maria Kustikova, João
Sedoc, and Chris Callison-Burch. 2019. Comparison
of Diverse Decoding Methods from Conditional Lan-
guage Models. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pages 3752–3762.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial Example Generation
with Syntactically Controlled Paraphrase Networks. In
Proceedings of NAACL-HLT, pages 1875–1885.

Nitish Shirish Keskar, Bryan McCann, Lav R Varsh-
ney, Caiming Xiong, and Richard Socher. 2019. CTRL:

209

A conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction
via reading comprehension. In Proceedings of the
21st Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333–342.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Nat-
ural Language Generation, Translation, and Compre-
hension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A Diversity-Promoting Objec-
tive Function for Neural Conversation Models. Pro-
ceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016b. Deep Rein-
forcement Learning for Dialogue Generation. In Pro-
ceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Ryan Thomas Lowe, Nissan Pow, Iulian Vlad Ser-
ban, Laurent Charlin, Chia-Wei Liu, and Joelle Pineau.
2017. Training end-to-end dialogue systems with
the ubuntu dialogue corpus. Dialogue & Discourse,
8(1):31–65.

Tomas Mikolov and Geoffrey Zweig. 2012. Con-
text Dependent Recurrent Neural Network Language
Model. In 2012 IEEE Spoken Language Technology
Workshop (SLT), pages 234–239. IEEE.

Marcin Miłkowski. 2010. Developing an Open-source,
Rule-based Proofreading Tool. Software: Practice and
Experience, 40(7):543–566.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Thirty-First AAAI Conference on Artificial
Intelligence.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2019. What is this article about? extreme summariza-
tion with topic-aware convolutional neural networks.
Journal of Artificial Intelligence Research, 66:243–
278.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A Deep Reinforced Model for Abstractive Sum-
marization. arXiv preprint arXiv:1705.04304.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pages 8689–8696.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-critical Se-
quence Training for Image Captioning. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 7008–7024.

Kyle Richardson, Sina Zarrieß, and Jonas Kuhn. 2017.
The code2text challenge: Text generation in source li-
braries. In Proceedings of the 10th International Con-
ference on Natural Language Generation, pages 115–
119.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy op-
timization algorithms.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving Neural Machine Translation Models
with Monolingual Data. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 86–96.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems,
27:3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in neural information processing
systems, pages 5998–6008.

Pavlos Vougiouklis, Hady Elsahar, Lucie-Aimée Kaf-
fee, Christophe Gravier, Frédérique Laforest, Jonathon
Hare, and Elena Simperl. 2018. Neural wikipedian:
Generating textual summaries from knowledge base
triples. Journal of Web Semantics, 52:1–15.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry Tesauro,
Bowen Zhou, and Jing Jiang. 2018. R3: Reinforced
Ranker-Reader for Open-domain Question Answering.
In Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Jason Wei and Kai Zou. 2019. EDA: Easy Data
Augmentation Techniques for Boosting Performance
on Text Classification Tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint

210

Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 6383–6389.

Qingyang Wu, Lei Li, and Zhou Yu. 2021. Textgail:
Generative adversarial imitation learning for text gen-
eration. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 14067–14075.

C Xia, C Xiong, and PS Yu. 2021. Pseudo siamese
network for few-shot intent generation. In ACM SIGIR.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019.
Benchmarking zero-shot text classification: Datasets,
evaluation and entailment approach. In Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3905–3914.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with semantic
attention. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4651–
4659.

Yunlong Yu, Zhong Ji, Zhongfei Zhang, and Jungong
Han. 2019. Episode-based prototype generating net-
work for zero-shot learning.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. BERTScore: Eval-
uating Text Generation with BERT. In International
Conference on Learning Representations.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 584–
594.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
Xiujun Li, Chris Brockett, and Bill Dolan. 2018. Gen-
erating Informative and Diverse Conversational Re-
sponses via Adversarial Information Maximization.
Advances in Neural Information Processing Systems.

Tiancheng Zhao and Maxine Eskenazi. 2018. Zero-
shot dialog generation with cross-domain latent actions.
In Proceedings of the 19th Annual SIGdial Meeting on
Discourse and Dialogue, pages 1–10.

211

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 212–225,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

SAPPHIRE: Approaches for Enhanced Concept-to-Text Generation

Steven Y. Feng, Jessica Huynh, Chaitanya Narisetty, Eduard Hovy, Varun Gangal
Language Technologies Institute

Carnegie Mellon University
{syfeng,jhuynh,cnariset,hovy,vgangal}@cs.cmu.edu

Abstract

We motivate and propose a suite of simple
but effective improvements for concept-to-text
generation called SAPPHIRE: Set Augmenta-
tion and Post-hoc PHrase Infilling and REcom-
bination. We demonstrate their effectiveness
on generative commonsense reasoning, a.k.a.
the CommonGen task, through experiments us-
ing both BART and T5 models. Through ex-
tensive automatic and human evaluation, we
show that SAPPHIRE noticeably improves
model performance. An in-depth qualitative
analysis illustrates that SAPPHIRE effectively
addresses many issues of the baseline model
generations, including lack of commonsense,
insufficient specificity, and poor fluency.

1 Introduction

There has been increasing interest in constrained
text generation tasks which involve construct-
ing natural language outputs under certain pre-
conditions, such as particular words that must ap-
pear in the output sentences. A related area of
work is data-to-text natural language generation
(NLG), which requires generating natural language
descriptions of structured or semi-structured data
inputs. Many constrained text generation and NLG
tasks share commonalities, one of which is their
task formulation: a set of inputs must be converted
into natural language sentences. This set of inputs
can be, in many cases, thought of as concepts, e.g.
higher-level words or structures that play an impor-
tant role in the generated text.

With the increased popularity of Transformer-
based models and their application to many NLP
tasks, performance on many text generation tasks
has improved considerably. Much progress in re-
cent years has been from the investigation of model
improvements, such as larger and more effectively
pretrained language generation models. However,

are there simple and effective approaches to im-
proving performance on these tasks that can come
from the data itself? Further, can we potentially
use the outputs of these models themselves to
further improve their task performance - a “self-
introspection” of sorts?

In this paper, we show that the answer is yes.
We propose a suite of simple but effective improve-
ments for concept-to-text generation called SAP-
PHIRE: Set Augmentation and Post-hoc PHrase
Infilling and REcombination. Specifically, SAP-
PHIRE is composed of two major approaches: 1)
the augmentation of input concept sets (§4.1), 2)
the recombination of phrases extracted from base-
line generations into more fluent and logical text
(§4.2). These are mainly model-agnostic improve-
ments that rely on the data itself and the model’s
own initial generations, respectively.1

We focus on generative commonsense reasoning,
or CommonGen (Lin et al., 2020), which involves
generating logical sentences describing an every-
day scenario from a set of concepts, which in this
case are individual words that must be represented
in the output text in some form. CommonGen is a
challenging instance of constrained text generation
that assesses 1) relational reasoning abilities using
commonsense knowledge, and 2) compositional
generalization capabilities to piece together con-
cept combinations. Further, CommonGen’s task
formulation and evaluation methodology are quite
broadly applicable and encompassing, making it a
good benchmark for general constrained text gen-
eration capability. Further, this is an opportune mo-
ment to investigate this task as commonsense abil-
ity of NLP models, particularly for generation, has
received increasing community attention through
works like COMET (Bosselut et al., 2019).

We perform experiments on varying sizes of two

1Code at https://github.com/styfeng/SAPPHIRE

212

Dataset Stats TrainCG DevO TestO DevCG TestCG

concept sets 32,651 993 1,497 240 360
size = 3 25,020 493 - 120 -
size = 4 4,240 250 747 60 180
size = 5 3,391 250 750 60 180
sentences 67,389 4,018 7,644 984 1583

Table 1: CommonGen dataset statistics.

state-of-the-art Transformer-based language gener-
ation models: BART (Lewis et al., 2020) and T5
(Raffel et al., 2020). We first conduct an exten-
sive correlation study (§3.1) and qualitative anal-
ysis (§3.2) of these models’ generations after sim-
ply training on CommonGen. We find that perfor-
mance is positively correlated with concept set size,
motivating concept set augmentation. We also find
that generations contain issues related to common-
sense and fluency which can possibly be addressed
through piecing the texts back together in different
ways, motivating phrase recombination.

Fleshing out our first intuition - we devise two
methods to augment concepts from references dur-
ing training through extracted keywords (§4.1.1)
and attention matrices (§4.1.2). For the phrase re-
combination intuition, we propose two realizations
based on a new training stage (§4.2.1) and masked
infilling (§4.2.2). Finally, through comprehensive
evaluation (§6), we show how the SAPPHIRE suite
drives up model performance across metrics, be-
sides addressing aforementioned baseline deficien-
cies on commonsense, specificity, and fluency.

2 Dataset, Models, and Metrics

2.1 CommonGen Dataset

The CommonGen dataset is split into train, dev, and
test splits, covering a total of 35,141 concept sets
and 79,051 sentences. The concept sets range from
3 keywords to 5 keywords long. As the original test
set is hidden, we split the provided dev set into a
new dev and test split for the majority of our exper-
iments while keeping the training split untouched.
Note that we also evaluate our SAPPHIRE models
on the original test set with help from the Common-
Gen authors (see §6.1). We will henceforth refer
to these new splits as trainCG, devCG, and testCG,
and the original dev and test splits as devO and
testO. The statistics of our new splits compared to
the originals can be found in Table 1. We attempt to
keep the relative sizes of the new dev and test splits
and the distribution of concept set sizes within each
split similar to the originals.

Model\Metrics BLEU-4 CIDEr SPICE
Reported BART-large 27.50 14.12 30.00

Reported T5-base 18.00 9.73 23.40
Reported T5-Large 30.60 15.84 31.80

Our BART-base 28.30 15.07 30.35
Our BART-large 30.20 15.72 31.20

Our T5-base 31.00 16.37 32.05
Our T5-large 33.60 17.02 33.45

Table 2: Performance of our re-implemented CommonGen
models on devO compared to a subset of original numbers
reported in Lin et al. (2020). For our models, results are aver-
aged over two seeds. The original authors did not experiment
with BART-base. Bold indicates where we match or exceed
the reported metric. See §2.3 for explanations of the metrics
and Appendix B for a full metric comparison table.

2.2 Models: T5 and BART
We perform experiments using pretrained language
generators, specifically BART and T5 (both base
and large versions). BART (Lewis et al., 2020) is
a Transformer-based seq2seq model trained as a
denoising autoencoder to reconstruct original text
from noised text. T5 (Raffel et al., 2020) is an-
other seq2seq Transformer with strong multitask
pretraining. We use their HuggingFace codebases.

We train two seeded instances of each model
on trainCG, evaluating their performance on devO,
and comparing our numbers to those reported in
Lin et al. (2020) to benchmark our implementa-
tions. These essentially serve as the four baseline
models for our ensuing experiments. We follow
the hyperparameters from Lin et al. (2020), choose
the epoch reaching highest ROUGE-2 on the dev
split, and use beam search for decoding.2 From
Table 2, we see that our re-implemented models
match or exceed the original reported results on
most metrics across different models.

2.3 Evaluation Metrics
For our experiments, we use a gamut of automatic
evaluation metrics. These include those used by
Lin et al. (2020), such as BLEU (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015), SPICE (An-
derson et al., 2016), and Coverage (Cov). Barring
Cov, these metrics measure the similarity between
generated text and human references. Cov mea-
sures the average % of input concepts covered by
the generated text. We also introduce BERTScore
(Zhang et al., 2020), which measures token-by-
token BERT (Devlin et al., 2019) embeddings sim-
ilarity. It also measures the similarity between the
generated text and human references, but on a more
semantic (rather than surface token) level. When

2See Appendix A for further details.

213

reporting BERTScore, we multiply by 100. For all
metrics, higher corresponds to better performance.

3 Initial Analysis

3.1 Correlation Study

We begin by conducting an analysis of the four
baselines implemented and discussed in §2.2,
which we refer to henceforth as BART-base-BL,
BART-large-BL, T5-base-BL, and T5-large-BL.
One aspect we were interested in is whether the
number of input concepts affects the quality of gen-
erated text. We conduct a comprehensive correla-
tion study of the performance of the four baselines
on devO w.r.t. the number of input concepts.

As seen from Table 3, the majority of the met-
rics are positively correlated with concept set size
across the models. ROUGE-L, CIDEr, and SPICE
have small correlations that are mainly statistically
insignificant, demonstrating that they are likely
uncorrelated with concept set size. Coverage is
strongly negatively correlated, showing that there
is a higher probability of concepts missing from
the generated text as concept set size increases.

There are two major takeaways from this. Firstly,
increased concept set size results in greater over-
all performance. Secondly, models have difficulty
with coverage given increased concept set size.
This motivates our first set of improvements, which
involves augmenting the concept sets with addi-
tional words in hopes of 1) increasing performance
of the models and 2) improving their coverage, as
we hope that training with more input concepts
will help models learn to better cover them in the
generated text. This is discussed more in §4.1.

3.2 Qualitative Analysis

We conduct a qualitative analysis of the baseline
model outputs. We observe that several outputs
are more like phrases than full coherent sentences,
e.g. “body of water on a raft”. Some generated
texts are also missing important words, e.g. “A
listening music and dancing in a dark room” is
clearly missing a noun before listening. A large
portion of generated texts are quite generic and
bland, e.g. “Someone sits and listens to someone
talk”, while more detailed and specific statements
are present in the human references. This can be
seen as an instance of the noted “dull response”
problem faced by generation models (Du and Black,
2019; Li et al., 2016), where they prefer safe, short,
and frequent responses independent of the input.

Another issue is the way sentences are pieced
together. Certain phrases in the outputs are either
joined in the wrong order or with incorrect con-
nectors, leading to sentences that appear to lack
commonsense. For example, “body of water on
a raft” is illogical, and the phrases “body of wa-
ter” and “a raft” are pieced together incorrectly.
Example corrections include “body of water carry-
ing a raft” and “a raft on a body of water”. The
first changes the adverb on joining them to the verb
carrying, and the second pieces them together in
the opposite order. A similar issue occurs with the
{horse, carriage, draw} example in Table 4.

Some major takeaways are that many genera-
tions are: 1) phrases rather than full sentences and
2) poorly pieced together and lack fluency and logic
compared to human references. This motivates our
second set of improvements, which involves recom-
bining extracted phrases from baseline generations
into hopefully more fluent and logical sentences.
This is discussed more in §4.2.

4 SAPPHIRE Methodology

4.1 Concept Set Augmentation

The first set of improvements is concept set aug-
mentation, which involves augmenting the input
concept sets. We try augmentation using up to 1
to 5 additional words, and train-time augmentation
both with and without test-time augmentation. We
observed that test-time augmentation resulted in
inconsistent results that were not as effective, and
stick with train-time only augmentation. During
training, rather than feeding in the original concept
sets as inputs, we instead feed in these augmented
concept sets which consist of more words. The
expected outputs are the same human references.
During test-time, we simply feed in the original
concept sets (without augmentation) as inputs.

4.1.1 Keyword-based Augmentation

The first type of augmentation we try is keyword-
based, or Kw-aug. We augment the trainCG con-
cept sets with keywords extracted from the human
references using KeyBERT3 (Grootendorst, 2020).
We calculate the average semantic similarity (using
cosine similarity of BERT embeddings) of the can-
didate keywords to the original concept set. At each
stage of augmentation, we add the remaining can-

3https://github.com/MaartenGr/KeyBERT

214

BART-base BART-large T5-base T5-large
Correlation PCC ρ τ PCC ρ τ PCC ρ τ PCC ρ τ
ROUGE-1 0.08 0.09 0.07 0.10 0.12 0.09 0.04 0.05 0.04 0.10 0.11 0.09
ROUGE-2 0.05 0.08 0.07 0.05 0.10 0.07 0.03 0.07 0.05 0.06 0.09 0.07
ROUGE-L 0.00* 0.01* 0.01* 0.00* 0.02* 0.01* -0.03 -0.01* -0.01* 0.02* 0.04 0.03
BLEU-1 0.08 0.08 0.06 0.14 0.14 0.11 0.00* 0.03* 0.02* 0.08 0.11 0.09
BLEU-2 0.06 0.06 0.04 0.11 0.11 0.08 0.03* 0.04* 0.03* 0.09 0.10 0.07
BLEU-3 0.08 0.06 0.05 0.09 0.09 0.06 0.04* 0.03* 0.02* 0.09 0.08 0.06
BLEU-4 0.05 0.05 0.04 0.05 0.07 0.05 0.04* 0.02* 0.02* 0.08 0.08 0.06
METEOR 0.05 0.08 0.06 0.06 0.09 0.07 0.02* 0.04 0.03 0.06 0.08 0.06
CIDEr -0.02* -0.03* -0.02* 0.01* 0.02* 0.02* -0.08 -0.10 -0.07 0.00* 0.00* 0.00*
SPICE -0.02* -0.01* -0.01* 0.01* 0.02* 0.01* -0.02* -0.02* -0.02* 0.02* 0.03* 0.02*
BERTScore 0.04 0.03 0.02 0.06 0.06 0.05 0.04 0.03 0.02 0.05 0.04 0.03
Coverage -0.26 -0.31 -0.27 -0.07 -0.13 -0.11 -0.38 -0.42 -0.37 -0.26 -0.31 -0.28

Table 3: Correlations on devO between concept set size and evaluation metrics for our four baseline models (over the results
from both seeds); values marked with * are statistically insignificant. PCC refers to Pearson correlation coefficient, ρ to
Spearman’s rank correlation coefficient, and τ to Kendall rank correlation coefficient.

Concept Set Baseline Generation Human Reference
{horse, carriage, draw} horse drawn in a carriage The carriage is drawn by the horse.
{fish, catch, pole} fish caught on a pole The man used a fishing pole to catch fish.

{listen, talk, sit} Someone sits and listens to someone talk. The man told the boy to sit down
and listen to him talk.

{bathtub, bath, dog, give} A dog giving a bath in a bathtub. The teenager made a big mess in the
bathtub giving her dog a bath.

Table 4: Example generations from our baseline models versus human references.

Method Original Concept Set Added Words
Kw-aug {match, stadium, watch} {soccer, league, fans}
Kw-aug {family, time, spend} {holidays}
Kw-aug {head, skier, slope} {cabin}
Att-aug {boat, lake, drive} {fisherman}
Att-aug {family, time, spend} {at, holidays}
Att-aug {player, match, look} {tennis, on, during}

Table 5: Example trainCG concept set augmentations.

didate with the highest similarity.4 Some augmen-
tation examples can be found in Table 5. We train
our BART and T5 models using these augmented
sets, and call the resulting models BART-base-KW,
BART-large-KW, T5-base-KW, and T5-large-KW.

4.1.2 Attention-based Augmentation
We also try attention-based augmentation, or Att-
aug. We augment the trainCG concept sets with
the words that have been most attended upon in
aggregate by the other words in the human refer-
ences. We pass the reference texts through BERT
and return the attention weights at the last layer. At
each stage of augmentation, we add the remaining
candidate word with the highest attention. Adding
the least attended words would not be effective as
many are words with little meaning (e.g. simple
articles such as “a” and “the”). Some augmenta-
tion examples can be found in Table 5. We train
our BART and T5 models using these augmented

4We also tried using the least semantically similar key-
words, but results were noticeably worse.

sets, and call the resulting models BART-base-Att,
BART-large-Att, T5-base-Att, and T5-large-Att.

4.2 Phrase Recombination
The second set of improvements is phrase recom-
bination, which involves breaking down sentences
into phrases and reconstructing them into new sen-
tences which are hopefully more logical and coher-
ent. For training, we use YAKE (Campos et al.,
2018) to break down the trainCG human references
into phrases of up to 2, 3, and 5 n-grams long,
and ensure extracted phrases have as little overlap
as possible. During validation and testing, since
we assume no access to ground-truth human refer-
ences, we instead use YAKE to extract keyphrases
from our baseline model generations.

We ignore extracted 1-grams as this approach fo-
cuses on phrases. We find words from the original
concept set which are not covered by our extracted
keyphrases and include them to ensure that cover-
age is maintained. Essentially, we form a new con-
cept set which can also consist of phrases. Some
examples can be found in Table 6.

4.2.1 Phrase-to-text (P2T)
To piece the phrases back together, we try phrase-
to-text (P2T) generation by training BART and
T5 to generate full sentences given our new input
sets, and call these models BART-base-P2T, BART-
large-P2T, T5-base-P2T, and T5-large-P2T. During

215

Original Text Extracted Keyphrases New Input Concept Set
A dog wags his tail at the boy. dog wags his tail {dog wags his tail}

hanging a painting on a wall at home hanging a painting {hanging a painting, wall}
a herd of many sheep crowded together in a stable herd of many sheep crowded {herd of many sheep crowded,

waiting to be dipped for ticks and other pests dip, waiting}
a soldier takes a knee while providing security knee while providing security, {knee while providing security,

during a patrol outside of the village. patrol outside of the village patrol outside of the village, take}
Table 6: Example keyphrases (up to 5-grams) extracted using YAKE from human-written training references.

training, we choose a single random permutation
of each training input set (consisting of extracted
keyphrases from the human references), with the
elements separated by <s>, and the human refer-
ences as the outputs. This is in order for the models
to learn to be order-agnostic, which is important
as one desired property of phrase recombination
is the ability to combine phrases in different or-
ders, as motivated by the qualitative analysis in
§3.2. During inference or test-time, we feed in a
single random permutation of each test-time input
set, consisting of extracted keyphrases from the
corresponding baseline model’s outputs.

4.2.2 Mask Infilling (MI)
This method interpolates text between test-time in-
put set elements with no training required. For
example, given a test-time input set {c1,c2}, we
feed in “<mask> c1 <mask> c2 <mask>” and

“<mask> c2 <mask> c1 <mask>” to an MI model
to fill the <mask> tokens with text. We use
BART-base and BART-large for MI, and call the
approaches BART-base-MI and BART-large-MI,
respectively. We use BART-base-MI on input sets
consisting of extracted keyphrases from BART-
base-BL and T5-base-BL, and BART-large-MI on
input sets consisting of extracted keyphrases from
BART-large-BL and T5-large-BL. We also try MI
on the original concept sets (with no phrases).

One difficulty is determining the right input set
permutation. Many contain ≥5 elements (mean-
ing ≥5!=120 permutations), making exhaustive MI
infeasible. Order of elements for infilling can re-
sult in vastly different outputs (see §6.3), as certain
orders are more natural. Humans perform their
own intuitive reordering of given inputs when writ-
ing, and the baselines and other approaches (e.g.
Kw-aug, P2T) learn to mainly be order agnostic.

We use perplexity (PPL) from GPT-2 (Radford
et al., 2019) to pick the “best” permutations for
MI. We feed up to 120 permutations of each input
set (with elements separated by spaces) to GPT-2
to extract their PPL, and keep the 10 with lowest
PPL per example. This is not a perfect approach,

but is likely better than random sampling. For each
example, we perform MI on these ten permutations,
and select the output with lowest GPT-2 PPL.

We found BART-large-MI outputs contain URLs,
news agency names in brackets, etc. Hence, we
post-process before output selection and evalua-
tion. BART-base-MI does not do this. One possi-
ble explanation is that BART-large may have been
pretrained on more social media and news data.

5 Experiments

5.1 Model Training and Selection

For training Kw-aug, Att-aug, and P2T models, we
follow baseline hyperparameters, barring learning
rate (LR) which is tuned per-method. We train two
seeds per model. See Appendix A for more.

For each model, we choose the epoch corre-
sponding to highest ROUGE-2 on the dev split,
and use beam search for decoding. The dev and
test splits are different. For Kw-aug and Att-aug
models, the splits are simply devCG and testCG (or
testO), as we do not perform test-time augmenta-
tion. For P2T, the splits are devCG and testCG (or
testO) but with the input sets replaced with new
ones that include keyphrases extracted from the
corresponding baseline model’s outputs.

The number of words to augment for Kw-aug
and Att-aug (from 1 to 5) and maximum n-gram
length of extracted keyphrases for P2T (2, 3, or
5) are hyperparameters. While we train separate
versions of each model corresponding to different
values of these, the final chosen model per method
and model combination (such as BART-base-KW)
is the one corresponding to the hyperparameter
value that performs best on the dev split when aver-
aged over both seeds. For MI, which involves no
training, we select the variation (MI on the origi-
nal concept set or new input sets with keyphrases
up to 2, 3, or 5 n-grams) per model that performs
best on the dev split, and only perform infilling
using extracted keyphrases from the first seed base-
line generations. These are the selected models we
report the testCG and testO results of in §6.

216

5.2 Human Evaluation

We ask annotators to evaluate 48 testCG examples
from the human references, baseline outputs, and
various method (excluding MI) outputs for BART-
large and T5-base. We choose these two as they
cover both model types and sizes, and exclude MI
as it performs noticeably worse on the automatic
evaluation (see §6.1). See Appendix §C for more.

The annotators evaluate fluency and common-
sense of the texts on 1-5 scales. Fluency, also
known as naturalness, is a measure of how human-
like a text is. Commonsense is the plausibility of
the events described. We do not evaluate cover-
age as automatic metrics suffice; coverage is more
objective compared to fluency and commonsense.

6 Results and Analysis

Automatic evaluation results on testCG can be
found in Tables 7, 8, 9, 10, and results on testO
in Table 12. Human evaluation results on testCG

can be found in Table 13. Single keyword aug-
mentation performs best for Kw-aug across mod-
els. Two word augmentation performs best for
Att-aug, except T5-base where three word augmen-
tation performs best. Keyphrases up to 2-grams
long perform best for P2T, except T5-large where
3-grams perform best. All models perform best
with keyphrases up to 5-grams long for MI. These
are the results reported here, and graphs displaying
other hyperparameter results on testCG are in Ap-
pendix D. Table 14 contains qualitative examples,
and more can be found in Appendix §E.

6.1 Automatic Evaluation

We see from Tables 7 to 10 that SAPPHIRE meth-
ods outperform the baselines on most/all metrics
across the models on testCG. The only exception
is MI, which performs worse other than coverage.

For BART-base, Kw-aug, Att-aug, and P2T all
outperform the baseline across the metrics. For
BART-large, Att-aug and P2T outperform the base-
line heaviest, with noticeable increases to all met-
rics. For T5-base, all methods outperform the base-
line, with Kw-aug performing best. Att-aug per-
forms best for T5-large, and SAPPHIRE appears
relatively less effective for T5-large. T5-large is
the strongest baseline, and hence further improving
its performance is possibly more difficult.

MI performs worse across most metrics except
coverage, likely as MI almost always keeps inputs
intact in their exact form. This is however possibly

one reason for its low performance; it is less flex-
ible. Further, as discussed in §4.2.2, MI is highly
dependent on the input order. See §6.3 for more.

Table 11 contains statistical significance p-
values from Pitman’s permutation tests (Pitman,
1937) for what we adjudged to be the best perform-
ing method(s) per model compared to correspond-
ing baselines on testCG. Most metrics across the
methods are significant compared to the baselines.

From Table 12, we see that SAPPHIRE models
outperform the corresponding baselines reported in
Lin et al. (2020) on testO. T5-large-KW and P2T
outperform EKI-BART (Fan et al., 2020) and KG-
BART (Liu et al., 2021) on both SPICE and BLEU-
4, which are two SOTA published CommonGen
models that use external knowledge from corpora
and KGs. As SPICE is used to rank the Common-
Gen leaderboard5, T5-large-KW and P2T would
place highly. SAPPHIRE models do lag behind
the SOTA published RE-T5 (Wang et al., 2021),
showing potential for further improvement. Fur-
ther, the BART-large SAPPHIRE models perform
worse than EKI-BART and KG-BART, but not by a
substantial margin. We emphasize again that SAP-
PHIRE simply uses the data itself and the base-
line generations, rather than external knowledge.
Hence, SAPPHIRE’s performance gains over the
baselines and certain SAPPHIRE models match-
ing or outperforming SOTA models that leverage
external information is quite impressive.

6.2 Human Evaluation

Table 13 shows human evaluation results on testCG

for human references and methods (excluding MI)
using BART-large and T5-base. SAPPHIRE gen-
erally outperforms the baselines. BART-large-P2T
performs noticeably higher on both fluency and
commonsense. For T5-base, all three methods out-
perform the baseline across both metrics. Com-
pared to humans, our best methods have compa-
rable fluency, but still lag noticeably on common-
sense, demonstrating that human-level generative
commonsense reasoning is indeed challenging.

6.3 Qualitative Analysis

We see from Table 14 that many baseline outputs
contain issues found in §3.2, e.g. incomplete or
illogical sentences. Human references are fluent,
logical, and sometimes more creative (e.g. example
5), which all methods still lack in comparison.

5https://inklab.usc.edu/CommonGen/leaderboard.html

217

BART-base
Metrics\Methods Baseline Kw-aug Att-aug P2T BART-base-MI

ROUGE-1 43.96±0.03 45.01±0.00 44.99±0.10 44.87±0.42 44.83
ROUGE-2 17.31±0.02 18.33±0.06 18.18±0.04 18.04±0.13 17.44
ROUGE-L 36.65±0.00 37.28±0.24 37.76±0.12 37.28±0.11 34.47
BLEU-1 73.20±0.28 73.00±0.85 73.00±0.14 73.15±1.06 69.90
BLEU-2 54.50±0.14 55.35±0.49 55.70±0.28 55.65±0.35 49.00
BLEU-3 40.40±0.14 41.35±0.21 41.40±0.28 41.85±0.35 34.70
BLEU-4 30.10±0.14 31.10±0.14 30.95±0.07 31.75±0.35 24.70

METEOR 30.35±0.35 30.50±0.28 30.70±0.14 31.05±0.49 29.70
CIDEr 15.56±0.10 16.18±0.12 15.68±0.00 16.14±0.33 14.43
SPICE 30.05±0.07 30.45±0.07 30.65±0.35 30.95±0.21 28.40

BERTScore 59.19±0.32 59.32±0.25 59.72±0.03 59.54±0.05 53.73
Coverage 90.43±0.17 91.44±0.95 91.23±0.21 91.47±2.93 96.23

Table 7: Automatic evaluation results (with standard deviations) for BART-base on testCG, averaged over two seeds for trained
models. Bold corresponds to best performance on that metric.

BART-large
Metrics\Methods Baseline Kw-aug Att-aug P2T BART-large-MI

ROUGE-1 45.67±0.25 46.71±0.05 46.78±0.14 46.26±0.29 41.69
ROUGE-2 18.77±0.04 19.64±0.05 19.92±0.19 19.37±0.17 15.40
ROUGE-L 37.83±0.29 38.38±0.01 38.53±0.03 38.22±0.16 33.32
BLEU-1 74.45±0.21 76.20±0.99 76.55±0.92 77.10±0.85 63.90
BLEU-2 56.25±0.78 58.60±0.14 59.60±0.00 58.95±0.64 42.40
BLEU-3 42.15±0.49 44.00±0.00 45.20±0.42 44.70±0.14 29.20
BLEU-4 32.10±0.42 33.40±0.28 34.50±0.42 34.25±0.21 20.50

METEOR 31.70±0.14 32.60±0.57 32.65±0.49 33.00±0.14 28.30
CIDEr 16.42±0.09 17.37±0.08 17.49±0.49 17.50±0.02 12.32
SPICE 31.85±0.21 33.15±0.49 33.30±0.28 33.60±0.00 26.10

BERTScore 59.95±0.29 60.83±0.29 60.87±0.45 61.30±0.66 48.56
Coverage 94.49±0.53 96.74±1.20 96.02±1.17 97.02±0.15 95.33

Table 8: Automatic evaluation results (with standard deviations) for BART-large on testCG, averaged over two seeds for trained
models. Bold corresponds to best performance on that metric.

T5-base
Metrics\Methods Baseline Kw-aug Att-aug P2T BART-base-MI

ROUGE-1 44.63±0.13 46.42±0.01 46.75±0.11 45.73±0.27 44.92
ROUGE-2 18.40±0.14 19.36±0.24 19.20±0.17 18.51±0.11 17.98
ROUGE-L 37.60±0.16 38.68±0.08 38.51±0.21 38.07±0.10 34.88
BLEU-1 73.60±0.85 76.25±0.35 76.00±0.28 75.65±1.20 70.20
BLEU-2 57.00±0.71 59.55±0.64 58.75±0.35 58.15±0.64 50.50
BLEU-3 42.75±0.49 45.10±0.85 44.00±0.28 43.45±0.07 36.20
BLEU-4 32.70±0.42 34.45±0.92 33.30±0.28 33.10±0.28 26.10

METEOR 31.05±0.49 31.85±0.07 31.90±0.14 32.05±0.35 30.20
CIDEr 16.26±0.25 17.37±0.04 17.04±0.21 16.84±0.11 14.83
SPICE 31.95±0.07 32.75±0.21 32.85±0.21 33.20±0.14 29.70

BERTScore 61.40±0.34 61.88±0.06 61.28±0.10 61.46±0.01 55.04
Coverage 90.96±1.77 94.92±0.45 96.00±0.03 94.78±0.83 96.03

Table 9: Automatic evaluation results (with standard deviations) for T5-base on testCG, averaged over two seeds for trained
models. Bold corresponds to best performance on that metric.

T5-large
Metrics\Methods Baseline Kw-aug Att-aug P2T BART-large-MI

ROUGE-1 46.26±0.17 47.47±0.16 47.40±0.12 46.72±0.26 42.78
ROUGE-2 19.62±0.17 20.02±0.07 20.19±0.01 19.76±0.22 16.61
ROUGE-L 39.21±0.22 39.84±0.12 39.97±0.06 39.19±0.09 34.52
BLEU-1 77.45±0.21 78.70±0.28 78.95±0.07 77.90±0.57 66.80
BLEU-2 60.75±0.21 62.10±0.14 62.35±0.07 61.00±0.42 45.90
BLEU-3 46.60±0.14 47.65±0.21 47.95±0.21 46.75±0.49 32.70
BLEU-4 36.30±0.00 36.80±0.28 37.35±0.49 36.10±0.42 23.90

METEOR 33.30±0.14 33.55±0.07 33.70±0.00 33.35±0.21 29.10
CIDEr 17.90±0.15 18.40±0.18 18.43±0.10 17.89±0.08 13.34
SPICE 34.25±0.07 34.50±0.28 33.70±0.14 34.00±0.28 28.00

BERTScore 62.65±0.07 62.91±0.15 62.78±0.21 62.46±0.11 50.57
Coverage 94.23±0.21 95.92±0.02 96.08±0.09 95.44±0.58 96.03

Table 10: Automatic evaluation results (with standard deviations) for T5-large on testCG, averaged over two seeds for trained
models. Bold corresponds to best performance on that metric.

218

BART-base BART-large T5-base T5-large
p-values P2T Att-aug P2T Kw-aug Att-aug
ROUGE-1 1.58E-05 1.58E-05 7.58E-04 1.58E-05 1.58E-05
ROUGE-2 6.32E-05 1.58E-05 2.18E-03 1.58E-05 2.20E-03
ROUGE-L 6.32E-05 8.53E-04 2.78E-02 1.58E-05 1.58E-05
BLEU-1 3.63E-01 1.39E-04 6.94E-05 6.94E-05 1.11E-03
BLEU-2 1.11E-03 6.94E-05 6.94E-05 6.94E-05 5.69E-03
BLEU-3 3.26E-02 1.04E-03 9.03E-04 4.17E-04 3.40E-02
BLEU-4 5.68E-02 1.57E-01 8.40E-03 1.83E-02 2.66E-01
METEOR 1.57E-02 9.03E-04 6.94E-05 2.08E-04 7.27E-01
CIDEr 6.25E-04 2.08E-04 6.94E-05 6.94E-05 5.07E-03
SPICE 1.53E-03 6.25E-04 6.94E-05 1.43E-02 9.16E-01
BERTScore 3.33E-03 1.58E-05 1.58E-05 1.58E-05 1.42E-01
Coverage 3.16E-05 1.58E-05 1.58E-05 1.58E-05 1.58E-05

Table 11: Statistical significance p-values (from Pitman’s
permutation tests) for the best performing method(s) per model
compared to the corresponding baselines. Insignificant p-
values (using α = 0.05 or 5E-02) are bolded.

For example 1, the baseline generation “hands
sitting on a chair” misses the concept “toy”,
whereas our methods do not. Kw-aug and Att-
aug output complete and logical sentences. For
example 2, the baseline generation of “a camel
rides a camel” is illogical. Our methods output
more logical and specific sentences. For example 3,
our methods generate more complete and coherent
sentences than the baseline, which lacks a subject
(does not mention who is “walking”). For example
4, the baseline generation “bus sits on the tracks”
is illogical as buses park on roads. Our methods do
not suffer from this and output more reasonable text.
For example 5, the baseline generation “A lady sits
in a sunglass.” is completely illogical. Kw-aug,
Att-aug, and P2T all output logical text. For exam-
ple 6, the baseline output “Someone stands in front
of someone holding a hand” is generic and bland.
Kw-aug, Att-aug, and P2T all output more specific
and detailed text rather than simply referring to

“someone”. Overall, SAPPHIRE generates text that
is more complete, fluent, logical, and with greater
coverage, addressing many baseline issues (§3.2).

However, SAPPHIRE methods are imperfect.
P2T relies heavily on the original generation. For
example 1, the baseline output “hands sitting on a
chair” is extracted as a keyphrase, and used in the
P2T output “hands sitting on a chair with toys”.
While coverage improves, the text is still illogical.
For example 2, P2T still misses the “walk” con-
cept. While the Att-aug output of “A man is riding
camel as he walks through the desert.” is more log-
ical than the baseline’s, it is still not entirely logical
as the man cannot ride the camel and walk at the
same time. MI outputs logical and fluent text for
examples 2 and 3. For the other examples, the gen-
erated texts are illogical, not fluent, or incomplete.

This is likely due to input permutation having
a strong effect on output quality. For example,

“wave” before “falls off a surf board” leads to an
illogical output “A wave falls off a surf board.”,
where the reverse order results in a more logical
output “A man falls off a surf board and hits a
wave.” As discussed in §4.2.2, our method of se-
lecting best permutations is likely imperfect. Fur-
ther, BART-MI usually does not inflect inputs and
retains them in exact form, unlike the baselines
and other methods which learn to inflect words
(e.g. singular to plural). We believe BART-MI has
potential if these weaknesses can be addressed.

7 Related Work

Constrained Text Generation: There has been
more work on constrained text generation. Miao
et al. (2019) use Metropolis-Hastings sampling to
determine token-level edits at each step of gener-
ation. Feng et al. (2019) introduce Semantic Text
Exchange to adjust the semantics of a text given a
replacement entity. Gangal et al. (2021a) propose
narrative reordering (NAREOR) to rewrite stories
in different narrative orders while preserving plot.

Data-to-text NLG: A wide range of data-to-text
NLG benchmarks have been proposed, e.g. for gen-
erating weather reports (Liang et al., 2009), game
commentary (Jhamtani et al., 2018), and recipes
(Kiddon et al., 2016). E2E-NLG (Dušek et al.,
2018) and WebNLG (Gardent et al., 2017) are
two benchmarks that involve generating text from
meaning representation (MR) and triple sequences.
Montella et al. (2020) use target Wiki sentences
with parsed OpenIE triples as weak supervision for
WebNLG. Tandon et al. (2018) permute input MRs
to augment examples for E2E-NLG.

Commonsense Reasoning and Incorporation:
Talmor et al. (2020) show that not all pretrained
LMs can reason through commonsense tasks.
Other works investigate commonsense injection
into models; one popular way is through knowl-
edge graphs (KGs). One large commonsense KG
is COMET, which trains on KG edges to learn
connections between words and phrases. COS-
MIC (Ghosal et al., 2020) uses COMET to inject
commonsense. EKI-BART (Fan et al., 2020) and
KG-BART (Liu et al., 2021) show that external
knowledge (from corpora and KGs) can improve
performance on CommonGen. Distinctly, SAP-
PHIRE obviates reliance on external knowledge.

219

Models\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage
T5-base (reported baseline) 14.63 34.56 28.76 18.54 23.94 9.40 19.87 76.67

BART-large (reported baseline) 22.02 41.78 39.52 29.01 31.83 13.98 28.00 97.35
T5-large (reported baseline) 21.74 42.75 43.01 31.96 31.12 15.13 28.86 95.29
EKI-BART (Fan et al., 2020) - - - 35.945 - 16.999 29.583 -
KG-BART (Liu et al., 2021) - - - 33.867 - 16.927 29.634 -
RE-T5 (Wang et al., 2021) - - - 40.863 - 17.663 31.079 -

BART-base-P2T 20.83 42.91 40.74 29.918 30.61 14.670 26.960 92.84
T5-base-P2T 22.38 44.59 44.97 33.577 31.95 16.152 29.104 95.55

BART-large-KW 22.25 43.38 43.87 32.956 32.26 16.065 28.335 96.16
BART-large-Att 22.22 43.80 44.61 33.405 32.03 16.036 28.452 96.43
BART-large-P2T 22.65 43.84 44.78 33.961 32.18 16.174 28.462 96.20

T5-large-KW 23.79 45.73 48.06 37.023 32.85 16.987 29.659 95.32
T5-large-Att 23.94 45.87 47.99 36.947 32.79 16.943 29.607 95.43
T5-large-P2T 23.89 45.77 48.08 37.119 32.94 16.901 29.751 94.82

Table 12: Automatic evaluation results of select SAPPHIRE models on testO (evaluated by the CommonGen authors). For
BART-base and T5-base, we report the best SAPPHIRE model on testO (P2T), and all three models for BART-large and T5-large.
We compare to Lin et al. (2020)’s reported baseline numbers, noting that they did not report BART-base, and published models
on their leaderboard5 that outperform the baselines at the time of writing. Bold corresponds to best performance (for BLEU-4,
CIDEr, and SPICE, since their leaderboard only reports these three), and underline corresponds to second best performance.

Model Method Fluency Commonsense

BART-large

Baseline 3.92 4.06
Kw-aug 4.13 3.92
Att-aug 4.10 4.06

P2T 4.17 4.13

T5-base

Baseline 4.02 3.83
Kw-aug 4.04 4.04
Att-aug 4.13 3.98

P2T 4.02 4.08
Human 4.14 4.32

Table 13: Avg. human eval results on testCG, rated on 1-5
scales. Bold corresponds to best performance for that model.

8 Conclusion and Future Work

In conclusion, we motivated and proposed sev-
eral improvements for concept-to-text generation
which we call SAPPHIRE: Set Augmentation and
Post-hoc PHrase Infilling and REcombination. We
demonstrated their effectiveness on CommonGen
through experiments on BART and T5. Exten-
sive evaluation showed that SAPPHIRE improves
model performance, addresses many issues of the
baselines, and has potential for further exploration.

Potential future work includes improving mask
infilling performance, and trying combinations
of SAPPHIRE techniques as they could be com-
plementary. Better exploiting regularities of
CommonGen-like tasks, e.g. invariance to input
order, presents another avenue. SAPPHIRE meth-
ods can also be investigated for other data-to-text
NLG tasks, e.g. WebNLG, and explored for ap-
plications such as improving the commonsense
reasoning of personalized dialog agents (Li et al.,
2020), data augmentation for NLG (Feng et al.,
2020, 2021), and constructing pseudo-references
for long-context NLG (Gangal et al., 2021b).

Method Text
Concept Set {sit, chair, toy, hand} (example 1)
BART-base-BL hands sitting on a chair
BART-base-KW A boy sits on a chair with a toy in his hand.
BART-base-Att A child sits on a chair with a toy in his hand.
BART-base-P2T hands sitting on a chair with toys
BART-base-MI Children’s hands sit on a chair with a toy.
Human A baby sits on a chair with a toy in one of its hands.
Concept Set {camel, desert, ride, walk} (example 2)
BART-base-BL a camel rides a camel in the desert
BART-base-KW A camel rides down a walkway in the desert.
BART-base-Att A man is riding camel as he walks through the desert.
BART-base-P2T A camel rides down a trail in the desert.
BART-base-MI In the desert, a man rides a camel for a walk.
Human A loud group of people walk around the desert and ride camels.
Concept Set {jacket, wear, snow, walk} (example 3)
BART-large-BL walking in the snow wearing a furry jacket
BART-large-KW A man wearing a jacket is walking in the snow.
BART-large-Att A man in a blue jacket is walking in the snow.
BART-large-P2T A man is wearing a furry jacket as he walks in the snow.
BART-large-MI A walk in the snow wearing a furry jacket
Human A man wears a jacket and walks in the snow.
Concept Set {bench, bus, wait, sit} (example 4)
BART-large-BL A bus sits on the tracks with people waiting on benches.
BART-large-KW A bus sits next to a bench waiting for passengers.
BART-large-Att A woman sits on a bench waiting for a bus.
BART-large-P2T A bus sits at a stop waiting for passengers to get off the bench.

BART-large-MI There are people waiting on benches outside bus stops
to sit down. pic.twitter.

Human The man sat on the bench waiting for the bus.
Concept Set {sunglass, wear, lady, sit} (example 5)
T5-base-BL A lady sits in a sunglass.
T5-base-KW A lady sits next to a man wearing sunglasses.
T5-base-Att A lady sits wearing sunglasses.
T5-base-P2T A lady sits next to a man wearing sunglasses.
BART-base-MI A young lady sits in a sunglass to wear.

Human The lady wants to wear sunglasses, sit, relax,
and enjoy her afternoon.

Concept Set {hold, hand, stand, front} (example 6)
T5-large-BL Someone stands in front of someone holding a hand.
T5-large-KW Two men stand in front of each other holding hands.
T5-large-Att A man stands in front of a woman holding a hand.
T5-large-P2T A man standing in front of a man holding a hand.
BART-large-MI Mr. Trump holding a hand to stand in front of
Human A man stands and holds his hands out in front of him.

Table 14: Qualitative examples for testCG. Color coded:
baseline, Kw-aug, Att-aug, P2T, MI, and human reference.

Acknowledgments
We thank our anonymous reviewers, Graham Neu-
big, Ritam Dutt, Divyansh Kaushik, and Zhengbao
Jiang for their comments and suggestions.

220

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2016. Spice: Semantic proposi-
tional image caption evaluation. In European confer-
ence on computer vision, pages 382–398. Springer.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762–4779,
Florence, Italy. Association for Computational Lin-
guistics.

Ricardo Campos, Vı́tor Mangaravite, Arian Pasquali,
A. Jorge, C. Nunes, and A. Jatowt. 2018. Yake!
collection-independent automatic keyword extractor.
In ECIR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Wenchao Du and Alan W Black. 2019. Boosting dialog
response generation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 38–43, Florence, Italy. Associa-
tion for Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG challenge. In
Proceedings of the 11th International Conference
on Natural Language Generation, pages 322–328,
Tilburg University, The Netherlands. Association for
Computational Linguistics.

Zhihao Fan, Yeyun Gong, Zhongyu Wei, Siyuan Wang,
Yameng Huang, Jian Jiao, Xuanjing Huang, Nan
Duan, and Ruofei Zhang. 2020. An enhanced knowl-
edge injection model for commonsense generation.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2014–2025,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Steven Y. Feng, Varun Gangal, Dongyeop Kang,
Teruko Mitamura, and Eduard Hovy. 2020. GenAug:
Data augmentation for finetuning text generators. In
Proceedings of Deep Learning Inside Out (DeeLIO):
The First Workshop on Knowledge Extraction and
Integration for Deep Learning Architectures, pages
29–42, Online. Association for Computational Lin-
guistics.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association

for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988, Online. Association for Computa-
tional Linguistics.

Steven Y. Feng, Aaron W. Li, and Jesse Hoey. 2019.
Keep calm and switch on! preserving sentiment and
fluency in semantic text exchange. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2701–2711.

Varun Gangal, Steven Y. Feng, Eduard Hovy,
and Teruko Mitamura. 2021a. NAREOR: The
narrative reordering problem. arXiv preprint
arXiv:2104.06669.

Varun Gangal, Harsh Jhamtani, Eduard Hovy, and Tay-
lor Berg-Kirkpatrick. 2021b. Improving automated
evaluation of open domain dialog via diverse refer-
ence augmentation. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4079–4090, Online. Association for Computa-
tional Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The webnlg
challenge: Generating text from rdf data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133.

Deepanway Ghosal, Navonil Majumder, Alexander
Gelbukh, Rada Mihalcea, and Soujanya Poria. 2020.
COSMIC: COmmonSense knowledge for eMotion
identification in conversations. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 2470–2481, Online. Association for
Computational Linguistics.

Maarten Grootendorst. 2020. Keybert: Minimal key-
word extraction with bert.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, Gra-
ham Neubig, and Taylor Berg-Kirkpatrick. 2018.
Learning to generate move-by-move commentary
for chess games from large-scale social forum data.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1661–1671.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neural
checklist models. In Proceedings of the 2016 con-
ference on empirical methods in natural language
processing, pages 329–339.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

221

Aaron W. Li, Veronica Jiang, Steven Y. Feng, Julia
Sprague, Wei Zhou, and Jesse Hoey. 2020. ALOHA:
Artificial learning of human attributes for dialogue
agents. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 34(05):8155–8163.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 91–99.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823–1840,
Online. Association for Computational Linguistics.

Ye Liu, Yao Wan, Lifang He, Hao Peng, and Philip S.
Yu. 2021. KG-BART: Knowledge graph-augmented
bart for generative commonsense reasoning. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 35(7):6418–6425.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei
Li. 2019. CGMH: Constrained sentence generation
by metropolis-hastings sampling. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6834–6842.

Sebastien Montella, Betty Fabre, Tanguy Urvoy, Jo-
hannes Heinecke, and Lina Rojas-Barahona. 2020.
Denoising pre-training and data augmentation strate-
gies for enhanced RDF verbalization with transform-
ers. In Proceedings of the 3rd International Work-
shop on Natural Language Generation from the Se-
mantic Web (WebNLG+), pages 89–99, Dublin, Ire-
land (Virtual). Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Edwin JG Pitman. 1937. Significance tests which may
be applied to samples from any populations. Supple-
ment to the Journal of the Royal Statistical Society,
4(1):119–130.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language

models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. oLMpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743–758.

Shubhangi Tandon, TS Sharath, Shereen Oraby, Lena
Reed, Stephanie Lukin, and Marilyn Walker. 2018.
TNT-NLG, System 2: Data repetition and meaning
representation manipulation to improve neural gen-
eration. E2E NLG Challenge System Descriptions.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. CIDEr: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Han Wang, Yang Liu, Chenguang Zhu, Linjun Shou,
Ming Gong, Yichong Xu, and Michael Zeng. 2021.
Retrieval enhanced model for commonsense gener-
ation. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pages 3056–
3062, Online. Association for Computational Lin-
guistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with BERT. In Inter-
national Conference on Learning Representations
2020.

222

Appendices

A Model Training and Generation
Details

T5-large consists of 770M params, T5-base 220M
params, BART-large 406M params, and BART-
base 139M params. We train two seeded versions
of each baseline model and SAPPHIRE model. For
all models, we use beam search with a beam size of
5, decoder early stopping, a decoder length penalty
of 0.6, encoder and decoder maximum lengths of
32, and a decoder minimum length of 1. For model
training, we use a batch size of 128 for T5-base
and BART-base, 32 for BART-large, and 16 for
T5-large. For T5-base, T5-large, and BART-base,
we use 400 warmup steps, and 500 for BART-large.
We train all models up to a reasonable number of
epochs (e.g. 10 or 20) and perform early stopping
using our best judgment (e.g. if metrics have contin-
ually decreased for multiple epochs). The learning
rates for SAPPHIRE models were determined by
trying a range of values (e.g. from 1e-6 to 1e-4),
and finding ones which led to good convergence
behavior (e.g. validation metrics increase at a de-
cently steady rate and reach max. after a reasonable
number of epochs). For the best-performing mod-
els, learning rates are as follows (each set consists
of {baseline,Kw-aug,Att-aug,P2T}): BART-base
= {3e-05,2e-05,3e-05,1e-05}, BART-large = {3e-
05,2e-05,2e-05,5e-06}, T5-base = {5e-05,5e-05,5e-
05,1e-05}, T5-large = {2e-05,2e-05,2e-05,5e-06}.

Training was done using single RTX 2080 Ti and
Titan Xp GPUs, and Google Colab instances which
alternately used a single V100, P100, or Tesla T4
GPU. The vast majority of the training was done on
a single V100 per model. T5-base models trained
in approx. 1 hour, BART-base models in approx.
45 minutes, T5-large models in approx. 4 hours,
and BART-large models in approx. 1.5-2 hours.

B Full Re-implementation versus
Reported Model Numbers

See Table 16 for full comparison of our re-
implemented CommonGen models compared to
the original reported numbers in Lin et al. (2020).

C Human Evaluation Details

Human evaluation was done via paid crowdwork-
ers on AMT, who were from Anglophone countries
with lifetime approval rates > 97% . Each exam-
ple was evaluated by 2 annotators. The time given

Method Text
Concept Set {food, eat, hand, bird}
BART-base-BL hands of a bird eating food
BART-base-KW a bird eats food from a hand
BART-base-Att hand of a bird eating food
BART-base-P2T A bird is eating food with its hand.
BART-base-MI The food is in the hands of a bird eating it.
Human A small bird eats food from someone’s hand.
Concept Set {front, dance, routine, perform}
BART-base-BL A woman performs a routine in front of a dance.
BART-base-KW A man performs a routine in front of a group of people.
BART-base-Att A man is performing a routine in front of a group of people.
BART-base-P2T A woman performs a routine in front of a group of people.
BART-base-MI In this dance, a man performs a routine in front of a mirror.
Human The girl performed her dance routine in front of the audience.
Concept Set {chase, ball, owner, dog, throw}
BART-base-BL A dog is throwing a ball into a chase.
BART-base-KW A dog is about to throw a ball to its owner.
BART-base-Att A dog is trying to throw a ball at its owner.
BART-base-P2T A dog is chasing the owner of a ball.
BART-base-MI The dog was trained to throw balls and the dog would chase

after the owner.
Human The owner threw the ball for the dog to chase after.
Concept Set {music, dance, room, listen}
BART-large-BL A listening music and dancing in a dark room
BART-large-KW A group of people dance and listen to music in a room.
BART-large-Att A group of people are dancing and listening to music in a room.
BART-large-P2T Two people are dancing and listening to music in a dark room.
BART-large-MI Music and dancing in the dance floor.
Human A boy danced around the room while listening to music.
Concept Set {cheer, team, crowd, goal}
T5-base-BL the crowd cheered after the goal.
T5-base-KW the crowd cheered after the goal by football team
T5-base-Att the crowd cheered after the goal by the team.
T5-base-P2T the crowd cheered as the team scored their first goal.
BART-base-MI The team and the crowd cheered after the goal.
Human The crowd cheered when their team scored a goal.
Concept Set {bag, put, apple, tree, pick}
T5-base-BL A man puts a bag of apples on a tree.
T5-base-KW A man puts a bag under a tree and picks an apple.
T5-base-Att A man puts a bag under a tree and picks an apple.
T5-base-P2T A man puts a bag of apples on a tree and picks them.
BART-base-MI A man puts a bag of apple juice on a tree to pick it up
Human I picked an apple from the tree and put it in my bag.
Concept Set {circle, ball, throw, turn, hold}
T5-large-BL Someone turns and throws a ball in a circle.
T5-large-KW A man holds a ball and turns to throw it into a circle.
T5-large-Att A man holds a ball in a circle and throws it.
T5-large-P2T A man holds a ball, turns and throws it into a circle.
BART-large-MI He turns and throws a ball into the circle to hold it.
Human A girl holds the ball tightly, then turns to the left and throws

the ball into the net which is in the shape of a circle.
Concept Set {hair, sink, lay, wash}
T5-large-BL A woman is washing her hair in a sink.
T5-large-KW A woman lays down to wash her hair in a sink.
T5-large-Att A man lays down to wash his hair in a sink.
T5-large-P2T A woman is washing her hair in a sink.
BART-large-MI A woman is washing her hair in the sink. She lay the sink down
Human The woman laid back in the salon chair, letting the hairdresser

wash her hair in the sink.
Concept Set {wash, dry, towel, face}
T5-large-BL A man is washing his face with a towel.
T5-large-KW A man washes his face with a towel and then dries it.
T5-large-Att A man is washing his face with a towel and drying it.
T5-large-P2T A man is washing his face with a towel and drying it off.
BART-large-MI A man is washing his face with a towel to dry it.
Human The woman will wash the baby’s face and dry it with a towel.

Table 15: Qualitative examples for testCG. Color coded:
baseline, Kw-aug, Att-aug, P2T, MI, and human reference.

for each AMT task instance or HIT was 8 minutes.
Sufficient time to read instructions, as calibrated by
authors, was also considered in the maximum time
limit for performing each HIT. Annotators were
paid 98 cents per HIT. This rate (7.35$/hr) exceeds
the minimum wage for the USA (7.2$/hr) and con-
stitutes fair pay. We neither solicit, record, request,
or predict any personal information pertaining to
the AMT crowdworkers. Specific instructions and
a question snippet can be seen in Figure 1.

223

Model\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE BERTScore Cov
Reported BART-large 22.13 43.02 37.00 27.50 31.00 14.12 30.00 - 97.56

Reported T5-base 15.33 36.20 28.10 18.00 24.60 9.73 23.40 - 83.77
Reported T5-Large 21.98 44.41 40.80 30.60 31.00 15.84 31.80 - 97.04

Our BART-base 15.91 36.15 38.30 28.30 30.20 15.07 30.35 58.26 93.44
Our BART-large 17.27 37.32 39.95 30.20 31.15 15.72 31.20 58.58 95.03

Our T5-base 17.27 37.69 41.15 31.00 31.10 16.37 32.05 60.32 94.44
Our T5-large 17.90 38.31 43.80 33.60 32.70 17.02 33.45 61.39 96.26

Table 16: Performance of our re-implemented CommonGen models on devO compared to the original numbers reported in Lin
et al. (2020). Note that for our models, results are averaged over two seeds, and that the original authors did not experiment with
BART-base. Bold indicates where we match or exceed the reported metric.

(a)

(b)

Figure 1: Snapshots of human evaluation: a) instructions seen by annotator and b) an example with questions.

D Graphs Displaying Other
Hyperparameter Results

Figures 2, 3, 4, and 5 contain graphs displaying
other hyperparameter results for Kw-aug, Att-aug,
P2T, and Mask Infilling (MI), respectively.

E Further Qualitative Examples

See Table 15 for further qualitative examples.

224

27

28

29

30

31

32

33

34

35

BL 1 2 3 4 5

B
LE

U
-4

number of augmented keywords

Kw-aug: BLEU-4

T5-base BART-base

14

14.5

15

15.5

16

16.5

17

17.5

18

BL 1 2 3 4 5

C
ID

Er

number of augmented keywords

Kw-aug: CIDEr

T5-base BART-base

28

29

30

31

32

33

BL 1 2 3 4 5

SP
IC

E

number of augmented keywords

Kw-aug: SPICE

T5-base BART-base

Figure 2: Kw-aug: graphs of BLEU-4, CIDEr, and SPICE results on testCG over different numbers of augmented keywords for
BART-base and T5-base. These are only first seed results, and we only went above three augmented keywords for the base size
models. BL refers to the baseline results with no augmented keywords.

28

29

30

31

32

33

34

BL 1 2 3 4 5

B
LE

U
-4

number of augmented words

Att-aug: BLEU-4

T5-base BART-base

14

14.5

15

15.5

16

16.5

17

17.5

BL 1 2 3 4 5

C
ID

Er

number of augmented words

Att-aug: CIDEr

T5-base BART-base

25

27

29

31

33

35

BL 1 2 3 4 5

SP
IC

E

number of augmented words

Att-aug: SPICE

T5-base BART-base

Figure 3: Att-aug: graphs of BLEU-4, CIDEr, and SPICE results on testCG over different numbers of augmented words for
BART-base and T5-base. These are only first seed results, and we only went above three augmented words for the base size
models. BL refers to the baseline results with no augmented words.

30

31

32

33

34

35

36

37

BL 2 3 5

B
LE

U
-4

max n-gram length of augmented keyphrases

P2T: BLEU-4

T5-base T5-large BART-base BART-large

15.5

16

16.5

17

17.5

18

BL 2 3 5

C
ID

Er

max n-gram length of augmented keyphrases

P2T: CIDEr

T5-base T5-large BART-base BART-large

30

31

32

33

34

35

BL 2 3 5

SP
IC

E

max n-gram length of augmented keyphrases

P2T: SPICE

T5-base T5-large BART-base BART-large

Figure 4: P2T: graphs of BLEU-4, CIDEr, and SPICE results on testCG over different max n-gram lengths of augmented
keyphrases. These are results averaged over two seeds. BL refers to the baseline results with no augmented keyphrases.

10

15

20

25

30

35

40

BL KW 2 3 5

B
LE

U
-4

max n-gram length of augmented keyphrases

MI: BLEU-4

T5-base T5-large BART-base BART-large

8

10

12

14

16

18

BL KW 2 3 5

C
ID

Er

max n-gram length of augmented keyphrases

MI: CIDEr

T5-base T5-large BART-base BART-large

15

20

25

30

35

BL KW 2 3 5

SP
IC

E

max n-gram length of augmented keyphrases

MI: SPICE

T5-base T5-large BART-base BART-large

Figure 5: Mask Infilling (MI): graphs of BLEU-4, CIDEr, and SPICE results on testCG over different max n-gram lengths of
augmented keyphrases. These are first seed results only. BL refers to the baseline results, and KW refers to mask infilling on the
original keywords only (with no augmented keyphrases).

225

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 226–239,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Contextualizing Variation in Text Style Transfer Datasets

Stephanie Schoch Wanyu Du Yangfeng Ji
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

{sns2gr,wd5jq,yangfeng}@virginia.edu

Abstract

Text style transfer involves rewriting the con-
tent of a source sentence in a target style. De-
spite there being a number of style tasks with
available data, there has been limited system-
atic discussion of how text style datasets relate
to each other. This understanding, however, is
likely to have implications for selecting multi-
ple data sources for model training. While it
is prudent to consider inherent stylistic proper-
ties when determining these relationships, we
also must consider how a style is realized in
a particular dataset. In this paper, we conduct
several empirical analyses of existing text style
datasets. Based on our results, we propose a
categorization of stylistic and dataset proper-
ties to consider when utilizing or comparing
text style datasets.

1 Introduction

The general task of text style transfer involves
rewriting source content in a target style. Currently,
there are a number of text style transfer tasks with
available data, such as formality (Rao and Tetreault,
2018), bias (Pryzant et al., 2020), sentiment (He
and McAuley, 2016), humor or romance (Gan et al.,
2017), offensiveness, (Nogueira dos Santos et al.,
2018), authorship or time period (Xu et al., 2012),
and personal attributes (Kang et al., 2019). While
these specific tasks are often modeled in isolation,
the general task definition remains consistent. As
such, a natural question arises of what the relation-
ship is between the stylistic variation of specific
tasks.

Stylistic variation can arise from a number
of factors such as communicative intent, topic,
and speaker-receiver dynamics (Biber and Conrad,
2019), yet within the task of text style transfer,
our view of a style is constrained to the context of
each specific dataset. Therefore, understanding the
tasks as well as the relationships between different

tasks requires considering the stylistic properties
and potential contextual and social factors (Hovy
and Yang, 2021; Hovy, 2018) underpinning them,
as well as the dataset characteristics (Bender and
Friedman, 2018) and intersection of influences giv-
ing rise to the realization of style within a dataset.

From an application standpoint, considering
these influences can provide a more comprehensive
understanding of important textual features. There
is a body of work already looking at how to identify
generic features to increase target task performance
(Li et al., 2019) or to compute similarity of textual
features to select data for transfer learning (Ruder
and Plank, 2017). In the context of text style trans-
fer, these approaches first require understanding
what features should be shared across tasks. For
example, Zhang et al. (2020) leveraged the stylistic
features shared between grammatical error correc-
tion data and formality to increase model perfor-
mance on formality transfer datasets.

In addition to textual features such as stylistic
properties, existing work also suggests that context
of dataset creation should be taken into account
when identifying compatible data or assessing pos-
sible out-of-distribution generalizability. For ex-
ample, the similarity between how sentiment in-
formation is reflected in different domains affects
adaptation performance (Li et al., 2019), and many
models can achieve high performance on natural
language inference tasks through task-limiting an-
notation artifacts (Gururangan et al., 2018; Poliak
et al., 2018). In other words, factors such as data
source and annotation method can create underly-
ing textual features that can impact performance
and limit generalizability. Thus, in combination,
these existing works on leveraging inherent stylistic
similarities (Zhang et al., 2020) or similar style-
representations in different dataset domains (Li
et al., 2019), as well as identifying task-limiting
dataset properties (Gururangan et al., 2018; Poliak

226

Dataset Stylistic Task Domain Annotation Size

Train Dev Test

Flickr Romantic→Humorous Image Captions Manual 6k 500 500

Shakespeare Shakespeare→Modern Literature, SparkNotes Automatic 18.4k 1.2k 1.5k

GYAFC-FR Informal→Formal Yahoo Answers (Online) Manual 52k 2.8k 1.3k

GYAFC-EM Informal→Formal Yahoo Answers (Online) Manual 52.6k 2.9k 1.4k

Biased-word Subjective→Neutral Wikipedia (Online) Automatic 53.8k 700 1k

Fluency Disfluent→Fluent Telephone Conversations Manual 173.7k 10.1k 7.9k

Table 1: An overview of the datasets used for exploratory analyses. Task describes the source-target direction
used in our experiments and domain and annotation show general categorizations. Size provides statistics of the
data splits, with standard, pre-existing data splits used when available.

et al., 2018) indicate that analysis of both stylistic
properties and dataset characteristics, as well as
the potential interdependencies between them, is
warranted.

In this paper, we consider two primary cate-
gories of textual variation within the context of
text style transfer: stylistic characteristics and
dataset characteristics. We perform a series of
empirical analyses to demonstrate the visible influ-
ence of both style and dataset characteristics on the
performance of text style transfer models. Then,
we present a categorization of style and dataset
properties for consideration when utilizing or com-
paring style transfer datasets. Finally, we discuss
the downstream applications for contextualizing
variation in text style datasets, including multi-task
learning, data selection, and generalizability. Our
work and suggestions fall within the context of and
align with recent work on incorporating social fac-
tors in natural language processing systems (Hovy
and Yang, 2021) and characterizing datasets (Ben-
der and Friedman, 2018).

2 Empirical Analyses

As an exploratory step, we question whether we
can distinguish differences arising from style or
dataset properties when comparing empirical re-
sults across datasets. We identify a set of aligned
English datasets used for supervised text style trans-
fer that exhibit differences ranging from style, an-
notation method, and domain. We further restrict
our selection to datasets in which a single stylistic
attribute is transferred between classes. Specif-
ically, we look at GYAFC-EM & GYAFC-FR
(Rao and Tetreault, 2018), Shakespeare (Xu et al.,
2012), Biased-word (Bias) (Pryzant et al., 2020),

Fluency (Wang et al., 2020; Godfrey et al., 1992),
and Flickr (Gan et al., 2017). We provide dataset
overviews in Table 1, with detailed dataset descrip-
tions provided in Appendix A. We perform a pre-
liminary qualitative analysis to get an initial im-
pression of the data differences.

First Impression of Data: Of the six datasets,
four were manually annotated and two were
automatically annotated. For manually anno-
tated datasets, GYAFC-EM and GYAFC-FR uti-
lized crowdsourced rewrites, Flickr utilized crowd-
sourced sentences with only visual context shared
between annotators, and Fluency utilized expert an-
notations of the target attribute. Both automatically
annotated datasets (Bias, Shakespeare) were cre-
ated through identification of existing data sources.
While each style task is unique (other than two do-
mains of GYAFC for formality), in terms of style
we observe that Shakespeare has a significantly
different temporal context than all other datasets,
and Fluency involves a stylistic attribute that, ide-
ally, the sentence pairs in all other datasets should
possess.1

Beyond our qualitative observations, we perform
an exploratory multi-task learning experiment, de-
scribed in the following subsection.

2.1 Multi-Task Learning

As a toy experiment, we ask the question “What
would our results look like if we naively train on all
style transfer tasks, with no considerations beyond
the fact that the tasks share a general task defi-

1Fluency is frequently a criteria used in text style transfer
evaluation (Mir et al., 2019; Briakou et al., 2021; Prabhumoye
et al., 2018).

227

nition?2 We essentially ignore all considerations
for style or dataset properties. Our expectation is
that negative transfer will occur due to the lack of
consideration for factors such as domain (Pan and
Yang, 2009; Li et al., 2019)3, but we are interested
in whether all tasks share similar performance pat-
terns or if performance on any tasks diverge from
the overall set. If the latter, is there any intuitive
explanation for the divergences?

We further expect that the degree of negative
transfer will be impacted by the degree of differ-
ence of stylistic or data properties, relative to the
full set of pre-training datasets. Specifically, we
anticipate some level of alignment with our ini-
tial impression of the data: the alternate temporal
context of Shakespeare may increase degree of neg-
ative transfer, yet the inherent stylistic connection
with Fluency may lessen the degree of negative
transfer.

Experimental Setup We utilize two experimen-
tal settings: GPT-2 directly fine-tuned on each
dataset, and GPT-2 with multi-task pre-training
on all datasets followed by fine-tuning on each tar-
get dataset. For both settings, we initialize GPT-2
with the pre-trained parameters from Radford et al.
(2019). For our multi-task experimental setup, we
follow prior works (Liu et al., 2015, 2019; Raffel
et al., 2020) to perform multi-task learning for the
baseline GPT-2 model (Wang et al., 2019): we ini-
tialize GPT-2 with the pre-trained parameters from
Radford et al. (2019), then we jointly pre-train on
all style tasks in a supervised manner and fine-tune
on each individual style transfer task. 4

For multi-task learning, we construct our pre-
training dataset by randomly shuffling the training
examples from all datasets. During pre-training,
each training example from each individual task is
seen at least once per epoch. All of the training ex-
amples in the largest dataset are seen exactly once
per epoch, while all training examples for the small-
est dataset are seen multiple times per epoch (pro-
portional to the ratio between the training set size
of the largest-scale task and the smallest-scale task).
For the fine-tuning step, we leverage the multi-task
pre-trained model and further fine-tune on each
individual supervised task, saving the model with

2The general task definition is rewriting the source content
of a text in a target style (see section 1)

3Negative transfer occurs when transferred knowledge neg-
atively impacts target performance (Pan and Yang, 2009).

4GPT-2 models were each trained on a single NVIDIA
GTX 1080 Ti GPU.

Dataset Task BLEU-og BLEU-mt %og

Shakespeare shake2mod 24.47 11.33 0.463
Fluency dis2fl 96.59 96.69 1.001
Flickr rom2fun 8.14 7.18 0.882
GYAFC-EM inf2fr 69.96 65.16 0.931
GYAFC-FR inf2fr 75.16 74.72 0.994
Biased subj2neut 93.73 93.41 0.996

Table 2: Experiments conducted using GPT-2, where
BLEU-og represents directly fine-tuning the original
GPT-2 on the target task, BLEU-mt represents multi-
task pre-training using all datasets and fine-tuning on
the target task, and %og represents the relative perfor-
mance of multi-task pre-training in comparison to the
performance of the original GPT-2 (computed by divid-
ing BLEU-mt by BLEU-og).

the lowest validation set loss as our final model for
evaluation.

Results We report BLEU (Papineni et al., 2002)
in Table 2 as a measure of content preservation.5

We compare the performance between directly fine-
tuning the original GPT-2 on the target task (BLEU-
og) and firstly multi-task pretraining the original
GPT-2 then fine-tuning it on the target task (BLEU-
mt).

Negative transfer is identified as a performance
drop in BLEU-mt, i.e. %og < 1.00. Since the
style transfer datasets in use are diverse across do-
main and stylistic properties, we expect negative
transfer to occur in the multi-task learning setting.
However, we are specifically looking at the overall
performance pattern as an initial step in determin-
ing what properties may underlie such differences,
which should be accounted for in a taxonomy.

While most tasks perform within a 12% mar-
gin below the original GPT-2 performance, we ob-
serve two divergences: with multi-task learning,
the Shakespeare-to-modern task performed at less
than 50% of the original GPT-2 performance, and
the disfluent-to-fluent task experienced a slight per-
formance increase. Performance on Fluency ex-
ceeded our initial expectation that the degree of
negative transfer would simply be lower compared
to other datasets, but overall the divergences with
Shakespeare and Fluency match our expectations
based on our initial impression of the data style dif-
ferences. Specifically, we attribute the performance
drop on the Shakespeare dataset to limited suitabil-
ity for combining the data sources likely due to the
stylistic attribute pertaining to different temporal

5We use the BLEU implementation from Koehn et al.
(2007).

228

context, and we attribute the Fluency dataset per-
formance increase to high suitability for combining
the data sources likely due to its stylistic attribute
pertaining to a textual criteria that is assumed to be
inherent to the other data.

With regard to dataset differences, we note the
potential impact of dataset size on performance: to
maintain consistency of the model architecture, we
utilize the same model configuration with GPT-2
across datasets and experimental settings. In the
case of performance on the Flickr dataset (see Table
1), it is possible that such a model configuration
may overfit on the dataset. However, this alone
fails to account for our observations of performance
pattern divergences.

Beyond overall pattern, we observe an unexpect-
edly wide range of BLEU scores across datasets,
which we expect could be attributable to differ-
ences in either dataset creation or style. There may
be stylistic differences in how style information
is encoded that impact content preservation. For
example, some styles may have more words that en-
code both style and content information which may
increase the difficulty of content retention (Cao
et al., 2020), yet other styles may be character-
ized by stylistic attributes encoded in only a few
key words or phrases (Fu et al., 2019). However,
these differences may also be attributable to dataset
creation. We expect that if the attribute-encoding
words are constrained to a few words or phrases
as a property of a style itself, then a dataset’s style
classes should be highly distinguishable using lexi-
cal features; in other words, the decision boundary
when classifying styles should stay at the lexical
level (Fu et al., 2019).

To test these hypotheses and help explain the
range of BLEU scores, we perform two comple-
mentary experiments. First, we compute sentence
similarity metrics averaged over each dataset to 1)
identify if there is a relationship between BLEU
scores and baseline sentence pair similarities, and
2) identify datasets with high similarity across class
boundaries that constrain stylistic attributes to a
few words or phrases. Second, we perform classi-
fication and ablation studies using a set of linguis-
tic features defined on each dataset. For datasets
with high sentence similarities, if a style can be
well-represented by a few style-encoding words or
phrases, then we expect high classification perfor-
mance using only lexical features. Conversely, if a
style cannot be isolated to a few words and phrases,

Dataset JS ↑ LD ↓ LD-norm ↓ F1-Score ↑
Shakespeare 0.0845 14.79 0.9029 0.0583
Fluency 0.9941 0.366 0.0271 0.9751
Flickr 0.2257 11.92 0.7728 0.3623
GYAFC-EM 0.4471 7.924 0.5616 0.4207
GYAFC-FR 0.4565 7.723 0.5375 0.4500
Biased 0.9137 2.529 0.0763 0.9689

Table 3: Jaccard Similarity (JS), Levenshtein Distance
(LD), normalized Levenshtein Distance (LD-norm),
and F1-Score. Sentence similarity measures quantify
the distance between target and source for the training
sets with arrows indicating direction for more similar
sentences.

we expect low classification performance using lex-
ical features alone, in which case a high sentence
similarity is likely attributable to dataset properties
rather than inherent style properties.

2.2 Similarity Metrics

We calculate token-based Jaccard Similarity, token-
based Levenshtein distance, and F1-score between
the source and target training sets. We also
report Levenshtein distance normalized by sen-
tence length, LDnorm(s, t) =

(
LD(s,t)
max |s|,|t|

)
where

LD(s, t) is the Levenshtein distance, s, t refer to
sentences in a sentence pair, and | · | refers to the
number of tokens in a sentence. Scores are reported
in Table 3.6

We see some relationships between similarities
in Table 3 and GPT-2 performances in Table 2
in that the datasets with the lowest BLEU scores
(Shakespeare and Flickr) have the lowest baseline
similarities, and the datasets with the highest BLEU
scores (Fluency and Bias) have the highest baseline
similarities. We therefore can identify the Fluency
and Bias datasets as being of particular relevance
for the lingusitic features analysis. Specifically, our
hypothesis is that if the Bias and Fluency styles
can truly be isolated to few words as the sentence
similarities would suggest, then the classification
performance should be high using only lexical fea-
tures. In contrast, if the dataset properties influence
variation through constrained stylistic representa-
tion, then we expect low classification accuracy
using lexical features.

6We do not distinguish between source and target direction
as these metrics are symmetric in our setting (see Appendix
B).

229

Group Features
Lexical Complexity Average word length, average syllable count

(with & without stopwords)
Readability # complex words (≥ 3 syllables)*, Flesch Read-

ing Ease Score, Flesch-Kincaid Grade Level
Lexical Diversity Unique unigrams & bigrams, with punctuation

removed*
POS tags Universal POS tag distribution*, Penn Treebank

POS tag distribution*
Sentence length Sentence length (words & total tokens)
Phrases # noun phrases*, # verb phrases*, average

length of noun phrases*, average length of verb
phrases*, # dependent clauses*, average length
of dependent clauses*

Subjectivity # 1st, 2nd, & 3rd person pronouns*, Subjectiv-
ity & Sentiment polarity according to TextBlob
sentiment module

Bag-of-Words Bag-of-words feature representation

Table 4: Linguistic feature groups: lexical (top), syn-
tactic (gray in middle), and other (bottom). Features
features denoted with an asterisk (*) are normalized by
sentence length.

2.3 Linguistic Features Analysis

We define linguistic features to refer to properties
characterizing textual variation primarily at the lex-
ical or syntactic level, where the “other” category
in Table 4 indicates features that may capture slight
semantic variation (subjectivity) or reflect overall
lexical tendencies (bag-of-words). Features are
adopted from prior works (Pavlick and Tetreault,
2016; Abu-Jbara et al., 2011; Roemmele et al.,
2017) and listed in Table 4, with further description
in Appendix C.

We train logistic regression classifiers with `1-
regularization and feature scaling on the full fea-
ture set for each text style dataset. Next, we train
and subsequently test classifiers with all features
ablated except the specified subset, and identify
important features as those with minimal relative
performance drop compared to full-feature classi-
fication accuracy. Results are shown in Table 5.
We further quantify the magnitude of variation by
computing the Jensen-Shannon (JS) divergence for
each feature, and indicate the cells corresponding
to features with divergences ≥ 0.075 in Table 5 in
bold.7

Datasets with the lowest BLEU scores (Flickr
and Shakespeare) have more distributed salient
class features across linguistic levels, further re-
flected in a higher number of features with large
divergence magnitudes (≥ 0.075). For the high
BLEU and sentence similarity datasets of interest
(Bias, Fluency), the inverse of this is true. For Bias
and Fluency we see consistently low classification

7Table 6 in Appendix D shows a JS-divergence heatmap.

Flick Shake GY-FR GY-EM Bias Flu.
FF 75.6 76.1 80.7 80.9 63.5 55.3

LexC 51.7 62.2 65.6 64.4 52.6 50.7
Read 55.7 52.1 62.1 63.3 52.0 51.0
LexD 52.4 49.6 51.2 52.0 50.4 54.4

UPOS 59.4 59.3 62.3 60.8 54.4 51.6
XPOS 62.3 59.7 65.1 66.1 55.0 51.7
SenL 51.8 56.7 56.2 51.7 50.3 51.0

Phr 54.2 58.2 53.6 53.4 52.9 51.8
Sub 60.5 60.4 51.7 52.9 57.0 50.4

BoW 74.2 72.4 71.5 71.7 62.2 50.3

Table 5: Classification accuracy using linguistic feature
groupings described in Table 4, with Full Features (FF)
indicating the entire suite of features. Classification ac-
curacy for features with Jensen-Shannon divergences
≥ 0.075 are in bold.

performance across ablations, including the lex-
ical feature ablations. These results support our
hypotheses and further suggest that neither stylis-
tic differences nor dataset characteristics alone can
be used to relate text style datasets. Rather, both
influences as well as their interactions require con-
sideration.

In the following section, we propose a taxonomy
of style and dataset property categories that can
contribute to variation in text style transfer datasets.
Additionally, we note that when introducing these
properties, we view style as the targeted stylistic
property within the context of a text style dataset.

3 Variation From Style and Data
Properties

Our empirical analyses demonstrate the visible in-
fluence of both style and dataset properties on how
a style is represented in a given dataset. In ad-
dition to brief mentions of influences of dataset
creation in section 1, we can identify an intuitive
reason for these dual influences. While linguistic
approaches exist to analyze textual variation (Hall-
iday and Matthiessen, 2013; Holmes and Wilson,
2017; Biber, 2012), we suggest that the processes
of linguistic-based stylistic analysis and text style
transfer typically occur in inverse directions: lin-
guistic analysis may work from human-written text
and then analyze stylistic variation, whereas text
style transfer may work from pre-existing ideas of
targeted stylistic variation and then create datasets
of human-written text that meet stylistic expecta-
tions. In other words, to create a text style transfer
dataset or train a text style transfer model, the re-
searcher should have a notion of the desired style
against which to judge the resulting artifact. Intu-
itively, this process can lead to process-attributable

230

Figure 1: Framework overview visualizing style and dataset properties discussed throughout section 3. Boxes
with bullet points indicate example considerations within each category. We contextualize both style and dataset
properties within language and sociocultural context as all language is implicitly reflective of these influences
(Hovy and Yang, 2021).

variation secondary to and alongside the intended
stylistic variation.

Based on our results and observations, we con-
sider stylistic properties as properties influencing
textual variation that are inherent to a particular
style and dataset properties as factors influencing
textual variation due to how a particular dataset was
created. We detail style and dataset properties in
the following subsections and visualize the major
distinctions in Figure 1.

3.1 Stylistic Properties

We group stylistic properties under two broad cate-
gories: style entanglement and style type.

3.1.1 Style Entanglement
Although some recent approaches to style trans-
fer model style and content words separately (Li
et al., 2018), or try to disentangle style and content
representations (John et al., 2019; Kazemi et al.,
2019), this approach may be less effective when
used to transfer styles in which a higher ratio of
words embed both style and content information.
We can consider this ratio of dual-embedding a
property inherent to the style. Specifically, we can
consider how entangled the style and the content
or semantic meaning is, where content entangle-
ment refers to whether changes to the style result
in additions or reductions in the total content de-
tails, and meaning entanglement refers to whether
changes to the style can retain the content details
but alter the semantic meaning. As an example of
this distinction, sentiment transfer, which has been
regarded previously as transfer between negative
and positive style (Shen et al., 2017; Prabhumoye
et al., 2018) alters semantic meaning while retain-

ing most content, yet transferring between styles
such as expert-to-layman can retain meaning but
lead to content detail reductions due to the difficulty
of preserving content from professional sentences
(Cao et al., 2020).

3.1.2 Style Type
Style can refer to the individuating sense or evalu-
ative sense of a text (Crystal and Davy, 1969). We
refer to evaluative styles as styles distinguished by
general properties that address overall textual qual-
ity corresponding with rules of usage and composi-
tion, effectiveness of expression (Strunk and White,
1999) or based on overall quality evaluation and
judgments (Williams and Bizup, 2017). Stylistic
variation occurs solely along evaluative lines, inde-
pendent of situational context or language choice.
From our empirical experiments, we can consider
the Fluency dataset representative of a dataset in
which the transferred stylistic attribute refers to an
evaluative sense of style.

We consider descriptive styles as distinguished
by stylistic properties that characterize textual vari-
ation through influences such as the underlying
communicative intent, the situational or social fac-
tors influencing language choice, and the attributes
of the producer of the text. We can further differen-
tiate descriptive styles by the stability or variability
of the targeted stylistic property.

Stability of Targeted Style Properties On one
end of the spectrum variable stylistic properties
(high variance, low stability) are characterized by
dynamically shifting language to convey informa-
tion a certain way, which may be reflective of fac-
tors such as the underlying intent in producing the
text or the social dynamics of a situation. For exam-

231

ple, politeness can shift based on social dynamics
such as social distance and relative power between
participants (Brown et al., 1987) independently of
the directness of communication, such as formality
8 in email (Peterson et al., 2011). From our empiri-
cal experiments, we consider Flickr, GYAFC, and
Bias as reflective of variable targeted properties.

At the other end of the spectrum, more stable
targeted stylistic properties (low variance, high sta-
bility) remain more consistent across social situ-
ations and arise from relatively stable internal or
external context. These may reflect internal context
such as the personal attributes of the producer of
text (Kang et al., 2019), or external context such
as the temporal context at time of text production
or stylistic properties inherent to the mode of dis-
tribution. Example datasets include the PASTEL

dataset (Kang et al., 2019) annotated for personal
attributes such as gender and age group, and the
Shakespeare dataset (Xu et al., 2012) which can be
considered reflective of authorship (Xu, 2017) or
temporal context.9

3.2 Dataset Properties

While in the previous section we discussed prop-
erties inherent to specific styles, in this section
we discuss properties of datasets to which textual
variation is attributable. We identify the broad cat-
egories of properties due to creation method and
data source. In this context, creation method refers
to the general method of creating sentence pairs
(automatic or manual annotation, as well as any
properties arising from utilizing a specific method,
such as influences of annotator background or per-
ceptions) and data source refers to characteristics
(such as domain) from where the source data was
collected. We provide more detailed discussion in
the following subsections.

3.2.1 Creation Method
Generally speaking, datasets can be created via
manual annotation, such as through judgments
or rewrites, or via automatic annotation, such as
through filtering data that has a target attribute (i.e.,
detection with a classifier). With particular atten-
tion on manual annotation, in addition to poten-
tial generalizability-limiting data properties arising

8Formality is closely related to politeness (Kang and Hovy,
2021)

9Regarding distribution mode, Abu-Jbara et al. (2011) sug-
gested a set of linguistic features differentiating written and
audio styles.

from artifacts of the annotation method and anno-
tation type ((Geva et al., 2019), also, see section 1),
the annotators themselves can influence stylistic
variation. For example, model performance has
been improved by incorporating annotator identi-
fiers as features (Geva et al., 2019) and by aug-
menting machine translation models with distinct
translator styles identifiable in the training data
(Wang et al., 2021). In the case of Wang et al.
(2021), using annotator styles resulted in BLEU
score variations of up to +4.5 points.

Underlying these influences, annotator proper-
ties that may give rise to textual variation could
include the background of the annotator such as
experts or crowd-sourced workers, and the percep-
tion the annotators have of the style task. Similar to
human evaluation of outputs, perception may arise
due to personal understanding or the wording of
instructions presented.10.

Data Source - Domain: Differences in domain
can be reflected in entirely different word meanings
and contexts of use (Li et al., 2019), as well as dif-
ferent manners of encoding attribute information
such as sentiment (Blitzer et al., 2007; Li et al.,
2019). In addition to differences of a single style
between domains, the domains themselves have dif-
ferent levels of stylistic diversity (Kang and Hovy,
2021). Further, while the properties characterizing
a style may be inherent to how a style is realized
within a domain, there is a distinction in how the
style is reflected between domains that necessitates
domain being considered as a dataset property in-
fluencing variation in text style datasets.

4 Interplay Between Style and Data
Properties

Bender and Friedman (2018) proposed data state-
ments for documenting dataset contextual factors
such as language variety, speaker demographics,
annotator demographics, speech situation, and text
characteristics (e.g. genre, topic). The style and
dataset properties we discuss as potentially con-
tributing to variation in text style transfer datasets
show some alignment with those proposed for data
statements as such factors contribute to linguistic
variation in a general sense. However, our cate-
gorization specifically operates within the context

10Schoch et al. (2020) discuss potential influences of fram-
ing effects of questions or instructions on results in human
evaluation of outputs, and we suggest similar effects could in-
fluence dataset properties resulting from annotation of inputs.

232

of text style transfer datasets for which there are
unique considerations and important distinctions
between sources of variation and downstream im-
plications or applications.

In the previous subsections, we discussed style
properties and dataset properties to which varia-
tion in text style transfer datasets can be attributed.
In this section, we discuss the interdependence
of style and data properties in text style transfer
datasets in terms of context-dependence of and in-
teractions between sources of variation.

Style and Data Property Interactions While
we previously considered the potential impact of
both style and dataset characteristics independently,
these characteristics may have underlying interac-
tions and influences on one another. Specifically,
certain types of stylistic properties may be more or
less amenable to certain dataset creation methods
or sources, and vice versa.

With regard to the stability of stylistic proper-
ties, dataset properties such as annotation method
may be indirectly influenced when transferring
across relatively stable stylistic properties. For
example, machine translation models have been
found to exhibit stylistic bias through reflecting
demographically-biased training data (Hovy et al.,
2020). While this demonstrates that the demo-
graphics of annotators can serve as an important
dataset characteristic, it also demonstrates the po-
tential to transfer across relatively stable stylistic
properties, such as personal attributes (Kang et al.,
2019). However, as the stylistic properties are in-
herent to the annotator, there may be constraints on
dataset creation through manual data annotation,
such as potential limitations and additional consid-
erations for using methods such as human judg-
ments. This underscores additional considerations
for and potential challenges of selecting data from
two styles that may have underlying influences on
how datasets are constructed.

Context-Dependence of Variation Relatedly,
contextual considerations come into play with re-
spect to the the Shakespeare to Modern English
style transfer task, a dataset also reflective of trans-
fer across stable, contextual boundaries. The Shake-
speare to Modern English transfer task can be con-
sidered as transferring across temporal context, or
as the characteristic style of a single author (Xu,
2017). In this case, while an influence of socio-
cultural context is apparent when considering the

original data sources, the targeted stylistic varia-
tion occurs across such context boundaries. Thus,
source of variation for textual features arising from
external context lies with whether the intent is
present for a dataset to represent a transfer across
context boundaries, rather than an artifact reflect-
ing specifics of dataset creation. This is illustrated
in Figure 1 as a dashed line connecting style type
to dataset properties.

With further regard to dataset creation, it is im-
portant to acknowledge that while we consider
many properties arising from social influences as
dynamic and variable influences giving rise to par-
ticular styles, a dataset will indirectly and inadver-
tently reflect such social context during creation to
some degree. As such, we also must consider so-
cial factors not related to the actual targeted style,
but rather arising from the dataset creation pro-
cess. As an example of this consideration, we can’t
simply say two sentiment datasets from the same
general domain (such as restaurant reviews) are
equivalent if one was constructed with reviewers
who had anonymity (in a sense mitigating some
of the direct social pressure or influence) and the
other was constructed with reviewers who were not
anonymous and were thus subject to increased so-
cial pressure. By understanding both data and style
differences and their interactions within a particular
context, these potential differences or hidden influ-
ences can be more easily identified. In summary,
the interactions between style and data properties
are complex. While we have suggested interactions
between context and sources of influence, there are
likely correlations that exist based on sources of
variation which future work can investigate.

5 Influences and Applications

In the previous sections, we demonstrated visible
influences of style and dataset properties on per-
formance, categorized a set of style and dataset
properties for consideration, and discussed the po-
tential interactions between sources of variation.
We conclude by discussing several applications of
understanding the sources of variation in text style
transfer datasets. Specifically, we look at multi-task
learning, domain adaptation, and generalizability.

Multi-Task Learning and Domain Adaptation
Multi-task learning aims to jointly train a model
with auxiliary tasks to complement learning of the
target task. When determining which auxiliary
objectives to incorporate, multi-task learning for

233

various NLP tasks has been shown to benefit from
knowledge about both dataset characteristics and
stylistic properties. For example, multi-task learn-
ing performance gains for NLP tasks such as POS
tagging and text classification are predictable from
dataset characteristics (Kerinec et al., 2018; Bingel
and Søgaard, 2017). With regard to stylistic prop-
erties, within the context of multi-task learning for
style transfer Zhang et al. (2020) achieved perfor-
mance gains by leveraging an intuitive stylistic con-
nection between formality data and grammatical
error correction data.11.

While multi-task learning can be viewed as a
form of parallel transfer learning, we can view do-
main adaptation as a form of sequential transfer
learning and look at similar applications of con-
textualizing stylistic variation. Li et al. (2019)
found that leveraging generic style and content
information outperformed generic content infor-
mation alone for domain adaptation, however, the
closeness of sentiment information (target attribute)
in the source and target domains impacted perfor-
mance. In other words how the style was reflected
in the particular dataset (i.e., a dataset character-
istic) was related to the benefit provided by the
adaptation. Based on the combined evidence in this
section, we can thus support applying analysis of
both style and dataset properties for transfer learn-
ing data selection, including multi-task learning
and domain adaptation, in text style transfer. We
suggest that the taxonomy presented in this paper
can assist exploration of systematic data selection
methods in these and related application areas.

Generalizability One of the underlying motiva-
tions for pursuing multi-task learning and domain
adaptation is the issue of generalizability. In the
context of style transfer, we can consider general-
izing a model for one style across different data
distributions with the same stylistic attribute, or
across similar domains yet different stylistic at-
tributes. In either case, how the model learns to
represent the generic style or content information
is vital for successful transfer. As we’ve demon-
strated throughout prior sections, considering both
style and dataset properties can aid in identifying
sources from which possible issues may arise in
terms of along which dimensions stylistic attributes
may significantly differ, or which artifacts or influ-
ences of dataset creation may influence general-

11Other styles, such as impoliteness and offense, are also
highly dependent on each other (Kang and Hovy, 2021)

izability secondary to any stylistic considerations.
Considerations to this end may prove beneficial
both in the dataset creation process as well as when
considering how a model may perform beyond a
specific dataset.

6 Conclusion

In this paper, we conducted a set of exploratory
analyses to assess the visibility or influence of both
style and dataset characteristics on text style trans-
fer. Based on these observations, we proposed a
categorization of stylistic and dataset properties
that can contribute to variation in text style transfer
datasets and described the applications in which
these properties may be influential, limiting, or
leveragable.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments and suggestions. We also thank Diyi
Yang and Jingfeng Yang for a series of helpful
discussions.

References
Amjad Abu-Jbara, Barbara Rosario, and Kent Lyons.

2011. Towards style transformation from written-
style to audio-style. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
248–253, Portland, Oregon, USA. Association for
Computational Linguistics.

Emily M Bender and Batya Friedman. 2018. Data
statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational
Linguistics, 6:587–604.

Douglas Biber. 2012. Register as a predictor of linguis-
tic variation. Corpus linguistics and linguistic the-
ory, 8(1):9–37.

Douglas Biber and Susan Conrad. 2019. Register,
genre, and style. Cambridge University Press.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 164–169, Valencia, Spain. Associa-
tion for Computational Linguistics.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In

234

Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 440–
447, Prague, Czech Republic. Association for Com-
putational Linguistics.

Eleftheria Briakou, Sweta Agrawal, Ke Zhang, Joel
Tetreault, and Marine Carpuat. 2021. A review of
human evaluation for style transfer. arXiv preprint
arXiv:2106.04747.

Penelope Brown, Stephen C Levinson, and Stephen C
Levinson. 1987. Politeness: Some universals in lan-
guage usage, volume 4. Cambridge university press.

Yixin Cao, Ruihao Shui, Liangming Pan, Min-Yen Kan,
Zhiyuan Liu, and Tat-Seng Chua. 2020. Expertise
style transfer: A new task towards better communi-
cation between experts and laymen. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1061–1071, On-
line. Association for Computational Linguistics.

David Crystal and Derek Davy. 1969. Investigating En-
glish Style. Indiana University Press, Bloomington
& London.

Yao Fu, Hao Zhou, Jiaze Chen, and Lei Li. 2019. Re-
thinking text attribute transfer: A lexical analysis. In
Proceedings of the 12th International Conference on
Natural Language Generation, pages 24–33, Tokyo,
Japan. Association for Computational Linguistics.

Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao,
and Li Deng. 2017. Stylenet: Generating attractive
visual captions with styles. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 3137–3146.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1161–1166, Hong Kong, China. As-
sociation for Computational Linguistics.

John J Godfrey, Edward C Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech cor-
pus for research and development. In Acoustics,
Speech, and Signal Processing, IEEE International
Conference on, volume 1, pages 517–520. IEEE
Computer Society.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Michael Alexander Kirkwood Halliday and Chris-
tian MIM Matthiessen. 2013. Halliday’s introduc-
tion to functional grammar. Routledge.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In Proceedings of
the 25th International Conference on World Wide
Web, WWW ’16, page 507–517, Republic and Can-
ton of Geneva, CHE. International World Wide Web
Conferences Steering Committee.

Janet Holmes and Nick Wilson. 2017. An introduction
to sociolinguistics. Routledge.

Dirk Hovy. 2018. The social and the neural network:
How to make natural language processing about peo-
ple again. In Proceedings of the Second Workshop
on Computational Modeling of People’s Opinions,
Personality, and Emotions in Social Media, pages
42–49, New Orleans, Louisiana, USA. Association
for Computational Linguistics.

Dirk Hovy, Federico Bianchi, and Tommaso Forna-
ciari. 2020. “you sound just like your father” com-
mercial machine translation systems include stylis-
tic biases. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1686–1690, Online. Association for Computa-
tional Linguistics.

Dirk Hovy and Diyi Yang. 2021. The importance of
modeling social factors of language: Theory and
practice. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 588–602, Online. Association for
Computational Linguistics.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric
Nyberg. 2017. Shakespearizing modern language
using copy-enriched sequence to sequence models.
In Proceedings of the Workshop on Stylistic Varia-
tion, pages 10–19, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 424–434,
Florence, Italy. Association for Computational Lin-
guistics.

Dongyeop Kang, Varun Gangal, and Eduard Hovy.
2019. (male, bachelor) and (female, Ph.D) have
different connotations: Parallelly annotated stylis-
tic language dataset with multiple personas. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1696–
1706, Hong Kong, China. Association for Computa-
tional Linguistics.

235

Dongyeop Kang and Eduard Hovy. 2021. Style is NOT
a single variable: Case studies for cross-stylistic lan-
guage understanding. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2376–2387, Online. Associa-
tion for Computational Linguistics.

Hadi Kazemi, Seyed Mehdi Iranmanesh, and Nasser
Nasrabadi. 2019. Style and content disentanglement
in generative adversarial networks. In 2019 IEEE
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 848–856. IEEE.

Emma Kerinec, Chloé Braud, and Anders Søgaard.
2018. When does deep multi-task learning work for
loosely related document classification tasks? In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 1–8, Brussels, Belgium. As-
sociation for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Dianqi Li, Yizhe Zhang, Zhe Gan, Yu Cheng, Chris
Brockett, Bill Dolan, and Ming-Ting Sun. 2019. Do-
main adaptive text style transfer. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3304–3313, Hong Kong,
China. Association for Computational Linguistics.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 912–921, Denver, Colorado. Association for
Computational Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks for

natural language understanding. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4487–4496, Florence,
Italy. Association for Computational Linguistics.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guist., 19(2):313–330.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Os-
car Täckström, et al. 2013. Universal dependency
annotation for multilingual parsing. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 92–97.

Remi Mir, Bjarke Felbo, Nick Obradovich, and Iyad
Rahwan. 2019. Evaluating style transfer for text. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 495–504,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings of
the 40th annual meeting of the Association for Com-
putational Linguistics, pages 311–318.

Ellie Pavlick and Joel Tetreault. 2016. An empiri-
cal analysis of formality in online communication.
Transactions of the Association for Computational
Linguistics, 4:61–74.

Kelly Peterson, Matt Hohensee, and Fei Xia. 2011.
Email formality in the workplace: A case study on
the Enron corpus. In Proceedings of the Workshop
on Language in Social Media (LSM 2011), pages
86–95, Portland, Oregon. Association for Computa-
tional Linguistics.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut-
dinov, and Alan W Black. 2018. Style transfer
through back-translation. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 866–876, Melbourne, Australia. Association
for Computational Linguistics.

236

Reid Pryzant, Richard Diehl Martinez, Nathan Dass,
Sadao Kurohashi, Dan Jurafsky, and Diyi Yang.
2020. Automatically neutralizing subjective bias in
text. In Proceedings of the aaai conference on artifi-
cial intelligence, volume 34, pages 480–489.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–
108, Online. Association for Computational Linguis-
tics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may I introduce the GYAFC dataset: Cor-
pus, benchmarks and metrics for formality style
transfer. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 129–140,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Melissa Roemmele, Andrew S Gordon, and Reid Swan-
son. 2017. Evaluating story generation systems
using automated linguistic analyses. In SIGKDD
2017 Workshop on Machine Learning for Creativity,
pages 13–17.

Sebastian Ruder and Barbara Plank. 2017. Learning to
select data for transfer learning with Bayesian opti-
mization. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 372–382, Copenhagen, Denmark. Association
for Computational Linguistics.

Cicero Nogueira dos Santos, Igor Melnyk, and Inkit
Padhi. 2018. Fighting offensive language on social
media with unsupervised text style transfer. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 189–194, Melbourne, Australia. As-
sociation for Computational Linguistics.

Stephanie Schoch, Diyi Yang, and Yangfeng Ji. 2020.
“This is a problem, don’t you agree?” Framing and
bias in human evaluation for natural language gener-
ation. In Proceedings of the 1st Workshop on Evalu-
ating NLG Evaluation, pages 10–16, Online (Dublin,
Ireland). Association for Computational Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Proceedings of the 31st In-
ternational Conference on Neural Information Pro-
cessing Systems, pages 6833–6844.

Anders Søgaard, Barbara Plank, and Dirk Hovy. 2014.
Selection bias, label bias, and bias in ground truth.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
Tutorial Abstracts, pages 11–13, Dublin, Ireland.
Dublin City University and Association for Compu-
tational Linguistics.

William Strunk and E. B. White. 1999. The elements
of style, 4th ed edition. Allyn and Bacon, Boston.

Shaolei Wang, Wangxiang Che, Qi Liu, Pengda Qin,
Ting Liu, and William Yang Wang. 2020. Multi-task
self-supervised learning for disfluency detection. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 34, pages 9193–9200.

Yue Wang, Cuong Hoang, and Marcello Federico.
2021. Towards modeling the style of translators in
neural machine translation. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1193–1199.

Yunli Wang, Yu Wu, Lili Mou, Zhoujun Li, and Wen-
han Chao. 2019. Harnessing pre-trained neural net-
works with rules for formality style transfer. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3573–
3578, Hong Kong, China. Association for Computa-
tional Linguistics.

Joseph M. Williams and Joseph Bizup. 2017. Style:
lessons in clarity and grace, twelfth edition edition.
Pearson, Boston.

Wei Xu. 2017. From shakespeare to Twitter: What
are language styles all about? In Proceedings
of the Workshop on Stylistic Variation, pages 1–9,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and
Colin Cherry. 2012. Paraphrasing for style. In Pro-
ceedings of COLING 2012, pages 2899–2914, Mum-
bai, India. The COLING 2012 Organizing Commit-
tee.

Yi Zhang, Tao Ge, and Xu Sun. 2020. Parallel data
augmentation for formality style transfer. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3221–
3228, Online. Association for Computational Lin-
guistics.

237

A Dataset Details

We selected English text style datasets with a single
transferred stylistic attribute between two classes.
Of importance for inclusions were datasets that ex-
hibited different creation methods: both automati-
cally annotated and human annotated. Where avail-
able, we used the original (or pre-existing, as with
the case of the Shakespeare dataset) train/val/test
data splits. Links to each dataset are provided
through the respective citations.

Fluency Contains aligned sentence pairs labeled
as fluent or disfluent, from the English Switchboard
(SWBD) Corpus (Godfrey et al., 1992; Wang et al.,
2020). Train/val/test split: 173.7k/10.1k/7.9k

GYAFC-EM & GYAFC-FR Contain aligned
sentence pairs labeled as informal or formal, from
the Entertainment & Music and Family & Rela-
tionships domains, respectively, of the question an-
swering forum Yahoo Answers (Rao and Tetreault,
2018). GYAFC-EM & GYAFC-FR datasets can be
requested at https://github.com/raosudha89/
GYAFC-corpus. GYAFC-EM Train/val/test split:
52.6k/2.9k/1.4k; GYAFC-FR Train/val/test split:
52k/2.8k/1.3k

Biased-Word Contains aligned sentence pairs
labeled as subjective or neutral, crawled from
423,823 Wikipedia editor neutrilization revisions
between 2004 and 2019 (Pryzant et al., 2020).
Train/val/test split: 53.8k/700/1k

Flickr Contains sentence pairs captioning an im-
age, labeled as romantic or humorous (Gan et al.,
2017). We created a 6k/500/500 Train/val/test split
since only the original 7k training instances are
available.

Shakespeare Contains sentence pairs labeled as
Shakespeare or modern English (Xu et al., 2012).
Sentences are crawled from 17 Shakespeare plays
from Sparknotes 12, which provides the modern
counterparts. Following Jhamtani et al. (2017),
we use 15 plays for training, with Twelfth Night
used for validation, and Romeo and Juliet used for
testing.

B Similarity Metrics

In Table 3 we do not distinguish between source
and target direction due to the symmetry of met-

12https://www.sparknotes.com/

rics in our setting. We provide further justification
below:

Jaccard similarity can be defined as

V{s(k)} ∩ V{t(k)}
V{s(k)} ∪ V{t(k)}

(1)

where V{s(k)} denotes the set of vocabulary
words existing in a source sentence {s(k)} and
V{t(k)} denotes the set of vocabulary words exist-
ing in a target sentence {t(k)}. By the commuta-
tive property, V{s(k)} ∩ V{t(k)} = V{t(k)} ∩ V{s(k)}
and V{s(k)} ∪ V{t(k)} = V{t(k)} ∪ V{s(k)}, mak-
ing Jaccard similarity symmetric. Word-based
Levenshtein distance is defined as the minimum
number of edit operations to convert {s(k)} to
{t(k)} through insertions, deletions, and substi-
tutions. Substitutions are symmetric by defini-
tion, and insert and delete operations to convert
{s(k)} to {t(k)} are simply reversed when convert-
ing {t(k)} to {s(k)}. In LDnorm(s, t), we normal-
ize by max |s|, |t|, which is invariant to order. Fi-
nally,

F1 = 2 ∗ precision ∗ recall
precision + recall

(2)

where precision = TP
TP+FP and recall = TP

TP+FN .
In our setting, TP = w ∈ s ∩ t , FP = w ∈ s\t,

and FN = w ∈ t\s. By these definitions, FP
and FN are reversed when source and target are
reversed, and therefore by definition, F1 is sym-
metric when comparing source and target sentence
pairs.13

C Linguistic Features

Lexical Complexity Lexical complexity refers
to the complexity of words based on the length or
number of syllables. We use average word length
in characters (Pavlick and Tetreault, 2016) and av-
erage number of syllables, with and without stop-
words.

Lexical Diversity Size of vocabulary has been
used as a feature for style categorization in prior
work (Abu-Jbara et al., 2011). We chose to include
unigrams and bigrams to reflect diversity of vocab-
ulary as well as diversity of expression.

13Acronyms refer to “True Positives” (TP), “False Posi-
tives” (FP), and “False Negatives” (FN). We consider target as
ground truth and copy source over as a “generated” target. We
essentially consider positives as words that are generated and
negatives as words that are not generated, with truth values
corresponding to whether or not a word should have been
generated.

238

POS Tags POS tags have been used extensively
in the stylistic analysis of text, including formality
(Pavlick and Tetreault, 2016) and written-style vs.
audio-style (Abu-Jbara et al., 2011). Granularity
of POS tags has stylistic implications, such as im-
plications for different specific punctuation types
(Strunk and White, 1999), so we include Univer-
sal and Treebank POS tags for course-grained and
fine-grained stylistic information, respectively. 14

Both Universal and Treebank POS tags are pro-
cessed using Stanza (Qi et al., 2020), which corre-
spond with the Universal Dependencies (McDon-
ald et al., 2013) POS tags and the Penn Treebank
(Marcus et al., 1993) English POS tagset.

Sentence Length Sentence length has stylistic
implications (Strunk and White, 1999) and has
been used as a feature to classify various styles,
such as written-style and audio style (Abu-Jbara
et al., 2011) and formality (Pavlick and Tetreault,
2016). We include sentence length in words and
sentence length in tokens to account for punctua-
tion differences.

Phrases Measures of phrases and clauses have
been used for stylistic analysis in terms of syntactic
complexity (Abu-Jbara et al., 2011). We include
measures of noun phrases, verb phrases, and depen-
dent clauses.

Readability We adopt the readability measures
Flesch-Kincaid Grade Level score (Pavlick and
Tetreault, 2016) and ratio of complex words (Abu-
Jbara et al., 2011) from prior studies.

Subjectivity We adopted several measures of
subjectivity from Pavlick and Tetreault (2016) and
adapted the measure ratio of pronouns (Abu-Jbara
et al., 2011) by measuring the individual type
counts of 1st, 2nd, and 3rd person pronouns.

Bag-of-Words We include the bag-of-words fea-
ture to account for cross-class vocabulary differ-
ences.

D Jensen-Shannon Divergence

While we indicate large Jensen-Shannon Diver-
gences in Table 5, we include the full range of

14Although we used state-of-the-art tools to extract features
such as part-of-speech tags, we do note the possibility of
tool performance differences across datasets (Søgaard et al.,
2014). However, as we utilize the same tool for both the
classification and ablation study as well as the divergence
scores, we expect the impact of tool performance within a
dataset to have minimal impact on resulting conclusions.

Jensen-Shannon Divergence results in Table 6 in a
numerical format as well.

Flick Shake GY-FR GY-EM Bias Flu.
FF 0.022 0.019 0.019 0.027 0.003 0.004

LexC 0.086 0.039 0.132 0.054 0.047 0.004
Read 0.081 0.040 0.079 0.056 0.050 0.013
LexD 0.067 0.049 0.041 0.050 0.031 0.108

UPOS 0.088 0.052 0.066 0.075 0.034 0.011
XPOS 0.063 0.042 0.052 0.056 0.026 0.008
SenL 0.137 0.090 0.070 0.062 0.013 0.017

Phr 0.105 0.056 0.064 0.065 0.030 0.024
Sub 0.107 0.075 0.054 0.057 0.064 0.016

BoW 0.018 0.015 0.013 0.011 0.002 0.002

Table 6: Jensen-Shannon divergence between source
and target on each test set using feature groupings in
Table 4. Scores ≥ 0.075 are made bold.

239

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 240–248,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Generation Challenges: Results of the Accuracy Evaluation Shared Task

Craig Thomson
Dept of Computing Science

University of Aberdeen
Aberdeen, UK

c.thomson@abdn.ac.uk

Ehud Reiter
Dept of Computing Science

University of Aberdeen
Aberdeen, UK

e.reiter@abdn.ac.uk

Abstract

The Shared Task on Evaluating Accuracy fo-
cused on techniques (both manual and auto-
matic) for evaluating the factual accuracy of
texts produced by neural NLG systems, in
a sports-reporting domain. Four teams sub-
mitted evaluation techniques for this task, us-
ing very different approaches and techniques.
The best-performing submissions did encour-
agingly well at this difficult task. However, all
automatic submissions struggled to detect fac-
tual errors which are semantically or pragmati-
cally complex (for example, based on incorrect
computation or inference).

1 Introduction

Users expect data-to-text natural language genera-
tion (NLG) systems to generate textual summaries
which are accurate. However, many NLG systems,
especially neural ones, generate texts which are
factually incorrect.

The most reliable way to assess the accuracy
of a generated text is to ask human annotators to
carefully fact-check the text. However this is a
time-consuming and expensive process. In earlier
work, we developed a protocol (Thomson and Re-
iter, 2020) where three Mechanical Turk workers
(who had been screened and passed a qualifying
test) carefully annotated factual errors in a text
produced by a neural NLG system. The protocol
was effective and showed high interannotator agree-
ment, but it took annotators 20-30 minutes (each)
to fact-check a moderately complex 300-word para-
graph produced by a neural data-to-text NLG sys-
tem. The total cost of the process (including fees to
Amazon and money spent on the screening process
for potential annotators) was about US$30 per text.

It would be very useful to the NLG community if
we could come up with quicker and easier ways of
measuring accuracy and factual correctness which

have good correlations with the protocol of Thom-
son and Reiter (2020). Such methods could be
based on less time-consuming human evaluations
or on automatic metrics. However, these techniques
should only be used if they have good agreement
and correlation with careful high-quality human
fact-checking by multiple annotators.

In this shared task, participating teams submitted
techniques (both human and automatic) for evaluat-
ing the factual accuracy of summaries of basketball
games produced from box score (and other game
data) by three neural NLG systems. These tech-
niques were evaluated by computing precision and
recall (of identified factual errors) against a gold-
standard human annotation produced by Thomson
and Reiter (2020)’s protocol. Some of the systems
did well overall, but it was also clear that some
types of factual errors are difficult to detect.

We hope that our shared task encourages re-
searchers from many fields to work on the problem
of identifying factual errors in generated texts;
progress in this area would be very helpful for NLG.
Full details of the shared task requirements, as well
as both the training and test corpus can be found at
https://github.com/ehudreiter/accuracySharedTask.

2 Task

Participants were asked to submit a technique for
identifying incorrect statements in a generated text.
This meant statements which are not true in the real
world (ie, classic fact-checking), not just statements
which disagree with (or are not derivable from) the
system run-time data (see Section 3.1 of Thomson
and Reiter (2020)). Techniques could be

• Human evaluation protocols. Subjects would
have access to data about the game and the
teams, and also (if part of the protocol) to a
human-authored reference text.

240

• Automatic metric (algorithm). The algorithm
will have access to data about the game and
the teams, and to a reference text.

• A combination of human evaluation and auto-
matic metrics.

The output of the evaluation protocol or metric
was a list of mistakes in the text. Each mistake was
characterised by

• Its position in the text (start token and end
token).

• A category. We use the following categories,
which are based on Thomson and Reiter
(2020)

– Incorrect number: It does not matter
whether the number is spelled out or is
in digits.

– Incorrect name (for named entities): In
a sports reporting context, this includes
people, places, teams, and days of the
week.

– Incorrect word: A word which is not one
of the above and is incorrect.

– Context error: A phrase which causes an
incorrect inference because of context or
discourse.

– Not checkable: A statement which can
not be checked, either because the infor-
mation is not available or because it is
too time-consuming to check.

– Other: Any other type of mistake.

An example is shown in Figure 1. Note that this ex-
ample combines fragments from texts produced by
several different systems, along with some manual
adjustments, in order to illustrate different types of
mistakes in a simple way.

3 Data

We manually annotated, using the procedure of
Thomson and Reiter (2020), 90 texts produced by
three neural NLG systems that use basketball box
score data: Wiseman et al. (2017), Puduppully et al.
(2019a), and Rebuffel et al. (2020). In total, 30
texts were annotated from each system. Of these,
60 texts (20 from each system) were given to shared
task participants as training data, and 30 texts (10
from each system) were reserved for a separate test

set, which participants did not see until they had
submitted their solutions.

Annotators were recruited on the Amazon Me-

The Memphis Grizzlies (5-2) defeated the
Phoenix Suns (3 - 2) Monday 102-91 at
the Talking Stick Resort Arena in Phoenix.
The Grizzlies had a strong first half where
they out-scored the Suns 59-42. Marc
Gasol scored 18 points, leading the Griz-
zlies. Isaiah Thomas added 15 points, he is
averaging 19 points on the season so far.

List of errors:

• 2: incorrect number, should be 0.

• Monday: incorrect named entity, should be
Wednesday.

• Talking Stick Resort Arena: incorrect named
entity, should be US Airways Center.

• strong: incorrect word, the Grizzlies did not
do well in the first half.

• out-scored: incorrect word, the Suns had a
higher score in first half.

• 59: incorrect number, should be 46.

• 42: incorrect number, should be 52 .

• leading: incorrect word. Marc Gasol did not
lead the Grizzlies, Mike Conley did with 24
points.

• Isaiah Thomas added: context error. Thomas
played for the Suns, but context here implies
he played for the Grizzlies and added to their
score.

• averaging 10 points on the season so far: not
checkable. This is very hard to check, since
data sources report performance per season
and per game, not performance up to a partic-
ular point in a season.

Figure 1: Example text with error annota-
tions. Corrections and explanations are not
required, but are included here for clarity.
Box score data for this game is available at
https://www.basketball-reference.com/

boxscores/201411050PHO.html .

241

chanical Turk platform. Fair treatment and com-
pensation of workers is essential (Silberman et al.,
2018), not only from an ethical standpoint, but to
ensure high quality annotations. We paid anno-
tators approximately US$20 per hour. The same
three annotators marked up all 90 texts.

3.1 Systems Used
The three neural systems we used explored differ-
ent ways of modifying the neural architecture. The
system of Wiseman et al. (2017) defined the Ro-
towire task and provided initial benchmarks for
machine translation systems using copy attention,
it is included for this reason. Puduppully et al.
(2019a) learned a document plan which was then
used to generate text, whilst Rebuffel et al. (2020)
used a hierarchical encoder to group attributes
(such as statistics) by their respective entities (play-
ers/teams).

Other systems in this domain which could
be used for evaluation include Puduppully et al.
(2019b), Wang (2019), Gong et al. (2019), and Iso
et al. (2019). Our aim, however, is to assess how
well results produced by the participant’s evalu-
ation techniques correlate with the gold-standard
fact-checking. Hence we are looking for a set of
systems which generate texts that contain a sig-
nificant number of accuracy errors, not complete
coverage of all systems that generate texts from
basketball box score data.

3.2 Multiple Correct Annotations
Sometimes there are multiple correct ways of an-
notating errors. For example, consider the sentence

Lou Williams led the team in scoring,
dropping 30 points, six rebounds and
seven assists

Suppose that it was another player, Solomon Hill,
who had 30 points, 6 rebounds, and 7 assists. In
this case, the sentence could be corrected either by
changing the player name (to Solomon Hill), or by
changing the statistics (to the correct ones for Lou
Williams). In such cases we asked annotators to try
to find the smallest number of annotations required
to correct the sentence, prioritising categories in the
order of Name, Number, Word, Context, Other, Not
checkable. This is straightforward in this example.
where the choice is correcting a single player name,
or three numbers.

There were, however, a few cases where mul-
tiple complex annotations were plausible and the

preferred one was not clear to our annotators. For
example, in our test we encountered a sentence that
was marked up by annotators as shown in Figure 2:

Annotator T1: The only other
Raptor to reach double figures in
points was Dwyane Dragic, who
came off the bench for 22 points (9-17
FG, 3-7 3Pt, 3-3 FT), six rebounds and
five assists.

Annotator T2: The only other Raptor
to reach double figures in points
was Dwyane Dragic, who came
off the bench for 22 points (9-17 FG,
3-7 3Pt, 3-3 FT), six rebounds and five
assists.

Annotator T3: The only other Rap-
tor to reach double figures in points
was Dwyane Dragic, who came off the
bench for 22 points (9-17 FG, 3-7 3Pt,
3-3 FT), six rebounds and five assists.

Figure 2: Annotations by each annotator, showing
Name, Number, and Word errors.

T1 and T2 essentially decided to change the
player name to Goran Dragic; since Dragic played
for the other team (Heat), they also corrected Rap-
tors. They then corrected three of the numbers
accordingly and noted that Dragic did not come
off the bench, he started the game. T3 disagreed,
changing the player name to Lou Williams who did
in fact start for the Raptors. Whilst this minimised
Name and Word errors, it required correcting 7 of
the numbers, leading to 9 errors in all, compared
to the 7 errors annotated by T1 and T2.

The majority annotation (T1 and T2) was correct
in this case according to our ‘choose annotation
with smallest number of errors’. But it is not trivial
for annotators to search through multiple possible
annotations looking for the optimal one, and in
a larger sense it is not clear which annotation is
‘correct’.

4 Accuracy Errors Observed

In this section we discuss and give some insights
about the accuracy errors we observed in the
manually-annotated training data (i.e, the 60 an-
notated texts given to participants as training data).
We look separately at the different types of errors
listed in section 2, and also at the impact of position

242

Error Type count note
NUM-DIGIT Number 270 number in digits, such as an incorrect quantity of points
TEAM Name 162 name of team, such as Miami Heat
NUM-WORD Number 130 a number spelled as a word or words
DAY-WEEK Name 128 a day of the week, such as Wednesday
PLAYER Context 50 player name (used in incorrect context)
led Word 40 word led, often indicates a player led their team by some measure
a (an) Number 34 a or an meaning the number 1
ORDINAL Number 26 ordinal number often describing consecutive games
double-double Word 23 word double-double, a basketball metric
PLAYER Name 21 name of a player, such as LeBron James

Table 1: Errors that occurred at least 20 times in the training data. NUM-DIGIT, TEAM, NUM-WORD, DAY-
WEEK, ORDINAL refer to types of words. Number, Name, Context, Word refer to types of errors.

and the neural NLG system used. Table 1 lists all
errors that occurred at least 20 times in the training
data.

4.1 Number errors
Number errors are the most common type of er-
ror in our corpus; there were 474 Number errors
in the 60 texts in the training data. This cate-
gory includes errors in numbers presented as digits
(NUM-DIGIT), errors in spell-out numbers (NUM-
WORD), and errors when a/an is used to mean the
number 1.

From a semantic perspective, we can distinguish
between errors in copying numbers from the data
(eg, claiming that Smith scored 20 points when
the box score data says that he scored 10 points)
and errors in calculating numbers which are not
directly in the data (eg, calculating the score at half-
time, from the quarter-level scores given in the box
office data). Both types of errors were common in
our corpus.

4.2 Name errors
There were 317 Name errors in our corpus. TEAM,
PLAYER, and DAY-WEEK (from Table 1) are all
examples of a Name error. Many of these errors
arose when NLG systems tried to create sentences
for which they lacked data, such as the following:

The Sixers’ next game will be at home
against the New Orleans Pelicans on
Wednesday

Information about the next game is not present
in the data used by the three systems which were
fact-checked, so they simply guessed team and day
of week, and usually guessed wrong. Of course we
cannot expect a system to generate accurate texts

that communicate information which is not present
in the input data! But we can expect data-to-text
systems to avoid sentences which communicate
unavailable data.

As mentioned in subsection 3.2, sometimes a
sentence could be characterised as having either a
Name or a Number error. In such cases we asked
annotators to make the correction which required
the smallest number of changes.

4.3 Word errors
There were 334 Word errors in our corpus. They
can be divided into two categories: errors in using
words with clear unambiguous definitions (such as
out-scored in Figure 1) and errors in words with
fuzzy definitions (such as strong in Figure 1).

The most common error in a well-defined word
is double-double. A double-double occurs when
a player has ten or more (double-digits) in exactly
two of the following categories: points, rebounds,
assists, steals, and blocks. Note that if a player has
ten or more in three of the categories, this is called
a triple-double (3 statistics in double-digits) rather
than a double-double. While double-double is easy
to define via rules, there were 23 mistakes in our
60 corpus texts (Table 1) in the usage of this word;
this seems to be a difficult concept for our systems
to learn.

The most common error in a fuzzy word was led.
Led appears in many contexts, for example we can
say that a player led the bench in scoring or that a
team led at the half.

The meaning of led is not clear-cut, and indeed
on a few occasions the annotators disagreed on
whether led was appropriate. This is because led
(when used in descriptions of basketball games)
can encompass rebounds, assists, steals and blocks

243

as well as points. For example, if one player has
25 points, 0 assists and 0 rebounds, and a second
player has 22 points, 10 assists, and 10 rebounds,
then the first player led in scoring, but it could
be argued that the second player had a stronger
performance overall, and therefore led. However,
most of the incorrect usages of led marked by the
annotators were in cases where all of the annotators
agreed that led was inappropriate.

Some ORDINAL errors were related to this. For
example, one sentence would state that a player
led, and the subsequent sentence would state that a
second player was second.

4.4 Context error

A Context occur occurs when a statement is liter-
ally true but misleading in context. There were 51
Context errors in our corpus, 50 of which involved
PLAYERs. Typically the text would mislead the
reader as to a player’s status, especially which team
he is playing for. An example from Figure 1 is:

Marc Gasol scored 18 points, leading
the Grizzlies. Isaiah Thomas added 15
points

Thomas scored 15 points but played for the other
team (Suns). This is a Context error, since the con-
text implies that Thomas played for the Grizzlies.

Such errors were common, the systems had a
difficult time in learning when it is contextually
appropriate to mention a person.

4.5 Not Checkable and Other

A Not Checkable error occurs when the annotator
cannot check whether a fact is true or not. There
were 37 such errors in our corpus. They usually
occurred when complex statistics were given which
were difficult and time-consuming for annotators
to check. In order to keep the annotation task man-
ageable, annotators were told not to look at more
than 4 previous games. This made it impossible to
check statements such as he is averaging 19 points
on the season so far (from Figure 1), which re-
quires looking at data from every previous game in
the season.

We discouraged our annotators from using the
Other category unless absolutely necessary, and in
fact there was only one Other error in our corpus,
which was the nonsensical statement run with the
first - round win of the season.

4.6 Position analysis

In addition to analysing errors by category, we also
wondered if there might be fewer errors at the be-
ginning of the text, and more at the end. There
was in fact a sharp increase in Name errors in the
last sentence (Figure 3), but this was probably due
to the fact that the last sentence usually described
next games, and the systems did not have this in-
formation so they hallucinated. Other than this, we
did not see an increase in errors later in the text.
Figure 4 shows the distribution of Number errors
in different positions, the other error types (exclud-
ing Name) have a similar distribution. For both of
these figures, error counts are shown based upon
which tenth of the summary (by token id) the error
starts in.

4.7 System analysis

Last but not least, we wanted to look at the error
profiles for the three systems we included in the
error corpus. Two of the systems used RNN-based
encoders (Wiseman et al., 2017; Puduppully et al.,
2019a) and the third used a hierarchical transformer
(Rebuffel et al., 2020). Table 2 shows the errors
each system had within each category. The hier-
archical transformer made fewer Number errors
than both RNN based systems but more Context
errors. It is unclear why the hierarchical encoder of
(Rebuffel et al., 2020) made more Context errors,
although it may be learning to better group enti-
ties with their attributes, at the expense of ordering
between entities.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

Tenth of summary

N
o.

of
E

rr
or

s

Name errors

Wiseman
Puduppully

Rebuffel

Figure 3: Name errors in different tenths of the sum-
mary.

244

System encoder NAME NUMBER WORD CONTEXT NOT CHECK OTHER
Wiseman RNN 5.9 10.4 6.7 0.3 1.0 0.0
Puduppully RNN 5.3 7.9 5.1 0.6 0.4 0.0
Rebuffel transformer 4.7 5.5 5.0 1.7 0.5 0.1

Table 2: Breakdown of error types per-text, by system. 20 texts were included in the training corpus for each
system.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Tenth of summary

N
o.

of
E

rr
or

s

Number errors

Wiseman
Puduppully

Rebuffel

Figure 4: Number errors in different tenths of the sum-
mary.

5 Submissions

5.1 Automatic approaches

5.1.1 Charles-UPF
Charles University and Pompeu Fabra University
submitted a system which detects errors using a
three-stage process

1. A rule-based NLG system is used to generate
sentences with facts that can be derived from
the game data.

2. For each sentence in the NLG texts, a subset
of the sentences in (1) is chosen based on
semantic similarity to the target sentence.

3. A language model is used to identify errors.
The input to the model is both the target sen-
tence and the sentences in (2). The model is
trained on synthetic data as well as the training
data.

Note that the Charles-UPF system checks sentences
separately, so it cannot detect errors that depend on
document-level context, including Context errors
and usage of ‘only other’ (subsection 6.1).

5.1.2 Eurecom
The Eurecom system follows an approach inspired
by earlier work on computational fact-checking
(Karagiannis et al., 2020). It focuses on identifying
Number errrors, and also Word errors where the
word maps in a straightforward way to the game
data, such as errors in the usage of ‘defeated’. A
three-step process is used

1. Claim identification: Factual claims are ex-
tracted from the NLG text.

2. Property identification: The claims in (1) are
expanded into full property specifications; for
example the claim 18 points is expanded with
the name of the player who is supposed to
have scored these points.

3. Claim verification: The game data is queried
using the property specifications in (2); incor-
rect claims are flagged.

5.1.3 National Institute of Japanese
Literature

The NIJL system used different approaches for dif-
ferent types of errors:

• Word and Name errors: A set of rules was
used to identify Word and Name errors in the
NLG texts. These rules were tuned to the
structure of game summaries, with different
rule used for lead, middle, and end sections
of the summaries. The rules referred to the
human reference texts as well as the game
data.

• Number errors: A classifier was used to pre-
dict what relation each number represented. A
co-reference tool was used to resolve referring
expressions such as ‘he’.

The NIJL system was the only submission which
used the human-written reference texts as well as
game data when looking for accuracy errors; all
other submissions just used the game data.

245

5.2 Hybrid approaches
5.2.1 Laval University
The Laval University approach was a hybrid sys-
tem, which combined automatic analysis and hu-
man annotation.

1. Pre-annotation: a set of rules and classifiers
are used to highlight potential accuracy er-
rors in the NLG text. Row-column lookup on
source data is used to identify potential Name
and Number errors, and a multi-class, multi-
label classifier is trained for Word, Context,
and Not Checkable errors.

2. Human annotation: a single human annotator
then annotated errors in the NLG text, using
the pre-annotation of (1) to help them.

The human annotation was much quicker than
the protocol of Thomson and Reiter (2020), be-
cause of the pre-annotation step.

We present two results for Laval University: a
‘metric’ result which is based purely on the results
of the pre-annotation process, and a ‘hybrid’ re-
sult which is based on the full approach described
above.

6 Results

The submissions were evaluated by computing their
recall and precision against the gold-standard mis-
take list (GSML) which was based on the human
annotated texts in the test set (section 3). In other
words, for each submission, we calculated how
many of the gold-standard mistakes were detected
by that submission (recall), and how many of the
mistakes detected by that submission were present
in the gold-standard annotation (precision). We
calculated this at the level of both mistakes and
tokens.

Table 3 shows the recall and precision of our
submissions against the gold-standard manually an-
notated texts, for the 30 texts in the test set. We
can see that the Laval University hybrid approach
did best. Amongst the automatic evaluations, the
Charles-UPF system had the best recall and preci-
sion.

Tables 4 to 8 show recall/precision of the sub-
missions for different types of mistakes, as well as
overall. We can see that the automatic techniques
(Tables 5 to 8) were unable to detect Context and
Other errors, and only the Laval University (metric)
system could detect Not Checkable errors (but at

low precision and recall). We can also see that none
of the automatic systems did well at detecting Word
errors; the best system, Charles-UPF, had around
50% precision and recall. Overall, this suggests
that semantically more complex errors are harder
to detect automatically, which is not surprising.

As a point of comparison, the Relation Genera-
tion metric (Wiseman et al., 2017), which has been
widely used by many previous papers to evaluate
accuracy, can only detect Name and Number errors
and has a recall of less than 40% for these types of
errors (Thomson and Reiter, 2020). This is consid-
erably worse than the best-performing submissions
to our shared task.

Mistake Token
Team recall precision recall precision
Laval University* 0.841 0.879 0.668 0.859
Charles-UPF 0.691 0.756 0.550 0.769
NIJL 0.523 0.494 0.349 0.505
Laval University 0.503 0.334 0.410 0.397
Eurecom 0.080 0.311 0.046 0.202

Table 3: Results of the Accuracy Evaluation Shared
Task for all submissions. The * denotes the hybrid eval-
uation for Laval University. All other submissions were
metrics.

Mistake Token
Team recall precision recall precision
Name 0.920 0.938 0.929 0.919
Number 0.862 0.881 0.832 0.854
Word 0.679 0.731 0.561 0.685
Context 0.750 0.400 0.733 0.367
Not checkable 0.237 0.391 0.073 0.615
Other 0.000 - 0.000 -
Overall 0.841 0.879 0.668 0.859

Table 4: Laval University (hybrid evaluation) per-type
results.

Mistake Token
Team recall precision recall precision
Name 0.750 0.846 0.759 0.862
Number 0.777 0.750 0.759 0.752
Word 0.514 0.483 0.465 0.529
Context 0.000 - 0.000 -
Not checkable 0.000 - 0.000 -
Other 0.000 - 0.000 -
Overall 0.691 0.756 0.550 0.769

Table 5: Charles-UPF (metric) per-type results.

246

Mistake Token
Team recall precision recall precision
Name 0.000 - 0.000 -
Number 0.205 0.329 0.198 0.203
Word 0.014 0.095 0.006 0.095
Context 0.000 - 0.000 -
Not checkable 0.000 - 0.000 -
Other 0.000 - 0.000 -
Overall 0.080 0.311 0.046 0.202

Table 6: Eurecom (metric) per-type results.

Mistake Token
Team recall precision recall precision
Name 0.594 0.787 0.641 0.811
Number 0.442 0.351 0.427 0.340
Word 0.357 0.137 0.207 0.146
Context 0.000 - 0.000 -
Not checkable 0.500 0.190 0.200 0.407
Other 0.000 - 0.000 -
Overall 0.503 0.334 0.410 0.397

Table 7: Laval University (metric) per-type results.

6.1 Error analysis: The blind spot of metric
submissions

To explore our intuition that complex errors were
harder for the automatic systems to find, we per-
formed a preliminary error analysis on the 84 mis-
takes (of 622) that were missed by all automatic
submissions (the blind spot). We categorised each
mistake based on the type of sentence that con-
tained it:

Simple: Only 27 of the mistakes were simple,
such as an incorrect attribute for an entity, or an
incorrect name for a set of attributes. An example
is ‘Buddy Hield led the second unit with a season -
high 29 points , along with one assist , one rebound
and one steal’, where the statistics belonged to Eric
Gordon.

Comparison: 26 of the mistakes involved the
comparison of how two teams fared in a quar-
ter/half, or how their statistics compared in the
game. An examples is ‘The Nets got off to a
quick start in this one, out-scoring the Kings 28-
28 right away in the first quarter.’, where the tie of
28 points in the first quarter is incorrectly described.
Many of these mistakes also involved getting the
X-Y numbers wrong.

Only other: 14 of the mistakes were in clauses
like ‘The only other Net to reach double figures in
points was Ben McLemore‘. This requires models

Mistake Token
Team recall precision recall precision
Name 0.358 0.974 0.258 0.974
Number 0.696 0.419 0.672 0.419
Word 0.350 0.301 0.245 0.310
Context 0.000 - 0.000 -
Not checkable 0.000 - 0.000 -
Other 0.000 - 0.000 -
Overall 0.523 0.494 0.349 0.505

Table 8: National Institute of Japanese Literature (met-
ric) per-type results.

and metrics to determine:

• That Ben McLemore had double-figures and
was a Nets player.

• Which other Nets had double-figures.

• That all such players have been mentioned
previously.

Data outwith game: 11 of the mistakes required
data from outwith the game being summarised, in-
cluding averages over prior games (8 mistakes),
and the upcoming game schedule (3 mistakes).

Player groups: 6 mistakes incorrectly described
a group of players, such as a duo.

45% of blind spot mistakes involved Word, Con-
text, and Not-Checkable errors, compared to only
30% overall in the GSML. In addition, only 8%
of blind spot mistakes were cardinal numbers, de-
spite these constituting 33% of the GSML. It is
important that we do not miss blind spot mistakes
as whilst they are only 14% of the current GSML,
this proportion could increase as systems become
better at avoiding simple errors.

7 Conclusion

Neural data-to-text systems need to be able to pro-
duce accurate texts in order to be genuinely useful
in most NLG use cases. An essential prerequisite
to improving accuracy is being able to measure and
evaluate accuracy.

We believe that the evaluation techniques submit-
ted to our shared task represent a major advance in
the state of the art. We encourage participants and
others to continue developing better-performing
techniques for this key evaluation task.

247

Acknowledgments

We are very grateful to all of the participants in
the shared task, for their hard work in exploring
very diverse approaches to the problem of finding
accuracy errors! Several other teams were unable
to complete a submission by our deadline; they
had very interesting ideas and we encourage them
to continue working on their ideas. We are also
very grateful to Samira Shaikh and the members
of the Aberdeen CLAN group for their help and
advice. Last but not least, we are very grateful for
the hard work of our Mechanical Turk annotators,
in creating our training and test data. Craig Thom-
son’s work is supported under an EPSRC NPIF
studentship grant (EP/R512412/1).

References
Heng Gong, Xiaocheng Feng, Bing Qin, and Ting Liu.

2019. Table-to-text generation with effective hier-
archical encoder on three dimensions (row, column
and time). In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3143–3152, Hong Kong, China. Association
for Computational Linguistics.

Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi
Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke
Miyao, Naoaki Okazaki, and Hiroya Takamura.
2019. Learning to select, track, and generate for
data-to-text. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2102–2113, Florence, Italy. Associa-
tion for Computational Linguistics.

Georgios Karagiannis, Mohammed Saeed, Paolo Pa-
potti, and Immanuel Trummer. 2020. Scrutinizer:
A mixed-initiative approach to large-scale, data-
driven claim verification. Proc. VLDB Endow.,
13(11):2508–2521.

Ratish Puduppully, Li Dong, and Mirella Lapata.
2019a. Data-to-text generation with content selec-
tion and planning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6908–6915.

Ratish Puduppully, Li Dong, and Mirella Lapata.
2019b. Data-to-text generation with entity model-
ing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2023–2035, Florence, Italy. Association for
Computational Linguistics.

Clément Rebuffel, Laure Soulier, Geoffrey
Scoutheeten, and Patrick Gallinari. 2020. A
hierarchical model for data-to-text generation. In

Advances in Information Retrieval, pages 65–80,
Cham. Springer International Publishing.

M. S. Silberman, B. Tomlinson, R. LaPlante, J. Ross,
L. Irani, and A. Zaldivar. 2018. Responsible re-
search with crowds: Pay crowdworkers at least min-
imum wage. Commun. ACM, 61(3):39–41.

Craig Thomson and Ehud Reiter. 2020. A gold stan-
dard methodology for evaluating accuracy in data-
to-text systems. In Proceedings of INLG 2020.

Hongmin Wang. 2019. Revisiting challenges in data-
to-text generation with fact grounding. In Proceed-
ings of the 12th International Conference on Nat-
ural Language Generation, pages 311–322, Tokyo,
Japan. Association for Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

248

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 249–258,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

The ReproGen Shared Task on
Reproducibility of Human Evaluations in NLG:

Overview and Results

Anya Belz
ADAPT Research Centre, DCU, Ireland
anya.belz@adaptcentre.ie

Anastasia Shimorina
Orange, Lannion, France

anastasia.shimorina@orange.com

Shubham Agarwal
Heriot Watt University, UK

sa201@hw.ac.uk

Ehud Reiter
University of Aberdeen, UK
e.reiter@abdn.ac.uk

Abstract

The NLP field has recently seen a substan-
tial increase in work related to reproducibility
of results, and more generally in recognition
of the importance of having shared definitions
and practices relating to evaluation. Much of
the work on reproducibility has so far focused
on metric scores, with reproducibility of hu-
man evaluation results receiving far less atten-
tion. As part of a research programme de-
signed to develop theory and practice of repro-
ducibility assessment in NLP, we organised the
first shared task on reproducibility of human
evaluations, ReproGen 2021. This paper de-
scribes the shared task in detail, summarises re-
sults from each of the reproduction studies sub-
mitted, and provides further comparative anal-
ysis of the results. Out of nine initial team reg-
istrations, we received submissions from four
teams. Meta-analysis of the four reproduc-
tion studies revealed varying degrees of repro-
ducibility, and allowed very tentative first con-
clusions about what types of evaluation tend to
have better reproducibility.

1 Introduction

There has been growing interest in reproducibility
across Natural Language Processing (NLP) over re-
cent years.1 However, work has mostly focused on
determining what information and resources need
to be shared to enable others to obtain the same
metric results. The reproducibility of human evalu-
ation has received far less attention and currently
very little is known about how reproducible, hence
trustworthy, the human evaluations we routinely

1We carried out a systematic review of reproducibility
research in NLP in part as background research for ReproGen
(Belz et al., 2021).

apply in NLP really are. This is of particular con-
cern in Natural Language Generation (NLG) where
human evaluations have always played a central
role (Reiter, 2018; Novikova et al., 2017).

The last few years have seen a growth in publica-
tions, projects, workshops, shared tasks and other
initiatives on the topic of reproducibility. For exam-
ple, NeurIPS’19 introduced the ML Reproducibil-
ity checklist for submitted papers (Pineau et al.,
2020) which was also adopted by EMNLP’20 and
AAAI’21. The Reproducibility Challenge has been
running since 2018, initially in conjunction with
ICLR then NeurIPS (Sinha et al., 2020). The Chal-
lenge is focused on ML results and metric scores,
and is organised as a ‘live’ challenge, where partic-
ipants pick one of the accepted papers, and try to
reproduce its ML results (Sinha et al., 2020).

The REPROLANG’20 shared task (Branco et al.,
2020) asked participants to reproduce results from
11 papers in different areas of NLP. While in the
case of ten of the papers, the results up for repro-
duction were automatic scores, in one case (Ni-
sioi et al., 2017) they included human evaluation
scores.2 In their reproduction study of this work,
Cooper and Shardlow (2020) reannotated original
system outputs using their own annotators, in or-
der to be able to compare annotation results. Their
results suggested a drop in both quality metrics of
close to 15%.

Apart from the above reproduction study in-
volving text simplification carried out within RE-
PROLANG, there appears to have been just one
other paper reporting reproduction studies of hu-
man evaluation results in NLG (Belz and Kow,
2011) which re-ran two evaluation experiments

2Task D.1: Text simplification: http://wordpress.let.vupr.
nl/lrec-reproduction/

249

with the same evaluator cohorts, one in data-to-text
generation, the other in visual referring expression
generation. Here, strong correlations between an-
notator scores were found for two quality criteria
for each task, 0.87 Pearson’s in one case, >0.94 in
the other three.

With the ReproGen shared task, our aim was to
add to this currently small body of literature, in
order to shed more light on how reproducible cur-
rent human evaluation methods are, and what we
may need to change in how we design and carry
out human evaluations in order to improve repro-
ducibility. In Section 2 we start by describing the
organisation and structure of the shared task. Next
we provide an overview of the participating teams
(Section 3) and look at the properties of submitted
systems (Section 4). We compare and analyse the
results from the submitted systems in detail (Sec-
tion 5), before we conclude with some discussion
(Section 6) and tentative conclusions (Section 7).

2 Organisation of Shared Task

ReproGen’213 had two tracks, one a shared task in
which teams try to reproduce the same prior human
evaluation results, the other an ‘unshared task’ in
which teams attempt to reproduce their own prior
human evaluation results:

A Main Reproducibility Track: For a shared set
of selected human evaluation studies, partici-
pants repeat one or more studies, and attempt
to reproduce the results, using published in-
formation plus additional information and re-
sources provided by the authors, and making
common-sense assumptions where informa-
tion is still incomplete.

B RYO Track: Reproduce Your Own previous
human evaluation results, and report what hap-
pened. Unshared task.

For the main track (A above), we issued a call
for proposals of papers, asking people to propose
papers via an online form.4 This yielded seven
proposed papers, from which we selected four on
the grounds of suitability for reproduction studies,
diversity of languages and cost of reproduction.
The selected papers and studies, with many thanks
to the authors for supporting ReproGen, are:

3All information and resources relating to ReproGen are
available at https://reprogen.github.io/

4https://forms.gle/J5ranvXqmfjPDbxLA

1. van der Lee et al. (2017): PASS: A Dutch data-
to-text system for soccer, targeted towards spe-
cific audiences: 1 evaluation study; Dutch; 20
evaluators; 3 quality criteria; reproduction tar-
get: primary scores.

2. Dušek et al. (2018): Findings of the E2E
NLG Challenge: 1 evaluation study; English;
MTurk; 2 quality criteria; reproduction target:
primary scores.

3. Qader et al. (2018): Generation of Company
descriptions using concept-to-text and text-to-
text deep models: dataset collection and sys-
tems evaluation: 1 evaluation study; English;
19 evaluators; 4 quality criteria; reproduction
target: primary scores.

4. Santhanam and Shaikh (2019): Towards Best
Experiment Design for Evaluating Dialogue
System Output: 3 evaluation studies differing
in experimental design; English; 40 evalua-
tors; 2 quality criteria; reproduction target:
correlation scores between 3 studies.

Authors of original papers in Track A were asked
(i) to complete a HEDS datasheet5 (Shimorina and
Belz, 2021) for their paper, (ii) to make available
all code and other resources needed for the study,
and (iii) to be available to answer questions and
provide other help during the ReproGen participa-
tion period. Authors of reproduction papers were
also asked to complete a HEDS datasheet.

We issued a call for participation, inviting teams
to participate in one or both tracks. Nine teams reg-
istered for ReproGen, with team members from five
different countries, out of which four teams submit-
ted reproduction studies. Details of the submitting
teams can be found in the following section.

We made available broad guidelines6 to partic-
ipating teams about how to report reproduction
results, and provided light-touch review with com-
ments and feedback on papers.

3 Overview of Participants and
Submissions

Four submissions were received by the deadline
on August 15, 2021. Two of the submissions were
from Germany, one from Ireland, and one was a
collaboration between groups in Spain, Brazil and
Ireland. Two of the teams participated in Track A

5https://forms.gle/MgWiKVu7i5UHeMNQ9
6https://reprogen.github.io/submissions/

250

Track Team Original paper Reproduction paper

A Technical University of Darmstadt (TUDA) Qader et al. (2018) Richter et al. (2021)
UPF Barcelona, UF Minas Gerais, ADAPT Dublin van der Lee et al. (2017) Mille et al. (2021)

B Trivago GmbH, Düsseldorf Mahamood et al. (2007) Mahamood (2021)
ADAPT Dublin Popović (2020) Popović and Belz (2021)

Table 1: Overview of ReproGen submissions (tracks, teams, original papers and reproduction reports).

(Mille et al., 2021; Richter et al., 2021), the other
two in Track B (Mahamood, 2021; Popović and
Belz, 2021). Three of the four teams are affiliated
with universities, one with a commercial company.

Each of the submissions reported a reproduc-
tion study for a different paper. Two of the eval-
uated systems produced outputs in English, one
in Croatian, and one in Dutch. While Mahamood
(2021) and Mille et al. (2021) reproduced human
evaluation of data-to-text systems, Popović and
Belz (2021) evaluated Machine Translation (MT)
systems and Richter et al. (2021) text-to-text and
concept-to-text generation systems. An overview
of all submissions is provided in Table 1, and the
properties of participating systems and studies are
discussed in more detail in the next section.

4 Comparison of Properties of Original
vs. Reproduction Studies

Overall, all teams tried to follow the original stud-
ies as closely as possible. All of the reproduction
studies evaluated the same texts as reported in the
original experiments, with the same criteria and
measurement methods. Three of the four submis-
sions used the same number of evaluators. Cohorts
of human evaluators involved were different across
all pairs of original and reproduction studies.

Below we summarise differences in each pair of
studies and highlight the possible factors that might
have affected reproduction results. In the case of
Track A contributions, our notes are based on the
HEDS datasheets completed by both the original
study authors and the shared task participants. For
Track B, we describe differences as reported by
the authors themselves in their original and repro-
duction reports, also consulting the HEDS sheets
completed by them.

See also Table 3 which lists some of the more
fine-grained information for each study from the
HEDS sheets.

4.1 Track A

Mille et al. (2021) reproduced van der Lee et al.
(2017), the main differences being recruitment pro-

cess and means of response collection. The original
study recruited people on campus where they filled
paper forms in one sitting, whereas the reproduc-
tion study used online surveys, where there was
no control for timing, and people were recruited
via personal contacts, i.e. they also included peo-
ple known to the authors. The online form the
authors used was designed to resemble the original
paper form as much as possible. In addition, the
reproduction study carried out some quality checks
after the survey completion and replaced one entry
from one participant, while the original experiment
did not have any quality assurance methods (and
consequently had some missing values).

Richter et al. (2021) reproduced Qader et al. (2018).
Similar to the previous reproduction study of Mille
et al. (2021), the main differences lie in survey de-
sign, and participant recruitment and background.
While the original study used a specific web-based
interface, the reproduction study built a Google
form. That led to some differences in the interface,
e.g. using checkboxes instead of a slider in the orig-
inal evaluation. As regards human participants, the
original evaluation was circulated among the au-
thors’ colleagues in their research lab; in contrast,
the reproduction was carried out with friends and
acquaintances. Both studies assessed English text
in non-English-speaking countries; there was no
formal assessment of the level of English among
participants. Finally, manual quality checking was
present in both studies after the evaluation experi-
ment (for details, see the two papers); this involved
subjective judgements and is hard to repeat across
two studies.

4.2 Track B

Mahamood (2021) reproduced Mahamood et al.
(2007). The original study used paper forms, while
the reproduction used an online form. Evaluators
were Master students in the original; the reproduc-
tion study instead used work colleagues. Another
difference consists in the number of evaluators in-
volved. There were 25 participants in the part of the
original study that was reproduced; in contrast, the

251

mean % change
Measurand(s) Pearson’s r Spearman’s ρ +/- abs mean CV∗

Original study = van der Lee et al. (2017); reproduction study = Mille et al. (2021):
All scores (1 system × 3 measures) 0.999∗∗ 1 10.19 10.19 11.891

Original study = Mahamood et al. (2007); reproduction study = Mahamood (2021):
All scores (2 scenarios × 2 evaluator cohorts) 0.085 0.4 -24.14 60.16 72.343

Original study = Popović (2020); reproduction study = Popović and Belz (2021):
Comprehension Minor, % words with errors (3 systems) 0.666 0.993 26.033 26.033 22.143
Comprehension Major, % words with errors (3 systems) 0.988∗ 0.973 47.953 47.953 38.227
Adequacy Minor, % words with errors (3 systems) 0.362 0.277 0.350 17.210 17.830
Adequacy Major, % words with errors (3 systems) 0.9986∗∗ 0.9997 48.443 48.443 38.667
All Scores (3 systems × 4 measures) 0.691∗∗ 0.818∗∗ 30.695 34.910 29.217

Original study = Qader et al. (2018); reproduction study = Richter et al. (2021):
Mean Information Coverage (7 systems) 0.567 0.3397 36.826 42.840 34.044
Mean Non-redundancy of Information (7 systems) 0.328 0.524 1.899 19.153 19.108
Mean Semantic Adequacy (7 systems) 0.514 0.378 -2.979 19.201 20.396
Mean Grammatical Correctness (7 systems) 0.322 0.136 4.600 16.003 15.089
All Scores (7 systems × 4 measures) 0.679∗∗ 0.343 10.086 24.299 22.159

Table 2: Pearson’s and Spearman’s correlation coefficients, mean percentage change, and mean coefficients of
variation (CV∗), for the ReproGen’21 reproduction studies. ∗∗ = statistically significant at α = .01, ∗ = at α = .05.

reproduction study had 11 evaluators. Furthermore,
the ratios between native and fluent English speak-
ers were not the same: 14 and 11 in the original
vs. 5 and 6 in the reproduction. Such distinctions
may impact the reproduction results, since the ex-
periment examines the effect of hedges on native
versus fluent English speakers.

Popović and Belz (2021) carried out a reproduc-
tion study of Popović (2020). The reproduction
study followed the original closely, with the main
difference in participant background. While stu-
dents and researchers in computational linguistics
with different levels of MT experience took part in
the original study, the reproduction study involved
translation students with roughly the same level of
MT experience.

5 Comparing Reproducibility in the
ReproGen Studies

Table 4 shows results from all submissions, in terms
of the individual pairs of scores reported in origi-
nal and reproduction paper (columns 2 and 3), the
percentage increase or decrease from original to
reproduction score (column 4), and the de-biased
coefficient of variation, CV∗ (last column), follow-
ing Belz (2021). The coefficient of variation (CV)
is a standard measure of precision used in metro-
logical studies to quantify reproducibility of mea-
surements. Unlike mean and standard deviation,
CV is not in the unit of the measurements, and cap-
tures the amount of variation there is in a set of n

scores in a general way, providing a quantification
of precision (degree of reproducibility) that is com-
parable across studies (Ahmed, 1995, p. 57). Note
that we have shifted all evaluation scales to start at
zero, to ensure fair comparison across evaluations,
because both percentage change and CV in gen-
eral underestimate variation for scales with a lower
end greater than 0. Rather than standard CV, we
use CV∗, a de-biased version of CV, Belz (2021),
because sample size (number of repeat measures)
tends to be very small in NLP.7

CV∗ in Table 4 ranges from 6.107 to 16.372
for Mille et al. (2021)’s reproduction study; from
52.806 to 101.894 for Mahamood (2021); from
4.86 to 47.17 for Popović and Belz (2021); and
from 0 to 66.467 for Richter et al. (2021). Percent-
age change gives a similar picture, as the two mea-
sures generally give similar results for sample size
2 (Pearson’s correlation for absolute percentage
change and CV∗ is 0.89 over all scores in Table 4).

Looking at the above CV∗ ranges for each re-
production study, a first indication of a ranking
emerges for the four study pairs in terms of degree
of reproducibility, with (1) Lee et al./Mille et al.
having the highest degree of reproducibility, fol-
lowed by (2) Popović/Popović & Belz, (3) Qader
et al./Richter et al., and finally (4) Mahamood et
al./Mahamood.

Table 2 provides higher-level results, where in
each case multiple score pairs are analysed jointly,

7For full details of, and rationale for, using CV∗, even for
sets of just two scores, see Belz (2021).

252

Studies/measurands 3.1.1 3.2.1 4.3.4 4.3.8 4.1.1 4.1.2 4.1.3 scores (mean)
/item CV∗

Lee et al./Mille et al. 11.891

Stance ID Acc 10 20/20 stance A, output Feature Both EFoR 20 6.107stance B classif
Clarity S3 (’Understandability’) 20 20/20 1–7 DQE Good Both iiOR 20 12.031
Clarity S4 (‘Clarity’) 20 20/20 1–7 DQE Good Both iiOR 20 14.605
Fluency S1 (‘Grammaticality’) 20 20/20 1–7 DQE Corr Form iiOR 20 18.303
Fluency S2 (‘Readability’) 20 20/20 1–7 DQE Good Both iiOR 20 13.711

Popović/Popović & Belz }
279,

29.217
Comprehension Minor 557, 7/7 }

2 labels Anno Good Both iiOR 2 22.143
Comprehension Major 7/7 Anno Good Both iiOR 2 38.227
Adequacy Minor 467 7/7 }

3 labels Anno Corr Cont RtI 2 17.830
Adequacy Major 7/7 Anno Corr Cont RtI 2 38.667

Qader et al./Richter et al. 22.159
Information Coverage 30 19/19 1–5 DQE Corr Cont RtI 1 34.044
Information Non-redundancy 30 19/19 1–5 DQE Good Cont iiOR 1 19.108
Semantic Adequacy 30 19/19 1–5 DQE Corr Cont iiOR 1 20.396
Grammatical Correctness 30 19/19 1–5 DQE Corr Form iiOR 1 15.089

Mahamood et al./Mahamood,
Binary Preference Strength 2† 25‡/11 -3..+3 RQE Good Both EFoR 25/11 72.343

Table 3: Summary of some properties from HEDS datasheets provided by ReproGen participants. 3.1.1 = num-
ber of items assessed per system; 3.2.1 = number of evaluators in original/reproduction experiment; 4.3.4 =
List/range of possible responses; 4.3.8 = Form of response elicitation (DQE: direct quality estimation, RQE: rel-
ative quality estimation, Anno: evaluation through annotation); 4.1.1 = Correctness/Goodness/Features; 4.1.2 =
Form/Content/Both; 4.1.3 = each output assessed in its own right (iiOR) / relative to inputs (RtI) / relative to ex-
ternal reference (EFoR); scores/item = number of evaluators who evaluate each evaluation item; (mean) CV∗. †
considering texts with and without hedges to be the two systems being compared. ‡ subset of 32 evaluators from
original studies: 14 native + 11 fluent speakers.

in terms of Pearson’s and Spearman’s correla-
tion coefficients (columns 2 and 3), mean percent-
age change and mean absolute percentage change
(columns 4 and 5), and mean CV∗ (last column).
For example, for Lee et al./Mille et al., Pearson’s r
was 0.99 for the three scores in the original study
compared with the corresponding scores from the
reproduction study, both as shown in Table 4; Spear-
man’s ρ was 1 (i.e. all ranks were the same); on
average scores went up by 10.19%; the absolute
percentage change was also 10.19% (because all
changes were positive); and on average CV∗ was
11.89. Where a study compared multiple systems
in absolute terms,8 we show results per evaluation
measure (e.g. Comprehension Minor), in addition
to results for all scores.

In terms of the study-level scores (‘All Scores’
rows) in Table 2, a more mixed picture emerges
compared to Table 4. In terms of both Pearson’s
and Spearman’s, the ranking is the same in Ta-
ble 2 and Table 4: (1) Lee et al./Mille et al., (2)
Popović/Popović & Belz, (3) Qader et al./Richter
et al., then (4) Mahamood et al./Mahamood. In con-
trast, the rankings for overall mean (absolute) per-

8Mahamood et al./Mahamood assess two systems, but in
relative terms, yielding just one score.

centage change and overall mean CV∗ are slightly
different: (1) Lee et al./Mille et al., (2) Qader et
al./Richter et al., (3) Popović/Popović & Belz, then
(4) Mahamood et al./Mahamood.

In Table 3, we summarise some properties of
our four pairs of studies, in terms of a subset
of the properties from the HEDS datasheet (Shi-
morina and Belz, 2021) we asked participants to
complete,9 to attempt to identify possible relation-
ships between study properties and degree of repro-
ducibility. As discussed in the next section, such
interpretations could be made with greater confi-
dence if sample sizes were larger than 2, and we
intend to add further studies in the future to enable
more confident conclusions.

Something that’s not easily captured in a table
is the differences in cohorts of evaluators. For
example, in Mahamood et al./Mahamood, evalua-
tors in the original study were students, whereas
non-students were used in the reproduction study;
the former were a lot younger on average. In
Lee et al./Mille et al., the original study used ran-
dom people encountered in the university’s science
building, the reproduction study used present and

9We corrected the information provided in a small number
of cases by referring to the papers.

253

former staff and postgraduate students in comput-
ing science some of whom were known to the au-
thors; here too the former were a lot younger on
average. In Popović/Popović & Belz, the origi-
nal evaluators were computational linguistics staff
and students, the evaluators in the reproduction
study were translation students. Finally, in Qader
et al./Richter et al., the original evaluators were
recruited from among people in the same lab (ex-
cluding the authors), whereas the reproduction
study authors recruited people from their social
environment. Broadly speaking, differences be-
tween evaluator cohorts would seem to be particu-
larly pronounced in Qader et al./Richter et al. and
Mahamood et al./Mahamood, and these two study
pairs are also the least reproducible out of the four
study pairs, according to all measures except mean
absolute percentage change and mean CV∗.

In Table 3, column 2 shows the number of items
assessed per system (Question 3.1.1 in the HEDS
datasheet); column 3 shows the number of evalu-
ators in an experiment (Question 3.2.1 in HEDS);
column 4 shows the list/range of possible responses
(4.3.4); column 5 shows the form of response elici-
tation (4.3.8); column 6 shows whether the underly-
ing quality criterion assesses the correctness, good-
ness, or a feature-type aspect of quality (4.1.1);
column 7 shows whether the quality criterion as-
sesses an output’s form, content or both (4.1.2); col-
umn 8 shows whether the quality criterion assesses
each output in its own right (iiOR), relative to input
(RtI), or relative to an external frame of reference
(EFoR) (4.1.3); column 9 (‘scores/item’) shows the
number of scores collected per evaluation item; fi-
nally, the last column shows corresponding mean
CV∗ values for ease of reference. For full details
regarding HEDS questions and possible values, see
Shimorina and Belz (2021).

In Lee et al./Mille et al., Clarity and Fluency
are compound measures each derived from two
separately assessed quality criteria, which map to
the normalised quality criterion names shown in
rows 4–7 in Table 3, following the taxonomy of
normalised quality criteria proposed by Howcroft
et al. (2020).

Looking at Table 3, it’s hard to detect any spe-
cific patterns in study properties that might be pre-
dictive of CV∗. There is perhaps some indication
that the (normalised) Grammaticality criterion has
similar, and good, reproducibility in the three stud-
ies that use it in some guise: CV∗= 19.3 for S1

in Lee et al./Mille et al.; 17.8 for Adequacy Mi-
nor10 in Popović/Popović & Belz; and 15.1 for
Grammatical Correctness in Qader et al./Richter et
al. Moreover, the study with the highest degree of
reproducibility according to all measures (Lee et
al./Mille et al.) obtained a comparatively large num-
ber of scores for each evaluated item, while also
assessing a medium number of items per system. In
contrast, the study with the lowest degree of repro-
ducibility according to all measures (Mahamood
et al./Mahamood) obtained a different number of
scores for each evaluated item in the original and
reproduction studies, while assessing a very small
number (2) of items per system. We return to some
of these aspects in the discussion section.

6 Discussion

There were considerable differences in evaluator
cohorts between original and reproduction study
in all four ReproGen study pairs. In Mahamood
et al./Mahamood, the texts being evaluated were
about progress towards getting a postgraduate de-
gree (e.g.: You haven’t qualified for a postgraduate
diploma. You have been awarded a postgradu-
ate certificate instead. Average CAS results were
achieved in CS5052, CS5038, CS5540, CS5548.)
Mahamood et al. (2007) asked postgraduate stu-
dents to evaluate these texts, whereas Mahamood
(2021) asked work colleagues to evaluate the texts.
It is possible that students and non-students reacted
differently to statements about degree progress, and
that the students were much more familiar with
terms such as ‘postgraduate certificate’ and ‘CAS’.

There were also important differences in evalu-
ator cohorts in Lee et al./Mille et al. and Qader et
al./Richter et al.: in both cases, the reproduction
cohort included people known to the authors per-
sonally who may have had more of an incentive
to perform the task conscientiously and perhaps
also to select higher scores. In the case of Lee
et al./Mille et al., reproducibility was nevertheless
good, whereas for Qader et al./Richter et al., it was
less good.

Across all of our reproduction studies, there were
differences in evaluators: age, recruitment, profes-
sional status, domain knowledge, background, etc.
Such differences have the potential to impact repro-
ducibility, but the picture from the four ReproGen
studies was mixed, and further research is needed

10Assuming that grammatical errors account for much of
minor translation adequacy issues, which is not certain.

254

to understand which characteristics were most im-
portant from this perspective. Knowing this would
be very helpful in designing and interpreting exper-
iments, as well as replicating them.

Both Track A reproduction studies contacted the
original authors for additional information, high-
lighting the importance of original authors being
willing to support reproduction studies of their
work. It is clear from ReproGen’21 as well as
other research (van der Lee et al., 2019; Howcroft
et al., 2020; Belz et al., 2021) that we need a lot of
information about evaluators and other aspects of
evaluations in order to conduct reproduction stud-
ies, so it’s essential that experimenters fill out a
datasheet such as HEDS which conveys informa-
tion in a standardised, comparable way.

A rarely mentioned aspect that should not be
underestimated is that being willing to support a
reproduction study of your work means being will-
ing to take what some perceive as a substantial risk
associated with having others publish assessments
of the reproducibility of your work. Some authors
are very uncomfortable with a reproduction study
showing low reproducibility. In fact, one of the
authors of a paper which had been the subject of a
reproduction study that we wanted to include in our
survey of reproduction studies (Belz et al., 2021)
worried that the considerable gap in results would
be interpreted as academic misconduct.11

Clearly there is a need for reproduction studies to
be carried out in NLP. We need to know how repro-
ducible different types of evaluation measures are,
because measures with low reproducibility will re-
sult in unreliable results and unreliable conclusions
based on them. Reproduction studies are the only
way to know if/where we’re going wrong in this
sense. However, given prevailing sensitivities, it
seems the right thing to do to conduct reproduction
studies with the original authors’ consent.

Reproduction studies are expensive and a lot
work, and we were told by the five teams that reg-
istered for ReproGen but did not submit that these
were the main reasons why they were ultimately
not able to participate. Publication only provides
so much of an incentive/motivation. Significant
numbers of reproduction studies may only be fea-
sible in the context of a funded project such as
ReproHum,13 where uniformity of approach can
moreover be ensured and the number and type of re-

11We therefore did not include the study in question in the
published survey.

production studies conducted can be more directly
controlled. We plan to run a second shared task
next year, to further test the suitability of the shared
task format for reproduction studies in NLP.

7 Conclusions

We first proposed the ReproGen shared task at Gen-
eration Challenges 202012 (Belz et al., 2020) and,
taking into account feedback received, developed it
into the shared task presented here, with the main
track offering four original studies (sets of human
evaluation results) for reproduction, and an open
track inviting reproduction studies of own results.

Bearing in mind we had just one reproduction
study for each original study available to us, and
that as discussed we have to be cautious drawing
conclusions based on sample sizes of 2, there are
very few tentative first conclusions concerning re-
producibility of human evaluation in NLG we have
been willing to draw from ReproGen. We pointed
out that the study with the highest degree of repro-
ducibility obtained a comparatively large number
of scores for each evaluated item, while also as-
sessing a medium number of items per system. In
contrast, the study with the lowest degree of repro-
ducibility obtained a different number of scores for
each evaluated item in the original and reproduc-
tion studies, while assessing a very small number
(2) of items per system. We also observed that
there was some evidence that the Grammaticality
evaluation criterion has a comparatively good and
stable degree of reproducibility.

When we read human evaluation results in NLG
papers, unless there is an obvious red flag such
as a very small number of evaluators, or evalu-
ation items, we tend to trust those results more
than metric results. Yet as we delve deeper into
the reproducibility of our human evaluation results,
it is beginning to become clear that, as a general
assumption, this trust may be misplaced. More
generally, that we need to do much more as a field
to ensure that our human evaluation methods are fit
for purpose, including in the sense that a rerun of
an experiment will produce at least broadly similar
results. With the ReproGen shared task, and the Re-
proHum project13 which it is part of, we are aiming
to make a contribution to this important goal.

12INLG’20, Dublin.
13https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?

GrantRef=EP/V05645X/1

255

Acknowledgments

We thank the authors of the four original papers that
were up for reproduction in Track A who bravely
agreed to be our guinea pigs for this first shared task
on reproducibility of evaluation measures in NLG.
And of course the authors of the reproduction pa-
pers, the first batch of participants in a shared task
on reproducibility of human evaluations without
whom there would be no shared task.

Our work was carried out as part of the Repro-
Hum project on Investigating Reproducibility of
Human Evaluations in Natural Language Process-
ing, funded by EPSRC (UK) under grant number
EP/V05645X/1.

Shubham Agarwal’s PhD fees are supported by
Adeptmind Inc., Toronto, Canada.

References

S. E. Ahmed. 1995. A pooling methodology for coef-
ficient of variation. Sankhyā: The Indian Journal of
Statistics, Series B, pages 57–75.

Anya Belz. 2021. Quantifying reproducibility in NLP
and ML. arXiv preprint arXiv:2109.01211.

Anya Belz, Shubham Agarwal, Anastasia Shimorina,
and Ehud Reiter. 2020. ReproGen: Proposal for a
shared task on reproducibility of human evaluations
in NLG. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
232–236.

Anya Belz, Shubham Agarwal, Anastasia Shimorina,
and Ehud Reiter. 2021. A systematic review of re-
producibility research in natural language process-
ing. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 381–393,
Online. Association for Computational Linguistics.

Anya Belz and Eric Kow. 2011. Discrete vs. contin-
uous rating scales for language evaluation in NLP.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 230–235.

António Branco, Nicoletta Calzolari, Piek Vossen,
Gertjan Van Noord, Dieter van Uytvanck, João Silva,
Luı́s Gomes, André Moreira, and Willem Elbers.
2020. A shared task of a new, collaborative type
to foster reproducibility: A first exercise in the
area of language science and technology with RE-
PROLANG2020. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
5539–5545, Marseille, France. European Language
Resources Association.

Michael Cooper and Matthew Shardlow. 2020. Com-
biNMT: An exploration into neural text simplifica-
tion models. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 5588–
5594, Marseille, France. European Language Re-
sources Association.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG challenge. In
Proceedings of the 11th International Conference
on Natural Language Generation, pages 322–328,
Tilburg University, The Netherlands. Association for
Computational Linguistics.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation:
NLG needs evaluation sheets and standardised def-
initions. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
169–182, Dublin, Ireland. Association for Computa-
tional Linguistics.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368, Tokyo, Japan. Association for Com-
putational Linguistics.

Chris van der Lee, Emiel Krahmer, and Sander
Wubben. 2017. PASS: A Dutch data-to-text system
for soccer, targeted towards specific audiences. In
Proceedings of the 10th International Conference on
Natural Language Generation, pages 95–104, Santi-
ago de Compostela, Spain. Association for Compu-
tational Linguistics.

Saad Mahamood. 2021. Reproducing a comparison of
hedged and non-hedged NLG texts. In Proceedings
of the 14th International Conference on Natural Lan-
guage Generation, Aberdeen, United Kingdom. As-
sociation for Computational Linguistics.

Saad Mahamood, Ehud Reiter, and Chris Mellish. 2007.
A comparison of hedged and non-hedged nlg texts.
In Proceedings of the Eleventh European Workshop
on Natural Language Generation (ENLG 07), pages
155–158.

Simon Mille, Thiago Castro Ferreira, Anya Belz, and
Brian Davis. 2021. Another PASS - a reproduction
study of the human evaluation of a football report
generation system. In Proceedings of the 14th In-
ternational Conference on Natural Language Gener-
ation, Aberdeen, United Kingdom. Association for
Computational Linguistics.

Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P. Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational

256

Linguistics (Volume 2: Short Papers), pages 85–91,
Vancouver, Canada. Association for Computational
Linguistics.

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas
Curry, and Verena Rieser. 2017. Why we need new
evaluation metrics for NLG. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2241–2252.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Larivière, Alina Beygelzimer, Flo-
rence d’Alché Buc, Emily Fox, and Hugo
Larochelle. 2020. Improving reproducibility in
machine learning research (a report from the
NeurIPS 2019 reproducibility program). CoRR
abs/2003.12206.

Maja Popović. 2020. Informative manual evalua-
tion of machine translation output. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5059–5069, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Maja Popović and Anya Belz. 2021. A reproduction
study of an annotation-based human evaluation of
MT outputs. In Proceedings of the 14th Interna-
tional Conference on Natural Language Generation,
Aberdeen, United Kingdom. Association for Com-
putational Linguistics.

Raheel Qader, Khoder Jneid, François Portet, and
Cyril Labbé. 2018. Generation of company de-
scriptions using concept-to-text and text-to-text deep
models: dataset collection and systems evaluation.
In Proceedings of the 11th International Conference
on Natural Language Generation, pages 254–263,
Tilburg University, The Netherlands. Association for
Computational Linguistics.

Ehud Reiter. 2018. A structured review of the validity
of BLEU. Computational Linguistics, 44(3):393–
401.

Christian Richter, Yanran Chen, and Steffen Eger. 2021.
TUDA-reproducibility @ reprogen: Replicability of
human evaluation of text-to-text and concept-to-text
generation. In Proceedings of the 14th International
Conference on Natural Language Generation, Ab-
erdeen, United Kingdom. Association for Computa-
tional Linguistics.

Sashank Santhanam and Samira Shaikh. 2019. To-
wards best experiment design for evaluating dia-
logue system output. In Proceedings of the 12th
International Conference on Natural Language Gen-
eration, pages 88–94, Tokyo, Japan. Association for
Computational Linguistics.

Anastasia Shimorina and Anya Belz. 2021. The hu-
man evaluation datasheet 1.0: A template for record-
ing details of human evaluation experiments in NLP.
CoRR, abs/2103.09710.

Koustuv Sinha, Joelle Pineau, Jessica Forde, Rose-
mary Nan Ke, and Hugo Larochelle. 2020. NeurIPS
2019 Reproducibility Challenge. ReScience C,
6(2):#11.

257

Measurand Orig study Repro study % change CV∗
Original study = van der Lee et al. (2017); reproduction study = Mille et al. (2021):
Stance identification Accuracy, PASS system 91 96.75 6.32 6.107
Mean Clarity, 0..6†, PASS system 4.64 5.3 10.7 13.193
Mean Fluency, 0..6†, PASS system 4.36 5.14 13.55 16.372
Original study = Mahamood et al. (2007); reproduction study = Mahamood (2021):
Strength of preference for style A vs. B (0..6†)

Native speakers, Scenario 1 1.58 0.8 -49.37 65.35
Native speakers, Scenario 2 0.93 1.6 72.04 52.806
Fluent speakers, Scenario 1 3.09 1.0 -67.64 101.894
Fluent speakers, Scenario 2 3.45 1.67 -51.59 69.323

Original study = Popović (2020); reproduction study = Popović and Belz (2021):
Comprehension Minor, % words with errors

Bing 16.0 16.8 +5 4.86
Google 11.2 15.0 +33.93 28.92
Amazon 12.0 16.7 +39.17 32.65

Comprehension Major, % words with errors
Amazon 7.6 10.2 +34.21 29.13
Bing 15.1 22.3 +47.68 38.38
Google 7.1 11.5 +61.97 47.17

Adquacy Minor, % words with errors
Google 10.5 11.7 +11.43 10.78
Amazon 11.4 13.1 +14.91 13.84
Bing 17.0 12.7 -25.29 28.87

Adequacy Major, % words with errors
Google 7.0 9.7 +38.57 32.24
Amazon 6.5 9.5 +46.15 37.39
Bing 13.2 21.2 +60.61 46.37

Original study = Qader et al. (2018); reproduction study = Richter et al. (2021):
Mean Information Coverage, 0..4†

Reference 2.1 2.9 38.1 31.904
C2T 1.9 1.5 -21.05 23.459
C2T char 1.3 2.0 53.85 42.297
C2T+pg 1.3 1.6 23.08 20.628
C2T+pg+cv 1.7 2.0 17.65 16.168
T2T+pg 0.8 1.6 100 66.467
T2T+pg+cv 1.3 1.9 46.15 37.388

Mean Non-redundancy of Information, 0..4†

Reference 3.6 3.1 -13.89 14.881
C2T 1.9 2.8 47.37 38.183
C2T char 2.9 1.8 -37.93 46.668
C2T+pg 3.5 3.2 -8.57 8.928
C2T+pg+cv 2.9 3.1 6.9 6.647
T2T+pg 2.3 2.5 8.7 8.308
T2T+pg+cv 2.8 3.1 10.71 10.139

Mean Semantic Adequacy, 0..4†

Reference 2.9 2.9 0 0
C2T 2.3 1.6 -30.43 35.79
C2T char 1.8 2.1 16.67 15.339
C2T+pg 3.0 1.9 -36.67 44.764
C2T+pg+cv 2.6 2.9 11.54 10.876
T2T+pg 1.9 1.7 -10.53 11.078
T2T+pg+cv 1.4 1.8 28.57 24.925

Mean Grammatical Correctness, 0..4†

Reference 3.2 3.0 -6.25 6.432
C2T 2.6 2.2 -15.38 16.617
C2T char 2.0 2.5 25 22.156
C2T+pg 3.3 2.8 -15.15 16.344
C2T+pg+cv 3.2 3.1 -3.13 3.165
T2T+pg 2.7 3.0 11.11 10.495
T2T+pg+cv 2.5 3.4 36 30.417

Table 4: Overview of results from ReproGen’21 reproduction studies: measurand, measured value in original study,
measured value in reproduction study, percentage change (in/decrease), and coefficient of variation (CV∗). † the
original scale was shifted to start from 0.

258

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 259–265,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Text-in-Context: Token-Level Error Detection for Table-to-Text
Generation

Zdeněk Kasner,1 Simon Mille2 and Ondřej Dušek1

1Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
2Pompeu Fabra University, Barcelona, Spain

kasner@ufal.mff.cuni.cz, simon.mille@upf.edu, odusek@ufal.mff.cuni.cz

Abstract

We present our Charles-UPF submission for
the Shared Task on Evaluating Accuracy in
Generated Texts at INLG 2021. Our system
can detect the errors automatically using a
combination of a rule-based natural language
generation (NLG) system and pretrained lan-
guage models (LMs). We first utilize a rule-
based NLG system to generate sentences with
facts that can be derived from the input. For
each sentence we evaluate, we select a sub-
set of facts which are relevant by measuring
semantic similarity to the sentence in ques-
tion. Finally, we finetune a pretrained lan-
guage model on annotated data along with the
relevant facts for fine-grained error detection.
On the test set, we achieve 69% recall and 75%
precision with a model trained on a mixture of
human-annotated and synthetic data.

1 Introduction

Recent neural NLG systems can easily generate
fluent texts from linearized structured data (Zhao
et al., 2020; Kale and Rastogi, 2020; Castro Fer-
reira et al., 2020). However, the systems cannot
guarantee that the output is properly grounded in
the input – hallucination (outputs not supported by
input data) is a notorious problem in neural NLG
(Tian et al., 2019; Harkous et al., 2020; Filippova,
2020; Rebuffel et al., 2021). Neural systems are
particularly unreliable on complex datasets such as
Rotowire (Wiseman et al., 2017), where the task
is to generate basketball match summaries from
tabular data. Rotowire poses multiple challenges
for neural systems: it requires content selection and
production of longer texts, and its human-written
training texts are themselves not always grounded
in data, which makes neural models more suscepti-
ble to hallucination.

On the other hand, rule-based systems used in
recent data-to-text tasks (Lapalme, 2020; Tran and

Nguyen, 2020; Mille et al., 2019) all achieve high
scores in terms of accuracy of the generated con-
tents with respect to the input structures (Dušek
et al., 2020; Castro Ferreira et al., 2020). This,
however, comes with the cost of lower fluency.

Detecting NLG errors automatically is a hard
problem. For word-overlap-based metrics, such as
BLEU (Papineni et al., 2002) or METEOR (Lavie
and Agarwal, 2007), reliability on content check-
ing is known to be poor (Novikova et al., 2017;
Dhingra et al., 2019). Most neural metrics (Zhang
et al., 2020; Sellam et al., 2020) have not been eval-
uated for content preservation. Dušek and Kasner
(2020)’s metric based on natural language infer-
ence (NLI) specifically targets content preservation,
but, same as all previously mentioned ones, is not
able to provide fine-grained error tagging beyond
sentence level. Specific content-checking metrics
mostly remain a domain of handcrafted pattern
matching (Wen et al., 2015; Dušek et al., 2019),
which does not scale well to new domains. While
human evaluation provides a more reliable alterna-
tive, it is costly and difficult to set up (van der Lee
et al., 2019; Santhanam and Shaikh, 2019; Belz
et al., 2020; Thomson and Reiter, 2020a).

The INLG 2021 accuracy evaluation shared task
(Reiter and Thomson, 2020; Thomson and Reiter,
2021) aims to improve this situation. Reiter and
Thomson (2020) carefully annotated 60 outputs of
various neural systems trained on Rotowire with 6
error types (see Table 1) defined in Thomson and
Reiter (2020b). The objective of the shared task is
then to either implement an automatic metric for
creating the same type of annotations automatically,
or to develop a human evaluation scenario capable
of producing the same annotations while requiring
less resources.

Our submission for the shared task falls into the
first category: we developed an automatic metric
for token-level error annotation which combines a

259

NUMBER Incorrect number.
NAME Incorrect named entity.
WORD Any other incorrect word.
CONTEXT A phrase inappropriate for the context.
NOT_CHECKABLE A statement which cannot be checked.
OTHER Any other type of mistake.

Table 1: Error categories for the Rotowire dataset.

rule-based generation system with a neural retrieval
model and a pretrained neural LM used for error
tagging. We evaluated our approach in a cross-
validation scenario to select the best configuration
for the shared task. Overall, our system is able to
reach 65% error detection F1 score and ranked first
out of four automatic submissions in the shared
task. The code for our experiments is freely avail-
able on Github.1

2 Our System

Our system is composed of 3 steps: A rule-based
generator for fact descriptions (see Figure 1 and
Section 2.1), a retrieval system for selecting facts
relevant for a given sentence (Section 2.2), and a
token-level error tagger based on the RoBERTa pre-
trained LM (Section 2.3). The latter two steps are
summarized in Figure 2. The LM tagger is trained
on examples provided by shared task organizers,
as well as on synthetic data based on the Rotowire
training set (Section 2.4).

2.1 Rule-based Fact Descriptions
We use rule-based systems to generate natural lan-
guage descriptions of facts from the input tables,
relating to all players and both teams. The facts
are later supplied to the error-checking model for
grounding the evaluated sentence (see Section 2.3).
We experiment with both simple descriptions cre-
ated by filling in sentence templates, and compact
descriptions generated using a grammar-based sys-
tem. The simple system produces about 569 fact-
s/sentences for each game. The compact system
generates about 112 sentences per game, i.e., 5
times less; the game descriptions contain the same
amount of information but the individual sentences
are more syntactically complex.

Facts generated For each game, we first gener-
ate every fact in the input table, i.e., 44 facts about
the game (hosting team, visiting team, date con-
verted to weekday) and so-called line-score objects

1https://github.com/kasnerz/
accuracySharedTask_CUNI-UPF

(team name and statistics) and box-score objects
(player name, player team, player starting position
and their personal statistics).

Subsequently, we generate 85 further facts that
can be inferred from the input table. These are
based on reading the first 20 human-written sum-
maries in the training data and finding frequently
mentioned facts that can easily be derived from
input, such as which team won and by how much,
comparisons between the team and player raw data
(e.g., Team A dominated the defensive rebounding,
Team A and Team B committed the same number
of fouls; Player X was the (second) best scorer of
the game/his team), complex statistics (e.g., Team
A totaled X steals; Player X (almost) recorded a
double-double), or an interpretation of some num-
bers (e.g., Team A came back in the 4th quarter;
Team A was efficient/bad at shooting).2

Simple descriptions are produced by a template-
based system, with one template per fact. We hand-
crafted 129 sentence templates to cover all the facts
described above. A sentence template looks like
the following: “[PLAYER_NAME] scored [PTS]
points.”, where square brackets indicate variables
that are instantiated with the corresponding input
values (see Figure 1 for sample sentences).

Compact descriptions are produced by the
FORGe system (Mille et al., 2019), which allows
for the generation of more compact sentences by in-
stantiating abstract (predicate-argument) templates
instead of full sentences for each fact. For in-
stance, the template for the points scored would
be: [PLAYER_NAME] ←A1 provide A2→ point
NonCore→[PTS], where A1 and A2 denote the
first and second arguments respectively, and Non-
Core a non-argumental relation. FORGe receives
a series of instantiated templates and performs sur-
face realization in several steps, by first aggregat-
ing the templates based on predicate and/or ar-
gument identity, and then structuring, linearizing
and inflecting components of the sentences. The
FORGe grammars were used off-the-shelf,3 with
cross-sentence referring expression generation de-
activated so that each generated sentence can be
used on its own. We manually crafted 98 abstract
templates and added a description of the included

2A number of mentioned facts could not be obtained from
the Rotowire data, as for instance the player stats per quarter,
a career high points total, whether a player is an all-star or not,
or if a player scored the winning shot.

3Minor debugging was needed to cover some new contexts.

260

• Patrick Patterson scored 14 points.
• Patrick Patterson provided 5 rebounds.
• Patrick Patterson provided 3 defensive rebounds.
• Patrick Patterson provided 2 offensive rebounds.
• Patrick Patterson provided 1 assists.
...

Team Win Loss Pts
Mavericks 31 41 86
Raptors 44 29 94

…

Player AS RB PT
Patrick Patterson 1 5 14

Delon Wright 4 3 8
…

…
• Patrick Patterson provided 14 points
 on 5/6 shooting, 5 rebounds, 3 defensive
 rebounds, 2 offensive rebounds and 1 assist.
...

• The Toronto Raptors, which were leading
 at halime by 10 points (54-44), defeated
 the Dallas Mavericks by 8 points (94-86).
…

• Toronto Raptors won the first half
 by 10 points (54-44).
• Toronto Raptors beat Dallas Mavericks
 by 8 points (94-86).
...

simple (hand-craed templates) compact (FORGe system)

Figure 1: Rule-based NLG which we use to generate facts from the input data. The facts are used as an input to
the error checking model (see Figure 2). We experiment with (a) simple hand-crafted templates and (b) compact
sentences generated by the FORGe system.

NUMBER

DeMarre Carroll chipped

in 14 points, five rebounds,

one assist and one steal.

NAME NAME

Dallas Mavericks hosted Toronto Raptors on Saturday.
Toronto was the favorite in this game.

Toronto Raptors won the first half by 10 points (54-44).
...

Patrick Patterson provided 1 assist.
Patrick Patterson scored 14 points.

Patrick Patterson provided 5 rebounds.
Patrick Patterson commited 2 fouls.
Patrick Patterson provided 0 steals.

...
DeMarre Carroll did not play.

...

C (context)

Patrick Patterson scored
14 points. Patrick Patterson
provided 5 rebounds. (...)

...✓

✓

✓

✓

✓

c facts
selected

{DeMarre Carroll chipped

in 14 points, five rebounds,

one assist and one steal.

Rule-based NLG Semantic similarity Token classification

s (evaluated sentence)

Figure 2: An overview of our system. First, we generate the facts from the input table with a rule-based NLG
system (see Figure 1). For each evaluated sentence s, we select c facts with the highest semantic similarity, getting
a context C. The pair (C, s) is given as an input to a pretrained LM for token-level error classification.

lexical units into the FORGe lexicon. For instance,
the five simple sentences shown at the bottom of
the yellow column in Figure 1 are covered by a
single compact sentence shown at the bottom of
the orange column.

2.2 Context Retrieval
Since the maximum length of the input sequence
for our error-checking model (see Section 2.3) is
512 tokens (about 10% of the total length of the
generated sentences G), we need to select only a
subset of G, which we refer to as context C. We
want to put the relevant sentences into C and filter
out the rest to make the error tagging easier. This
problem is hard in general, as any string matching
(e.g. using numbers or names mentioned in the
sentence) will fail on lexical variations.

Our solution is based on selecting sentences with
the highest semantic similarity. For each gener-
ated sentence gi ∈ G, we measure semantic similar-
ity between gi and the evaluated sentence s using
Sentence Transformers (Reimers and Gurevych,
2019).4 In particular, we embed the sentence to-
kens by applying mean pooling on the output of

4https://www.sbert.net/

paraphrase-distilroberta-base-v2, getting
the embedding vectors es and egi . Then we com-
pute the cosine similarity between the embeddings.
For the context C, we select the top c sentences
from G that have the highest cosine similarity to s.

2.3 LM-based Error Tagger

We use a RoBERTa LM (Liu et al., 2019) with
a token-level classification head as our error-
checking model. Unlike unsupervised approaches
based on examining attention values (Thorne et al.,
2019; Li et al., 2020) or input perturbations (Kim
et al., 2020), we train the model directly to predict
error categories using annotated data, similarly to
Yoosuf and Yang (2019).

The model receives an input X = (C, s), com-
posed of the context C, i.e., relevant background
facts selected by context retrieval in Section 2.2,
and the generated sentence s to be tagged. The
inputs are separated by the delimiter </s>. The
model is trained to annotate each token in s either
with an OK label, or with a label corresponding to
one of the error categories.

We experiment with two data sources for train-
ing the model: (1) gold-standard annotated data

261

Generator Data c
EMR = 0.25 EMR = 0.5 EMR = 0.75

R P F1 R P F1 R P F1

Simple

synth

5 0.123 0.723 0.210 0.165 0.512 0.250 0.310 0.323 0.316
10 0.138 0.737 0.232 0.181 0.549 0.272 0.328 0.400 0.360
20 0.137 0.741 0.231 0.179 0.559 0.271 0.327 0.433 0.373
40 0.165 0.712 0.268 0.199 0.560 0.294 0.296 0.436 0.353

synth + human

5 0.422 0.617 0.501 0.414 0.594 0.488 0.401 0.583 0.475
10 0.467 0.551 0.506 0.438 0.638 0.519 0.428 0.665 0.521
20 0.518 0.640 0.573 0.544 0.575 0.559 0.509 0.595 0.549
40 0.584 0.644 0.613 0.595 0.612 0.603 0.519 0.639 0.573

Compact

synth

5 0.151 0.696 0.248 0.170 0.617 0.267 0.336 0.427 0.376
10 0.176 0.663 0.278 0.195 0.624 0.297 0.295 0.486 0.367
20 0.196 0.672 0.303 0.205 0.635 0.310 0.278 0.552 0.370
40 0.166 0.643 0.264 0.197 0.595 0.296 0.306 0.530 0.388

synth + human

5 0.600 0.641 0.620 0.552 0.635 0.591 0.588 0.600 0.594
10 0.583 0.662 0.620 0.629 0.606 0.617 0.656 0.606 0.630
20 0.622 0.647 0.634 0.597 0.688 0.639 0.600 0.660 0.629
40 0.614 0.690 0.650* 0.609 0.630 0.619 0.611 0.630 0.620

Table 2: Recall (R), precision (P) and F1 scores on development data. c indicates the number of sentences in the
context provided to the tagger, EMR stands for entity modification rate. Best recall, precision and F1 scores for
both generators (simple and compact) are shown in bold, the submitted model is identified by an asterisk (*).

from the shared task (which contains all error
types), (2) synthetic data created by perturbing the
human-written summaries from Rotowire (which
contains only NAME and NUMBER errors; see Sec-
tion 2.4 for details).

2.4 Synthetic Data

The gold-standard data contains only 60 games, as
opposed to 3,395 games in the Rotowire training
set. This led us to an idea of using the training set
as a source of synthetic data for our model.

We create the synthetic data by introducing er-
rors into human-written descriptions. We focus
only on the NAME and NUMBER errors—the cat-
egories which are the most represented and also
easiest to generate. In each sentence, we identify
named entities in the text using spaCy.5 We mod-
ify only certain portion of entities according to the
entity modification rate, which we treat as a hyper-
parameter. We introduce the NAME errors by:
(1) swapping the names of teams with opponent

teams,
(2) swapping the names of players with other

players in the game,
(3) swapping the names of cities with other cities

in the Rotowire dataset,
(4) modifying the days of the week.

For NUMBER errors, we take an integer n identi-
fied in the text, sample a number from a normal
distribution with µ = n and σ = 3, and truncate

5https://spacy.io

it to get the integer. We re-sample if the output
equals the original number, or for negative outputs.
If the number is spelled out, we use text2num6

and num2words7 to convert to digits and back.

3 Experiments

We train a PyTorch version of RoBERTa from the
Huggingface Transfomers repository (Wolf et al.,
2019) using the AdamW optimizer (Loshchilov and
Hutter, 2019), learning rate 5 × 10−5 and linear
warmup. We finetune the model for 10 epochs and
select the model with the highest validation score.
We experiment with several hyperparameters:
(a) simple vs. compact sentences in G,
(b) number of sentences retrieved for the context:

c = 5, 10, 20 or 40;
(c) entity modification rate (EMR): proportion of

entities which are modified in the synthetic
data: 0.25, 0.5, or 0.75.

We evaluate the model using a script provided
by the organizers, which computes recall and pre-
cision of the model output with respect to the
human-annotated data. Since we use the human-
annotated data for training, we perform 6-fold
cross-validation: in each run, we use 45 games
for training, 5 games for validation, and 10 games
for evaluation.

The results of our model on the development
data are listed in Table 2.8 For our final submission,

6https://pypi.org/project/text2num/
7https://pypi.org/project/num2words/
8Due to space constraints, we do not list the results of

262

Error Type Mistake Token
R P R P

NAME 0.750 0.846 0.759 0.862
NUMBER 0.777 0.750 0.759 0.752
WORD 0.514 0.483 0.465 0.529
CONTEXT 0.000 - 0.000 -
NOT_CHECKABLE 0.000 - 0.000 -
OTHER 0.000 - 0.000 -

Overall 0.691 0.756 0.550 0.769

Table 3: Results of our system on test data: recall (R)
and precision (P) are shown for individual error types.

we selected the model with the best F1-score over-
all, which is 0.65 (61% recall and 69% precision).
The model uses 40 compact sentences in context,
0.25 EMR and was trained on both synthetic and
human-annotated data. However, note that the hy-
perparameters of the best models are quite varied.
Although compact texts are generally helpful, there
are also some well-performing models using sim-
ple templates only. A higher number of sentences
in context may help to achieve better F1-score, but
not always (the longer context is also sometimes
cropped to fit the input). Using a higher EMR then
generally leads to higher recall, suggesting that the
model adapts to the base rate of errors.

4 Results of our Charles-UPF submission

Table 3 shows the results of our model on the of-
ficial test data of the task, broken down by error
types. The overall scores are higher than on the
development set – test set recall is 0.691 (vs. 0.614
on the development set) and precision is 0.756
(vs. 0.690). The fact that we used the whole avail-
able human annotated data for training the final
model may have contributed to the difference, but
it is also possible that the test data was somewhat
less challenging. We note that our model was able
to identify only three types of errors (NAME, NUM-
BER, WORD), having better results for the NAME
and NUMBER errors. We believe the explanation is
two-fold: the names and numbers are often found
verbatim in the input data (and in our generated
facts), which makes them easy to detect, and also
the corresponding error types were the most rep-
resented in the training data. In contrast, the three
error types which were not detected are much less
represented in the training data and hard to detect
in our setup.

model trained only on annotated data. The results were overall
in the 0.3-0.5 range for both recall and precision, and no model
was the best-performing one in terms of any metric.

5 Discussion

Our Charles-UPF submission achieved the best re-
sults in the automatic metrics category, but there
is still a gap with what humans can achieve, as
shown by the Laval University submission’s (Gar-
neau and Lamontagne, 2021) overall 0.841 recall
and 0.879 precision. One way to improve our sys-
tem would be to enrich the reference fact descrip-
tions, by either inferring more information from
the raw data, or by extracting additional data from
external databases.2 Another option would be to
add surrounding sentences to the context – this
could help to resolve coreferences (e.g., if a player
is referred to as "He") and to detect the CONTEXT
errors.

We also note that our approach requires the real
system outputs manually annotated with errors in
order to work well – using only synthetic data re-
sults in low recall (see Table 2). However, we
believe that more sophisticated techniques for cre-
ating the synthetic data could help to achieve same
results with less human-annotated data. We also
believe that our system is in general applicable to
new games or seasons. The rule-based generator
does not need any adapting, the vocabulary of both
neural parts (context selector and error tagger) is
based on subwords and thus also able to handle un-
seen player/team/city names. The model effectively
learns to compare entities from the context and the
evaluated sentence, the absolute values are thus less
important than their agreements and differences.

6 Conclusion

We presented our system for detecting errors in gen-
erated descriptions of basketball matches. Our sys-
tem can automatically classify the errors on token
level, using a pretrained language model and tex-
tual description of data generated by a rule-based
NLG system. Our system reached 0.691 recall and
0.756 precision on the test data, finishing first out
of four automatic metric submissions in the INLG
2021 Accuracy Evaluation shared task.

Acknowledgements

This work was supported by the Charles Univer-
sity projects GAUK 140320, SVV 260575, and
PRIMUS/19/SCI/10, an Apple NLU Research
Grant for Heriot-Watt University and Charles Uni-
versity, and by the European Commission via
UPF under the H2020 program contract numbers
786731, 825079, 870930 and 952133.

263

References
Anya Belz, Simon Mille, and David M. Howcroft.

2020. Disentangling the properties of human eval-
uation methods: A classification system to support
comparability, meta-evaluation and reproducibility
testing. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
183–194, Dublin, Ireland. Association for Computa-
tional Linguistics.

Thiago Castro Ferreira, Claire Gardent, Nikolai
Ilinykh, Chris van der Lee, Simon Mille, Diego
Moussallem, and Anastasia Shimorina. 2020. The
2020 bilingual, bi-directional WebNLG+ shared
task: Overview and evaluation results (WebNLG+
2020). In Proceedings of the 3rd International Work-
shop on Natural Language Generation from the Se-
mantic Web (WebNLG+), pages 55–76, Dublin, Ire-
land (Virtual).

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh,
Ming-Wei Chang, Dipanjan Das, and William Co-
hen. 2019. Handling divergent reference texts when
evaluating table-to-text generation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4884–4895, Flo-
rence, Italy.

Ondřej Dušek, David M. Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Inter-
national Conference on Natural Language Genera-
tion, pages 421–426, Tokyo, Japan. Association for
Computational Linguistics.

Ondřej Dušek and Zdeněk Kasner. 2020. Evaluating se-
mantic accuracy of data-to-text generation with nat-
ural language inference. In Proceedings of the 13th
International Conference on Natural Language Gen-
eration, pages 131–137, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Chal-
lenge. Computer Speech & Language, 59:123–156.
ArXiv: 1901.07931.

Katja Filippova. 2020. Controlled hallucinations:
Learning to generate faithfully from noisy data. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 864–870.

Nicolas Garneau and Luc Lamontagne. 2021. Shared
task in evaluating accuracy: Leveraging pre-
annotations in the validation process. In Proceed-
ings of the 14th International Conference on Natural
Language Generation, Aberdeen, Scotland, UK.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 2410–2424.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102.

Youngwoo Kim, Myungha Jang, and James Allan.
2020. Explaining text matching on neural natural
language inference. ACM Transactions on Informa-
tion Systems (TOIS), 38(4):1–23.

Guy Lapalme. 2020. RDFjsRealB: a symbolic ap-
proach for generating text from RDF triples. In Pro-
ceedings of the 3rd International Workshop on Nat-
ural Language Generation from the Semantic Web
(WebNLG+), pages 144–153, Dublin, Ireland (Vir-
tual).

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
Automatic Metric for MT Evaluation with High Lev-
els of Correlation with Human Judgments. In Pro-
ceedings of the Second Workshop on Statistical Ma-
chine Translation, pages 228–231.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368, Tokyo, Japan. Association for Com-
putational Linguistics.

Peiguang Li, Hongfeng Yu, Wenkai Zhang, Guangluan
Xu, and Xian Sun. 2020. SA-NLI: A supervised at-
tention based framework for natural language infer-
ence. Neurocomputing, 407:72–82.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Fixing weight
decay regularization in Adam. In International Con-
ference on Learning Representations (ICLR), New
Orleans, LA, USA.

Simon Mille, Stamatia Dasiopoulou, Beatriz Fisas, and
Leo Wanner. 2019. Teaching FORGe to verbalize
DBpedia properties in Spanish. In Proceedings of
the 12th International Conference on Natural Lan-
guage Generation, pages 473–483, Tokyo, Japan.
Association for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas
Curry, and Verena Rieser. 2017. Why we need
new evaluation metrics for NLG. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2241–2252, Copen-
hagen, Denmark.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318, Philadelphia, PA,
USA.

264

Clément Rebuffel, Marco Roberti, Laure Soulier, Geof-
frey Scoutheeten, Rossella Cancelliere, and Patrick
Gallinari. 2021. Controlling hallucinations at word
level in data-to-text generation. arXiv preprint
arXiv:2102.02810.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing.

Ehud Reiter and Craig Thomson. 2020. Shared task
on evaluating accuracy. In Proceedings of the 13th
International Conference on Natural Language Gen-
eration, pages 227–231, Dublin, Ireland (Virtual).

Sashank Santhanam and Samira Shaikh. 2019. To-
wards best experiment design for evaluating dia-
logue system output. In Proceedings of the 12th
International Conference on Natural Language Gen-
eration, pages 88–94, Tokyo, Japan. Association for
Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881–7892, Online.

Craig Thomson and Ehud Reiter. 2020a. A gold stan-
dard methodology for evaluating accuracy in data-
to-text systems. In Proceedings of the 13th Inter-
national Conference on Natural Language Genera-
tion, pages 158–168, Dublin, Ireland. Association
for Computational Linguistics.

Craig Thomson and Ehud Reiter. 2020b. A gold stan-
dard methodology for evaluating accuracy in data-
to-text systems. In Proceedings of the 13th Interna-
tional Conference on Natural Language Generation,
pages 158–168, Dublin, Ireland (Virtual).

Craig Thomson and Ehud Reiter. 2021. Generation
challenges: Results of the Accuracy Evaluation
Shared Task. In Proceedings of the 14th Interna-
tional Conference on Natural Language Generation,
Aberdeen, Scotland, UK.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2019.
Generating token-level explanations for natural
language inference. In Proceedings of the 2019
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, page 963–969,
Minneapolis, MN, USA.

Ran Tian, Shashi Narayan, Thibault Sellam, and
Ankur P Parikh. 2019. Sticking to the facts: Con-
fident decoding for faithful data-to-text generation.
arXiv preprint arXiv:1910.08684.

Trung Tran and Dang Tuan Nguyen. 2020. WebNLG
2020 challenge: Semantic template mining for gen-
erating references from RDF. In Proceedings of the

3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+),
pages 177–185, Dublin, Ireland (Virtual).

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2253–2263, Copenhagen, Denmark.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Shehel Yoosuf and Yin Yang. 2019. Fine-grained pro-
paganda detection with fine-tuned BERT. In Pro-
ceedings of the Second Workshop on Natural Lan-
guage Processing for Internet Freedom: Censor-
ship, Disinformation, and Propaganda, pages 87–
91, Hong Kong.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with BERT. In Inter-
national Conference on Learning Representations
(ICLR), Online.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020. Bridging the structural gap between encod-
ing and decoding for data-to-text generation. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2481–
2491, Online.

265

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 266–270,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Shared Task in Evaluating Accuracy:
Leveraging Pre-Annotations in the Validation Process

Nicolas Garneau and Luc Lamontagne
Université Laval, Québec, Canada

{nicolas.garneau,luc.lamontagne}@ift.ulaval.ca

Abstract

We hereby present our submission to the
Shared Task in Evaluating Accuracy (Reiter
and Thomson, 2020) at the INLG 2021 Con-
ference. Our evaluation protocol relies on
three main components; rules and text classi-
fiers that pre-annotate the dataset, a human an-
notator that validates the pre-annotations, and
a web interface that facilitates this validation.
Our submission consists in fact of two submis-
sions; we first analyze solely the performance
of the rules and classifiers (pre-annotations),
and then the human evaluation aided by the
former pre-annotations using the web interface
(hybrid). The code for the web interface and
the classifiers is publicly available1.

1 Introduction

Evaluating Data-to-Text natural language genera-
tion (NLG) systems is a very important task despite
its notorious difficulty (Thomson and Reiter, 2020).
Reiter and Thomson introduced a Shared Task in
Evaluating Accuracy which consists of factually
assessing the accuracy of basketball games sum-
maries produced by an automatic (neural) language
generator. The underlying Data-to-Text dataset was
originally created by Wiseman et al..

Evaluating the accuracy of a game’s summary
relies on identifying the errors within the generated
text. Borrowing the same terminology as Reiter
and Thomson, the set of possible errors comprises 6
different categories; Number, Named entity, Word,
Context, Not Checkable, and Other. We refer the
reader to the original paper for more details about
these different error categories.

As part of the shared task, participants were
asked to propose an automatic evaluation metric
(or algorithm) and/or an evaluation methodology
that could be followed by humans in order to assess

1https://github.com/ngarneau/
accuracySharedTask

the accuracy of a given generated text. In our case,
we proposed both, i.e. a hybrid approach where the
evaluation methodology leverage pre-annotations
in order to accelerate (and hopefully improve) the
evaluation process.

2 Evaluating Accuracy

Our evaluation methodology relies on the pre-
annotation of game summaries and a validation
procedure that we describe in the following sec-
tions.

2.1 Pre-Annotation of Game Summaries

In order to accelerate the task of evaluating the ac-
curacy, we propose to pre-annotate the game sum-
maries (i.e. identify potential errors) using a set of
rules and text classifiers. To this end, we followed
the hierarchical proposition specified by Reiter and
Thomson2 and designed our system accordingly.

We then separate the set of errors into two groups.
The first group contains Number and Name errors,
where every instance can easily be identified (not
necessarily validated) by an algorithm. This in-
cludes names beginning with a capital letter and
numbers consisting of either digit (1, 2, etc.), writ-
ten words (one, two, etc.) or ordinals (first, second,
etc.). The second group contains all other error
types, i.e. Word, Context, and Not Checkable 3. We
illustrate the distribution of errors on the develop-
ment set in Table 1

For the first group of errors, we designed two
simple rules. Given the set of n Number in-
stances {ui|i ∈ 1 . . . n} and m Name instances
{aj |j ∈ 1 . . .m} in a given sentence, we check for
the following;

2Number > Name > Word > Context > Not Checkable >
Other

3Since the Other type of error does not provide many
examples and it was designed for nonsensical text, we do not
consider it in our submission.

266

Error Type Count
Number 474
Name 317

Word 334
Context 51
Not Checkable 37

Table 1: Distribution of error types in the development
set for the first group (Number and Name) and the sec-
ond group (Word, Context, and Not Checkable).

1. For every pair (ui, aj), find a correspondence
(row–column wise) in the Box Score. If the
check fails, we consider it is a Number error.

2. For every aj , find a correspondence (any-
where possible) in the Box Score. If the check
fails, we assume it is a Name error.

These checks are done to pre-annotate sentences
with Number and Name errors which are later vali-
dated by the annotators. We provide more details
on the validation step in Section 2.2.

The errors of the second group are much more
difficult to identify. Since the annotators might
not be native English speakers or might have lit-
tle knowledge about the basketball lexical field,
we help them with two textual classifiers that are
trained on the development set released along with
the task. The first classifier predicts if a sen-
tence may contain errors belonging to the second
group or not (i.e. a binary classification). The
second classifier predicts which type(s) of errors
may be present within a sentence positively la-
beled to the second group. Hence it is a multi-
class, multilabel classifier. It takes as input only
the sentence, no contextual information from the
box score. This classifier uses unigrams, TF-IDF
weights (Sparck Jones, 1988) and a multinomial
logistic regression model. The regression model
assigns to each word wi in the vocabulary a score
specific to a class cj , namely si,j . Using the TF-
IDF weight ti and a classification threshold τ , we
classify a word as being erroneous w.r.t. a specific
class cj as follows:

ci,j =

{
1, if ti · si,j ≥ τ
0, otherwise

ci,j is thus used as a pre-annotation to the word wi.
If multiple error labels can be associated with a

word, we take the one with the highest importance.
We used τ > 0.5 in our experiments.

The binary and multilabel classifiers have been
trained using the scikit-learn library (Pedregosa
et al., 2011) and achieve respectively 0.63 and 0.76
F1-scores on the development set.

2.2 Evaluation Procedure

Our evaluation procedure is composed of three
steps, where the first and the last are fully auto-
mated while the second is performed by a human.

Importing games data and pre-annotation.
The annotator first imports the games’ data into the
validation database with a python script. Then, the
game summaries are automatically pre-annotated
using the classification models described in Sec-
tion 2.1. The games are then ready to be validated
manually.

Validating pre-annotations. The list of games
to validate is displayed through the web interface
to the annotator. The annotator selects the game
to annotate and begins with the first sentence. To
provide a little more context, we include links to
the box score, to each team’s respective pages, and
to the current calendar showing the dates from the
month in which the game was played. We also
present the previous and next sentences to the cur-
rent one, if there are any. Then, a list of all the
words of the sentence under study is presented,
with a dropdown list filled with pre-annotations
that lets the user select the possible error a given
word might be associated with. The annotator is
asked to follow the evaluation guidelines provided
by Reiter and Thomson. Once the validation is
done, the user can save them and move onto the
next sentence until the summary is fully validated.
We illustrate in Figure 1 the main interface pro-
posed to the annotator.

Preparing submission file. Once all the games
have been validated, the annotator needs to prepare
a submission file. This file is created using a python
script and made available to the evaluators.

3 Results

3.1 Pre-Annotations

We can see from Table 2 that the pre-annotations
offer a basic coverage for the Number and Name er-
rors. Recall that these pre-annotations rely strictly
on two simple rules.

267

Links to contextual data

Sentence under study
with previous and next
sentences

Pre-annotations & form
to validate and save
annotations to the
database

Figure 1: The main interface for the annotator used to validate the pre-annotations. Links to the box score, teams’
statistics, and current calendar are available at the top. The previous and next sentences are shown to the annotator
to provide more context. The annotator validates the pre-annotations by updating the dropdown lists in the form.

Pre-Annotations Human Validation

Error Num. Name Word Cont. N/C Avg. Num. Name Word Cont. N/C Avg.

D
E

V Precision 0.38 0.67 0.20 0.00 0.10 0.31 0.65 0.78 0.33 0.08 0.16 0.49
Recall 0.30 0.53 0.58 0.00 0.60 0.49 0.58 0.69 0.67 0.16 0.60 0.66

T
E

S
T Precision 0.35 0.79 0.14 0.00 0.19 0.33 0.88 0.94 0.73 0.40 0.39 0.88

Recall 0.44 0.59 0.36 0.00 0.50 0.50 0.86 0.92 0.68 0.75 0.24 0.84

Table 2: Precision and Recall results for every error types on the development and test set. We present the difference
between the pre-annotations only, and the human validation.

The classifiers, however, struggle to precisely
identify erroneous words (while having a decent
recall). During validation of the summaries, we no-
ticed that the classifiers acted more like pointers. In-
deed, when there were potential Word/Context/Not
Checkable errors, the classifiers flag non-erroneous

words. Take for example the sentence in Figure 1.
The classifier identified the first words like “re-
mains” and “place” as being Not Checkable errors.
While these words do not correspond to the exact
error (“third place”), it does give a pointer to the
annotator that there is something to verify within

268

this particular phrase. Nonetheless, it did help the
annotator to give more serious attention to these
sentences, and especially to detect Context errors.

We can see from Table 2 that there are negli-
gible differences across error types between the
development and test set. This suggests that the
pre-annotations did not overfit.

3.2 Human Evaluation

The human evaluation was conducted in two sub-
sequent stages; the annotator first validated the
development set and then the test set, and a dif-
ference in the results obtained for these two data
sets can be observed in Table 2. This difference is
attributable to the fact that the annotator gained do-
main knowledge throughout the annotation process.
This is especially true for the Word and Context er-
rors. Overall, on the test set, we achieve interesting
(and surprisingly high) precision and recall scores
of 0.88 and 0.84 respectively. It would have been
interesting to validate the test set with an annotator
that did not have any prior knowledge on the task
and domain i.e. had not seen the development set.

3.3 Evaluation Time

Familiarisation with the problem, the dataset, and
the domain took roughly 4 hours. The develop-
ment of the evaluation interface, rule modeling,
and creation of the classifiers represent an effort of
one day (8 hours). The training time of the clas-
sifiers is near-instantaneous, and the computing
power needed is CPU only. The evaluation time
required for one game is between 10 to 15 min-
utes. Since we save the normalized annotations
within the database, it is easy to generate the sub-
mission file with a simple script that takes seconds
to run. Overall, considering the validation of both
development and test sets, conducting the whole
experiment took around 30 to 35 hours. Originally,
the protocol took around 30 minutes per annota-
tor and used 3 relatively knowledgeable annotators
to achieved good results. We thus considerably
reduced the manual effort.

4 Discussion

As previously mentioned, evaluating the accuracy
of generated text in a Data-to-Text setting is a very
hard task. In this experiment, the annotators found
the task especially difficult since they are not native
English speakers and basketball game descriptions
are not (or were not!) a domain with which they

were familiar.
While the following example may seem trivial, it

took several summaries for the annotator to under-
stand that “led the bench” means that it is targeting
non-starting players (one could easily assume that
every player starts on the bench). Also, an annota-
tor who knows which player plays for which team
will greatly improve and accelerate the evaluation
process. This is something that the annotator just
barely began to get comfortable with towards the
end of the task.

Our experiments, due to the lack of time and
resources, do not explicitly expose the benefits of
having pre-annotations. It would have been in-
teresting to see if, given two annotators with the
same prior knowledge4, the pre-annotations helps
them to solve the task both in a matter of time
and accuracy, hence evaluating the inter-annotator
agreement. Nonetheless, the pre-annotations did
help the annotators through the evaluation process
in three different ways;

1. get familiar with the task, domain, and dataset
by seeing which potential word may be erro-
neous;

2. identify errors that the annotator would have
missed;

3. save time and effort.

We decided to design our own annotation tool in-
stead of using WebAnno (Yimam et al., 2013), the
one initially used by the authors of the task. This
decision was mainly motivated by the flexibility of
storing and pre-annotating the game summaries. In
future works, we would consider more robust text
classifiers coupled with active learning in order to
improve the pre-annotations, while executing the
task. We would also consider adding contextual in-
formation from the box score for the classification.

References
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

4Then again, it is hard to measure prior knowledge on a
specific domain.

269

Ehud Reiter and Craig Thomson. 2020. Shared task on
evaluating accuracy. In Proceedings of the 13th In-
ternational Conference on Natural Language Gener-
ation, pages 227–231, Dublin, Ireland. Association
for Computational Linguistics.

Karen Sparck Jones. 1988. A Statistical Interpretation
of Term Specificity and Its Application in Retrieval,
page 132–142. Taylor Graham Publishing, GBR.

Craig Thomson and Ehud Reiter. 2020. A gold stan-
dard methodology for evaluating accuracy in data-
to-text systems. In Proceedings of the 13th Inter-
national Conference on Natural Language Genera-
tion, pages 158–168, Dublin, Ireland. Association
for Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations, pages 1–6, Sofia, Bulgaria.
Association for Computational Linguistics.

270

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 271–275,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Automatic Verification of Data Summaries

Rayhane Rezgui
EURECOM, France

Rayhane.Rezgui@eurecom.fr

Mohammed Saeed
EURECOM, France

Mohammed.Saeed@eurecom.fr

Paolo Papotti
EURECOM, France

Paolo.Papotti@eurecom.fr

Abstract
We present a generic method to compute the
factual accuracy of a generated data summary
with minimal user effort. We look at the prob-
lem as a fact-checking task to verify the nu-
merical claims in the text. The verification al-
gorithm assumes that the data used to generate
the text is available. In this paper, we describe
how the proposed solution has been used to
identify incorrect claims about basketball tex-
tual summaries in the context of the Accuracy
Shared Task at INLG 2021.

1 Introduction

Natural Language Generation (NLG) can be used
to generate texts out of relational data, where the
goal is to have correct and clear statements that
describe what can be found in tables (Gong et al.,
2019). However, this is not always the case, since
NLG tools, although producing correct sentences
grammar-wise, sometimes fail to generate accu-
rate texts, eventually containing some factual er-
rors (Wiseman et al., 2017).

The goal of our work is to evaluate generated
texts by identifying numerical claims and fact-
checking them with the relational data available
at hand. We apply different techniques on the pro-
vided summaries and use the available relational
data about the matches to state whether the claims
are true or false. The idea behind fact checking
using relational tables is to create an automated
verification pipeline using data-driven algorithms,
such as deep learning models (Nakov et al., 2021;
Saeed and Papotti, 2021). Building upon previous
work in fact-checking statistical claims (Karagian-
nis et al., 2020), we focus on such kind of claims
due to the availability of trustworthy relational ta-
bles to verify them. The goal is not only to be
accurate, but also to limit the user effort, such as
labelling data or writing scripts, in the setup of the
system.

Figure 1: Example of a generated textual summary
from the basketball relational data.

Team PTS AST .. TOV
Kings 99 22 .. 21
Nets 107 20 .. 9

(a) Sample of team statistics in a match.

Team PTS AST .. FGA
Ben McLemore 11 2 .. 9
Sergey Karasev 5 3 .. 5

..
Kevin Garnett 10 2 .. 10

(b) Sample of player statistics in a match.

Statistical claims form a significant part of the
set of claims in the shared task (around 40%) as
the tables mostly contain numerical facts, rather
than textual. Consider samples of the relational
tables of players and teams in Tables 2a and 2b,
respectively. Sentence “Sacramento Kings scored
99 points.” is verified by identifying the team name
(key value “Kings“) and column (label “PTS”). A
comparison between the value in the identified cell
and the value in the text (99) validates the claim.
More complex claims, such as “Kings defeated
Nets”, require comparisons between two cells.

To verify the claims above, our solution con-
sists of three main steps: (i) claim identification,
(ii) identification of properties that construct a val-

271

idation query over the data for every claim, and
(iii) claim verification. In the following, we first
describe our solution and then report some exper-
imental results and possible directions for future
work.

2 Method

We target claims that can be verified computation-
ally by using operations over the cell values in
the tables (relations). We follow an approach in-
spired from previous work on computational fact-
checking for statistical claims (Karagiannis et al.,
2020). We begin the process by extracting claims
from the input sentences (Section 2.1) and then
identify query properties (Section 2.2), which are
used for building the query that verifies the claim
(Section 2.3).

Figure 3 represents the architecture of the solu-
tion, where we input sentences and get a collection
of properties, including the claims to verify and the
elements of the data that are needed for this task.
Every sentence can contain more than one named
entity (were we focus only on players/teams) as
well as several claims. We have to associate each
claim and the resulting properties to the entity in
question. By looking at the summaries in the task,
it is possible to observe that many sentences fall
into two categories:

• Comparative sentences where the text de-
scribes both teams and compares the scores
from both sides, e.g., “The Sacramento Kings
defeated the Brooklyn Nets 107 - 99.” In this
case, we assume an order in the sentence. The
first claim to be extracted is the one we as-
sociate to the first entity. We enumerate all
the numerical claims and assign them to the
first or second entity based on first appearance.
For our example, 107 is assigned to Kings and
99 to Nets. As for the “defeated” claim, we
associate it to both Kings and Nets.

• Look-Up sentences where the text specifies
information/statistics about one entity. In this
case, we just define that entity as the row of
interest. Otherwise, we associate our claims
to the first player to appear.

After claim and properties are identified, we use
the latter to create a query that fact checks the claim.
The query returns a Boolean value in the final out-
put and it is self-explanatory, i.e., it is a declarative

specification easy to interpret as an explanation of
the checking process. An example of a query that
returns the number of points (PTS) of the team
Sacramento Kings from an identified table t is

SELECT t.PTS FROM t WHERE
t.Team=’Kings’;

whose output is compared against the value of the
extracted claim.

2.1 Claim Identification

Following the data-generation procedure in (Kara-
giannis et al., 2020), we wrote 9 templates to gen-
erate natural-language sentence starting from the
provided tables. These scripts could be replaced
with NLG algorithms in a fully automatic solu-
tion (Parikh et al., 2020). The generated data is
used to fine-tune a BertForTokenClassification
model (Devlin et al., 2019) to identify claims in an
input sentence. More precisely, the input sentence
is tokenized and a binary-classification layer is ap-
plied on every token to predict whether the token is
part of the claim or not. As some claims occur to-
gether, we rely on textual separators (like commas)
to separate them. The following sentence shows
an example of a sentence with six claims under-
lined: “AJ Hammons had 5 rebounds, 10 assists,
6 turnovers, 7 points, 3 steals and 1 block.”

The model is able to correctly identify claims
on the synthetic test dataset. However, we also
tried another simpler regex-based approach where
we focus on key words like the columns (points,
turnovers, etc.) and extract the neighboring words.
Both approaches gave similar results on sentences
sampled from the dataset of the shared task, with
BERT failing to extract the correct claims for some
sentences. This is mainly due to two reasons. First,
neural models are frail w.r.t. small changes in tex-
tual input (Zhang et al., 2020). Second, when multi-
ple claims occur sequentially, there is no clear way
of separating them unless some form of separator is
found (like a comma). A simple fix to this would be
to include spaces in the tokenized input and learn
which spaces are included in a claim and which
are not. The regex solution is pragmatic in cases
where annotated data is not available as it produces
results comparable to the classifier solution.

The regular expressions for claim identification
check for trigger words (such as ’assists’, ’blocks’,
’field goals’, ’minutes’, ’points’,’rebounds’, ’steals’,
’turnovers’) and then identify the following string in
the text. This string can be a numerical value in its

272

Figure 3: Architecture of the solution. Given a sentence, we identify the claims and the table to verify them. Then
every claim (C1-C3 in the example) is processed individually to obtain a query for its verification. (We take claim
C1 as an example in the figure.)

numerical format (15) or in words (fifteen). These
expressions might identify some false positives. In
the sentence “The only other Net to reach double
figures in points was Ben McLemore”, we identify
a string (“in points”) which cannot be verified as it
does not contain a numerical value. We filter out
such claims before verification. For comparison
sentences, we consider “defeated”, “outscored” and
“lost” in the word list.

2.2 Property Identification

After identifying claims in the text summary, we
ought to predict the data and the operation that
allow us to verify them. We call properties the
elements that ultimately enable the generation of a
verification query for the given claim. Properties
include: (i) the name of the table (relation), (ii) the
primary key value (i.e., the identifier for a tuple
in the relation), (iii) the column (i.e., the attribute
label), as well as (iv) the formula, which include the
simple look up of a value (a) and value comparisons
(b>a, a>b). We describe the main modules, as
depicted in Figure 3 next.

For the column and the formula extraction,
we fine-tune a BertForSequenceClassification
model (Devlin et al., 2019) with generated training
data in Section 2.1. For the column identification,
we have 15 possible classes, whereas for the for-
mula identification we only have 3 classes with
most examples pivoting on the “lookup class” (a).
This is due to the fact that most relevant statis-
tics are already reported in the tables, such as ratios
(a/b), and they can be verified with a simple lookup.

For a given input text, extracting the team names
is crucial as they enable identifying the table and
primary key value(s) of a sentence. The given tex-
tual inputs describe a single basketball match which
usually begin with a general sentence mentioning

the associated teams. We therefore search in the
first sentence of a given text for the mentioned
team names. For every pair of teams, (i.e., for ev-
ery match), we consider one table reporting the
team statistics (Figure 2a) and another one report-
ing player statistics (Figure 2b). These are used
later on for other sentences in the same summary,
where team/player names are identified accordingly
to the associated tables.

There are sentences where both team and player
names occur. In this case, we use the player name
as the primary key value, since claims are more
likely to be related to the player than to the team.
Out of 257 sentences that were extracted from the
test files, 22 sentences contain more than 2 names,
with at least one of them being a player name, such
as “Bradley Beal led the way for the Wizards with
a game - high 18 points , which he supplemented
with five rebounds , four assists and one steal”.
Most of these 22 sentences follow the same struc-
ture (player led team, team was led by a player),
while only one sentence raises an issue, because it
has 2 player names rather than one1.

2.3 Claim Verification

After getting all the elements we need for the ver-
ification, we build queries to look up the data ta-
bles. Since we organize the data in csv files of
the same format (player TeamA vs teamB.csv or
team TeamA vs teamB.csv), the queries share a
fixed structure. Once the table name has been iden-
tified, query generation is driven by the formula
obtained from the classifier. We then collect the
value(s) for the check by identifying the cell values
based on the key and the column predictions; such

1“Sergio Rodriguez was the high-point man for the 76ers,
with 18 points and five assists, while Jahlil Okafor logged 20
minutes off the bench.”

273

values are finally compared against the claim val-
ues. The claim value is translated to a numerical
value if written in words (thirteen to 13), or con-
sidered True by default in case of a Boolean claim
(“defeated”).

Claim Column Formula Row
18 points PTS a Bradley Beal
five rebounds REB a Bradley Beal
four assists AST a Bradley Beal

Table 1: Extracted properties for an example sentence.

The following example walks through a sen-
tence verified by our solution. Given “Bradley Beal
led the way for the Wizards with a game-high 18
points, which he supplemented with five rebounds ,
seven assists and one steal.”, we show the extracted
claims and properties in Table 1.

Claim Query Output Evaluation
18 points 18.0 True

five rebounds 5.0 True
seven assists 4.0 False

Table 2: Evaluation of the example.

All claims require a lookup (formula is a) in the
table player Hornets vs Wizards.csv, with a pri-
mary key value Bradley Beal and columns PTS,
REB, and AST, respectively. After extracting
these properties, we compose and execute the final
query over the table and compare with the actual
claim as shown in Table 2. Our system did not
identify claims such as “led” & “game-high” as our
claim-identification module is limited by a regular-
expression approach.

3 Results

The evaluation of our solution over the test data
shows that we obtain a precision of 0.329 and a
recall of 0.205. While we expected a limited recall,
as we focus on a specific subset of claims among all
the possible ones in the summaries, we investigated
the possible causes for the low performance and
found three main explanations.

Missing support for coreference resolution. In
some sentences, names are not explicitly mentioned
and the concerned entity is referred to as “he” or
“the visiting team”. As we did not implemented a
specific solution for coreference resolution, this is
a weak point in our system. For example, consider
the sentence “It was his second double-double in

a row, as he’s combined for 54 points and 13 re-
bounds over his last two games.”. The sentence is
not checked by the system since no names were
singled out, leading to the system missing 3 claims.

Claims requiring complex retrieval. Some sta-
tistical values are hard to fact check, such as the
number of wins in the season. Consider the sen-
tence “Over his last three games, he’s combined
for 34 points, 13 rebounds and five assists, while
playing just 21 minutes per game.’. The verifica-
tion of this claims requires to identify the last 3
games played by the player, and to sum up their
scores. As another example, “Greg Monroe was
the only other Laker [...]”. The only way to know if
he was the only other Laker to achieve something
is to look at all the Lakers players scoring. These
kinds of processes go beyond the ability of our data
retrieval modules.

Limits in the identification of the claims. Some
of the wording used in the text turned out to be
hard to process both with the regex function and
the Bert model. For example, all claims containing
an expression like “double-double” or “6-for-13”.

4 Future Work

We presented a solution for verifying statistical
data claims in data summaries with limited human
supervision. We believe our work shows some of
the opportunities and challenges for the problem
of verifying data summaries with computational
methods (Saeed and Papotti, 2021). While there
are some promising results for specific cases, the
road to accurate and general solutions is still long.
The main challenge lies in the limited amount of
training data and the large variety of claim kinds,
as we discuss next.

The claims in Figure 1 vary from those expressed
using adjectives (e.g., strong) to others pivoting on
verbs (e.g., leading). Fact-checking these claims
requires to go beyond a lookup in a table, but rather,
we seem to suggest the need for domain-specific
rules or models, depending on the nature of the
claim. For instance, for the sentence “the Griz-
zlies had a strong first half”, if we interpret that
the claim “strong” relates to the points scored in
the first half, it means that we are interested in the
sum of the first two quarters, TEAM-PTS QTR1 +
TEAM-PTS QTR2, and we have to set a threshold
to the number of points starting from which the
word “strong” applies. But this rule would apply

274

only to “strong” (and similar adjectives) used for
points and the threshold would change for “fouls”.
In other words, we have to handle all the possible
qualitative adjectives that can appear in the text
for all attributes, which is challenging to do ex-
haustively and accurately. It is easy to see that this
problem is challenging as it would either require
a lot of manually defined rules or the annotations
of a large number of claims to train models that
handle all cases.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Heng Gong, Xiaocheng Feng, Bing Qin, and Ting Liu.
2019. Table-to-text generation with effective hier-
archical encoder on three dimensions (row, column
and time). In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3143–3152, Hong Kong, China. Association
for Computational Linguistics.

Georgios Karagiannis, Mohammed Saeed, Paolo Pa-
potti, and Immanuel Trummer. 2020. Scrutinizer:
A mixed-initiative approach to large-scale, data-
driven claim verification. Proc. VLDB Endow.,
13(11):2508–2521.

Preslav Nakov, David P. A. Corney, Maram Hasanain,
Firoj Alam, Tamer Elsayed, Alberto Barrón-Cedeño,
Paolo Papotti, Shaden Shaar, and Giovanni Da San
Martino. 2021. Automated fact-checking for assist-
ing human fact-checkers. In IJCAI, pages 4826–
4832. ijcai.org.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. ToTTo: A controlled table-to-
text generation dataset. In Proceedings of EMNLP.

Mohammed Saeed and Paolo Papotti. 2021. Fact-
checking statistical claims with tables. IEEE Data
Eng. Bull., 44(3).

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on
deep-learning models in natural language process-
ing: A survey. ACM Trans. Intell. Syst. Technol.,
11(3).

275

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 276–281,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Grounding NBA Matchup Summaries

Tadashi Nomoto
National Institute of Japanese Literature

Tachikawa Tokyo 190-0014, Japan
nomoto@acm.org

Abstract
The present paper summarizes an attempt we
made to meet a shared task challenge on
grounding machine generated summaries of
NBA matchups.1 In the first half, we discuss
methods and in the second, we report results,
together with a discussion on what feature may
have had an effect on the performance.

1 Introduction

What led Reiter and Thomson (2020) to launch a
shared task competition in 2020 was a concern that
fact-checking automatically generated texts (ma-
chine texts, or M TEXTs) in the context of data to
text generation (Wiseman et al., 2017), is hugely
labor intensive, making it virtually impossible to
run it at a scale. In an effort towards putting it un-
der control, the project asks participants to find a
way to do the assessment automatically, without
any human intervention. The problem is set out as
follows: you receive M TEXTs, along with other
external information such as box scores and hu-
man created summaries (or H TEXTs). Your goal
is to locate factual mistakes in M TEXTs and clas-
sify them according to a pre-defined scheme of er-
ror types (‘word,’ ‘number,’ ‘name,’, ‘context,’ ‘not
checkable’).

2 Method

The following sections detail our approach, which
in essence is a multi-pronged strategy. We deploy
separate mechanisms to deal with different types
of error.

2.1 Detecting Word/Name Errors
We split an M TEXT into three parts, LEAD, MID-
DLE, TAIL (Figure 1), and use a separate set of
rules targeting a particular part of the text, to iden-
tify errors with word or name.

1https://github.com/ehudreiter/accuracySharedTask.git

2.1.1 Lead Section
For the lead section, we focus on date (day of
week, DOW) and venue, in particular those lo-
cated in the first 3 sentences of an M TEXT. We
compare each sentence (call it an m-sentence)2

in the lead against names of US basketball arenas
listed in Wikipedia3 to get one most similar (based
on how much they overlap) and use it as a canon-
ical name. We locate a date expression by going
through each token in an m-sentence and pick one
that best matches a DOW name we prepared be-
forehand. We report a name error if there is any
conflict between M TEXT and H TEXT in DOW
or in venue. We do not work with a full sentence.
Rather, we work with a clause, a minimal senten-
tial unit that serves a building block of a complex
sentence.4 This is meant to ensure that we have no
more than one occurrence of a venue and a date in
an input we feed to the process. We call a clause
contained in ‘m-sentence,’ an m-clause and that
in h-sentence (see Fn. 2), an ‘h-clause.’ See Al-
gorithm 1 for a more precise picture of what we
do here. search(X,Y) goes over each of strings
given in X to tell if it exists in Y .

2.1.2 Middle Section
In this part, we intend to determine whether a state
of affairs described by a cue word holds up, by
querying box-office scores. Cue words include
words like ‘next,’ ‘led,’ ‘bench,’ and ‘defeated,’
which make a specific verifiable statement about
players and teams. We go through each sentence,
to see if it has a player name together with a cue

2Similarly we mean by ‘h-sentence’ a sentence that oc-
curs in H TEXT.

3https://en.wikipedia.org/wiki/List of National
Basketball Association arenas

4 We identify and isolate clauses by breaking up a sen-
tence using a dependency tag ‘mark’ provided by spaCy
(https://spacy.io/). For details on what the tag means, consult
https://universaldependencies.org/docs/en/dep/mark.html.

276

document starts document ends

LEAD

TAIL

MIDDLE

Figure 1: We apply rule based heuristics to different parts of the text to identify errors.

Table 1: Cue Words

single-word cues next, bench, reserve, starter, led, leader, leads, best, paces, pace, pacing, paced
multi-word cues player of the game, team - high, high - point, double figures, double - double, triple

- double

Algorithm 1 Finding a name error in LEAD

Input: m-clause, h-clause, DOWs, Venues
Output: True or False

H ← h-clause ▷ String
M ← m-clause ▷ String
D ← DOWs ▷ Pre-def. List of Strings
V ← Venues ▷ Pre-def. List of Strings
dh ← search(D,H) ▷ returns a date in H
dm ← search(D,M) ▷ returns a date in M
vh ← search(V,H) ▷ returns a venue in H
vm ← search(V,M) ▷ returns a venue in M
if dh ̸= dm or dh ̸= dm then

return False
else

return True
end if

Algorithm 2 Finding a word error in MIDDLE
Input: m-clause, Box-Scores, Cue Words, Player

Names
Output: True or False

S ← m-clause ▷ String
X ← pd load(Box Scores) ▷ Load into Pandas
C ← Cue Words ▷ Pre-def. List of Strings
P ← Player Names ▷ Pre-def. List of Strings
for each c ∈ C do

for each p ∈ P do
if match(s, S) & match(p, S) then

T ← ask pandas(c, p,X) ▷ Ask
Pandas if X supports what c says about p.

return T
end if

end for
end for

word. If found, we go to the box score to decide
whether it supports the statement. For example,
if the text says that player A is off the bench, we
know that for it to be true, the player should not
be listed under starter. Or if the text states that
the team is led by player A, it has to be the case
that the player scored the most points. We flag
the statement as correct or incorrect depending on
whether it is supported by the box-office scores.

Listed in Table 1 are cue words we used, each
of which indicates a particular state of affairs that
can be checked with the box scores (which we
have done using Pandas.)5 We also break a sen-
tence where possible into clauses (see Fn. 4). Al-
gorithm 2 gives a general idea of how the pro-
cess works. match(X,Y) is a boolean function
that holds true if X is found in Y . We load the
box scores into a Pandas’ data frame prior to the
loop operation. ask pandas handles a query for
the data frame, returns true if it finds a piece of
data that matches the query and false if not. The
code shown in Table 2, for instance, asks whether
a player started off the bench.

2.1.3 Tail Section
For this part, our goal is to see if there is any er-
ror about future matchups. We gather matchup
information, such as date (day of week), home
name, visitor name from the last two sentences of
M TEXT and check them against a correspond-
ing part of H TEXT. Specific operations involved
are shown in Algorithm 3. find matchup looks
for home name, visitor name and date in a clause
given as input. It works on both m- and h-clause.

5https://pandas.pydata.org/

277

Table 2: A code in Pandas

data frame.loc[[’START POSITION’],[player name]].values.flatten()[0]

Algorithm 3 Finding a name error in TAIL

Input: m-clause, h-clause, DOWs, Team Names
Output: True or False

H ← h-clause ▷ String
M ← m-clause ▷ String
D ← DOWs ▷ Pre-def. List of Strings
N ← Team Names ▷ Pre-def. List of Strings
ma,mb,mc = find matchup(M,N ,D)

▷ ma,mb,mc represent home name, visitor
name, date found in m-clause, respectively
ha, hb, hc = find matchup(H,N ,D)

▷ ha, hb, hc represent home name, visitor
name, date found in h-clause, respectively.
if ma ̸= ha and mb ̸= hb and mc ̸= hc then

return Not Checkable
end if
if ma ̸= ha or mb ̸= hb or mc ̸= hc then

return False
else

return True
end if

In case the search is successful with m-clause but
not with h-clause (meaning that none of the tar-
gets was found in h-caluse), we stop, reporting
that they are unverifiable or uncheckable. Other-
wise, we look for a discrepancy between triplets
in m- and h-clause, and report an error if any is
found.

We collectively call a set of rules we brought to-
gether for detecting word/name mistakes, ‘WED,’
hereafter.

2.2 Detecting Number Errors

2.2.1 Building Training Data
In detecting number errors, we essentially rely
on data utils.py6 (UTL, hereafter) which extracts
from the Rotowire dataset, what we call ‘relation
quadruples’ (relQs), each of which contains infor-
mation on who scored what points in what cate-
gory.7 Having relQs at hand is a useful first step

6https://github.com/harvardnlp/data2text/
7UTL works by locating a player name and a number in

a sentence and searching box office scores for records that
match the name and the number. It returns all the matches,
together with relevant categories, e.g. points, rebounds, as-
sists, steals, blocks, threes, field-goal percentage, free-throw

towards error detection as they can tell us where to
look for potential errors. For example, given a sen-
tence “Marco and Spencer came off the bench to
combine for 31 points, eight rebounds and 10 as-
sists as well.”, UTL would output relQs like those
shown in Table 4. OFFSET indicates where the
relevant number starts in the sentence.

We recognize however two problems with UTL:
(1) it allows a number to get associated with more
than one relation; (2) it could fail to assign any
relation at all. Our plan is to avoid these annoy-
ances by bootstrapping UTL with a neural model
to predict a correct relation given a player name,
a number and a context, i.e. a sentence, in which
they occur.

In a move in this direction, we transform relQs
into source-label pairs of the form shown in Ta-
ble 3. The process involves acquiring an m-
sentence where a relQ comes from, replacing a
player name with ‘@’ and a target number (one
for which we are trying to find a relation) with ‘#,’
with all other numbers reduced to ‘⟨NUMBER⟩.’

In addition, we made sure that each relQ we
use for training is supported by the box-office
scores, that is, evidence exists in the box scores
that demonstrates the veracity of the relQ. This
means that we accept relQs in Table 4 as train-
ing data only if there are records in the box scores
showing that Macro had 31 points, 8 rebounds,
and 10 assists. If not, they are all discarded. Also
dismissed are relQs where a number occurs ahead
of a player name (Table 5).

Moreover, in case a number gets assigned to
more than one relQ, the preference is given to one
that is consistent with a word that immediately fol-
lows that number (shots, rebounds, assists). For
example, if we have a sentence ‘Macro led the
team with a spectacular output of 31 points.’ for
which UTL may give (‘Marco’, OFFSET 0, ‘31’,
‘PTS’) and (‘Marco’, OFFSET 0, ’31’, ‘AST’),
we will take the first relQ and drop the second,
as it contradicts what the sentence says about how
the number came about (it is not about how many
assists he made).

percentage, etc. If the search fails, it returns a relQ with a
category named ‘NONE.’ Throughout the paper, we refer to
categories as relations, following Wiseman et al. (2017).

278

Table 3: Source Label Pairs. ‘@’ is a proxy for a person name and ‘#’ that for a numeral of interest.

SOURCE LABEL

@ and Spencer came off the bench to combine for # points , ⟨NUMBER⟩
rebounds and ⟨NUMBER⟩ assists as well .

PTS

@ and Spencer came off the bench to combine for ⟨NUMBER⟩ points , #
rebounds and ⟨NUMBER⟩ assists as well .

REB

@ and Spencer came off the bench to combine for ⟨NUMBER⟩ points ,
⟨NUMBER⟩ rebounds and # assists as well .

AST

Table 4: Relation Quadruples, each composed of player
name, location, number (points), and label (i.e. cate-
gory in which points are earned).

(‘Marco’, OFFSET 0, ‘31’, ‘PTS’)
(’Marco’, OFFSET 1, ’8’, ‘REB’)
(’Marco’, OFFSET 2, ’10’, ‘AST’)

2.2.2 Model
The training data are fed into an LSTM-based Se-
quence to Label classifier (bidirectional, batch-
normalized with the RELU non-linearity):

o = softmax(r(ℓ2(r(ℓ1(m(W)) (1)

W is an input (a sequence of words that repre-
sents a sentence (see Table 3)) where each token
is replaced by a word embedding from GloVe,8

r(·) denotes the RELU activation, ℓ(·) a fully con-
nected layer and m(·) a bidirectional LSTM, all of
which were built with PyTorch.9

After processing the test set in the same way
as we did with the training set, we run the model
(Eqn. 1), making a prediction about the relation for
each relQ instance we find in the text. We label a
relQ instance as wrong if it is predicted to have a
relation inconsistent with one given by UTL.10 We
refer to the model described here as ‘NED.’

3 Resolving Coreference

Given the way UTL works, it is important that
we make explicit what a referring expression
points to, in order for UTL to successfully build
a relQ. To this end, we make use of NeuralCoref
4.0,11 which operates as an add-on functionality

8https://nlp.stanford.edu/projects/glove/
9https://pytorch.org/

10For instance, we take the following situation as mistake.
UTL ouptut: (‘Marco’, 0, ‘31’, ‘NONE’)
Prediction: (‘Marco’, 0, ‘31’, ‘PTS’)

11https://github.com/huggingface/neuralcoref.git

Table 5: Player name has to appear ahead of number.
‘w’ represents an arbitrary word.

ALLOW DISALLOW

w w @ w w # w w w w w w w w # w @ w
@ w w w w # w w w w w w w w # @ w w
w @ w w w # w w w w w w w w # w w @

for spaCy.12 Resolving coreferences with Neural-
Coref (NC) results in every referring expression
(r-expression, hereafter) in a text being replaced
with a corresponding root entity (i.e. its canoni-
cal name). This can be troublesome though, be-
cause it may disrupt the way in which words are
originally laid out, which we need to retain in or-
der to report results conformant to the shared task
format policy (which asks to report errors by indi-
cating where they are in the original position). In
response, we pursued an approach where we rep-
resented a text with a linked list structure in which
each word is represented as a node which contains
information on what node it is preceded by and
what it is followed by, in addition to where it oc-
curs relative to others.13 For each r-expression NC
found, we replaced a token string held by a rele-
vant node with its antecedent while keeping other
information (occurrence site, forward/backward
connections) in tact (Fig. 2). Furthermore, we re-
stricted an r-expression subject to replacement, to
be among ‘their,’ ‘they,’ ‘he,’ ‘his,’ ‘its,’ ‘it,’ and
‘him.’

4 Setup and Results

The training data that NED used are sourced
from part of the Rotowire corpus (Wiseman et al.,
2017),14 called ‘train.json,’ which contains 3,398
matchup results each with a summary manually

12https://spacy.io/
13A node is a structure schematically defined as:

node := ⟨word-token, preceded-by, followed-by, position⟩
14https://github.com/harvardnlp/boxscore-data.git

279

He scored a new high for the season. Kevin Durant scored a new high for the season.

co-ref resolution

He scored a new Kevin Durant scored a new

Figure 2: Doing coreference resolution without disrupting the token position

Table 6: Comparison of Per-Type Performance: Coref. vs. Non-Coref. (Shared Task 2021 Train)

Coref.
Mistake Token

recall precision recall precision
name 0.356 0.958 0.259 0.958

number 0.781 0.561 0.764 0.561
word 0.398 0.364 0.311 0.394

context 0.000 - 0.000 -
not checkable 0.000 - 0.000 -

macro summary 0.549 0.556 0.410 0.553

Non-Coref.
Mistake Token

recall precision recall precision
0.356 0.958 0.259 0.958
0.641 0.476 0.628 0.476
0.398 0.364 0.311 0.394
0.000 - 0.000 -
0.000 - 0.000 -
0.496 0.511 0.375 0.514

Table 7: Results on Shared Task 2021 Test

Mistake Token
model recall precision recall precision

WED/NED 0.523 0.494 0.349 0.505

created, providing 116,579 source-label pairs in
total. The official test set, carved out of the Ro-
towire corpus, contained machine generated 30
matchup reports and associated box records. We
trained NED for 50 epochs on the extracted pairs,
achieving the classification accuracy of 0.461 on
the test set (over 34 labels). We ran WED on sum-
maries included in the test set (M TEXTs). It also
made use of human summaries provided as part
of the Rotowire data (H TEXTs). Results on Ac-
curacy Shared Task 2021 Test (30 M TEXTs) are
shown in Table 7. The figures are in macro pre-
cision and recall. Table 6 gives a per-type com-
parison of coreference enabled (CrE) versus dis-
abled (CrD) approach, on the train part of 2021
Shared Task (60 M TEXTs), which reveals a clear
advantage of CrE over CrD in the number category
(highlighted in blue and red).15

15It implies that NeuralCoref, by making NED more accu-
rate in predicting relations in relQs, may have pushed higher
the system’s performance in detecting number errors. We
were not able to find any meaningful difference between CrE

5 Conclusion

This paper gave an overview of the approach we
took to meet the shared task challenge for 2021,
which is essentially a combination of hand crafted
rules (WED) and machine learning (NED): it re-
lied on rule based heuristics to identify errors in
name and word while bringing in a neural model
to locate number errors. The rule based part con-
sisted of ‘translating’ a cue expression into a pro-
cedure to query box scores for its veracity, while
the machine learning part was driven by a neu-
ral model, whose predictions allowed us to de-
tect inconsistencies in number related statements
in M TEXTs.16

and CrD on the 2021 Test.
16Response to Organizers’ Question (which is about how

we would cope with unknown player names, venues and
teams). Bringing up to date the database we use for WED,
of players, teams and venues through Wikipedia and sources
devoted to NBA conferences (e.g. box-office scores), could
lessen a possible negative impact due to the lack of exposure
to data not available at the time of training. If that does not
work, we may go to some off-the-shelf NE tool such as one
by spaCy, though we expect it may hurt name error detection
(due to its reduced accuracy), and to a lesser degree word er-
ror detection as it does not involve the recognition of venue
names (player and team names can easily be picked by look-
ing at box-office scores which we assume are available all
the time). Cue expressions we used were fairly generic. It is
highly unlikely that they become less effective on summaries
beyond the training data, though we recognize the need to
expand the list.

280

References
Ehud Reiter and Craig Thomson. 2020. Shared task on

evaluating accuracy. In Proceedings of the 13th In-
ternational Conference on Natural Language Gen-
eration, pages 227–231, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Sam Wiseman, Stuart M. Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.

281

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 282–285,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Reproducing a comparison of hedged and non-hedged NLG texts

Saad Mahamood
trivago N.V.

Düsseldorf, Germany
saad.mahamood@trivago.com

Abstract

This paper describes an attempt to reproduce
an earlier experiment, previously conducted
by the author, that compares hedged and non-
hedged NLG texts as part of the ReproGen
shared challenge. This reproduction effort was
only able to partially replicate results from the
original study. The analysis from this repro-
duction effort suggests that whilst it is possi-
ble to replicate the procedural aspects of a pre-
vious study, replicating the results can prove
more significantly challenging as differences
in participant type can have a potential impact.

1 Introduction

There has been within recent years a great interest
in understanding and quantifying the reproducibil-
ity of experiments across several areas of scientific
research. This also includes experiments in the field
of Natural Language Understanding (NLU), where
researchers have questioned the degree to which
experiments and results can reliably be reproduced.
Recent working exploring the reproducibility of
past NLU work has found significant issues such as
only a minority of systems reproducing previously
reported scores and systems not working due to
non-functional code or resource limits (Belz et al.,
2021). Additionally, there has been growing aware-
ness of systematic issues with regards to how hu-
man evaluations are being conducted. In particular,
the lack of standardisation and significant under re-
porting of key human evaluation details (Howcroft
et al., 2020). These twin concerns has led to the
creation of the ReproGen shared task (Belz et al.,
2020), which attempts to check the reproducibility
of human evaluations within the field of Natural
Language Generation (NLG).

As part of the ReproGen shared task1, a repro-
duction experiment was attempted for a previous

1ReproGen - https://reprogen.github.io/

work that the author had previously conducted
in 2007. In this previous work a human evalua-
tion was conducted between NLG texts containing
hedge phrases and those that do not (Mahamood
et al., 2007). This past experiment was conducted
to better understand the impact of hedge phrases
can have when introduced into a data-to-text NLG
system. This was done in order to understand how
such systems should communicate potentially emo-
tionally sensitive information to a given reader.

In this paper we will describe the experimental
setup used and the differences that were made in
the reproduction experiment (Section 2), the re-
sults obtained and how they compare to the ones
originally obtained (Section 3), and finally we will
discuss the significance of the results obtained in
this reproduction effort (Section 4).

2 Experimental Setup & Differences

2.1 Procedure

Like the previous experiment, this reproduction ex-
periment sought to obtain individual preferences
of participants when presented with hedged and
non-hedged texts when communicating exams re-
sults for hypothetical exams results. This was done
across two differing scenarios. The first in a posi-
tive context where a hypothetical strong student has
obtained a high set of results as shown in Figure 1.

The second in a negative context where a weak
student has obtained a low set of exam results. For
each of the scenarios the participants are shown the
raw exam scores attained and two texts summaris-
ing these results: one with hedges and one without
as shown in Figures 2 and 3. In total participants
were expected to evaluate four different texts. Two
for each scenario with one participant judgement
expected per scenario.

Whilst the original experiment was conducted
with a paper based questionnaire sheet, the repro-

282

Figure 1: High exam results table for the first scenario.

duction used an online based form instead. How-
ever, both the questions asked and the format used
were mostly identical between the two experiments.
The two minor differences being the introduction
of additional gender options and the use of age
ranges instead of asking participants directly their
age.

Participants were asked initially to give their
background information. This consisted of their
gender (male, female, non-binary, other), select an
appropriate age-range band, and finally degree of
English language proficiency (Native, Non-native,
but fluent, Not fluent). Then for both scenarios
they were asked to read the results for the student
as presented in a table (Figure 1). After this, the
participants were asked to state whether they felt
the results were good or not for the student (Yes,
No, Maybe) and a preference between the two texts
A and B. This was done using a Likert scale which
ran from -3 for Text A to +3 for Text B. If both
texts were considered by a participant to be the
same then a score of 0 was given. The participants
were asked to provide free text comments on why
they made their particular choice of text.

2.2 Participants

The original experiment recruited 37 Masters stu-
dents (9 females and 28 males). Out of these stu-
dents only responses from 32 students were used
due to incomplete responses from 5 students. From
the remaining students 14 participants identified as
native English speakers, 11 as non-native but fluent,
and 7 as non-fluent English speakers.

Table 1 gives a direct comparison of the partic-
ipants recruited for the original and reproduction
experiments. In contrast the cohort recruited for the

Figure 2: Positive student scenario Text A (without
hedges) and B (with hedges).

Figure 3: Weak student scenario Text A (without
hedges) and B (with hedges).

reproduction experiment consisted of colleagues
from the author’s institution. A total of 11 partici-
pants were recruited (4 females and 7 males). Five
participants identified themselves as fluent native
English speakers and six as non-native but fluent
English speakers. No non-fluent English speakers
were recruited due to the fact that such participants
were not available. Additionally, another key dif-
ference between the original experiment and the
reproduction is the age of the participants. In the
original study 44% (n=15) of the participants were
under 25 years old, whereas in the reproduction
experiment only one participant recruited was in
this particular age bracket.

3 Reproduction Results

The results from the reproduction experiment along
with the original experiment results for the native
and fluent English speaker groups are shown in
Table 2. Since there were no non-fluent English
speakers recruited results for only native and non-
fluent speaker groups are shown. The biggest dif-
ference between from the original and reproduction
experiments is the results for fluent speakers of En-
glish. In the original study this group had shown a

283

Native Speakers Non-Native, but Fluent Non-Fluent Total
Original Study 14 (Male: 11, Female: 3) 11(Male: 9, Female: 2) 7 (Male: 3, Female: 4) 32
Repro. Study 6 (Male: 5, Female: 1) 5 (Male: 2, Female: 3) 0 11

Table 1: Comparison of participant numbers between the original and reproduction studies.

weak preference for hedge texts on average, How-
ever, in the reproduction this group like the native
speakers show an overall strong preference for non-
hedged texts in both scenarios. This difference
could potentially be explained by difference in the
type of participants (Master students vs. working
professionals) recruited between the two studies.

For native speakers, the results of the reproduc-
tion confirm the initial findings that native speakers
prefer the non-hedged over the hedged texts. In-
terestingly, like the original study native speakers
tend to prefer the non-hedged texts to a higher de-
gree than compared to fluent speakers. Although
this effect is less pronounced than compared to the
original study.

A two-sample T-test was conducted to com-
pare the mean rating score of the native and fluent
speaker groups for both scenarios2. For the first sce-
nario the result was t(9)=-0.301, p=0.769 and for
the second scenario it was t(9)=-0.056, p=0.956.
The statistically non-significant p-values for both
scenarios indicate that the mean rating scores given
by both groups for each scenario are not statisti-
cally different from each other.

Analysis of free-text comments from fluent
speakers across both scenarios showed that partici-
pants found the hedges “didn’t add value” and that
the non-hedged texts were more “formal” and “pro-
fessional”. These comments align with the general
comments from native speakers from the original
study. It is possible that the use of fluent speakers
with professional experience of using English re-
sults in cultural expectations that are closer to that
of native speakers than compared to fluent speak-
ing students of the original study. Therefore the
need for hedges to act as “emotional navigators”
are significantly diminished for non-native fluent
speakers.

4 Conclusion

In this paper we have conducted a reproduction of a
previous NLG study. Unfortunately, we have only
been able to only partially replicate the results from

2Reproduction experiment data and analysis code
- https://github.com/Saad-Mahamood/
reprohum2021

Native Fluent
Original: S1 -1.42 (σ 2.39) 0.09 (σ 2.59)
Original: S2 -2.07 (σ 1.25) 0.45 (σ 2.53)
Repro: S1 -2.2 (σ 1.09) -2.0 (σ 1.09)
Repro: S2 -1.40 (σ 2.07) -1.33 (σ 1.86)

Table 2: Results from the original and reproduction
studies for native and fluent speakers. S1 or S2 refers
to a particular scenario.

the original study. Whilst, we were able to confirm
the findings for native speakers we were not able to
do so for fluent speakers. This suggest two things.
Firstly, that reproduction is a necessary step to bet-
ter understand the validity of results obtained in
initial experiments. And until those results have
been validated by a reproduction effort such results
should be taken with a degree of scepticism. The
second key point is that results obtained in earlier
studies cannot be generalised beyond a particular
target group of human participants until a reproduc-
tion effort confirms the same effect with a different
audience. In the case of this study, the original
experiment was conducted with Master students.
It is possible the effects found maybe limited to
that audience in particular. Therefore, it is critical
that key demographic information is recorded in
human evaluiations to enable future reproduction
efforts to have the correct participant mix for their
experiments.

The two key limitations of this reproduction ef-
fort is the differences in participant types and the
lack of non-fluent English speakers recruited for
the study. Therefore, due to the second limitation
in particular, it was not possible to confirm or reject
a key claim from the previous study that non-fluent
speakers prefer texts that contain hedge phrases.
This remains an area open for a possible future
follow-up reproduction effort.

References
Anya Belz, Shubham Agarwal, Anastasia Shimorina,

and Ehud Reiter. 2020. ReproGen: Proposal for a
shared task on reproducibility of human evaluations
in NLG. In Proceedings of the 13th International
Conference on Natural Language Generation, pages

284

232–236, Dublin, Ireland. Association for Computa-
tional Linguistics.

Anya Belz, Shubham Agarwal, Anastasia Shimorina,
and Ehud Reiter. 2021. A systematic review of re-
producibility research in natural language process-
ing. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 381–393,
Online. Association for Computational Linguistics.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation:
NLG needs evaluation sheets and standardised def-
initions. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
169–182, Dublin, Ireland. Association for Computa-
tional Linguistics.

Saad Mahamood, Ehud Reiter, and Chris Mellish. 2007.
A comparison of hedged and non-hedged NLG texts.
In Proceedings of the Eleventh European Workshop
on Natural Language Generation (ENLG 07), pages
155–158, Saarbrücken, Germany. DFKI GmbH.

285

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 286–292,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Another PASS: A Reproduction Study of
the Human Evaluation of a Football Report Generation System

Simon Mille
Universitat Pompeu Fabra

Barcelona, Spain
simon.mille@upf.edu

Thiago Castro Ferreira
Federal University of Minas Gerais

Belo Horizonte, Brazil
thiagocf05@ufmg.br

Anya Belz and Brian Davis
ADAPT Research Centre
Dublin City University

Dublin 9, Ireland
{anya.belz,brian.davis}@adaptcentre.ie

Abstract

This paper reports results from a reproduction
study in which we repeated the human eval-
uation of the PASS Dutch-language football
report generation system (van der Lee et al.,
2017). The work was carried out as part of the
ReproGen Shared Task on Reproducibility of
Human Evaluations in NLG, in Track A (Pa-
per 1). We aimed to repeat the original study
exactly, with the main difference that a differ-
ent set of evaluators was used. We describe
the study design, present the results from the
original and the reproduction study, and then
compare and analyse the differences between
the two sets of results. For the two ‘headline’
results of average Fluency and Clarity, we find
that in both studies, the system was rated more
highly for Clarity than for Fluency, and Clarity
had higher standard deviation. Clarity and Flu-
ency ratings were higher, and their standard de-
viations lower, in the reproduction study than
in the original study by substantial margins.
Clarity had a higher degree of reproducibility
than Fluency, as measured by the coefficient
of variation. Data and code are publicly avail-
able.1

1 Introduction

Recent years have seen growing interest in, and
concern about, reproducibility across the Natural
Language Processing (NLP) field. The ReproGen
Shared Task on Reproducibility of Human Evalua-
tions in Natural Language Generation (Belz et al.,
2020a) was the first shared task to focus on re-
producibility of human evaluations (rather than
metrics). We report on our participation in Repro-
Gen, where our contribution was in Track A, the

1https://github.com/ThiagoCF05/
ReproGen2021-vanderLee

Main Reproducibility Track. More specifically, we
repeated the human evaluation study reported by
van der Lee et al. (2017). In this paper, we describe
how we approached this task, present the results ob-
tained, and compare our results with those reported
in the original paper, using different methods of
analysis.

2 Summary of the Evaluated System

PASS (Personalized Automated Soccer texts
System) is a modular data-to-text system that pro-
duces Dutch summaries of football matches and is a
partial re-implementation of the GoalGetter system
(Theune et al., 2001). Like GoalGetter, PASS is a
template and rule-based system. Unlike GoalGet-
ter, PASS (i) tailors the tone of football reports for
supporters of one of the clubs in a match, (ii) has
a modular architecture, and (iii) uses templates in-
formed by the MEmo FC (Multilingual Emotional
Football Corpus) corpus (Braun et al., 2016).

Data and Language Sources: Automatically
scraped football match data from Goal.com,2 sub-
sequently stored in XML-format, is used as input
data, and the MEmo FC corpus as reference data.

System Architecture: The PASS3 architecture
is a data-to-text pipeline consisting of the follow-
ing modules: (1) the governing module (used in
slightly different versions for different report parts)
processes topics one by one, and interacts with the
other modules as necessary; (2) the topic collec-
tion module extracts topics from the match data
and orders them; (3) the lookup module retrieves
all matching template categories for a given match
event and their corresponding templates from a

2https://www.goal.com/
3https://github.com/TallChris91/PASS

286

database; (4) the between-text variety module re-
moves templates that were used in the last match
report to ensure variety; (5) the ruleset module
checks whether constraints associated with a given
template category are met; (6) the template selec-
tion module selects templates from the remaining
categories in a weighted random fashion; (7) the
template filler module fills empty template slots
with the relevant information from the match data;
(8) the text collection module combines the text
produced for the different report parts in the right
order; (9) the information variety module removes
repeated information; and (10) the reference vari-
ety module replaces repeated referring expressions.

3 Study Design

We aimed to keep all aspects of study design the
same to the extent that was possible. In the sections
below, we consider different aspects of study de-
sign and describe common features and differences,
before summarising same/different properties in
Section 3.5.

3.1 Evaluated Texts

The evaluations used ten pairs of alternative system
outputs randomly selected4 from the reports for all
football matches from one season of one Dutch
league (see top of Figure 1 for an example pair).
In each pair, both reports are generated by PASS
for the same match, but one report is tailored for
supporters of one team, the other for supporters of
the other team. Each pair of reports was evaluated
by each of the 20 participants.

The questionnaires presented pairs of match re-
ports to evaluators side by side (see Figure 1). Both
the order of matches and of report variants for each
match was identical in the original and the repro-
duction study. Sides are not randomised: the report
on the left is always for the team in the top answer
of the first question in the questionnaire, and the
report on the right is always for the team in the
bottom answer.4 This may have made it easier for
participants to guess the intended readership, hence
contributed to the very high stance identification
rates in Table 1.

3.2 Evaluation Criteria

Evaluators were first asked to identify the stance
of each text, by completing the statement Deze

4Information provided via email by the authors of the
original paper.

tekst is bedoeld voor fans van (‘this text is intended
for fans of’).5 Then the quality of the texts was
evaluated according to two main criteria, namely
Fluency and Clarity, each of which was assessed
via (dis)agreement with two statements: (S1) Deze
tekst is in correct Nederlands geschreven (‘This
text is written in correct Dutch’ and (S2) Deze tekst
is gemakkelijk leesbaar (’This text is easy to read’)
in the case of Fluency; and (S3) De boodschap van
deze tekst is mij geheel duidelijk (‘The message
of this text is very clear to me’) and (S4) Tijdens
van het lezen van deze tekst begreep ik meteen wat
er stond (‘While reading this text, I immediately
understood what it said’) in the case of Clarity.
We used the same Dutch statements as the original
study.

All four statements ask the evaluators to con-
sider the text in its own right, that is, texts are not
evaluated relative to inputs or an external frame of
reference. In terms of the quality criteria properties
proposed by Belz et al. (2020b), S3 and S4 have the
same properties, whereas S1 and S2 do not. S1 falls
into the Correctness category (i.e. it is possible to
define conditions under which the quality criteria
are maximally good), while S2 is in the Goodness
category (i.e. it is not possible to define such con-
ditions). Another difference between S1 and S2 is
that the former considers the form of the text only
(independently of the meaning), and the latter takes
into account both the form and the meaning.

S3 and S4 have the same basic properties as S2,
the three mapping to the specific quality criteria
of Understandability, Clarity and Readability, re-
spectively, according to the taxonomy proposed
by Howcroft et al. (2020, Appendix D) which in-
corporates the properties from Belz et al. (2020b)
as the top three levels of the taxonomy. S1 maps
to Grammaticality. In the taxonomy, Clarity (un-
derstandability without effort) is a sub-criterion of
Understandability (irrespective of effort), a detail
which we return to in the results section (Section 4).

3.3 Evaluation Questionnaire

In the original study, pairs of alternative match
reports were presented to evaluators side by side,
on the same single page as the evaluation questions
(a copy of a page from the original questionnaire is
shown on the left of Figure 1). The introduction and
ten text pairs were given to evaluators printed out

5Questions and all other text in the questionnaires were in
Dutch. We have provided our own translations.

287

Figure 1: Sample evaluation page from questionnaire in original (left) vs. reproduction study.

on paper. We were unable to do this due to COVID-
19 pandemic restrictions, and used online electronic
forms instead. The side-by-side text presentation
meant we could not use the more commonly used
online survey platforms. We opted for a Google
Sheet (shown on the right of Figure 1), where only
the checkboxes were editable, which made the side-
by-side presentation of text pairs possible.

For each of the four quality statements, answers
were collected on a 7-point Likert scale (lowest
agreement rating 1, highest 7), where the lower
(left-hand) side was labeled Oneens (‘Disagree’),
and the higher (right-hand) side Eens (‘Agree’).

Our version of the questionnaire is not identical
in every respect, most notably the checkboxes are
squares rather than circles, and the alignments and
text distribution are slightly different. It cannot
entirely be ruled out that such differences affect
results, but it seems unlikely.

The recruited participants were provided with
two short sets of instructions: (i) the original
(Dutch) rating instructions used by van der Lee et al.
(2017), in the first tab of the evaluation spreadsheet
(updated only to correctly reflect the researchers
and institutions involved in the reproduction study),
and (ii) additional, specific instructions (in English)
relating to the use of the spreadsheet format, in an
email that also contained a link to the form.6

6Message sent to the participants: ”Thank you for accept-
ing to take part in the PASS system evaluation experiment!
Below you will find a link to your spreadsheet where your

3.4 Evaluators

In the original study, participants were “all re-
cruited on the campus of the Radboud Universiteit
(Nijmegen, The Netherlands). More specifically,
[the first author] recruited all participants in the
Huygensgebouw of the university, where the fac-
ulty of natural sciences, mathematics, and informa-
tion science is located.”7 Role (student, staff, etc.)
and subject area of evaluators was not recorded,
but the authors deem it likely that they were stu-
dents/staff in the faculty subjects (natural sciences,
maths, information science) as the faculty’s Huy-
gensgebouw building is somewhat isolated on the
campus.

We recruited our evaluators remotely (due to
COVID-19 pandemic restrictions) via Dutch uni-
versity research groups known to us, and addition-
ally via personal connections to current and former

responses will be collected. The sheet contains 12 tabs; we
kindly ask you to read carefully the Intro tab and then answer
the questions in the following 11 tabs (checkboxes for Page
1 to Page 10, checkbox and free text for Closing). Important
notes: (i) The sheet is assigned to you only, and none of the
checkboxes or other answers should be filled in when you
open it. In the unlikely event that a participant already edited
the sheet, please contact us so we can assign you another sheet;
(ii) For Pages 1 to 10, please only use lowercase “x” in the
checkboxes; you are expected to fill in exactly 10 checkboxes
per Page (5 for each text, corresponding to the 5 questions);
(iii) Additional instructions are provided (in Dutch) in the
Intro tab; (iv) Please complete the evaluation by [DATE].”

7Correspondence with the first author of van der Lee et al.
(2017).

288

van der Lee
et al. (2017)

this paper % in/decrease CV∗

% correctly identified stance 91% 96.75% +6.32% 6.107
χ2 for stance identification 233.33† 349.77 – –
p for χ2 < 0.001 < 0.00001 – –

mean Clarity 5.64 6.30 +11.17% 13.193
stdev 0.88 0.627 -28.75% –

mean Fluency 5.36 6.14 +14.18% 16.372
stdev 0.79 0.616 -22.03% –

Table 1: The results reported in the original paper, alongside the corresponding numbers from our reproduction
study. χ2 is calculated on the contingency table for guessed vs. actual intended stance. CV∗ is calculated on scores
on shifted scales (see in text). † χ2 is affected by missing values in the original questionnaires.

students and staff in the natural sciences and com-
puter science. This did give us a different cohort of
evaluators (e.g. higher average age of 36.8, vs. 20.6
in the original study; some evaluators known to us)
and this may be one of the contributing factors to
differences in results.

As in the original study, evaluators were not paid
or compensated in any other way, and we did not
control for demographic balance.

3.5 Summary of Recorded Study Properties

In order to assess reproducibility, and more partic-
ularly to be able to compare the degree of repro-
ducibility of different sets of studies, it is important
to capture in exactly which respects (in terms of
which properties) the reproduction study differs
from the original study (Belz, 2021). Below we list
the properties in terms of which we know whether
our reproduction study and the original by van der
Lee et al. (2017) were either different or the same,
using the basic starter set of properties from Belz
(2021), in turn based on Howcroft et al. (2020)
and Belz et al. (2020b) (note that system proper-
ties don’t apply, because the same set of outputs is
reused in the present context, rather than regener-
ated from same inputs):

1. Name and definition of measurand (quality
criterion): same.

2. Evaluation modes: same.

3. Method of response elicitation: same.

4. Method for aggregating or otherwise process-
ing raw participant responses: same.

5. Code used to compute and analyse results:
different (but only very basic measures were

calculated, such as mean and standard devia-
tion).

6. Test set: same.

7. Any preparatory steps such as preprocessing
of text taken: same.

8. Procedure of applying measurement method:
same.

9. Response collection method: different (paper
form in original study, online form in repro-
duction study, slightly different layout).

10. Quality assurance method(s): different (none
in original study which has missing values;
checking for completeness and removing
questionnaires with all same values in repro-
duction study).8

11. Instructions to evaluators: in evaluation form
same, in email different (see Section 3.3).

12. Evaluation interface: different, see Figure 1.

4 Results from Original and
Reproduction Study

As described in Section 3.2, the questionnaire con-
tained five rating statements for each text (which
we briefly gloss here as ‘intended readership’, ‘cor-
rect Dutch’, ‘easily readable’, ‘message clear’, and
‘understood while reading’), but van der Lee et al.
(2017) report three scores, for (i) ‘intended reader-
ship,’ (ii) ‘correct Dutch’ and ‘easily readable’ com-
bined into a single Fluency score, and (iii) ‘message
clear’ and ‘understood while reading’ combined

8Information provided in direct communication by the
authors of the original paper.

289

Original study Reproduction study CV∗

Clarity
S3 avg 5.75 (0.915) 6.36 (0.563) 12.031
S4 avg 5.52 (0.906) 6.23 (0.686) 14.605
Both 5.64 6.2975 13.193

Fluency
S1 avg 5.34 (0.798) 6.22 (0.564) 18.303
S2 avg 5.41 (0.864) 6.06 (0.661) 13.711
Both 5.36† 6.14 16.372

Table 2: Mean scores for the four separate rating statements (Si = ith statement in the questionnaire). Standard
deviation in brackets (not corrected for small sample size). CV∗ calculated on scores on shifted scales (see in text).
In our reproduction study, all pairwise differences between S1, S2, S3, S4 are statistically significant at α = 0.01
according to a 2-tailed paired t-test, except for the difference between S1 and S4. S1, S2, S3, S4 are also all
positively correlated with each other, Pearson’s r ranging from 0.36 for S1/S4 to 0.74 for S3/S4. † the mismatch
in the average for ‘Both’ is due to missing values in the original evaluation.

into one Clarity score. The final scores for Flu-
ency and Clarity were calculated by averaging all
scores for all texts (both statements and both stance
variants) in each case.

We collected 21 evaluations in total, one of
which was excluded because the ratings for all
questions and all texts were exactly identical in
it, which we interpreted as a misunderstanding of
the task.9

Table 1 shows all results and statistics reported
by van der Lee et al. (2017) in Column 2, and
the corresponding figures from our reproduction
study in Column 3. We also show percentage in-
creases/decreases from original study to reproduc-
tion study (Column 4), and the de-biased coeffi-
cient of variation (CV∗) where appropriate (Col-
umn 5), following Belz (2021). The coefficient of
variation is the standard deviation over the mean,
and is a standard measure of precision used in
metrological studies to capture degree of repro-
ducibility. In the implementation we used (Belz,
2021), it is corrected for small sample size. CV∗

is our primary measure for quantifying the re-
producibility of the evaluation scores reported by
van der Lee et al. (2017) (stance identification ac-
curacy, mean Fluency and mean Clarity). Note that
we shifted all evaluation scales (originally 1..7)
to 0..6 prior to computing percentage change and
CV∗, for fair comparison with the other ReproGen
reproduction studies.10

As can be seen from the table, all three main eval-

9If we included all 21 evaluations, the average Fluency
and Clarity scores would be slightly higher, and degree of
reproducibility (CV∗) slightly worse.

10Both % change and CV in general underestimate variation
for scales with a lower end greater than 0.

uation scores went up in our reproduction study:
intended stance was correctly identified in 96.75%
of cases (compared to 91% in the original study);
mean Clarity was 6.3 (compared to 5.64); and mean
Fluency was 6.14 (compared to 5.36). Standard de-
viation for both mean Fluency and mean Clarity
went down (better), and the chi-squared value for
stance identification and its significance both in-
creased (better).

CV∗ for Fluency was 16.372 for a mean of 4.75,
unbiased sample standard deviation of 0.691 with
95% CI (-3.263, 4.645), and sample size 2. CV∗ for
Clarity was 13.193, for a mean of 4.969, unbiased
sample standard deviation of 0.583 with 95% CI (-
2.7502, 3.916), and sample size 2. See Belz (2021)
for full explanation of this way of reporting CV.

Confidence intervals for (unbiassed) standard
deviation (the enumerator in CV∗) are large be-
cause of the small sample size and corrections in-
corporated for it. Larger sample sizes increase
confidence that the CV for the sample accurately
reflects the CV in the general population, and it is
important to be clear about level of confidence.

The main conclusions we can draw from the
CV∗ figures is that (i) stance identification is very
similar in the two studies, and that (ii) Clarity has
a better degree of reproducibility than Fluency.

As mentioned in Section 3.2, according to the
standardised quality criteria proposed by Howcroft
et al. (2020), S4 is Clarity (understandability with-
out effort), and S3 is Understandability (irrespec-
tive of effort); it so happens that Clarity is a sub-
criterion of Understandability. There are no such
parent-child relations between other pairs of S1,
S2, S3 and S4, and the taxonomy makes no pre-
dictions whether scores for them will be higher or

290

lower, relative to each other, in the same evaluation.
However, the taxonomy does predict that S4 scores
(Clarity, or ‘understandability without effort’) will
be lower than S3 scores (Understandability, or ‘un-
derstandability irrespective of effort’) in the same
evaluation, because a text that is understandable
with effort is also understandable irrespective of
effort, but not vice versa. In Table 2, the average S3
score is 6.36, while the average S4 score is indeed
lower, at 6.23. This was also the case in the original
evaluation where average S3 = 5.752 and average
S4 = 5.518. The differences in question were statis-
tically significant at α = 0.01 in our reproduction
study (see also Table 2).

The taxonomy also predicts that reproducibility
(CV∗) and standard deviation will be worse for S4
than S3, which again is borne out in the case of
both original and reproduction evaluation by the
figures in Table 2. Regarding the other CV∗ figures
in the last column of Table 2, this is highest (worst)
by some margin for S1 (‘Grammaticality’), and
lowest (best) for S3 (‘Understandability’), closely
followed by S2 (‘Readability’) and S4 (‘Clarity’).
This may come as a surprise as it might be expected
that Correctness-type evaluation measures (such
as S1) are more reproducible than Goodness-type
evaluation measures (S2, S3, S4), which on the face
of it involve less clear-cut judgments (e.g. there are
no maximally good outputs).

5 Conclusion

In this paper, we reported work which aimed to
repeat the human evaluation experiment reported
by van der Lee et al. (2017) as closely as possible.
We characterised the properties which we know to
be either the same or different in our reproduction
study (compared to the original study), and pre-
sented scores from the reproduction study side by
side with scores reported in the original paper (Ta-
ble 1). We computed percentage increase/decrease,
and coefficient of variation as the measure of de-
gree of reproducibility. We found that on the whole,
our reproduction study rated the PASS system more
highly than the original, with considerably less vari-
ation among raters. Furthermore, stance identifi-
cation accuracy had the highest degree of repro-
ducibility, and mean Clarity scores had a higher
degree of reproducibility than mean Fluency.

Note that we have not speculated about the likely
reasons for the differences between the two sets of
results. We know that those properties marked as

different in Section 3.5 are all possible reasons. Out
of these, it would seem likely that a sizeable part
of the difference is down to the different cohorts
of evaluators: older, known to us, mostly from
computer science backgrounds in the reproduction
study, vs. younger, random passers-by recruited in
the science building of a university in the original
study.

The human evaluation studied here is about as
simple as such evaluations get: just one system
was evaluated, on three quality criteria and 10 out-
put pairs, each evaluated by the same 20 raters.
The coefficient of variation gives a measure of de-
gree of reproducibility that is comparable across
measures and across studies, so we can e.g. make
the (relative) assessment that Clarity was found to
have a higher degree of reproducibility than Flu-
ency. However, the measure does not enable us to
make an (absolute) assessment whether either one
of them had good reproducibility. In order to do
this, we would have to know what normally counts
as good reproducibility in similar circumstances
in NLP. Since NLP currently has very few repro-
duction studies, and none that report coefficients of
variation for human evaluations, such assessments
are not possible at this point in time. They will
become possible over time if more studies start
to report CV (or other measures of precision) for
reproduction studies.

Acknowledgments

Mille’s work on this study was supported by
the European Commission under the H2020 pro-
gram contract numbers 786731, 825079, 870930
and 952133, and Castro Ferreira’s by the Brazil-
ian agency CAPES under Post-doctoral grant No.
88887.508597/2020-00.

References
Anya Belz. 2021. Quantifying reproducibility in NLP

and ML. arXiv preprint arXiv:2109.01211.

Anya Belz, Shubham Agarwal, Anastasia Shimorina,
and Ehud Reiter. 2020a. ReproGen: Proposal for a
shared task on reproducibility of human evaluations
in NLG. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
232–236, Dublin, Ireland. Association for Computa-
tional Linguistics.

Anya Belz, Simon Mille, and David M. Howcroft.
2020b. Disentangling the properties of human eval-
uation methods: A classification system to support

291

comparability, meta-evaluation and reproducibility
testing. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
183–194, Dublin, Ireland. Association for Computa-
tional Linguistics.

Nadine Braun, Martijn Goudbeek, and Emiel Krah-
mer. 2016. The multilingual affective soccer cor-
pus (MASC): Compiling a biased parallel corpus on
soccer reportage in English, German and Dutch. In
Proceedings of the 9th International Natural Lan-
guage Generation conference, pages 74–78, Edin-
burgh, UK. Association for Computational Linguis-
tics.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation:
NLG needs evaluation sheets and standardised def-
initions. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
169–182, Dublin, Ireland. Association for Computa-
tional Linguistics.

Chris van der Lee, Emiel Krahmer, and Sander
Wubben. 2017. PASS: A Dutch data-to-text system
for soccer, targeted towards specific audiences. In
Proceedings of the 10th International Conference on
Natural Language Generation, pages 95–104, Santi-
ago de Compostela, Spain. Association for Compu-
tational Linguistics.

M. Theune, E. Klabbers, J. R. De Pijper, E. Krah-
mer, and J. Odijk. 2001. From data to speech: a
general approach. Natural Language Engineering,
7(1):47–86.

292

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 293–300,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

A Reproduction Study of
an Annotation-based Human Evaluation of MT Outputs

Maja Popović and Anya Belz
ADAPT Centre

School of Computing
Dublin City University, Ireland

{maja.popovic,anya.belz}@adaptcentre.ie

Abstract

In this paper we report our reproduction study
of the Croatian part of an annotation-based
human evaluation of machine-translated user
reviews (Popović, 2020). The work was car-
ried out as part of the ReproGen Shared Task
on Reproducibility of Human Evaluation in
NLG. Our aim was to repeat the original study
exactly, except for using a different set of
evaluators. We describe the experimental de-
sign, characterise differences between original
and reproduction study, and present the results
from each study, along with analysis of the
similarity between them. For the six main
evaluation results of Major/Minor/All Compre-
hension error rates and Major/Minor/All Ade-
quacy error rates, we find that (i) 4/6 system
rankings are the same in both studies, (ii) the
relative differences between systems are repli-
cated well for Major Comprehension and Ade-
quacy (Pearson’s > 0.9), but not for the corre-
sponding Minor error rates (Pearson’s 0.36 for
Adequacy, 0.67 for Comprehension), and (iii)
the individual system scores for both types of
Minor error rates had a higher degree of repro-
ducibility than the corresponding Major error
rates. We also examine inter-annotator agree-
ment and compare the annotations obtained in
the original and reproduction studies.

1 Introduction

Interest in, and concern about, reproducibility is
growing in Natural Language Processing (NLP).
Reproducibility of human evaluations, however,
has received next to no attention, and the ReproGen
Shared Task1 on Reproducibility of Human Eval-
uations in Natural Language Generation (NLG)
addresses this lack. We participated in ReproGen
with a contribution in Track B, the Reproduce Your
Own Track. More specifically, we repeated the hu-
man evaluation of a mixed set of movie and product

1https://reprogen.github.io/

review translations produced by three leading Ma-
chine Translation (MT) systems, as reported by
Popović (2020). In this paper, we summarise the
original study in terms of the overall evaluation
method (Section 2.1), the quality criteria underly-
ing the annotations from which evaluation scores
were derived (Section 2.2), the annotation process
and instructions (Section 2.3), and the process by
which reviews were selected and translated for the
evaluation (Section 2.4). We then present Com-
prehension and Adequacy error rate results from
the original and reproduction studies side by side,
and look at how similar system rankings and in-
dividual scores are in the two studies (Section 3).
Next we compare the inter-annotator agreement
in the two studies (Section 4) using diverse met-
rics. We discuss and interpret results obtained in
our reproduction study (Section 5), and draw some
conclusions (Section 6).

2 Study Design

2.1 Evaluation Method

The core idea behind the annotation-based evalua-
tion method proposed by Popović (2020) is that in-
stead of assigning overall scores to each sentence,2

or classifying each error into a predefined error
scheme, evaluators mark up word spans in trans-
lated texts that contain given types of errors. Two
error types, corresponding to the two quality cri-
teria Comprehensibility and Adequacy (see also
Section 2.2), were marked up at two levels of sever-
ity (Major and Minor). The method yields both
overall error-rate scores (percentage of words that
have been marked up for each error type), and a
basis for further quantitative and qualitative analy-
sis of errors and challenging linguistic phenomena.
In contrast, current manual evaluation methods for

2When we say ‘sentence’ we mean any sentence-like seg-
ment, which may consist of just one word or phrase.

293

MT typically ask annotators either to assign overall
per-sentence scores, or to rank two or more transla-
tions in terms of given quality criteria, i.e. informa-
tion about any errors that motivate scores/rankings
is not recorded. The method can be applied to any
language generation task, genre/domain and lan-
guage (pair), and can be guided by diverse error
types (quality criteria).

2.2 Quality Criteria and Error Rates

The two quality criteria underlying error annota-
tions were Comprehensibility and Adequacy, both
commonly used in MT (ALPAC, 1966; White et al.,
1994; Roturier and Bensadoun, 2011).

Comprehensibility: The degree to which a text
can be understood. When evaluating Comprehens-
bility of a translated text, the source language text
is not shown to evaluators. In terms of the clas-
sification system proposed by Belz et al. (2020),
Comprehensibility captures the goodness of both
the form and content of a text in its own right, and
is assessed here by a subjective, absolute, intrinsic
evaluation measure.

Adequacy (in MT): The degree to which a trans-
lation conveys the meaning of the original text in
the source language. When evaluating adequacy of
a translated text, the source language text is shown
to evaluators. In terms of Belz et al.’s classification
system, Adequacy captures the correctness of the
content of a text relative to the input, and is as-
sessed here also by a subjective, absolute, intrinsic
evaluation measure.

Annotators were asked to mark up translations first
for Comprehensibility, then for Adequacy, distin-
guishing two levels of severity for each: major
errors (incomprehensible/not conveying the mean-
ing of the source) and minor errors (difficult to
understand due to grammar or stylistic errors/not
an optimal translation choice for the given source).
Six error rates were then calculated from the mark-
up: Comprehensibility-All, Comprehensibility-
Major, Comprehensibility-Minor, Adequacy-All,
Adequacy-Major, and Adequacy-Minor. These are
simply the percentage of words that are part of a
text span that has been marked up in the given error
category.

2.3 Annotation Process

Annotators first marked up all issues related to
Comprehensibility in the translated text without

access to the source text. Next, they marked up all
issues related to Adequacy while also referring to
the source text.

The translated texts were given to the evaluators
in the form of a Google Doc, and they were asked to
mark major issues with red colour and minor issues
with blue colour. In addition to general definitions
of Comprehensibility and Adequacy, the evaluators
were given detailed guidelines which can be found
in the original paper (Popović, 2020).

Evaluators were first given a small number of
practice texts to annotate in order to familiarise
themselves with the process and clarify any ques-
tions and uncertainty. In the original study, these
texts were included in calculating the reported re-
sults. However, during this practice round in the
original study the number and distribution of evalu-
ators varied, which was not repeatable. Therefore,
in the reproduction study, the practice texts are not
included in calculating reported results, and the re-
sults from the original study included in this paper
have been adjusted accordingly.

In both studies, each translated review was an-
notated by two evaluators. All evaluators in both
studies were fluent in the source language and na-
tive speakers of the target language. However, the
backgrounds of the two groups of evaluators are
different. In the original study, all seven evalu-
ators working on the Croatian translations were
either students or researchers in computational lin-
guistics. Six evaluators had some experience with
human translation, and three had experience with
machine translation. Three evaluators had a tech-
nical background. In contrast, all the evaluators in
the reproduction study were translation students,
so had the same background and the same or very
similar levels of experience with translation.

2.4 Data

The original study involved translations in two sim-
ilar target languages, Croatian and Serbian, while
the reproduction study involved only the Croatian
translations, partly for reasons of cost, and partly
due to availability of evaluators.

28 English reviews from the Large Movie Re-
view Dataset v1.03 (Maas et al., 2011) were se-
lected, as well as 122 English reviews from the
14 categories4 of the 2018 version of the Amazon

3https://ai.stanford.edu/˜amaas/data/
sentiment

4Beauty, Books, CDs and Vinyl, Cell Phones and Acces-
sories, Grocery and Gourmet Food, Health and Personal Care,

294

reviews sentences
116 894

Amazon MT outputs 68 557
Bing MT outputs 35 279
Google MT outputs 61 467
total MT outputs 164 1303

Table 1: Number of evaluated reviews and sentences.

Product Review dataset5 (McAuley et al., 2015).
In the selection process, overly long (> 350 words)
and overly short (< 30 words) reviews were ex-
cluded, and an equal number of positive and neg-
ative reviews were selected to ensure balance in
terms of sentiment polarity, while a balanced distri-
bution between topics in Amazon reviews was also
aimed for.

The selected (English) user reviews were then
translated into Croatian using Google Translate,
Bing and Amazon Translate, yielding a total of 450
Croatian translations of which 164 were arbitrarily
selected as a manageable number for inclusion in
the evaluation. The 164 selected translations corre-
spond to 116 original English reviews which were
mostly translated by one, and in some cases by two,
of the MT systems, in order to increase diversity
in translations (hence in error types). 68 of the
translations were produced by Amazon Translate,
35 by Bing Translator and 61 by Google Translate.
The reason for including fewer Bing translations
was their notably lower quality. The number of
reviews and sentences evaluated for each system
can be seen in Table 1.6

The primary aim of the original study was not
the comparative evaluation of multiple MT systems.
Rather, the aim was to test a new evaluation scheme.
The system-level error rates reported in the next
section can therefore not be considered a fair as-
sessment of the respective quality of the three sys-
tems involved. For this purpose, normally the same
source texts translated by all systems would be eval-
uated. In the present context, different source texts
translated by different systems were evaluated, cho-
sen as explained above. Nevertheless, assessments
of the reproducibility of the obtained human eval-
uation scores are valid regardless of this diversity

Home and Kitchen, Movies and TV, Musical Instruments, Pa-
tio, Lawn and Garden, Pet Supplies, Sports and Outdoors,
Toys and Games, Video Games.

5http://jmcauley.ucsd.edu/data/amazon/
6The annotated data sets resulting from both the original

study and the reproduction study are publicly available un-
der the Creative Commons CC-BY licence here: https:
//github.com/m-popovic/QRev-annotations

in test sets, provided the latter are the same in the
original and the reproduction study.

3 Evaluation Scores

Columns 2–7 in Table 2 show the overall evalu-
ation scores obtained in the original and in the
reproduction study in the form of error rates, i.e.
percentages of words marked up as errors. The fol-
lowing tendencies can be observed in both studies:
(i) four out of six system rankings (the exceptions
being Major Comprehension and Minor Adequacy)
are the same in both studies; (ii) error rates were
higher for Comprehension than for Adequacy in all
three error subcategories and for all systems, except
that the Adequacy-Minor rate for Bing was higher
than its Comprehension-Minor rate in the original
study which also affected the corresponding All
rate; (iii) Bing exhibits the highest error rates in all
error categories except Comprehension-Minor and
Adequacy-Minor in the reproduction study; and (iv)
Google has slightly lower error rates than Amazon
in all error categories except for Comprehension-
Major and Adequacy-Major in the reproduction
study, and Adequacy-Major in the original study).

The last three columns in Table 2 show the coef-
ficient of variation (CV) for each of the individual
error-rate scores across the two studies as our pri-
mary measure of degree of reproducibility (Belz,
2021). CV is a standard measure of precision in
metrological studies of reproducibility.7 The main
general tendencies are as follows: (i) the Adequacy-
All and Adequacy-Minor error rates (except for the
Minor rate for Bing) have better reproducibility
(CV is lower) than the corresponding Comprehen-
sion rates; and (ii) the Adequacy-Major error rates
(except for the Major rate for Google) have worse
reproducibility (CV is higher) than the correspond-
ing Comprehension-Major rates.

Table 3 shows Pearson’s r between the system-
level Comprehension and Adequacy error rates in
the original and the reproduction studies, for each
of the All, Major and Minor subcategories. A clear
pattern can be observed: correlation between sys-
tem scores in the Minor categories is far worse than
in the All and Major categories.

Since there are only three systems to calculate
correlation on, we also calculated Pearson’s r be-
tween sentence-level error counts and the results
are presented in Table 4. The picture confirms the

7We used the de-biased version of CV, for small samples,
as proposed by Belz (2021).

295

System
Comprehension error rate (%)

original study reproduction study coefficient of variation (CV)
All Major Minor All Major Minor All Major Minor

All 21.9 9.2 12.7 29.6 13.4 16.2 29.81 37.06 24.15
Amazon 19.6 7.6 12.0 26.9 10.2 16.7 31.30 29.13 32.65
Bing 31.1 15.1 16.0 39.1 22.3 16.8 22.72 38.38 4.86
Google 18.3 7.1 11.2 26.5 11.5 15.0 36.498 47.17 28.92

System
Adequacy error rate (%)

original study reproduction study coefficient of variation (CV)
All Major Minor All Major Minor All Major Minor

All 21.1 8.2 12.9 24.8 12.3 12.5 16.07 39.88 3.14
Amazon 17.9 6.5 11.4 22.6 9.5 13.1 23.14 37.39 13.84
Bing 30.2 13.2 17.0 33.9 21.2 12.7 11.51 46.37 28.87
Google 17.5 7.0 10.5 21.4 9.7 11.7 19.99 32.24 10.78

Table 2: Error rates (percentages of words that are marked problematic) for Major/Minor Comprehensibility and
Adequacy in Croatian translated texts in the two evaluation studies, shown for the three MT systems combined (All)
and individually. CV between error rates in original and reproduction for each error category, using the de-biased
version of CV proposed by Belz (2021). Bold indicates different system rank in original/reproduction studies.

System-level scores
Comprehension Adequacy

All 0.9979** 0.9982**
Major 0.9882* 0.9986**
Minor 0.6663 0.3623

Table 3: Pearson correlation coefficients between
system-level scores in the original and reproduction
studies. ** = significant at α = 0.01; * = significant
at α = 0.05.

Sentence-level scores
Comprehension Adequacy

All 0.695** 0.720**
Major 0.580** 0.656**
Minor 0.403** 0.390**

Table 4: Pearson correlation coefficients between orig-
inal sentence-level error counts in the original and re-
production studies. (All significant at α = 0.01.)

system-level correlation results: while All and Ma-
jor error counts correlate reasonably well for both
error types (although slightly better for Adequacy
than for Comprehension), the coefficients for the
Minor error types are notably lower.

We will return to some of the above points in the
discussion section (Section 5).

4 Inter-annotator Agreement

The original study reported inter-annotator agree-
ment (IAA) in terms of F-score and normalised
edit distance (definitions below). In this paper we
also report Krippendorff’s α for both original and
reproduction study, following Kreutzer et al. (2020)
who used it in a similar error marking study.8

8Cohen’s kappa was not considered appropriate for either
of the studies for the reasons explained in detail in the original

Krippendorff’s α: In order to quantify agree-
ment by this method, error annotations were con-
verted to a sentence-level quality score, namely the
number of words marked up for error in a given
sentence. For a perfect sentence, no words would
be marked so this score would be zero. Using the
standard definition,9 we computed three separate
α scores: (i) from just the Major error annotations,
(ii) from just the Minor error annotations, and (iii)
from both (corresponding to the All subcategory
from previous sections).

F-score: To compute sentence-level F1-score,
the starting point was the paired sequences ev1 and
ev2 of word-level error labels (Major, Minor or
None) assigned by the two annotators to a sentence.
Precision was then computed as the labels from ev1
also present in ev2, and Recall as labels from ev2
also present in ev1. The F1-score was then calcu-
lated in the usual way, as the harmonic mean of
Precision and Recall. Due to possible length differ-
ences in a pair of label sequences (due to insertion
of X labels representing missing words), matches
are defined as position-independent, which can re-
sult in overestimation of agreement.

To yield system-level scores, sentence-level
scores are micro-averaged by aggregating matches
and lengths.

Edit distance: The standard definition of edit dis-
tance10 with insertions, deletions and substitutions
all at cost=1 is applied to paired sequences ev1
and ev2 of word-level error labels (as above). Nor-

paper (Popović, 2020).
9https://en.wikipedia.org/wiki/Krippendorffs alpha

10Also known as Levenshtein distance (Levenshtein, 1966).

296

malised edit distance scores are obtained by divid-
ing the summed cost of edits by sequence length.
However, while usually (in speech recognition and
MT), normalisation is carried out by the length of
the ‘correct’ reference string, here neither of the
label sequences is (in)correct. Therefore, the edit-
distance metric is symmetrised (in a similar way as
the F-score is with Precision and Recall) by first
computing edit distance of ev1 against ev2, then of
ev2 against ev1, then summing over both and nor-
malising by the sum of the lengths of ev1 and ev2.
The resulting measure does penalise differences in
label position, thus compensating for the drawback
of the position-independent F-score above.

To yield system-level scores, sentence-level
scores are micro-averaged by aggregating edit dis-
tances and lengths.

Illustration of IAA metrics: Examples of two
sentences annotated by two different annotators,
along with counts obtained in computing the met-
rics, are shown in Table 5.

The first two rows show the annotated texts as
described in Section 2.3, namely major errors in
red/bold, and minor errors in blue/italics. The next
two rows below show the extracted error label se-
quences that form the basis for measuring agree-
ment. The abel sequences were used directly for
calculating F-score and edit distance, whereas for
Krippendorff’s α, label counts were derived instead
(rows 5, 6 and 7).

IAA scores computed with the above metrics
for the original and reproduction studies are shown
in Table 6. IAA is generally good in both studies
in terms of all metrics. Furthermore, all metrics
indicate a higher IAA for Adequacy than for Com-
prehensibility (although in some cases differences
are very small). Another clear tendency for both
studies is a notably lower Krippendorff’s α for er-
ror annotations in the Minor categories than in the
Major and All categories.

For Comprehension errors, IAA is better in the
original study according to all metrics. For Ade-
quacy errors, F-score, edit distance and α for Minor
errors are also better in the original study, while α
for All and Major errors are better in the reproduc-
tion study.

5 Discussion

In previous sections, we presented results and simi-
larities/differences observable in them in objective
terms. In this section, we discuss and interpret re-

sults, aiming to draw conclusions and to identify
reasons for similarities and differences.

5.1 Differences in overall scores

As mentioned in Section 3, both studies show
broadly similar tendencies in error rates, with some
exceptions for Major Comprehension errors and
Minor Adequacy errors, as follows. In terms of Ma-
jor Comprehension error rates from the reproduc-
tion study, Amazon is slightly better than Google,
while the original study indicates the opposite.
As for Minor Adequacy errors, the original study
clearly indicates that the Bing translations contain
the largest number of errors, which is in line with
other scores, too. In the reproduction study, anno-
tators found fewer Minor Adequacy errors in Bing
translations than in Amazon translations, however
the number of Major Adequacy errors for Bing is
much higher in the reproduction study than in the
original one. Apparently the two groups of annota-
tors perceived similar overall number of errors but
different distributions between Major and Minor
ones.

Taking into account the lower inter-annotator
agreement for Minor errors, as well as the fact that
in both studies the majority of evaluators reported
that it was often difficult to distinguish between
major and minor errors, the difference in Minor
Adequacy errors is not very surprising. As for Ma-
jor Comprehension errors, lower inter-annotator
agreement and larger degree of subjectivity in as-
sessing Comprehensibility may contribute to the
slight difference in scores.

Both system-level and sentence-level error rates
correlated better across the stwo studies for Major
error types than for Minor error types. This also
points in the direction of minor errors being gener-
ally harder to annotate reliably, something that will
need to be addressed in future evaluations.

In terms of the pairwise degree of reproducibil-
ity captured by CV, individual pairs of Major error
rates differed more between the two studies than
individual pairs of Minor error rates. This is not
a contradiction with other results: CV measures
how far off each individual score is from its origi-
nal counterpart, whereas Pearson’s r measures co-
variance between sets of original and reproduction
scores, i.e. how similar their relative ranks and the
distances between scores are. In other words, in
our results, Major error rates are on average further
apart in absolute terms, but evince a more similar

297

text annotated by ev1 Ne shvaćajte ih ako udarite u tešku torbu .
text annotated by ev2 Ne shvaćajte ih ako udarite u tešku torbu .
error labels, ev1 Major Major Major Major Major Major Major Major Major
error labels, ev2 None Major None None None None Major Major None
major error counts, ev1 ev2 9 3
minor error counts, ev1 ev2 0 0
total error counts, ev1 ev2 9 3
F score (matching labels) 33.3 (3 label matches, total number of labels e1 = 9, e2 = 9)
edit (unmatched labels) 66.0 (6 label mismatches)
text annotated by ev1 Nadmašio me na svakom koraku i stalno me iznenadila priča .
text annotated by ev2 Nadmašio me X na svakom koraku i stalno me X iznenadila priča .
error labels, ev1 Minor None None None None None None Minor Minor Minor None
error labels, ev2 Major Major Minor None None None None None None Minor Minor None None
major error counts, ev1 ev2 0 2
minor error counts, ev1 ev2 4 3
total error counts, ev1 ev2 4 5
F score (matching labels) 83.3 (10 label matches. total number of labels e1=11, e2=13)
edit distance (unmatched labels) 25.0 (3 label mismatches)

Table 5: Illustration of IAA metrics: two sentences annotated for comprehension by two evaluators, error labels,
error counts used for Krippendorff’s α, F-score on labels and edit distance on labels. Bold/red stands for major
errors, italics/blue for minor errors, and an X represents an omitted word.

IAA
Comprehension Adequacy

↑ α ↑ F ↓ edit ↑ α ↑ F ↓ edit
major minor all score dist. major minor all score dist.

original 0.621 0.412 0.687 82.3 22.3 0.679 0.420 0.699 84.1 19.9
reproduction 0.467 0.363 0.636 76.4 30.0 0.734 0.394 0.723 83.0 23.2

Table 6: IAA scores for Comprehensibility and Adequacy: Krippendorff’s α, F-score and normalised edit distance.

overall picture in relative terms, than Minor error
rates, which does appear to support the conclusion
that Minor errors are harder to agree on, and that
the dividing line between Major and Minor errors
is also hard to agree on.

5.2 Differences in inter-annotator agreement

Some tendencies in IAA are similar in both studies
(Section 4). IAA was reasonably good in both stud-
ies in terms of all metrics. A contributing factor is
likely to be that the annotators were not asked to
perform any fine-grained error categorisation. An-
other clear tendency for both studies was a notably
lower Krippendorff’s α for minor errors: since
these tend to be far less severe (not completely un-
intelligible, not entirely changing the meaning of
the source text), it may be the case that judgments
here reflect personal preferences more.

There were also notable differences between the
two studies, including IAA being worse in the re-
production study than the original according to 8
out of 10 measures in Table 6. On the face of it,
this is not as expected, given the apparently greater
homogeneity of the second cohort of evaluators
mentioned above. The two cohorts may have other
characteristics not accessible to us that would ex-
plain the difference.

Moving on to comparing IAA across different
error types, the reason for lower Krippendorff’s α
for Minor errors is probably the generally greater
difficulty of agreeing on Minor error annotations
mentioned in Section 5.1.

One possible explanation for all metrics indi-
cating a higher IAA for Adequacy than for Com-
prehensibility is that Adequacy is guided by the
original source text while Comprehensibility relies
only on the translated text, possibly allowing more
space for subjectivity in judgments.

However, to gain a more complete understand-
ing of the above, future work needs to analyse dif-
ferences in more detail. There are also potential
improvements that can be made in the guidelines
which could make a difference to IAA measures
(for details see the original paper).

5.3 Mark-up Agreement between the Two
Studies

To assess the similarity between the annotations
produced in the original and reproduction studies,
we paired all strings from the original study with
all strings from the reproduction study, and then ap-
plied the F1 metric as described in Section 4 above,
except that this time we used the word strings, not
the label strings. Table 7 presents an example of a

298

original study reproduction study

annotations Obično ventilator, ali neimpresioniran Obično ventilator, ali neimpresioniran
Obično ventilator, ali neimpresioniran Obično ventilator, ali X neimpresioniran

all errors ventilator neimpresioniran ventilator neimpresioniran
ventilator neimpresioniran ventilator X

prec / rec prec = 3 matches / 4 words = 75 rec = 3 matches / 4 words = 75

major errors ventilator ventilator
ventilator ventilator X

prec / rec prec = 2 matches / 3 words = 66.7 rec = 2 matches / 2 words = 100

minor errors neimpresioniran neimpresioniran
neimpresioniran

prec / rec prec = 1 match / 1 word = 100 rec = 1 match / 2 words = 50

Table 7: Illustration of annotation overlap metric: example text annotated twice in the original study (left), and
twice in the reproduction study (right). Red/bold = major error, blue/italics = minor error, X = omitted word.

Comprehension Adequacy
All errors 56.3 58.0
Major errors 54.2 56.4
Minor errors 39.3 36.6

Table 8: Overlap between words marked up in the two
studies in terms of word-string F1 score.

sentence annotated in the two studies, all marked-
up words, and the corresponding word-string Preci-
sion and Recall scores. The corresponding F1 val-
ues are shown in Table 8 for all error cateogories.

The main tendency is that the overlap for Minor
errors is notably lower than for Major and All er-
rors, providing further evidence that Minor errors
are harder to agree on. As for Comprehension vs.
Adequacy errors, overlap in Minor annotations is
worse for Adequacy (than Comprehension), but
overlap in Major and All annotations is worse for
Comprehension, which aligns with results from
Section 3 that the system rankings for Major Com-
prehension and Minor Adequacy were switched
between the two studies.

6 Conclusion

In this paper, we reported results from a reproduc-
tion study of an annotation-based human evaluation
of MT outputs where errors related to comprehen-
sibility and meaning correctness were annotated in
texts by marking up word involved in an error. We
compared the corresponding Comprehension and
Adequacy system-level error rates for the three MT
systems assessed in the two studies, distinguish-
ing subcategories All, Major and Minor for each.
We found that 4 out of 6 system rankings were the
same in both studies, but that the relative differ-
ences between systems are not well replicated for
both types of Minor error rates (Pearson’s 0.36 for
Adequacy-Minor, 0.67 for Comprehension-Minor).

However, the individual system scores for both
types of Minor error rate had a higher degree of
reproducibility (as measured by the coefficient of
correlation, CV), than the corresponding Major er-
ror rates. Results also showed that Minor Adequacy
and Major Comprehension annotations and system
rankings differed more than other error categories.

The reproduction study reported here was a con-
tribution to the ReproGen Shared Task in the ‘Re-
produce Your Own’ Track, and as such we had the
benefit of having full access to all resources and in-
formation from the original evaluation, a luxury not
normally available when conducting a reproduction
study of someone else’s work. The main difference
between properties of the original study and our re-
production was the characteristics of the cohort of
evaluators who had slightly different backgrounds.
There were pronounced similarities between the
two studies, but also very clear differences, notably
including in system rankings. All in all, while re-
peating the study was simply a matter of recruiting
a new cohort of evaluators, obtaining the same re-
sults proved somewhat less simple.

Acknowledgements

Both authors benefit from being members of the
ADAPT SFI Centre for Digital Media Technology
which is funded by Science Foundation Ireland
through the SFI Research Centres Programme, and
co-funded under the European Regional Develop-
ment Fund (ERDF) through Grant 13/RC/2106.

The original study (Popović, 2020) was partly
funded by the European Association for Machine
Translation (EAMT).

The reproduction study was funded by the
ADAPT NLG research group.

299

References
ALPAC. 1966. Language and machines. Computers in

translation and linguistics.

Anya Belz. 2021. Quantifying reproducibility in NLP
and ML. arXiv preprint arXiv:2109.01211.

Anya Belz, Simon Mille, and David M. Howcroft.
2020. Disentangling the properties of human eval-
uation methods: A classification system to support
comparability, meta-evaluation and reproducibility
testing. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
183–194, Dublin, Ireland. Association for Computa-
tional Linguistics.

Julia Kreutzer, Nathaniel Berger, and Stefan Riezler.
2020. Correct Me If You Can: Learning from Error
Corrections and Markings. Proceedings of the 22nd
Annual Conference of the European Association for
Machine Translation (EAMT 20).

Vladimir Iosifovich Levenshtein. 1966. Binary Codes
Capable of Correcting Deletions, Insertions and Re-
versals. Soviet Physics Doklady, 10:707–710.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 142–150.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton van den Hengel. 2015. Image-Based Rec-
ommendations on Styles and Substitutes. In Pro-
ceedings of the 38th International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval (SIGIR 2015), pages 43–52, Santiago,
Chile.

Maja Popović. 2020. Informative manual evalua-
tion of machine translation output. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5059–5069, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Johann Roturier and Anthony Bensadoun. 2011. Eval-
uation of MT Systems to Translate User Generated
Content. In Proceedings of the MT Summit XIII, Xi-
amen, China.

John White, Theresa O’Connell, and Francis O’Mara.
1994. The ARPA MT evaluation methodologies:
evolution, lessons, and future approaches. In Pro-
ceedings of the 1994 Conference of Association for
Machine Translation in the Americas, pages 193–
205.

300

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 301–307,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

TUDA-Reproducibility @ ReproGen:
Replicability of Human Evaluation of Text-to-Text and Concept-to-Text

Generation

Christian Richter, Yanran Chen, Steffen Eger
Computer Science Department

Technical University of Darmstadt (TUDA)
chrisrichter145@gmail.com, chenyr1996@hotmail.com, eger@aiphes.tu-darmstadt.de

Abstract

This paper describes our contribution to the
Shared Task ReproGen by Belz et al. (2021),
which investigates the reproducibility of hu-
man evaluations in the context of Natural
Language Generation. We selected the pa-
per “Generation of Company descriptions us-
ing concept-to-text and text-to-text deep mod-
els: data set collection and systems evaluation”
(Qader et al., 2018) and aimed to replicate, as
closely to the original as possible, the human
evaluation and the subsequent comparison be-
tween the human judgements and the auto-
matic evaluation metrics. Here, we first outline
the text generation task of the paper of Qader
et al. (2018). Then, we document how we ap-
proached our replication of the paper’s human
evaluation. We also discuss the difficulties we
encountered and which information was miss-
ing. Our replication has medium to strong cor-
relation (0.66 Spearman overall) with the orig-
inal results of Qader et al. (2018), but due to
the missing information about how Qader et al.
(2018) compared the human judgements with
the metric scores, we have refrained from re-
producing this comparison.

1 Introduction

Reproducibility is an utmost priority in research to
ensure reliability of scientific findings. Informally,
it describes the ability to repeat a study, begin-
ning with the same starting point, using the same
resources (if possible) and achieving the same re-
sults and conclusions (Pineau et al., 2020). Repro-
ducibility requires that approaches in publications
be recorded in such a way that previously unin-
volved parties can comprehend and recreate them
(Fokkens et al., 2013). However, reproducibility is
a complex requirement which often fails because of
missing details (like not described data sets or miss-
ing key parameters)—such aspects, even though
they may appear minor at first sight, either pre-
vent reproducibility altogether or at least distort

the results (Raff, 2019; Wieling et al., 2018). One
reason for such failures of reproducibility may be
lack of widely accepted definitions and practical
conceptualization of reproducibility, as there is cur-
rently no consensus on how and to what level of
detail research should be documented (Cohen et al.,
2018).

The Shared Task ReproGen (Belz et al., 2021)
deals with the reproducibility problem. In particu-
lar, it aims to investigate reproducibility of human
evaluation. The findings of ReproGen should yield
general insights into how reproducibility can be im-
proved. The task in ReproGen is to replicate either
one of the pre-selected studies or a self-selected
study from the field of Natural Language Genera-
tion (NLG) and to document the findings.

In this paper, we report on our reproducibil-
ity of the work “Generation of Company descrip-
tions using concept-to-text and text-to-text deep
models: dataset collection and systems evaluation”
(CompDesc for short) by Qader et al. (2018). This
work analyzes multiple sequence-to-sequence mod-
els that were used to generate short company de-
scriptions from Wikipedia articles. This includes
both automatic and human evaluation which are
then compared with each other. Our replication
focuses on the human evaluation, in accordance
with the general outline of ReproGen.

2 CompDesc and our replication

We first describe the paper CompDesc, then out-
line how we replicated its human evaluation. Fi-
nally, we compare both experiments.

2.1 The paper CompDesc
The paper CompDesc first creates a data set of
Wikipedia articles about companies1. Then, us-
ing four concept-to-text and two text-to-text ap-
proaches, they generate short summaries out of

1https://gricad-gitlab.univ-grenoble-
alpes.fr/getalp/wikipediacompanycorpus

301

this data. Figure 1 shows an example from our
experiment, which is what the evaluators can see
during the evaluation. The title and the description
at the top as well as the info box at the right mar-
gin, which are typically present in every Wikipedia
article, serve as input. The language generation
models then generate the summary either from the
description or the info box, depending on the type
of the text generation system. Afterwards, Qader
et al. (2018) evaluated the system performance on
the test set of their Wikipedia company corpus us-
ing five automatic evaluation metrics. Table 7 in
Appendix A.3 shows the results of the automated
evaluation. In addition to that, they conduct a hu-
man evaluation using a selection of randomly sam-
pled summaries with 19 test persons where each
one evaluated 10 summaries. But the human eval-
uators did not know that some of the summaries
were actually human generated, namely the refer-
ences. For that, the humans assessed the criteria
information coverage, information redundancy, se-
mantic adequacy and grammatical correctness on
a 5-point Likert scale. Finally, Qader et al. (2018)
compared the results of the two evaluation meth-
ods.

Figure 1: Example of Human Evaluation: the summary
is created from the other fields. All 4 boxes are pre-
sented during the human evaluation process.

2.2 Replication of CompDesc

There were two phases in our replication study:
1) Preparation, where the goals of reproduction
and needed resources were determined; 2) the hu-
man evaluation experiment, where we collected
the human ratings, that were then compared to the
original results.

Preparation In the preparation phase, there were
three resources initially provided by Belz et al.
(2021) as part of the shared task (see Appendix
A.1), namely 1) the original paper (Qader et al.,

2018), which describes the implementation as well
as the methods and data used; 2) an incomplete hu-
man evaluation data sheet filled out by the authors
of (Qader et al., 2018), which should also be filled
out by the participants of the shared task later; 3) a
link to a GitLab repository that contains code for
a web-based survey tool called “FlexEval” (Fayet
et al., 2020). The original code was not available,
also not upon request.

Based on the information and resources avail-
able, we first identified which results should be
replicated: the average scores of the human eval-
uation based on a 5-point Likert scale per sys-
tem (see Table 1), and, as a secondary goal, the
comparison of human and automatic evalua-
tion metrics using Spearman’s correlation (see
Table 4). Then, we determined the resources
needed to reproduce the human evaluation, which
include the system outputs and references, the data
and ideally the code for computing the correlations.
However, none of the above was included in the
Shared Task resources. Upon request, the authors
provided us with parts of the data, including the
summaries they used to conduct the human evalua-
tion (both as CSV and HTML files) and a CSV file
containing their human evaluation scores, whose
reproduction is the primary goal of this report.

Human Evaluation Experiment In order to
keep our reproduction as close as possible to the
original in terms of content and appearance, the
identical data sets were selected for reproduction
using the provided HTML files.

In the beginning, a unique identification num-
ber was assigned to each summary to match the
results to the corresponding summaries. After that,
19 files, each containing 10 summaries, were ran-
domly created out of the original files. In addition,
a survey was created using Google Form2 to col-
lect the evaluator ratings of the four criteria, each
on the basis of a 5-point Likert Scale. 19 people
from the authors’ social environment volunteered
as participants for this study. They were not En-
glish native speakers, similar to the participants of
CompDesc. However, CompDesc does not ex-
plain why these conditions were chosen. This may
not have been intentional, but a result of the com-
position of the participants. We have decided to
take this into account anyway. When conducting
the human evaluation, each participant was given
one of the 19 HTML files and a link to the Google

2https://www.google.de/intl/en/forms/about/

302

Form via E-Mail or other chat apps (see Appendix
A.2).

After obtaining the human ratings, we exported
the data using the same format as the original one.
We calculated the average scores directly based on
this file. But for reproducing the correlation matrix,
some further resources were needed. Since the pa-
per is ambiguous about how the results were com-
puted and the corresponding code and data were
missing, we tested different calculation approaches
to determine the original calculation. Unfortu-
nately, it didn’t succeed in the end. We could only
reproduce a part of the correlation values on the
basis of the original human evaluation results that
Qader et al. (2018) provided us. Table 5 presents
this special case, which we will describe in detail in
Section 3. In the end, we examined the similarities
between the original and reproduced results.

2.3 Assessment

Comparing with the original experiment, there are
several notable differences. First, the original study
used “FlexEval” (Fayet et al., 2020) to conduct
the survey, which probably showed the evaluation
data and corresponding questions side by side in
a web application and the evaluators can answer
the questions by scrolling down. In their paper,
Qader et al. (2018) only stated that they “set up a
web-based experiment” (Qader et al., 2018), but
they did not mention what tool they used. However,
since the tool is very complex to configure and ade-
quate guidance was not available, we used Google
Forms3 instead. However, we made sure that the
participants received the same data presentation.

The use of “FlexEval” only became apparent
with additional information from the shared task,
as the authors mentioned it in the human evaluation
data sheet. But in our survey, the presentation of the
data and the input mask were accessible through
two separate sources. In contrast to the participants
of the original study, who were all members of a
lab, the participants of the replication were only
selected based on their connection to us.

Besides those distinct differences from the origi-
nal experiment, we made several assumptions be-
cause of the inaccuracies and the missing infor-
mation found during the preparation, which could
influence possible deviations of the results between
original and replication. We describe these in the
following:

3https://www.google.de/intl/en/forms/about/

1) There is an inconsistency in the description
of the experiments sets. Qader et al. (2018) stated
in their paper that each of the 19 participants eval-
uated 10 summaries, resulting in a total number
of 190. However, it was also stated in the paper
that 30 summaries were evaluated for all 7 systems
(including reference), which makes a total of 210
summaries. When asked, the authors explained
that a random selection was made from the 210
summaries. This agrees with the raw human evalu-
ation results we received on request. Therefore, we
relied on the explicit specification of 19 times 10
random summaries.

2) Qader et al. (2018) perform a manual quality
checking of the results of the human evaluation,
but do not go into detail about the procedure. To be
able to guarantee a minimum of quality, we consid-
ered an evaluation invalid when the majority of the
answers were illogical. This occurred only once,
where a participant randomly selected the values 3
and 4 independently of the summary quality. In this
case, we passed the task to an additional participant
for re-evaluation.

Nevertheless, the replication follows the original
in the essential points such as the requirements for
evaluators, the number of evaluators, the amount
of evaluated items, the identical set of questions,
the format of data, and the survey guidelines which
prohibit to ask questions during the experiment.
Therefore, we conclude that, assuming the same
basic conditions, a comparison of the results below
is legitimate.

3 Results

Table 1 displays the human evaluation results of
Qader et al. (2018), whereas Table 2 shows our
replicated results. As one can see, different lev-
els of variation show up between the two experi-
ments. Larger deviations of more than one point
can only be seen twice, all other deviations are
smaller. These deviations may have been caused by
various factors. In general, smaller differences are
always possible in stochastic environments. It also
cannot be ruled out that the differences may result
from minor but recurring discrepancies of the score
as well as the participants in the two studies could
have rated the results fundamentally differently, but
with a simple average deviation of 0.47, which is
only 14% off the average value.

In addition, we calculated Spearman’s ρ and
Pearson’s r correlations between the values in the

303

cover. non-redun semant. gramm.
Reference 3.1 4.6 3.9 4.2
C2T 2.9 2.9 3.3 3.6
C2T char 2.3 3.9 2.8 3.0
C2T+pg 2.3 4.5 4.0 4.3
C2T+pg+cv 2.7 3.9 3.6 4.2
T2T+pg 1.8 3.3 2.9 3.7
T2T+pg+cv 2.3 3.8 2.4 3.5

Table 1: ORIGINAL: The original human evaluation
results taken from Qader et al. (2018).

cover. non-redun semant. gramm.
Reference 3.9 4.1 3.9 4.0
C2T 2.5 3.8 2.6 3.2
C2T char 3.0 2.8 3.1 3.5
C2T+pg 2.6 4.2 2.9 3.8
C2T+pg+cv 3.0 4.1 3.9 4.1
T2T+pg 2.6 3.5 2.7 4.0
T2T+pg+cv 2.9 4.1 2.8 4.4

Table 2: REPLICATION: The replication results of the
human evaluation. Differences of more than 1 are bold.

two tables on each axis. From Table 3, we observe
that the reproduced evaluation scores for the sys-
tems C2T+pg, C2T+pg, T2T+pg and T2T+pg+cv
are highly correlated with the original values, but
this may be unreliable due to the small number
of input values. Unfortunately, we were not able
to compare the scores at the summary-level, be-
cause of the missing information about the arrange-
ment in the original experiment. However, if we
calculate a single correlation using both methods
between all values of both tables, we get a more
reliable score. The values of 0.66 respectively 0.7
represent a moderate to strong statistical significant
correlation (Taylor, 1990; Schober et al., 2018).

ρ r
All 0.66* 0.70*
Reference 0.95 0.82
C2T 0.20 -0.05
C2T char 0.20 -0.32
C2T+pg 1.0* 0.83
C2T+pg+cv 0.80 0.97*
T2T+pg 1.0* 0.86
T2T+pg+cv 0.60 0.95*
cover. 0.41 0.58
non-redun. 0.64 0.38
semant. 0.36 0.54
gramm. 0.14 0.33

Table 3: Spearman’s ρ and Pearson’s r correlations be-
tween Table 1 and Table 2. Values marked with * show
a significant correlation (p≤ .05).

To figure out how Qader et al. (2018) computed
the correlations specifically, we conducted some
further experiments based on the original data from
Qader et al. (2018), which contains the human
judgements for each summary. In the first step,
we proved the validity of the data by a successful
reproduction of the values in Table 1. Afterwards,
we made several attempts regarding the source of
the metric scores, the level at which the correlations
were computed and whether the correlated values
included the scores for the references, to achieve a
valid reproduction of the original correlation ma-
trix, using only the original data.

After that, despite not discovering the original
setup, there is one noteworthy case (see Table 5)
where we successfully reproduced the correlations
between the results of the 5 automatic evaluation
metrics and that between the human judgements
of the 4 criteria (values outside the black square).
Surprisingly, a large gap still exists for the com-
parison between the metric scores and the human
scores (values in the black square). We can draw
a completely different conclusion from these re-
produced correlations. E.g., Table 5 shows that
METEOR, ROUGE-L, and CIDEr are highly cor-
related with redundancy (green marker), but in Ta-
ble 4, which displays the results of the original
paper (Qader et al., 2018), there is no significant
correlation between redundancy and any metric at
all. Considering that Qader et al. (2018) explic-
itly stated in the paper that the references were
excluded when comparing the metric scores with
the human judgements, we also computed the cor-
relations once without the references. However,
this attempt only led to a worse result (see Table
6), since none of the correlation values could be
reproduced.

Since Qader et al. (2018) were not able to pro-
vide us with the original code or the corresponding
information, it was impossible to determine the
reason for the difference. For this reason and the
consequent non-comparability of the results, we
have refrained from reproducing the correlation
matrix using the human evaluation results obtained
in this replication study.

4 Conclusion

In this replication, we could not reproduce all re-
sults of the original study “Generation of Company
descriptions using concept-to-text and text-to-text
deep models: dataset collection and systems evalu-

304

Table 4: ORIGINAL: Correlation matrix from Qader
et al. (2018), human vs. automatic metric correlations
are in the black square. Color markers indicate signifi-
cant correlations, the different colors are for better read-
ability

Table 5: REPLICATION: Correlation matrix repro-
duced based on the human evaluation results from
Qader et al. (2018), computed at the system-level
(including reference), using automatic metric scores
from Table 7 in Appendix A.3. Color markers indicate
significant correlations, the different colors are for bet-
ter readability.

Table 6: REPLICATION: Correlation matrix repro-
duced based on the human evaluation results from
Qader et al. (2018), computed at the system-level
(excluding reference), using automatic metric scores
from Table 7 in Appendix A.3. Color markers indicate
significant correlations, the different colors are for bet-
ter readability.

ation” of Qader et al. (2018)
The primary goal of ReproGen (Belz et al., 2021)

was to conduct an equivalent human evaluation
with the aim of obtaining comparable values. We
were able to reproduce the human evaluation and
obtain results that are not only apparently compara-
ble but also to obtain a moderate to strong statistical
significant correlation (Taylor, 1990; Schober et al.,
2018) using both Spearman’s ρ and Pearson’s r.
However, this has taken a lot of time to gather all
the information needed from both the paper and the
authors.

In contrast to the first one, our secondary ob-
jective, namely to investigate whether we could
obtain comparable inferences with the reproduced
correlation matrix based on our human evaluation
results, was not successful. We had to make sev-
eral assumptions of missing information and even
with that, we were not even able to recalculate the
original results by using the human evaluation re-
sults from Qader et al. (2018). Therefore, we have
refrained from a comparison with our data.

References
Anya Belz, Shubham Agarwal, Anastasia Shimorina,

and Ehud Reiter. 2021. The reprogen shared task
on reproducibility of human evaluations in nlg:
Overview and results. In Proceedings of the 14th
International Conference on Natural Language Gen-
eration. Website of the shared Task: https://
reprogen.github.io/, last accessed: August 30,
2021.

Anya Belz, Simon Mille, and David M. Howcroft.
2020. Disentangling the properties of human eval-
uation methods: A classification system to support
comparability, meta-evaluation and reproducibility
testing. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
183–194, Dublin, Ireland. Association for Computa-
tional Linguistics.

K. Bretonnel Cohen, Jingbo Xia, Pierre Zweigen-
baum, Tiffany Callahan, Orin Hargraves, Foster
Goss, Nancy Ide, Aurélie Névéol, Cyril Grouin, and
Lawrence E. Hunter. 2018. Three dimensions of
reproducibility in natural language processing. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Cédric Fayet, Alexis Blond, Grégoire Coulombel,
Claude Simon, Damien Lolive, Gwénolé Lecorvé,
Jonathan Chevelu, and Sébastien Le Maguer. 2020.
FlexEval, création de sites web légers pour des
campagnes de tests perceptifs multimédias. In 6e

305

conférence conjointe Journées d’Études sur la Pa-
role (JEP, 31e édition), Traitement Automatique des
Langues Naturelles (TALN, 27e édition), Rencon-
tre des Étudiants Chercheurs en Informatique pour
le Traitement Automatique des Langues (RÉCITAL,
22e édition), pages 22–25, Nancy, France. ATALA.

Antske Fokkens, Marieke van Erp, Marten Postma, Ted
Pedersen, Piek Vossen, and Nuno Freire. 2013. Off-
spring from reproduction problems: What replica-
tion failure teaches us. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1691–1701, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Larivière, Alina Beygelzimer, Flo-
rence d’Alché Buc, Emily Fox, and Hugo
Larochelle. 2020. Improving reproducibility in ma-
chine learning research (a report from the neurips
2019 reproducibility program).

Raheel Qader, Khoder Jneid, François Portet, and
Cyril Labbé. 2018. Generation of company de-
scriptions using concept-to-text and text-to-text deep
models: dataset collection and systems evaluation.
In Proceedings of the 11th International Conference
on Natural Language Generation, pages 254–263,
Tilburg University, The Netherlands. Association for
Computational Linguistics.

Edward Raff. 2019. A step toward quantifying inde-
pendently reproducible machine learning research.
Advances in Neural Information Processing Systems,
32:5485–5495.

Patrick Schober, Christa Boer, and Lothar A Schwarte.
2018. Correlation coefficients: appropriate use
and interpretation. Anesthesia & Analgesia,
126(5):1763–1768.

Richard Taylor. 1990. Interpretation of the correlation
coefficient: a basic review. Journal of diagnostic
medical sonography, 6(1):35–39.

Martijn Wieling, Josine Rawee, and Gertjan van Noord.
2018. Squib: Reproducibility in computational lin-
guistics: Are we willing to share? Computational
Linguistics, 44(4):641–649.

306

A Appendix

A.1 Resources
This section lists the external resources that were
used and describes whether they were made avail-
able in advance or have been collected during the
implementation.

• The original paper (Qader et al., 2018), in-
cluded by the task of ReproGen (Belz et al.,
2021).

• The Human Evaluation Datasheet v1.0 4 (Belz
et al., 2020) filled out by Qader et al. (2018)
(incomplete), included by the task of Repro-
Gen (Belz et al., 2021).

• The web based evaluation tool “FlexEval”
(Fayet et al., 2020), included by the task of
ReproGen (Belz et al., 2021).

• Google Forms5, used to do the survey.

• The part of the Wikipedia data sets that was
used for the human evaluation, provided upon
request by Qader et al. (2018).

• The anonymized original human evaluation
results, provided upon request by Qader et al.
(2018).

A.2 Access to Resources
The data we are able to publish, including
code and results, is available in this Github
Repository: https://github.com/der-Richter/TUDA-
Reproducibility-ReproGen. To obtain access to the
data from the original study, please contact Qader
et al. (2018) directly.

A.3 Tables

System BLEU NIST METEOR ROUGE L CIDEr
C2T 0.0608 1.9322 0.0906 0.2092 0.1872
C2T char 0.0750 1.0975 0.1159 0.2665 0.2731
C2T+pg 0.0413 0.0893 0.1076 0.2668 0.2836
C2T+pg+cv 0.0490 0.2349 0.1045 0.2589 0.2734
T2T+pg 0.0567 1.9690 0.1002 0.2212 0.1992
T2T+pg+cv 0.0558 2.1188 0.1024 0.2216 0.1974

Table 7: System results on the test set of the Wikipedia
Company Corpus from Qader et al. (2018)

4https://drive.google.com/file/d/
1 74CJ n8vSPm8FvA6P Sg49aZp3kecRo/view

5https://forms.gle/AQJS2s2GAHKAKPgd9

307

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 308–313,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

DialogSum Challenge: Summarizing Real-Life Scenario Dialogues

Yulong Chen♠♥ , Yang Liu♣ , Yue Zhang♥♦
♠ Zhejiang University, China

♥ School of Engineering, Westlake University, China
♣ ILCC, School of Informatics, University of Edinburgh, UK

♦ Institute of Advanced Technology, Westlake Institute for Advanced Study, China
yulongchen1010@gmail.com inf.yangl@outlook.com

yue.zhang@wias.org.cn

Abstract

We propose a shared task on summarizing real-
life scenario dialogues, DialogSum Challenge,
to encourage researchers to address challenges
in dialogue summarization, which has been
less studied by the summarization community.
Real-life scenario dialogue summarization has
a wide potential application prospect in chat-
bot and personal assistant. It contains unique
challenges such as special discourse structure,
coreference, pragmatics and social common
sense, which require specific representation
learning technologies to deal with. We care-
fully annotate a large-scale dialogue summa-
rization dataset based on multiple public dia-
logue corpus, opening the door to all kinds of
summarization models.

1 Task Overview

The DialogSum Challenge asks a model to generate
a salient, concise, fluent, and coherent summary,
given a piece of multi-turn dialogue text. The dia-
logue summary is highly abstractive in nature, and
is supposed to be objective compared with mono-
logue summarization. We will conduct both auto-
matic and manual blind evaluation on the submitted
models. In particular, to address unique challenges
in dialogue summarization, we will manually eval-
uate system-generated summaries from multiple
aspects designed for dialogue summarization, in-
cluding coreference information, discourse relation,
intent identification and objective description. An
example is shown in Figure 1, where the summary
describes main events in a business conversation.

2 Motivation

Thanks to the advance in neural network mod-
els, and availability of large scale labeled datasets,
recent research has achieved promising progress
on summarizing monologic texts, such as news
articles (Liu and Lapata, 2019; Gehrmann et al.,

Dialogue from DIALOGSUM:
#Person_1#: Good morning. I wonder whether you have got an
answer from your superior.
#Person_2#: Yes, we had a meting about it yesterday afternoon.
#Person_1#: What's the answer?
#Person_2#: We decided that we could agree to your price, but we
are a bit worried about the slow delivery.
#Person_1#: Let me see. I quoted your delivery in three months,
didn't I?
#Person_2#: Yes, but we hope that the wool could reach us as
soon as possible.
#Person_1#: I thought you would. So I rang Auckland last night.
As you are our biggest customer, they agreed to ship the order on
the first vessel available that will leave Auckland next month.
#Person_2#: Good, if you agree we'll draft the agreement right
away and sign it then.
#Person_1#: By all means.
Summary from DIALOGSUM: #Person_1# and #Person_2# agree
to sign an agreement since #Person_1# could speed up the delivery
as #Person_2# hopes.

Figure 1: An example from DIALOGSUM dataset.

2018), patents (Pilault et al., 2020) and academic
papers (Koncel-Kedziorski et al., 2019). However,
dialogue, as an important channel for achieving
communicative intents, differs from monologic
texts in nature and has received significantly less
attention from the summarization research com-
munity. A major reason is the paucity of suitable
dialogue summarization datasets.

To cope with this problem, we build a large scale
labeled summarization dataset for real-life scenario
dialogues, DIALOGSUM (Chen et al., 2021). An
example from DIALOGSUM is shown in Figure 1.
Compared with existing dialogue summariztaion
datasets (Carletta et al., 2005; Gliwa et al., 2019;
Zhong et al., 2021; Zhu et al., 2021), DIALOGSUM

is useful for training neural models and is staying
in the spoken domain as opposed to the written chat
domain. Also, it contains diverse task-oriented dia-
logues that cover a wide range of daily-life topics.
Summarizing those dialogues is useful for both
business (e.g. help a business find common needs)
and personal uses (e.g. track important events as

308

Dialogue from DIALOGSUM:
#Person_1#: Good morning. What can I do for you?
#Person_2#: I’m in Room 309. I'm checking out today. Can I
have my bill now?
#Person_1#: Certainly. Please wait a moment. Here you are.
#Person_2#: Thanks. Wait…What’s this? The 30 dollar for?
#Person_1#: Excuse me… The charge for your laundry service on
Nov. 20th.
#Person_2#: But I didn’t take any laundry service during my stay
here. I think you have added someone else’s.
#Person_1#: Ummm… Sorry, would you mind waiting a moment?
We check it with the department concerned.
#Person_2#: No. As long as we get this straightened out.
#Person_1#: I’m very sorry. There has been a mistake. We’ll
corrected the bill. Please take a look.
#Person_2#: Okay, here you are.
#Person_1#: Goodbye.
Summary from DIALOGSUM: #Person_2# is checking out and
asks #Person1# for the bill. #Person1# gives #Person_2# a wrong
bill at first then corrects it.

Figure 2: Selected case from DIALOGSUM dataset.

personal assistants). Empirical study and analysis
demonstrate challenges in real-life scenario dia-
logue summarization (Chen et al., 2021).

To highlight the challenges in dialogue summa-
rization, we propose real-life scenario dialogue
summarization challenge, DialogSum Challenge,
to encourage researchers to investigate such prob-
lems. The evaluation for dialogue summarization
contains both automatic evaluation, i.e. ROUGE
score (Lin, 2004) and BERTScore (Zhang et al.,
2019), and human evaluation from multiple as-
pects to address corresponding challenges (c.f. Sec-
tion 2.1 and Section 3.3.2). For human evaluation,
we anonymize the submitted models, and evalu-
ate them on corresponding hidden sub-test sets to
ensure the fairness.

2.1 Unique Challenges in DIALOGSUM

Although dialogue summarization is in line with
the philosophy of monologue summarization, we
find some unique challenges in dialogue summa-
rization.

First, because of special linguistic phenomena,
the dialogue on the source side differs from mono-
logue. Dialogue information flow is intuitively re-
flected in the dialogue discourse structures (Wolf
and Gibson, 2005), where two utterances can be
closely related even there is a large distance be-
tween them. Such a phenomenon is common in
procedures and negotiations. For example, in Fig-
ure 1, the penultimate utterance “... we’ll draft the
agreement... and sign it...” is actually replying to
the third utterance “What’s the answer?”, between
which the utterances can be viewed as negotiation

Dialogue from DIALOGSUM:
#Person_1#: Hey, don't I know you from somewhere?
#Person_2#: No, sorry. I don't think so.
#Person_1#: Didn't you use to work at Common Fitness Gym?
#Person_2#: No, I'm afraid I did not.
#Person_1#: Oh, but I know you from somewhere else. Did you
use to work at the movie theater downtown? You did. Yes. It's you.
I go there all the time and you always sell me popcorn and soda.
#Person_2#: No, that's not me either. Sorry, ma'am. Perhaps I look
familiar to you, but ...
#Person_1#: No, I know you. I have met you before! Hold on. Let
me think. This is driving me crazy. I know that we've talked before.
Oh, I remember now. You work at the Whole Bean Cafe on the
corner. It that right?
#Person_2#: No, wrong again. Sorry, ma'am, but I really have to
get going.
Summary from DIALOGSUM: #Person_1# thinks that
#Person_1# knows #Person_2# somewhere, but #Person_2#
denies it.

Figure 3: Selected case from DIALOGSUM dataset.

process and conditions. Also, frequent corefer-
ence and ellipsis make dialogue difficult to under-
stand (Grosz et al., 1995; Quan et al., 2019). For ex-
ample, to generate “wrong” in the summary in Fig-
ure 2, the model needs to understand “I think you
have added someone else’s (laundry service on my
bill)”, where “my bill” refers to “#Person 2#’s
bill”. These linguistic phenomena make dialogues
difficult to encode using ordinary representation
learning techonologies (Chen et al., 2021).

Second, compared with monologic summariza-
tion, dialogues are summarized from an observer’s
perspective, which requires summary to be objec-
tive. For example, in Figure 3, #Person 1#’s
statements are actually awaiting to be confirmed.
Human annotators identified such situation and
used objective language (“#Person 1# thinks
that #Person 1#...”) to describe those state-
ments. Also, the process of perspective shift (from
interlocutor to observer) intuitively leads to mor-
phology and lexical changes (e.g. the expression
of referents and third-person singular predicates)
and syntax changes (e.g. using written languages
to describe spoken dialogues).

Third, dialogue summarization goes beyond
summarizing dialogue contents, but also dialogue
actions at the pragmatic level. For example, in
the summary in Figure 1, “agree” summarizes
both actions of #Person 1# and #Person 2#;
in the summary in Figure 2, “gives” summarizes
a single dialogue action of #Person 1#; in the
summary in Figure 3, “thinks” and “denies” sum-
marize multiple dialogue actions of #Person 1#
and #Person 2#, respectively. It requires models

309

to not only summarize what speakers are saying,
but also what they are doing.

3 Task Description

The task for participants is to provide a model that
generates a summary given the input dialogue text.
Both automatic and manual evaluation will be con-
ducted to measure model performance.

3.1 Data

The participant of DialogSum Challenge can start
immediately, as the DIALOGSUM dataset has been
already public 1. We collect 13,460 dialogue
data for DIALOGSUM from three public dialogue
corpora, namely Dailydialog (Li et al., 2017),
DREAM (Sun et al., 2019) and MuTual (Cui et al.,
2020), as well as an English speaking practice web-
site. In term of size, DIALOGSUM is comparable
with SAMSum while its average dialogue length is
much longer than SAMSum, which comforts the
purpose of summarization and is thus more chal-
lenging. The dialogue data cover a wide range of
daily-life topics, including diverse task-oriented
scenarios. We ask annotators to summarize the
dialogue from an observer’s perspective.

To ensure the annotation quality, each summary
has been checked twice by different people, where
the reward and punishment mechanism is included.
We also sample and check the data after the second
checking. When any error is found in the sampling
checking, we ask annotators to repeat annotation
and checking the annotation batch until no error
can be found. To monitor the annotation and ana-
lyze inter-annotator agreement, we randomly select
500 dialogue, and ensure they are annotated and
checked by different annotators. For each dialogue,
we compare its summary and compute their pair-
wise ROUGE as shown in Table 1, which demon-
strates our high annotation quality. Those 500 di-
alogues result in our test set. The public dataset
consists of training (12,460), dev (500) and test
(500) sets. For test set, we provide 3 references.

In addition to the public DIALOGSUM dataset,
we build a hidden test set that consists of 100 di-
alogues and human annotated summaries. This
ensures that participants will not be able to opti-
mize their models against the hidden test set.

For the competition, participants can follow our
data setting to train, develop and test their models

1https://github.com/cylnlp/DialogSum

Human Annotated Summary R1 R2 RL
Summary1 to Summary2 52.90 26.01 50.42
Summary1 to Summary3 53.85 27.53 51.65
Summary2 to Summary3 53.30 26.61 50.44
Average 53.35 26.72 50.84

Table 1: ROUGE scores between three human anno-
tated summaries in test set.

on the public DIALOGSUM. Using external train-
ing data is allowed. For automatic evaluation, we
will use both public and hidden test sets. For hu-
man evaluation, we will use the multiple subsets
from Chen et al. (2021), which are collected from
the test set, but not public.

3.2 Protocol

Following previous work (Syed et al., 2018, 2020),
we divide the competition into three phrases: (1)
participants will train proposed summarization
models using the provided training data on their
hardware; (2) after submission system opens, par-
ticipants will make their trained model submission
to the TIRA. When the test data is available on the
system, it will automatically make blind evaluation
on the submitted model; (3) after the submission
deadline is due, we will start to evaluate summaries
generated by the final submitted models via crowd-
sourcing workers from multiple aspects.

We plan the following schedule for DialogSum
Challenge. Please note that dates may be modified
when we know the detailed schedule of INLG 2022.

• 20th September, 2021: The shared task an-
nounced along with data available; call for
participants.

• 20th Dec, 2021: The submission system and
public leaderboard open; participants can sub-
mit trained models to the TIRA infrastruc-
ture; the TIRA infrastructure will automat-
ically evaluate submitted models with auto-
matic metrics; the online leaderboard will
keep updating the best performance on both
public test set and hidden test set.

• 20th Feb, 2022: The deadline for final model
submissions; manual evaluation via crowd-
sourcing begins.

3.3 Evaluation

Our evaluation contains both automatic evaluation
metric and human evaluation.

310

3.3.1 Automatic Evaluation
We will report ROUGE and BERTScore (Zhang
et al., 2019). ROUGE measures the overlap of
n-grams in the generated summary against the ref-
erence summary, intuitively reflecting model’s cap-
turing ability of salient information. We will use
ROUGE as the main automatic evaluation metric.
BERTScore computes a similarity score between
the generated summary and reference summary on
token level using contextual embeddings, which
provides a more robust evaluation method for gen-
eration tasks. We will use BERTScore as a supple-
mentary metric. We will report the lowest, highest
and averaged scores on our multi-reference test set,
to better evaluate model performance, including
their variance.

3.3.2 Human Evaluation
We previsouly show that, although models can
achieve high ROUGE scores, their generated sum-
maries can contain many errors regarding dialogue
understanding. Thus, we design human evaluation
from multiple aspect based on Chen et al. (2021).
To ensure the fairness, we will conduct human eval-
uation via Amazon Mechanical Turk, and each gen-
erated summary will be judged by three annotators
to ensure the accuracy. All human annatators will
read system-generated summaries and rate them
based on following criteria.

Standard Summarization Metrics: Fluency,
Consistency, Relevance and Coherence Fol-
lowing Kryscinski et al. (2019, 2020), we evaluate
system-generated summaries from four dimensions,
which have been widely used as standard summary
evaluation criteria in human evaluation for mono-
logue text. Human annotators will follow Kryscin-
ski et al. (2019)’s criteria, and evaluate on a 50
randomly selected sub-testset.

Coreference Information Chen et al. (2021)
find that a big challenge in dialogue summariza-
tion is that, because of interactive information
flow, models show poor performance on correctly
aligning interlocutors and their conversation ac-
tions/contents. Thus, we will ask human annotators
to follow Chen et al. (2021)’s criteria and rate the
summary on a 50 randomly selected sub-testset.

Intent Identification A comprehensive dialogue
summary expresses interlocutors’ intents (i.e. the
function of their utterances), which is frequent in
dialogues and essential to understanding dialogues.

However, system-generated summaries usually fo-
cus on the consequence of a dialogue, and fail to
correctly identify interlocutors’ intents. Therefore,
we will conduct human evaluation on intent iden-
tification on the 50 randomly selected sub-testset
following Chen et al. (2021).

Discourse Relation Coherent summaries convey
important relations between main events, and iden-
tifying discourse relations and using proper phrases
to express them can be challenging for summariza-
tion systems (Xu et al., 2020). However, causally
related events are usually not explicitly expressed,
and the distance between them is long due to the
unique dialogue discourse structure (Grosz et al.,
1995). To quantify such challenge, we will con-
duct human evaluation on discourse relation follow-
ing (Chen et al., 2021) on the discourse sub-testset.

Objective Description In addition to the above
evaluation aspects, we also find that models tend
to take all interlocutors’ contents as ground truth
while failing to reason whether their statements are
just subjective assumptions or even defended to be
fake. Therefore, we will evaluate whether system-
generated summaries use objective language to de-
scribe dialogues, and give scores from -1, 0, 1,
where 1 means all correct, 0 means partially cor-
rect and -1 means all incorrect.

Overview Score To give an overview score for
each model, we will ask annotators to evaluate
each summary along with the above multi-aspect
evaluation scores and give a score from 1 to 5. The
higher, the better.

3.3.3 Overview Ranking
As mentioned, models that achieve high perfor-
mance regarding automatic evaluation still contain
many errors. Thus, the final ranking will be deter-
mined by human annotators’ judgements. However,
as our human evaluation contains multiple aspects
and the cost can be high, we will only conduct hu-
man evaluation on a limited number of candidate
models, which show leading performance on auto-
matic evaluation metrics against the hidden test set.
Up to the top twenty submission will be considered
as candidate model for human evaluations.

4 Conclusion

Different from existing summarization datasets, the
DIALOGSUM poses unique challenges in dialogue
summarization. And we believe that DialogSum

311

Challenge will open new avenues for researchers
to investigate solutions and study the linguistic phe-
nomena in dialogue summarization.

5 Ethics Consideration

Dialogue data of DialogSum Challenge are col-
lected from DailyDialog, DREAM, MuTual and
an English practicing website that all are public
to academic use and do not contain any personal
sensitive information.

The construction of additional DialogSum Chal-
lenge hidden test set involves manual annotation.
We ask annotators to write summarize limited to
given dialogues, thus no personal or sensitive infor-
mation is introduced.

References
Jean Carletta, Simone Ashby, Sebastien Bourban, Mike

Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, et al. 2005. The ami meeting corpus:
A pre-announcement. In International workshop on
machine learning for multimodal interaction, pages
28–39. Springer.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue
summarization dataset. In Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP
2021, pages 5062–5074, Online. Association for
Computational Linguistics.

Leyang Cui, Yu Wu, Shujie Liu, Yue Zhang, and Ming
Zhou. 2020. MuTual: A dataset for multi-turn dia-
logue reasoning. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1406–1416, Online. Association for
Computational Linguistics.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 4098–4109, Brussels, Belgium. Association
for Computational Linguistics.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and
Aleksander Wawer. 2019. SAMSum corpus: A
human-annotated dialogue dataset for abstractive
summarization. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 70–79,
Hong Kong, China. Association for Computational
Linguistics.

Barbara J. Grosz, Aravind K. Joshi, and Scott Wein-
stein. 1995. Centering: A framework for model-
ing the local coherence of discourse. Computational
Linguistics, 21(2):203–225.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text Generation from Knowledge Graphs with
Graph Transformers. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2284–2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Wojciech Kryscinski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 540–
551, Hong Kong, China. Association for Computa-
tional Linguistics.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332–9346, Online. Association for Computa-
tional Linguistics.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manu-
ally labelled multi-turn dialogue dataset. In Proceed-
ings of the Eighth International Joint Conference on
Natural Language Processing (Volume 1: Long Pa-
pers), pages 986–995, Taipei, Taiwan. Asian Federa-
tion of Natural Language Processing.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu and Mirella Lapata. 2019. Hierarchical trans-
formers for multi-document summarization. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5070–
5081, Florence, Italy. Association for Computa-
tional Linguistics.

Jonathan Pilault, Raymond Li, Sandeep Subramanian,
and Chris Pal. 2020. On extractive and abstractive
neural document summarization with transformer
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9308–9319, Online. As-
sociation for Computational Linguistics.

Jun Quan, Deyi Xiong, Bonnie Webber, and Changjian
Hu. 2019. GECOR: An end-to-end generative el-
lipsis and co-reference resolution model for task-
oriented dialogue. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 4547–4557, Hong Kong, China. As-
sociation for Computational Linguistics.

312

Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi,
and Claire Cardie. 2019. DREAM: A challenge data
set and models for dialogue-based reading compre-
hension. Transactions of the Association for Com-
putational Linguistics, 7:217–231.

Shahbaz Syed, Wei-Fan Chen, Matthias Hagen, Benno
Stein, Henning Wachsmuth, and Martin Potthast.
2020. Task proposal: Abstractive snippet generation
for web pages. In Proceedings of the 13th Interna-
tional Conference on Natural Language Generation,
pages 237–241.

Shahbaz Syed, Michael Völske, Martin Potthast,
Nedim Lipka, Benno Stein, and Hinrich Schütze.
2018. Task proposal: The tl; dr challenge. In Pro-
ceedings of the 11th International Conference on
Natural Language Generation, pages 318–321.

Florian Wolf and Edward Gibson. 2005. Representing
discourse coherence: A corpus-based study. Com-
putational Linguistics, 31(2):249–287.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu.
2020. Discourse-aware neural extractive text sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5021–5031.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, et al. 2021.
Qmsum: A new benchmark for query-based multi-
domain meeting summarization. arXiv preprint
arXiv:2104.05938.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng.
2021. Mediasum: A large-scale media interview
dataset for dialogue summarization. arXiv preprint
arXiv:2103.06410.

313

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 314–319,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Quality Evaluation of the Low-Resource Synthetically Generated
Code-Mixed Hinglish Text

Vivek Srivastava
TCS Research

Pune, Maharashtra, India
srivastava.vivek2@tcs.com

Mayank Singh
IIT Gandhinagar

Gandhinagar, Gujarat, India
singh.mayank@iitgn.ac.in

Abstract

In this shared task, we seek the participat-
ing teams to investigate the factors influenc-
ing the quality of the code-mixed text gener-
ation systems. We synthetically generate code-
mixed Hinglish sentences using two distinct
approaches and employ human annotators to
rate the generation quality. We propose two
subtasks, quality rating prediction and annota-
tors’ disagreement prediction of the synthetic
Hinglish dataset. The proposed subtasks will
put forward the reasoning and explanation of
the factors influencing the quality and human
perception of the code-mixed text.

1 Introduction

Code-mixing is the phenomenon of mixing words
and phrases from multiple languages in a single
utterance of a text or speech. Figure 1 shows the
example code-mixed Hinglish sentences generated
from the corresponding parallel Hindi and English
sentences. Code-mixed languages are prevalent
amongst multilingual communities such as Spain,
India, and China. With the inflation of social-media
platforms in these communities, the availability of
code-mixed data is seeking a boom. It has lead to
several interesting research avenues for problems in
computational linguistics such as language identifi-
cation (Singh et al., 2018; Shekhar et al., 2020), ma-
chine translation (Dhar et al., 2018; Srivastava and
Singh, 2020), language modeling (Pratapa et al.,
2018), etc.

Over the years, we observe various computa-
tional linguistic conferences and workshops orga-
nizing the shared tasks involving the code-mixed
languages. Diverse set of problems have been
hosted such as sentiment analysis (Chakravarthi
et al., 2021; Patwa et al., 2020), offensive language
identification (Chakravarthi et al., 2021), word-
level language identification (Solorio et al., 2014;

Example I

HINGLISH: ye ek code mixed sentence ka example
hai
ENGLISH : this is an example code-mixed sentence

Example II

HINGLISH : kal me movie dekhne ja raha hu. How
are the reviews?
ENGLISH: I am going to watch the movie tomorrow.
How are the reviews?

Figure 1: Example parallel Hinglish and English sen-
tences. The code-mixed Hinglish sentences contain
words from Hindi and English languages.

Molina et al., 2016), information retrieval (Baner-
jee et al., 2016), etc.

Despite these overwhelming attempts, the natu-
ral language generation (NLG) and evaluation of
the code-mixed data remain understudied. The
noisy and informal nature of the code-mixed text
adds to the complexity of solving and evaluating
the various NLG tasks such as summarization and
machine translation. These inherent challenges
(Srivastava and Singh, 2020) with the code-mixed
data makes the widely popular evaluation metrics
like BLEU and WER obsolete. Various metrics
(e.g., CMI (Das and Gambäck, 2014; Gambäck
and Das, 2016), M-index (Barnett et al., 2000),
I-index (Guzmán et al., 2017), Burstiness (Goh
and Barabási, 2008), Memory (Goh and Barabási,
2008), etc.) have been proposed to measure the
complexity of code-mixed data, but they fail to cap-
ture the linguistic diversity which leads to poorly
estimating the quality of code-mixed text (Srivas-
tava and Singh, 2021a).

With this shared task1 (see Section 2 and 4 for
the detailed description), we look forward to the

1https://sites.google.com/view/
hinglisheval

314

new strategies that cater to the broad requirement of
the quality evaluation of the generated code-mixed
text. These methods will entail various linguistic
features encompassing syntax and semantics and
the perspectives of human cognition such as writ-
ing style, emotion, sentiment, language, and prefer-
ence. We also put forward a subtask to understand
the factors influencing the human disagreement on
the quality rating of the generated code-mixed text.
This could help design a more robust quality evalu-
ation system for the code-mixed data.

2 Task Overview

In this shared task, we propose two subtasks evalu-
ating the quality of the code-mixed Hinglish text.
First, we propose to predict the quality of Hinglish
text on a scale of 1–10. We aim to identify the
factors influencing the text’s quality, which will
help build high-quality code-mixed text generation
systems. We synthetically generate the Hinglish
sentences using two different approaches (see Sec-
tion 3) leveraging popular English-Hindi paral-
lel corpus. Besides, we also have at least two
human-generated Hinglish sentences correspond-
ing to each parallel sentence. The second subtask
aims to predict the disagreement on a scale of 0–9
between the two annotators who have annotated the
synthetically generated Hinglish sentences. Vari-
ous factors influence this human disagreement, and
we seek to investigate the reasoning behind this
behavior.

3 Dataset

As outlined in Section 1, the code-mixed NLG task
observes a scarcity of high-quality datasets. Con-
sequently, the quality evaluation of the generated
code-mixed text remains unexplored. We propose
a new dataset with Hinglish sentences generated
synthetically and rated by human annotators to ad-
dress this challenge. We create the dataset in two
phases.
Phase 1: Human-generated Hinglish sentences:
We select the English-Hindi parallel sentences
from the IIT-B parallel corpus(Kunchukuttan et al.,
2018) to generate the Hinglish sentences. The par-
allel corpus has 1,561,840 sentence pairs. We ran-
domly select 5,000 sentence pairs, in which the
number of tokens in both the sentences is more
than five. We employ five human annotators and
assign each 1,000 sentence pairs. Table 1 shows
the annotation guidelines to generate the Hinglish

sentences. Post annotation, we obtain 1,976 sen-
tence pairs for which the annotators have generated
at least two Hinglish sentences.
Phase 2: Synthetic Hinglish sentence genera-
tion and quality evaluation: We synthetically
generate the Hinglish sentence corresponding to
each of the parallel 1,976 English-Hindi sentence
pairs. We employ two different code-mixed text
generation (CMTG) techniques:
• Word-aligned CMTG (WAC): Here, we align the

noun and adjective tokens between the parallel
sentences. We replace the aligned Hindi token
with the corresponding English token and translit-
erate the Hindi sentence to the Roman script.

• Phrase-aligned CMTG (PAC): Here, we align
the key-phrases of length up to three tokens be-
tween the parallel sentences. We replace the
aligned Hindi phrase with the corresponding En-
glish phrase and transliterate the Hindi sentence
to the Roman script.

For the token alignment between parallel sen-
tences, we use the online curated dictionaries,
GIZA++ (Och and Ney, 2003) trained on the re-
maining IIT-B corpus, and cross-lingual word em-
bedding trained on English and Hindi word vectors
from FastText (Bojanowski et al., 2017). We em-
ploy eight human annotators2 to provide a rating
between 1 (low quality) to 10 (high quality) to the
generated Hinglish sentences. Table 1 shows the
annotation guidelines to rate the sentences. Figure
2a and 2b shows the distribution of the annotators’
rating and their disagreement, respectively.
Data format: Table 2 shows an instance from the
dataset. In total, we have 3,952 instances3 in the
dataset where each data instance i for subtask-1
(see Section 4.1) is represented as X1={Eng, Hin,
Synthetic Hing} and y1={Average rating}. For
subtask-2 (see Section 4.2), the instance j is repre-
sented as X2j={Engj, Hinj, Synthetic Hingj} and
y2j={Annotator disagreementj}. In addition, we
provide at least two human generated Hinglish sen-
tences corresponding to each data instance for both
the subtasks. We shuffle and split the dataset in
the ratio 70:10:20 with 2766, 395, and 791 data
instances in train, validation, and test respectively.
The more detailed description of the dataset is avail-
able in (Srivastava and Singh, 2021b).

2Different from the annotators in Phase 1. Each anno-
tator gets 247 sentences generated by PAC and WAC, each
corresponding to the same set of parallel sentences.

3Two synthetic Hinglish sentences are generated for each
parallel sentence pair.

315

(a) (b)

Figure 2: Distribution of (a) human evaluation scores and (b) disagreement in human scores in the synthetically
generated Hinglish sentences.

Task Guidelines

Hinglish text
generation

1. The Hinglish sentence should be written in Roman script.
2. The Hinglish sentence should have words from both the source languages.
3. Avoid using new words, wherever possible, that are not present in both sentences.
4. If the source sentences are not the translation of each other, mark the sentence pair as “#”.

Quality rating

The rating depends on the following three factors:
1. The similarity between the generated Hinglish sentence and the source sentences.
2. The readability of the generated sentence.
3. The grammatical correctness of the generated sentence.

Table 1: Annotation guidelines to the annotators for the two different tasks.

4 The Two Tasks

4.1 Subtask 1: Quality rating prediction

The first subtask is predicting the quality rating
of the code-mixed text. The participating teams
can use the English, Hindi, and human-generated
Hinglish sentences to predict the average rating4

as provided by the human annotators to the syn-
thetic Hinglish sentences. In addition, we seek the
teams to answer the following research questions
implicitly with their experiments (not an exhaustive
list):
• RQ1.1: Do the quality of source English and

Hindi sentences impact Hinglish sentences’ qual-
ity?

• RQ1.2: Does the quality of Hinglish text gen-
erated by humans has any correlation with the
quality of Hinglish text generated synthetically?

• RQ1.3: Does the dominance of a language (En-
glish or Hindi) present in the Hinglish sentence
impact the rating provided by the humans?

• RQ1.4: How does the semantic and the syntactic
correctness of the Hinglish sentence influence its

4We take the greatest integer i≤ average of the two rating
scores.

quality?

4.2 Subtask 2: Annotators’ disagreement
prediction

The next subtask is predicting the disagreement
between the ratings provided by the human anno-
tators to the synthetic Hinglish sentences. We cal-
culate the disagreement between the ratings as the
absolute difference between the two rating scores.
Additionally, we seek the participating teams to
answer the following research questions implicitly
with their experiments (not an exhaustive list):
• RQ2.1: Does the quality of sentences in the

source languages (English and Hindi) have any
influence on the quality of the synthetic Hinglish
sentences as seen by different individuals?

• RQ2.2: Does the quality of human-generated
Hinglish sentence has any correlation with the
quality of synthetic Hinglish text as seen by dif-
ferent individuals?

• RQ2.3: Do humans have a language bias while
rating the quality of the code-mixed text?

• RQ2.4: Do the similarity between human-
generated and synthetic Hinglish sentences in-
fluence the annotators’ disagreement?

316

Table 2: Example human-generated and synthetic Hinglish sentences from the dataset along with the source En-
glish and Hindi sentences. Two different human annotators rate the synthetic Hinglish sentences on the scale 1-10
(low-high quality).

5 Evaluation

We use the following three evaluation metrics:
• F1-score (FS): We use the weighted F1-score

to evaluate the system performance. The score
ranges from 0 (worst) to 1 (best).

• Cohen’s Kappa (CK): We use the Cohen’s
Kappa score to measure the agreement between
the predicted and the actual rating. The score
ranges from ≤ 0 (high disagreement) to 1 (high
agreement).

• Mean Squared Error (MSE): MSE suggests
the difference between the actual and the pre-
dicted scores. A low MSE score is preferred,
with zero being the lowest possible score.

For the first subtask, we use all three metrics,
whereas we use FS and MSE to evaluate the second
subtask.

6 Pilot Experiment

We conducted a simple pilot experiment with a
SOTA multilingual contextual language model M-
BERT (Devlin et al., 2019). We fine-tune the pre-
trained M-BERT model by adding one hidden-layer
neural network on the top. We use the Relu activa-
tion function, AdamW optimizer with 0.03 learning
rate, cross-entropy loss, and a batch size of 32. We
use the contextual word-embedding corresponding
to the synthetic Hinglish sentences in the dataset
as an input to the model. The architecture remains
the same for both subtasks.

Table 3 shows the result of the baseline exper-
iment. We observe that the fine-tuned version of
M-BERT performs poorly on both the subtasks on
all the evaluation metrics. These language models
are not as effective for both the subtasks as com-
pared to other code-mixed text classification tasks
where they seem to perform better than other rule-
based and neural approaches (Gupta et al., 2021;
Winata et al., 2021). Overall, we observe the poor
performance of M-BERT based classifier on the

Subtask 1 Subtask 2
FS CK MSE FS MSE

Val 0.202 0.003 2.797 0.209 4.987
Test 0.256 0.092 2.628 0.242 4.317

Table 3: Evaluation of the pilot experiment.

current two subtasks. Specifically, for subtask 1,
the agreement (measured by CK score) between
predicted rating and human rating is close to 0.
These results present an excellent opportunity to
propose a shared task that enhances the generated
code-mixed text quality estimation.

7 Conclusion

In contrast to the non-code-mixed text, the noisy
and informal nature (e.g., spelling variation, miss-
ing punctuation, and language switching) of the
code-mixed text makes the quality evaluation more
loosely defined. Consequently, we need to build
models that can effectively gauge the human per-
ception of the quality of the code-mixed text. This
shared task will help to build efficient and robust
code-mixed text generation and evaluation systems.

References
Somnath Banerjee, Kunal Chakma, Sudip Kumar

Naskar, Amitava Das, Paolo Rosso, Sivaji Bandy-
opadhyay, and Monojit Choudhury. 2016. Overview
of the mixed script information retrieval (msir) at
fire-2016. In Forum for Information Retrieval Eval-
uation, pages 39–49. Springer.

Ruthanna Barnett, Eva Codó, Eva Eppler, Montse
Forcadell, Penelope Gardner-Chloros, Roeland
van Hout, Melissa Moyer, Maria Carme Torras,
Maria Teresa Turell, Mark Sebba, Marianne Starren,
and Sietse Wensing. 2000. The lides coding manual:
A document for preparing and analyzing language
interaction data version 1.1—july, 1999. Interna-
tional Journal of Bilingualism, 4(2):131–132.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with

317

subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Bharathi Raja Chakravarthi, Ruba Priyadharshini,
Navya Jose, Anand Kumar M, Thomas Mandl,
Prasanna Kumar Kumaresan, Rahul Ponnusamy,
Hariharan R L, John P. McCrae, and Elizabeth
Sherly. 2021. Findings of the shared task on of-
fensive language identification in Tamil, Malayalam,
and Kannada. In Proceedings of the First Workshop
on Speech and Language Technologies for Dravid-
ian Languages, pages 133–145, Kyiv. Association
for Computational Linguistics.

Amitava Das and Björn Gambäck. 2014. Identifying
languages at the word level in code-mixed indian so-
cial media text. In Proceedings of the 11th Interna-
tional Conference on Natural Language Processing,
pages 378–387.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivas-
tava. 2018. Enabling code-mixed translation: Par-
allel corpus creation and mt augmentation approach.
In Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131–140.

Björn Gambäck and Amitava Das. 2016. Comparing
the level of code-switching in corpora. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1850–1855.

K-I Goh and A-L Barabási. 2008. Burstiness and mem-
ory in complex systems. EPL (Europhysics Letters),
81(4):48002.

Akshat Gupta, Sai Krishna Rallabandi, and Alan W
Black. 2021. Task-specific pre-training and cross
lingual transfer for sentiment analysis in dravidian
code-switched languages. In Proceedings of the
First Workshop on Speech and Language Technolo-
gies for Dravidian Languages, pages 73–79.

Gualberto A Guzmán, Joseph Ricard, Jacqueline Seri-
gos, Barbara E Bullock, and Almeida Jacqueline
Toribio. 2017. Metrics for modeling code-switching
across corpora. In INTERSPEECH, pages 67–71.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The iit bombay english-hindi par-
allel corpus. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018).

Giovanni Molina, Fahad AlGhamdi, Mahmoud
Ghoneim, Abdelati Hawwari, Nicolas Rey-
Villamizar, Mona Diab, and Thamar Solorio.
2016. Overview for the second shared task on
language identification in code-switched data. In
Proceedings of the Second Workshop on Compu-
tational Approaches to Code Switching, pages
40–49.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, PYKL Srinivas, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of sentiment
analysis of code-mixed tweets. In Proceedings of
the Fourteenth Workshop on Semantic Evaluation,
pages 774–790.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553.

Shashi Shekhar, Dilip Kumar Sharma, and MM Su-
fyan Beg. 2020. Language identification framework
in code-mixed social media text based on quantum
lstm—the word belongs to which language? Mod-
ern Physics Letters B, 34(06):2050086.

Kushagra Singh, Indira Sen, and Ponnurangam Ku-
maraguru. 2018. Language identification and named
entity recognition in hinglish code mixed tweets. In
Proceedings of ACL 2018, Student Research Work-
shop, pages 52–58.

Thamar Solorio, Elizabeth Blair, Suraj Mahar-
jan, Steven Bethard, Mona Diab, Mahmoud
Ghoneim, Abdelati Hawwari, Fahad AlGhamdi, Ju-
lia Hirschberg, Alison Chang, et al. 2014. Overview
for the first shared task on language identification
in code-switched data. In Proceedings of the First
Workshop on Computational Approaches to Code
Switching, pages 62–72.

Vivek Srivastava and Mayank Singh. 2020. Phinc: A
parallel hinglish social media code-mixed corpus for
machine translation. In Proceedings of the Sixth
Workshop on Noisy User-generated Text (W-NUT
2020), pages 41–49.

Vivek Srivastava and Mayank Singh. 2021a. Chal-
lenges and limitations with the metrics measuring
the complexity of code-mixed text. In Proceedings
of the Fifth Workshop on Computational Approaches
to Linguistic Code-Switching, pages 6–14.

Vivek Srivastava and Mayank Singh. 2021b. Hinge: A
dataset for generation and evaluation of code-mixed
hinglish text. arXiv preprint arXiv:2107.03760.

318

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu,
Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2021. Are multilingual models effective in code-
switching? In Proceedings of the Fifth Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 142–153.

319

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 320–324,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Shared Task on Feedback Comment Generation for Language Learners
Ryo Nagata

Konan University, Japan
JST, PRESTO, Japan

nagata-genchal@ml.hyogo-u.ac.jp.

Masato Hagiwara
Octanove Labs, USA

masato@octanove.com

Kazuaki Hanawa
RIKEN, Japan

Tohoku University, Japan
kazuaki.hanawa@riken.jp

Masato Mita
RIKEN, Japan

Tohoku University, Japan
masato.mita@riken.jp

Artem Chernodub
Grammarly

artem.chernodub@grammarly.com

Olena Nahorna
Grammarly

olena.nahorna@grammarly.com

Abstract

In this paper, we propose a generation chal-
lenge called Feedback comment generation for
language learners. It is a task where given
a text and a span, a system generates, for
the span, an explanatory note that helps the
writer (language learner) improve their writ-
ing skills. The motivations for this challenge
are: (i) practically, it will be beneficial for both
language learners and teachers if a computer-
assisted language learning system can provide
feedback comments just as human teachers
do; (ii) theoretically, feedback comment gen-
eration for language learners has a mixed as-
pect of other generation tasks together with its
unique features and it will be interesting to ex-
plore what kind of generation method is effec-
tive against what kind of writing rule. To this
end, we have created a dataset and developed
baseline systems to estimate baseline perfor-
mance. With these preparations, we propose
a generation challenge of feedback comment
generation.

1 Introduction

Feedback comment generation for language learn-
ers is a task where given a text and a span, a system
generates, for the span, an explanatory note that
helps the writer (language learner) improve their
writing skills (for convenience of explanation, the
task will be abbreviated as feedback comment gen-
eration, hereafter). The target language(s) can be
any language, but we limit ourselves to English
input texts and English feedback comments in this
challenge. As shown in Figure 1, a feedback com-
ment is typically made about erroneous, unnatural,
or problematic words in a given text so that the

writer can understand why the present form is not
good together with the underlying rule.

In this regard, feedback comment generation is
related to grammatical error detection and correc-
tion. In many cases, however, it is not enough
to just point out an error with its correct form
in order to help language learners with writing
learning. Instead, it is often essential for them
to explain underlying rules, which makes the task
different from the conventional grammatical error
detection/correction. In other words, it is essen-
tial in feedback comment generation to include
more information than grammatical error detec-
tion/correction provide.

At the same time, unconstrained generation
would make the task infeasible in terms of system
development and evaluation. With this in mind, we
set some constrains to the task to be explored in
this generation challenge as described in Section 2.
For example, the input is limited to a sentence (and
a span) instead of a text.

The motivations for this challenge are as follows.
A practical motivation is already mentioned above.
It will be useful if a computer-assisted language
learning system can provide feedback comments
just as human teachers do. Theoretically, feedback
comment generation has a mixed aspect of other
generation tasks together with its unique features
as described in Section 3. It will be interesting to
explore what kind of technique is effective against
what kind of writing rule.

One of the goals of this challenge is to reveal
how well we can generate feedback comments with
existing techniques. There is a wide variety of
choices as generation methods that are applicable

320

--

TOPIC: Smoking should be completely banned at all the

restaurants in the country.

--

RESPONSE:

I agree it.

It’s important to ban to smoke at the restaurants.

Because, smokers will disturb others who didn't smoke,

they can't enjoy their food.

They smoke at all place include in the restaurant.

�����������	
����������
�
����
����
��
������
������
�
���������

�����	���������
��������
�
���
�����
��
�������

����������������������������������
��
�
�
�����	�������������
�
 ��

����!"#$%&�'����� '�����������
�
 �������(���������������������

�����������))
�� 	���������������	���
������������
�
���
����
��

���*��+������*������������� ����
�
����
������� ���*��

���������
�
���������
��������* ��� ��,����-��	����
��*����������

	����,
�������,����� �����������������*���
��������
�����
��� �����

Figure 1: Example of Feedback Comments.

to this task. Nevertheless, they have not yet been ex-
plored (at least, much less than in other generation
tasks). The generation challenge will enable the
NLG community to evaluate and compare a range
of techniques using the same dataset. Besides it
will provide us with opportunities to develop new
techniques.

Another goal is to shed a light on the difficulties
in this task. This is going to be the first generation
challenge of feedback comment generation as far
as we are aware of. No one fully understands what
is possible and impossible in the task. Holding this
generation challenge will bring more insights into
the task, which will in turn give new knowledge
and experience to the NLG community.

Having said that, to make the task feasible within
GenChal2021, we have prepared a dataset, evalua-
tion metrics, and other necessities such as tools for
this challenge as shown in Section 4. We have even
developed baseline systems to estimate baseline
performance. With these preparations, we propose
a generation challenge of feedback comment gen-
eration.

2 Task Definition

2.1 General Definition
A unit of the input in feedback comment generation
in general consists of a text and spans of the text.
Spans, which are counted by 1-based index based
on characters, correspond to where to comment.
An example input text would be:

(1) I agree it.

as shown on the left-hand side of Figure 1. A span
would be 3 to 10, which will be abbreviated as 3:10,
hereafter.

The output for a span is a string that explains why
the span is not good together with the underlying
rule. To make the task different from grammatical
error detection/correction, the output string has to
contain more information than grammatical error

detection/correction provide. In other words, just
indicating the error position, the erroneous word(s),
and/or the correct form are not enough as a valid
feedback comment, of which details are discussed
in Subsection 2.2.

2.2 Task Definition to Be Used

The above task definition is too general and abstract
to be a practical one. For this reason, we put some
constraints on it.

First, we limit the target only to preposition use
as in the examples in Figure 1. It should be empha-
sized that the target includes missing prepositions,
to-infinitives, and deverbal prepositions (e.g., in-
cluding) in preposition use.

Second, we also limit the input to a narrower
unit. Specifically, the input text always consists
of only one sentence with one span. Also, they
are pre-tokenized where tokens are separated by
whitespace. For example, the first sentence in Fig-
ure 1 would give an input:

(2) I agree it . \t 3:10

where \t stands for the tab character. If a sentence
contains more than one preposition error, it appears
two or more times with different spans.

Under these settings, participants develop a sys-
tem that automatically generates an appropriate
feedback comment in English for an input sentence
and a span. The length of a generated feedback
comment should be less than 100 tokens. If a sys-
tem cannot generate an appropriate feedback com-
ment for a given span, it may generate the special
token <NO COMMENT>, which is not counted
as a system output. This allows us to calculate
recall, precision, and F1 as explained below. An
example output would be:

(3) I agree it . \t 3:10 \t “agree” is an intransi-
tive verb and thus it requires a preposition
before its object.

321

Also note that the input sentence and its span are
included in the system output for evaluation conve-
nience.

Evaluation is probably the hardest challenge in
this task. We adopt automated and manual evalua-
tion methods. In the former, we simply take BLEU
between a system output and its corresponding ref-
erence (manually created feedback comment). In
the latter, human evaluators examine whether a
system output and its corresponding reference are
equivalent in meaning. To be precise, a system
output is regarded as appropriate if (1) it contains
information similar to the reference and (2) it does
not contain information that is irrelevant to the
span; it may contain information that the reference
does not contain as long as it is relevant to the span.
This way of manual evaluation inevitably brings
subjectivity to some extent. In practice, however,
the results of a pilot study show that inter-evaluator
agreement is considerably high as shown in Sec-
tion 4.

The final manual evaluation measures are recall,
precision, and F1. Recall is defined as the num-
ber of appropriate system outputs divided by the
number of target spans. Similarly, precision is de-
fined as the number of appropriate system outputs
divided by the number of system outputs where the
special output <NO COMMENT> is excluded.
F1 is the harmonic mean of recall and precision.

3 Related Work

Generally speaking, feedback comment generation
is a task of text-to-text generation. It then can be
abstractly regarded as a Machine Translation (MT)
problem where the input text, which is written by
a language learner, is translated into another text
explaining writing rules. This implies that gener-
ation methods employed in MT or other related
research areas may be effective in the present task.
For example, feedback comments often refer to
words and phrases appearing in the input text, and
techniques for referring to words in the source text
(e.g., copy mechanisms) will likely be beneficial.

Unlike MT, the equivalence between the source
and target texts in meaning do not hold. Instead, the
target text is a feedback comment that explains why
the source is not good together with the underlying
rule. From this point of view, the present task is
related to research in dialogue systems.

Feedback comment generation has its unique
aspects as well. It should be emphasized that a

feedback comment is generated against a span (of
the input text or sentence) whereas only a text (e.g.,
a sentence or utterance) is dealt with in other major
text-to-text generation tasks such as MT and dia-
log systems. In consequence, feedback comment
generation systems have to output different texts
for the exact same source sentence, depending on
given spans.

The source and target languages are also unique.
In this challenge, both are English, but there is
room for discussion whether they fall into the same
language class. The former is learner English, and
inevitably it contains erroneous/unnatural words.
Even within correct sentences, grammar, expres-
sions, and style are expected to be used differently
from canonical English. This brings out further
research questions related to the source and target
languages. For example, which is the best setting
of vocabularies — only one common vocabulary
for the source and target, or one for each? Does
a pre-trained general (or native) language model
work well to model learner English? There are
a number of unaddressed research questions like
these.

Feedback comment generation is also related to
grammatical error detection/correction. The state-
of-the-art methods typically solve the problems
as sequence labeling (e.g., Kaneko et al. (2017))
or MT with DNNs (e.g., Junczys-Dowmunt et al.
(2018); Napoles and Callison-Burch (2017); Rothe
et al. (2021)). Recently, a DNN-based sequence
labeling method is combined with symbolic trans-
formations (Omelianchuk et al., 2020), which can
be a good source of information to generate feed-
back comments.

Some researchers (Kakegawa et al., 2000; Mc-
Coy et al., 1996; Nagata et al., 2014) made an
attempt to develop rule-based methods for diagnos-
ing errors in line with grammatical error correc-
tion. Researchers started to apply more modern
techniques. Nagata (2019) showed that a neural-
retrieval-based method was effective in preposi-
tion feedback comment generation. Lai and Chang
(2019) proposed a method that used grammatical
error correction and templates to generate detailed
comments. Gkatzia et al. (2013) and Gkatzia et al.
(2014) proposed methods for automatically choos-
ing feedback templates based on learning history.

The availability of datasets for research in feed-
back comment generation has been increasing. Na-
gata (2019) released a dataset consisting of feed-

322

back comments on preposition use. They marked
up erroneous prepositions and annotated them with
feedback comments. Nagata et al. (2020) extended
it to other grammatical errors and also other writing
items such as discourse and lexical choice. Pilan
et al. (2020) released a unique dataset where feed-
back comments on linking words were annotated.

4 Preparation

Based on the work (Nagata, 2019; Nagata et al.,
2020), we created a new dataset for this genera-
tion challenge. The original texts are excerpts from
the essays (written by learners of English) in IC-
NALE (Ishikawa, 2011). We had native speakers
of English, who had experience in English teach-
ing, manually annotated all preposition errors with
feedback comments in English. Table 1 shows its
statistics.

The dataset will be split into training, develop-
ment, and test sets. Note that training and devel-
opment sets consist of the whole essays, meaning
that they contain all sentences no matter whether
they contain feedback comments or not (i.e., error
free essays are included in the sets). Also note
that a sentence can be annotated with more than
one feedback comment. In contrast, the test set
only contains sentences with exactly one feedback
comment each as described in Subsection 2.2. If a
sentence contains more than one preposition error,
it appears two or more times with different spans
(in different lines). They will be provided for the
participants in due course.

We also developed a Web-based submission sys-
tem that takes system outputs the participants sub-
mit. The system checks the output format of the
submission and calculate its score (i.e., BLEU).

We also implemented two baseline systems for
this challenge. One is a deep neural network
(DNN)-based retrieval system that retrieves the
most similar instance to the input sentence and
outputs it as a generation result. The other is a
text generation system based on a DNN encoder-
decoder with a copy mechanism.

As a pilot study, we tested them on the
dataset (Nagata, 2019). For manual evaluation,
we trained a professional annotator who had more
than ten years of experience in English syntactic
annotation and two years of experience in profes-
sional English writing teaching. The person and
the first and third authors independently evaluated
the generation results. They labeled each generated

Corpus ICNALE
Number of essays 1,884
Number of sentences 27,995
Number of tokens 473,815
Number of comments 5,237

Table 1: Statistics on Dataset.

feedback comment as either appropriate or not,
following the manner described in Subsection 2.2.

As a result, it turned out that the retrieval sys-
tem and the text generation system achieved an
F1 of 0.35 and 0.43, respectively1. Inter-evaluator
agreements (Cohen’s kappa coefficient) were con-
siderably high, ranging from 0.86 to 0.92. These
results imply that the present task is not easy one,
but also not completely insolvable.

5 Organizers

The organizing group comprises six people as
shown in the authors of this paper. All members
have engaged in natural language research related
to language learning and education for many years
and some of them have organized several work-
shops and shared tasks in the domain.

The first author developed the dataset. The sec-
ond author developed the submission system to-
gether with a Web page for this challenge. The
two mainly designed this generation challenge with
help from the other members. The third author im-
plemented the baseline systems with the first author.
They were also involved in the pilot manual evalu-
ation.

All will be involved in the actual generation chal-
lenge including evaluation and paper publication.
Although the trained professional evaluator is not
included in the organizing group, the person will
play a major role in manual evaluation.

6 Conclusions

In this paper, we have described a new generation
challenge called Feedback comment generation for
language learners. We have explored the task, de-
scribing the task definition, the related work, and
the dataset to be used.

1The baseline systems are not designed to generate the
special token <NO COMMENT>, and they always output a
feedback comment for a given span. Accordingly, it always
holds that recall = precision =F1.

323

References
Dimitra Gkatzia, Helen Hastie, Srinivasan Ja-

narthanam, and Oliver Lemon. 2013. Generating
student feedback from time-series data using re-
inforcement learning. In Proc. of 14th European
Workshop on Natural Language Generation, pages
115–124.

Dimitra Gkatzia, Helen Hastie, and Oliver Lemon.
2014. Comparing multi-label classification with
reinforcement learning for summarisation of time-
series data. In Proc. of 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1231–1240.

Shinichiro Ishikawa. 2011. A new horizon in learner
corpus studies: The aim of the ICNALE project,
pages 3–11. University of Strathclyde Publishing,
Glasgow.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proc. of
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 595–606.

Jun’ichi Kakegawa, Hisayuki Kanda, Eitaro Fujioka,
Makoto Itami, and Kohji Itoh. 2000. Diagnostic
processing of Japanese for computer-assisted second
language learning. In Proc. of 38th Annual Meet-
ing of the Association for Computational Linguistics,
pages 537–546.

Masahiro Kaneko, Yuya Sakaizawa, and Mamoru Ko-
machi. 2017. Grammatical error detection us-
ing error- and grammaticality-specific word embed-
dings. In Proc. of 8th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 40–48.

Yi-Huei Lai and Jason Chang. 2019. TellMeWhy:
Learning to explain corrective feedback for second
language learners. In Proc. of 2019 Conference on
Empirical Methods in Natural Language Process-
ing and 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP): Sys-
tem Demonstrations, pages 235–240.

Kathleen F. McCoy, Christopher A. Pennington, and
Linda Z. Suri. 1996. English error correction: A
syntactic user model based on principled “mal-rule”
scoring. In Proc. of 5th International Conference on
User Modeling, pages 69–66.

Ryo Nagata. 2019. Toward a task of feedback com-
ment generation for writing learning. In Proc. of
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
3197–3206.

Ryo Nagata, Kentaro Inui, and Shin’ichiro Ishikawa.
2020. Creating Corpora for Research in Feedback
Comment Generation. In Proc. of the 12th Lan-
guage Resources and Evaluation Conference, pages
340–345.

Ryo Nagata, Mikko Vilenius, and Edward Whittaker.
2014. Correcting preposition errors in learner En-
glish using error case frames and feedback messages.
In Proc. of 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 754–764.

Courtney Napoles and Chris Callison-Burch. 2017.
Systematically adapting machine translation for
grammatical error correction. In Proc. of 12th Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, pages 345–356.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proc. of Fifteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 163–170.

Ildiko Pilan, John Lee, Chak Yan Yeung, and Jonathan
Webster. 2020. A Dataset for Investigating the Im-
pact of Feedback on Student Revision Outcome. In
Proc. of 12th Language Resources and Evaluation
Conference, pages 332–339.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A Simple
Recipe for Multilingual Grammatical Error Correc-
tion. In Proc. of 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and 11th In-
ternational Joint Conference on Natural Language
Processing, pages 702–707.

324

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 325–330,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

The SelectGen Challenge: Finding the Best Training Samples for
Few-Shot Neural Text Generation

Ernie Chang∗, Xiaoyu Shen∗, Alex Marine, Vera Demberg
Dept. of Language Science and Technology, Saarland University

e Microsoft Corporation, Redmond, WA
{cychang,xshen}@coli.uni-saarland.de

Abstract

We propose a shared task on training instance
selection for few-shot neural text generation.
Large-scale pretrained language models have
led to dramatic improvements in few-shot text
generation. Nonetheless, almost all previous
work simply applies random sampling to select
the few-shot training instances. Little to no at-
tention has been paid to the selection strategies
and how they would affect model performance.
The study of the selection strategy can help us
to (1) make the most use of our annotation bud-
get in downstream tasks and (2) better bench-
mark few-shot text generative models. We
welcome submissions that present their selec-
tion strategies and the effects on the generation
quality.

1 Introduction

Few-shot text generation is an important research
topic since obtaining large-scale training data for
each individual downstream task is prohibitively
expensive. Recently, pretraining large neural net-
works with a language modeling objective has led
to significant improvements across different few-
shot text generation tasks (Radford et al., 2019;
Lewis et al., 2020) and many techniques are pro-
posed based on them (Chen et al., 2020; Schick and
Schütze, 2020a; Zhang et al., 2020; Kale, 2020;
Chang et al., 2020, 2021a,b; Li and Liang, 2021).
However, all previous works simulate the few-shot
scenario by randomly sampling a subset from the
full training data. Little to no attention has been
paid to the selection strategies.

The goal of the proposal is to call for innovative
ideas on searching for an optimal strategy to select
the few-shot training instances, as well as a com-
prehensive analysis of how the selection strategy
would affect the model performance. The study of
selection strategies is motivated by two rationales:

∗Equal contribution. X.shen is now at Amazon Alexa AI.

U LSelecting k Samples

Few-shot
learning

Figure 1: Training scenario for few-shot text generation:
U represents unlabeled data and L indicates labeled instances.
The annotation budget only allows selecting K data for an-
notating the reference text. We aim to identify the K most
representative instances that, when annotated and trained on
them, leads to a best model performance.

First, random sampling leads to a large variance
of model performance (Zhang et al., 2020; Schick
and Schütze, 2020a,b). Yet current works sample
their own training data which makes it difficult to
compare across different models. One can then
not be sure whether an improved performance can
be really ascribed to the model or the randomness
of sampling. Using a stable selection strategy to
find the most informative few-shot instances can
provide a fair platform and better benchmark dif-
ferent few-shot generative models. Second, in prac-
tical applications, e.g. document summarization,
the training data is usually obtained by manually
annotating the summaries for some selected docu-
ments. In Figure 1, we illustrate the typical training
scenario for text generation where the annotation
budget only allows annotating a limited amount
of data. Studying the optimal selection strategy
can help make the most use of our annotation bud-
get. Specifically, we focus on the label-free setting
where the selection can only condition on the unan-
notated data. Although leveraging the reference
text may benefit the selection strategy, it conflicts
with the realistic setting where we need to first
select the data then get its annotated reference text.

The selection task resembles the theme of active
learning (Balcan et al., 2007; Chang et al., 2020,
2021c,a), where the model keeps identifying the

325

most informative instances to get labeled. We can
consider the task as a starting step before applying
active learning, after which more annotations can
be continuously collected to further improve the
model.

2 Task Description

Following the training scenario shown in Figure 1,
we denote the unlabeled data as U1, U2, . . . , Un

where n is the data size. Depending on the down-
stream text generation task, “data” can mean differ-
ent types of inputs like unlabeled structured data,
documents and paragraphs respectively in the con-
text of data-to-text, document summarization and
question generation. We will select K instances
from the whole unlabeled dataset, annotate them
with reference text, and then train a neural gen-
erative model based on the annotated data. K is
defined based on the annotation budget. In this
work, since we focus on the few-shot scenario, K
is set to be small (≤ 2000). The goal is to find
the most representative K instances that can lead
to the optimal performance when being annotated
and trained on them.

2.1 Submission Requirement
Participants are required to submit:

• An executable code that takes as input a set of
unlabeled data, outputs K selected data that
should be annotated.

• Selected training instances for K =
50, 200, 500 and 2000 together with model
generations on the testset.

• A report that explains how the proposed se-
lection strategy works and an analysis of its
performance on the provided datasets.

While it is acceptable to take into account task or
language specific features, participants are encour-
aged to submit selection strategies that are:

• Task agnostic. The selection strategy would
work for a broad range of text generation tasks
with various input-output formats.

• Language agnostic. The selection strategy can
be seamlessly applied to same tasks in other
languages.

• Model agnostic. The selection strategy can se-
lect most informative instances that improve

the performance for a broad types of genera-
tive models (with various model architectures
and training algorithms).

• K-agnostic. The selection strategy should
work by varying the number of K.

2.2 Data
We will select representative datasets which cover
three different text generation tasks. It will include
but not limited to:

1. Data-to-text: We use the dataset for the E2E
challenge (Novikova et al., 2017) which con-
tain 50,602 data-text pairs with 8 unique slots
in the restaurant domain.

2. Document Summarization: We use the
CNN/Dailymail dataset (non-anonymized ver-
sion) (Hermann et al., 2015) which contains
312,084 document-summary pairs.

3. Question generation: We use the SQuAD
dataset (Rajpurkar et al., 2016) with over 100k
questions. Following Du et al. (2017), we fo-
cus on the answer-independent scenario to
directly generate questions from passages.

All the above datasets contain parallel input-
output pairs for train/validation/test. We can simu-
late our few-shot scenario by only allowing leverag-
ing K input-output pairs from the training set. The
participants can decide which K training instances
to select based on all the inputs in the training set 1.
Once the selected instances are determined, the
model can then be trained on the K input-output
pairs. It is also worth mentioning that in order to
simulate the true few-shot scenario, participants
can only rely on the K input-output pairs for both
training and validation, i.e., no extra held-out ex-
amples are available for hyperparameter tuning and
model selection (Schick and Schütze, 2020a; Perez
et al., 2021). The participants can deside how to
split them into the training and validation set.

We select the above three datasets only as exam-
ples for demonstration. Participants are encouraged
to test their model on more diverse types of text
generation tasks, e.g., tasks from the GEM bench-
mark (Gehrmann et al., 2021). Nevertheless, we
recommend participants to first test and analyze

1The submitted instance selection algorithm can only con-
dition on the inputs in the training set. However, participants
are welcome to incorporate the reference text or testset distri-
bution to analyze the theoretical upper bound performance.

326

their model on the above three datasets. In the final
test, we will evaluate on the above three datasets to
allow comparison across different submission. It
is, however, totally acceptable to not target at all of
the above three tasks. The participants can decide
the tasks and datasets depending on their interest.

2.3 Generative Model
It is encouraged that participants can test their se-
lection strategy on a wide list of generative models.
In the end, to allow for a fair comparison across all
submissions, we will test the selection algorithm
by finetuning the open-sourced Bart model (Lewis
et al., 2020) on the selected training instances with
maximum likelihood. Bart is pretrained with a de-
noising autoencoder objective on large amount of
text data and has been the state-of-the-arts for many
text generation tasks. Therefore, we recommend to
first test with this standard generative model. There
have been many algorithms proposed for improved
generation quality under the few-shot scenario like
pattern exploitation training (Schick and Schütze,
2020a; Li and Liang, 2021; Lester et al., 2021) and
cyclic training (Tseng et al., 2020; Chang et al.,
2021a; Guo et al., 2021). We welcome test re-
sults using different types of generative models.
Nonetheless, the focus of the shared task is on the
instance selection algorithm but not the few-shot
generative model. While it is nice to provide data
points that demonstrate state-of-the-art results, gen-
erating with the most advanced model for better
evaluation scores is by not means the main purpose.

2.4 Schedule
We follow the following schedule for the shared
task of training instance selection:

• December 15th, 2021. The shared task is
announced along with the selected text gener-
ation tasks and datasets.

• February 15th, 2022. The submission sys-
tem and public leaderboard are open. Partic-
ipants can deploy and test models with the
provided automatic evaluation scripts.

• May 15th, 2022. This is the deadline for soft-
ware and report submission. The manual eval-
uation begins. We will test the submitted se-
lection algorithms with the same generative
model and hyperparameter tuning mechanism.
Model outputs will be compared with both
automatic metrics and human evaluation.

• June 15th, 2022. The results of the auto-
matic metrics and human evaluations will be
announced.

After getting all the evaluation results, we will
make a report to analyze different submissions. The
shared task’s findings are then presented at the fol-
lowing INLG.

3 Evaluation

The final evaluation will be conducted on the fol-
lowing two settings:

1. We apply the submitted selection algorithms
to select K training instances and then fine-
tune on them using a fixed strategy (with Bart
model, same train/validation split and hyper-
parameter tuning mechanisms). The purpose
is to evaluate all selection algorithms under
a fair setting. In this setting, we will run the
selection algorithm and training pipeline on
our side to ensure fairness.

2. For each submission, we evaluate the model
outputs of the best system. The purpose is to
get an upper bound score for few-shot text gen-
eration with the best combination of settings
(random seed, generative model, optimization
algorithm, train/validation split, hyperparam-
eter tuning, etc). In this setting, we will rely
on the submissions of model outputs from the
participants.

We will provide scripts for the automatic eval-
uation. The human evaluation will be conducted
after all submissions are received under the same
platform and metrics.

3.1 Automatic Evaluation

The evaluation metrics differ according to the
downstream tasks. The metrics used for the final
evaluation will be announced after the submission
system is open. Participants are encouraged not to
focus on one specific metric to avoid overfitting to
it. The final evaluation will adopt metrics following
into the following categories:

• Lexical similarity, which measure the lexi-
cal overlap between the model output and
the gold references, including many popu-
lar metrics like BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004) and METEOR (Banerjee
and Lavie, 2005).

327

• Semantic relevance, which measures the se-
mantic similarity between the model output
and the gold references, including the newly
proposed BertScore (Zhang et al., 2019) and
BLEURT (Sellam et al., 2020).

• Consistency with task input, which measures
if the output contains consistent information
with the task input and no hallucinations.
Many works have proposed metrics based on
question answering (Eyal et al., 2019; Durmus
et al., 2020), natural language inference (Ku-
mar and Talukdar, 2020) and mutual informa-
tion (Shen et al., 2018; Zhang et al., 2018).

• Output diversity, which measures if the model
can produce diverse outputs with different in-
puts, including metrics like the count and en-
tropy of distinct uni/bi-grams (Li et al., 2016;
Dušek et al., 2020).

• Other task-specific requirement, e.g., slot-
error rate for data-to-text and compression
rate for document summarization.

After the submission system opens, we will an-
nounce the metrics we picked for the automatic
evaluation and provide the evaluation script.

3.2 Human Evaluation
We will also provide human evaluation scores on
the system outputs since none of the automatic
metrics can correlate perfectly with the generation
quality. We will follow the recently proposed tax-
onomy of human evaluation measures by Belz et al.
(2020); Su et al. (2020) and follow the reporting
strategies proposed by Howcroft et al. (2020). The
human evaluation will be focused on the follow-
ing two parts, which are specifically hard to be
accurately measured by automatic metrics:

• Fluency. If the output itself is a fluent sen-
tence that can be well understood by humans,
defined by a 5-scale Likert score.

• Consistency. If the output is consistent with
the input and does not contain hallucinations,
defined by a binary true/false score.

The human evaluation will be conducted after
collecting all the submissions. It will be performed
under a unified pipeline and annotation guideline
to make sure results are comparable across model
outputs from all submitted systems. To make the

analysis comprehensive, participants are nonethe-
less encouraged to also perform their own human
evaluation and include the results in their report.

3.3 Variance of Model

An important factor worth mentioning is the vari-
ance of the model. The variance of the model
output can come from different steps, e.g., vari-
ance of the selection algorithm, random seed of
training, hyperparameter selection, etc. It is rather
straightforward to simply apply a random sampling
strategy to select the K training instances and find
a relatively good selection choice by brute force.
However, this is clearly against the purpose of the
shared task. We aim to find out a selection al-
gorithm that can stably help us identify the most
representative training instances instead of only
getting the instance set. Therefore, when doing
the final evaluation, if the submitted selection algo-
rithm is not deterministic, we will run the algorithm
5 times to get 5 different selection sets and aggre-
gate the results. The variance of the evaluation will
also be reported (For the setting 1 of evaluation).
For setting 2, we rely on the participants them-
selves to provide the selected instance set and the
model outputs. Participants must indicate clearly
how the instance set is determined, e.g., whether
they cherry-pick a best instance set by randomly
running the algorithm for many times, or leverage
other information like the reference text for other
inputs, testset distribution, etc.

4 Conclusion

In this proposal, we target at the problem of train-
ing instance selection for few-shot text generation.
Current research simply applies random sampling
which has a large selection variance and can lead
to suboptimal performance. The main goal of the
task is to call for more attention on this largely
under-explored problem, gather innovative ideas
on proposing selection algorithms and provide a
fair platform for comparison.

We believe our shared task can be an important
supplement to the study of few-shot text genera-
tion, where most works focus solely on the gen-
erative algorithm while neglecting the training in-
stance selection. Selection strategies proposed in
this task can be used to better benchmark model
performances for few-shot text generation. Impor-
tantly, the task was inspired by realistic industrial
settings and requirements and will hopefully bene-

328

fit multiple areas of NLP research including human-
in-the-loop learning and other active learning based
research, where the resource and time constraints
calls for the task to be performed.

Acknowledgements

This research was funded in part by the German
Research Foundation (DFG) as part of SFB 248
“Foundations of Perspicuous Software Systems”.
We sincerely thank the anonymous reviewers for
their insightful comments that helped us to improve
this paper.

References
Maria-Florina Balcan, Andrei Broder, and Tong Zhang.

2007. Margin based active learning. In Interna-
tional Conference on Computational Learning The-
ory, pages 35–50. Springer.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Anya Belz, Simon Mille, and David M. Howcroft.
2020. Disentangling the properties of human eval-
uation methods: A classification system to support
comparability, meta-evaluation and reproducibility
testing. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
183–194, Dublin, Ireland. Association for Computa-
tional Linguistics.

Ernie Chang, Jeriah Caplinger, Alex Marin, Xiaoyu
Shen, and Vera Demberg. 2020. Dart: A lightweight
quality-suggestive data-to-text annotation tool. In
Proceedings of the 28th International Conference on
Computational Linguistics: System Demonstrations,
pages 12–17.

Ernie Chang, Vera Demberg, and Alex Marin. 2021a.
Jointly improving language understanding and gen-
eration with quality-weighted weak supervision of
automatic labeling. Proceedings of EACL 2021.

Ernie Chang, Xiaoyu Shen, Dawei Zhu, Vera Dem-
berg, and Hui Su. 2021b. Neural data-to-text gener-
ation with lm-based text augmentation. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 758–768.

Ernie Chang, Hui-Syuan Yeh, and Vera Demberg.
2021c. Does the order of training samples matter?
improving neural data-to-text generation with cur-
riculum learning. Proceedings of EACL 2021.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020. Few-shot nlg with
pre-trained language model. ACL.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Association for Computational
Linguistics (ACL).

Esin Durmus, He He, and Mona Diab. 2020. Feqa: A
question answering evaluation framework for faith-
fulness assessment in abstractive summarization. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5055–
5070.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge.
Computer Speech & Language, 59:123–156.

Matan Eyal, Tal Baumel, and Michael Elhadad. 2019.
Question answering as an automatic evaluation met-
ric for news article summarization. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3938–3948.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Ag-
garwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
Chandu, Miruna Clinciu, Dipanjan Das, Kaustubh D
Dhole, et al. 2021. The gem benchmark: Natu-
ral language generation, its evaluation and metrics.
arXiv preprint arXiv:2102.01672.

Qipeng Guo, Zhijing Jin, Ziyu Wang, Xipeng Qiu,
Weinan Zhang, Jun Zhu, Zheng Zhang, and Wipf
David. 2021. Fork or fail: Cycle-consistent train-
ing with many-to-one mappings. In International
Conference on Artificial Intelligence and Statistics,
pages 1828–1836. PMLR.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in neural information
processing systems, pages 1693–1701.

David M Howcroft, Anja Belz, Miruna-Adriana Clin-
ciu, Dimitra Gkatzia, Sadid A Hasan, Saad Ma-
hamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation: Nlg
needs evaluation sheets and standardised definitions.
In Proceedings of the 13th International Conference
on Natural Language Generation, pages 169–182.

Mihir Kale. 2020. Text-to-text pre-training for data-to-
text tasks. arXiv preprint arXiv:2005.10433.

Sawan Kumar and Partha Talukdar. 2020. Nile: Natu-
ral language inference with faithful natural language
explanations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8730–8742.

329

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and William B Dolan. 2016. A diversity-promoting
objective function for neural conversation models.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for genera-
tion. arXiv preprint arXiv:2101.00190.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. arXiv preprint arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. arXiv
preprint arXiv:2105.11447.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Timo Schick and Hinrich Schütze. 2020a. Few-
shot text generation with pattern-exploiting training.
arXiv preprint arXiv:2012.11926.

Timo Schick and Hinrich Schütze. 2020b. It’s
not just size that matters: Small language mod-
els are also few-shot learners. arXiv preprint
arXiv:2009.07118.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. Bleurt: Learning robust metrics for text gen-
eration. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881–7892.

Xiaoyu Shen, Hui Su, Wenjie Li, and Dietrich Klakow.
2018. Nexus network: Connecting the preceding
and the following in dialogue generation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4316–
4327.

Hui Su, Xiaoyu Shen, Zhou Xiao, Zheng Zhang, Ernie
Chang, Cheng Zhang, Cheng Niu, and Jie Zhou.
2020. Moviechats: Chat like humans in a closed do-
main. In Proceedings of EMNLP 2020, pages 6605–
6619.

Bo-Hsiang Tseng, Jianpeng Cheng, Yimai Fang, and
David Vandyke. 2020. A generative model for joint
natural language understanding and generation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1795–
1807.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
Xiujun Li, Chris Brockett, and Bill Dolan. 2018.
Generating informative and diverse conversational
responses via adversarial information maximization.
In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages
1815–1825.

330

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 331–340,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Affective Decoding for Empathetic Response Generation

Chengkun Zeng♠, Guanyi Chen♥, Chenghua Lin♠∗, Ruizhe Li♠, Zhigang Chen♣
♠Department of Computer Science, University of Sheffield

♥Department of Information and Computing Sciences, Utrecht University
♣College of Information and Intelligent Engineering, Zhejiang Wanli University
chengkunzenggo@gmail.com, {c.lin, r.li}@sheffield.ac.uk

g.chen@uu.nl, chenzhigang@zwu.edu.cn

Abstract

Understanding speaker’s feelings and produc-
ing appropriate responses with emotion con-
nection is a key communicative skill for em-
pathetic dialogue systems. In this paper, we
propose a simple technique called Affective
Decoding for empathetic response generation.
Our method can effectively incorporate emo-
tion signals during each decoding step, and can
additionally be augmented with an auxiliary
dual emotion encoder, which learns separate
embeddings for the speaker and listener given
the emotion base of the dialogue. Extensive
empirical studies show that our models are per-
ceived to be more empathetic by human eval-
uations, in comparison to several strong main-
stream methods for empathetic responding.

1 Introduction

Endowing a dialogue system with the ability of em-
pathy responding has attracted a growing body of
research (Ma et al., 2020) and is believed to be cru-
cial for many service-oriented applications, such
as mental health interventions (Hoermann et al.,
2017), assisting medical diagnosis (Xu et al., 2019),
and restaurant/hotel booking services (Ghazvinine-
jad et al., 2017; Liu et al., 2018; Wang et al., 2021).
Being empathetic requires one to be able to under-
stand the implied feeling of the conversation part-
ner, or in other words, to place oneself in partner’s
position. Therefore, to produce proper responses,
an Empathetic Dialogue System (EDS) needs to
understand not only the situation of the speaker1

and the causes (Abd Yusof et al., 2017), but also
the emotion state of speaker.

In 2019, Rashkin et al. (2019) formally intro-
duced the task for dialogue systems to respond

∗Corresponding author
1We use the term “speaker” referring to the user of the

empathetic dialogue system while “listener” inferring to the
dialogue system itself.

I there, don't know what to do,
just broke up with my girlfriend,
we were 8 years together.

Sorry to hear! do you have any
idea about the breakup? did you
think about it?

Speaker ListenerEmotion: Lonely

I have felt some of the best
moments of pure happiness
seeing someone I love getting
something they've worked hard
for -- like my daughter's
acceptance into her college and
major of choice!

That's exciting! Congratulations
to her. I bet there was lots of
celebration to be had for such
an achievement!

Speaker ListenerEmotion: Joyful

Figure 1: Two example dialogue sessions from the EM-
PDIAL dataset with the emotion lonely and joyful, rep-
sectively.

to conversations with emotions. They also con-
structed a benchmark corpus called EMPATHET-
ICDIALOGUES (abbreviated as EMPDIAL), which
consists of conversations with a wide range of emo-
tion states for task evaluation. Figure 1 shows an
example session of a dialogue from EMPDIAL,
where the situation reflects the emotion state of
lonely and joyful. Several approaches have been
proposed for modelling emotions, which is a key
challenge for building an EDS. These approaches
follow two main enterprises: one is multi-task
learning (Rashkin et al., 2019; Lin et al., 2020),
which trains models for both dialogue generation
and predicting the emotion of the dialogue; the
other enforces the model to generate empathetic
responses conditioning on the emotion state pre-
dicted from the dialogue context with a pre-trained

331

Figure 2: The overall architecture of our empathetic dialogue system.

emotion classifier (Rashkin et al., 2019).
Our work follows a similar vein to the second

enterprise, where we propose a simple yet efficient
technique coined Affective Decoding (AD), which
can effectively incorporate emotion signals into
model training and generate more empathetic re-
sponses. Our method can work in two different
modes. The first mode injects emotion embedding
in each decoding step. This is different to Rashkin
et al. (2019) who only applied prepending at the
first time-step on the encoder. For the second mode,
we introduce an additional auxiliary Dual Emotion
Encoder, which learns separate embeddings for
the speaker and listener given the emotion base
of the dialogue. In addition, we systematically
evaluate and compare AD with the existing main-
stream emotion modelling methods for empathetic
responding, including both prepending emotion
embeddings (Rashkin et al., 2019) and multi-task
learning (Lin et al., 2020).

Based on the EMPDIAL dataset, we conducted
comprehensive empirical studies, which include au-
tomatic (e.g., BLEU, BOW) and two human eval-
uations. For human evaluation, we assess both
model-level performance and finer-grained level
aspects concerning empathy, relevance, and flu-
ency of the generated responses. Empirical results
show the effectiveness of our affective decoding
and that our model with the auxiliary dual emotion
encoder works the best. While Rashkin et al. (2019)
reported that multi-task learning did not provide
consistent improvements for the task, we actually
found multi-task learning performs even worse than
a pre-trained language model (Wolf et al., 2019)
fine-turned on the EMPDIAL dataset.

To summarise, our contributions are 3-fold:
(1) we introduce a simple yet efficient decoding
method called affective decoding to the task of em-

Figure 3: Illustration of the input format of our model.

pathetic response generation; (2) we conduct a com-
prehensive comparison between various emotion
modelling methods in empathetic dialogue mod-
elling by means of automatic evaluation and 2 hu-
man evaluations; (3) empirical results show the
effectiveness of our affective decoding method and
that with the auxiliary dual emotion encoder, our
model can further support the analysis of listeners
and speakers’ behaviours in terms of how they utter
with respected to the same emotion.

The rest of the paper is organised as follows.
§2 presents our model for empathetic response
generation. We show the experimental setup and
results in §3. §4 presents some case studies
and finally §5 concludes the paper. The code
is available at: https://github.com/zenggo/

affective-decoding-4-empathetic-dialog.

2 Methodology

In this section, we describe our Affective Decod-
ing model, which consists of two key compo-
nents, namely, a pre-trained response generator,
Transfo (Wolf et al., 2019), and the affective de-
coder for enhancing empathetic responding.

2.1 Dialogue Modelling

We use Transfo, which is built upon the Genera-
tive Pre-trained Transformer (Radford, 2018, GPT)
pre-trained on the BOOKSCORPUS dataset (Zhu
et al., 2015), and which gives good performance on

332

building conversational agents (Dinan et al., 2020).
When fine-tuning on the EMPDIAL dataset, a re-
sponse is generated given the dialogue context c,
which contains single or multi-turn conversations.
For each input token, it is represented as a sum-
mation of its word embedding, positional embed-
ding and dialogue state embedding, as illustrated in
Figure 3. We model two possible dialogue states,
where state S corresponds to the speaker and state
L to the listener.

2.2 Affective Decoding
One of the key challenges of building an effective
EDS is recognising and understanding the emo-
tion of the speaker. Inspired by the affective lan-
guage model of Ghosh et al. (2017), we tackle the
problem by proposing Affective Decoding (AD), a
simple strategy which injects emotion embeddings
into each decoding step. Such a strategy allows
our model to encode dialogue’s emotion base ef-
fectively, and to distribute more probability mass
towards the words in the utterance that are highly
correlated with the dialogue emotion, leading to
enhanced empathetic responding.

Concretely, at each time step t, we first encode
the emotional label with a one-hot embedding,
which is then mapped into a dense vector g(e) by
the emotion encoder g(·) (see Figure 2 for details).
g(e) is then used for predicting the next word yt+1

jointly with the dialogue context c and the decoded
outputs for all previous time steps y:t. Formally,
the probability of P (yt+1) is given as

P (yt+1|y:t, c, e) = softmax(Wht + V g(e)), (1)

where ht is the representation of c and y:t encoded
by Transfo; W and V are weights in the output
layer. Similar to prior studies (Rashkin et al., 2019;
Lin et al., 2020), our AD model maintains one
emotion embedding for the whole dialogue session.
Dual Emotion encoder. We observe that in the
dialogues with emotional situations, speaker and
listener tend to utter with distinctive styles. That
is, the speaker normally describes his/her own ex-
perience with personal emotions, while the listener
tries to respond in the way which can establish
an emotional connection with the speaker based
on speaker’s emotional needs (e.g., encouraging
and motivating). For example, in the dialogue
with a emotional base of joyful in Figure 1, the
speaker used phrases like “happiness” and “love”
while listeners used “exciting” and “congratula-
tion”. Based on this observation, we introduce a

mechanism so called Dual Emotion (DE) encoder,
which learns separate embeddings for the speaker
and listener given the emotion base of the dialogue.
We coin our model augmented with the auxiliary
DE component AD+DE, and its generation process
becomes:

P (yt+1|y:t, c, e) ={
softmax(Wht + VSgS(e)) st = S

softmax(Wht + VLgL(e)) st = L,

(2)

where st ∈ {S,L} is the dialogue state at the step
t. With the dual embedding space, we hypothesise
that the interpretability of our model’s behaviour
will also be enhanced, as it makes possible to iden-
tify the differences of the language use between
speakers and listeners.

3 Experiment

We evaluate our models on EMPDIAL, using the
original split of Rashkin et al. (2019) and their
emotion classifier based on FastText (Joulin et al.,
2017). Table 1 shows the statistics of the EMP-
DIAL dataset, which contains 32 emotion labels.
We compare our model against four competitive
baselines in the experiment, including

• MoEL: a transformer model with multiple
independent transformer decoders for generat-
ing different contextual responses (Lin et al.,
2019);

• Transfo: a pre-trained transformer model
which is fine-tuned using multi-task learning
in language modelling and next-utterance clas-
sification tasks (Wolf et al., 2019);

• PRE: a Transfo model with an emotion
embedding prepended to the dialogue con-
text (Rashkin et al., 2019);

• MTL: a Transfo model with multi-task learn-
ing, where the main task is dialogue response
generation and the secondary task uses the en-
coded dialogue context for predicting the emo-
tion for the whole session (Lin et al., 2020).

In terms of our own models, apart from AD and
AD+DE, we also further tested a model variant
(ADM), which considers multi-task learning. We
detail each of our model variants below.

• AD: a simple model by injecting emotion em-
beddings into each decoding step;

333

Dataset Emotion Labels Train Validation Test

EMPDIAL 32 19,533 2,770 2,547

Table 1: The statistics of EMPDIAL dataset.

Model PPL BLEU BOWe BOWa BOWg DIST-1 DIST-2

MoEL 38.19 2.84 0.502 0.878 0.679 0.005 0.023
Transfo 13.94 1.75 0.729 0.747 0.559 0.015 0.070
Prepend 13.90 1.75 0.731 0.753 0.565 0.016 0.079
MTL 14.95 1.49 0.733 0.757 0.566 0.015 0.067

ADM 14.50 1.81 0.733 0.756 0.564 0.015 0.068
AD 14.04 1.69 0.734 0.756 0.570 0.016 0.072
AD+DE 14.03 1.71 0.736 0.757 0.571 0.016 0.074

Table 2: Automatic evaluation results.

• AD+DE: a variant of AD by introducing the
Dual Emotion encoder to separately model
embeddings for the speaker and listener;

• ADM: a variant of our model by combining
AD+DE with multi-task learning, adopting a
similar strategy to the MTL baseline.

3.1 Automatic Evaluation
For automatic evaluation, we evaluate the models
in three aspects, i.e., fluency, adequacy, and diver-
sity. Particularly, fluency is measured by perplexity,
adequacy by BLEU and BOW embedding metrics,
and diversity by DIST. We describe each of the
metrics in detail below.

• Perplexity (PPL): measures how well a lan-
guage model is (lower the better);

• BLEU (Papineni et al., 2002): n-gram over-
lap between the system output and the refer-
ence;
BOW embedding (Liu et al., 2016b): the
cosine similarity between the bag-of-words
embeddings of the output and the reference.
Specifically, there are three matching strate-
gies:

– Greedy (BOWg): the average cosine sim-
ilarities between word embeddings of
the two utterances which are greedily
matched (Rus and Lintean, 2012);

– Average (BOWa): the cosine similarity
between the averaged word embeddings
in the two utterances (Mitchell and Lap-
ata, 2008);

– Extreme (BOWe): the cosine similarity
between the largest extreme values in
the word embeddings of the two utter-
ances (Pennington et al., 2014);

• DIST (Li et al., 2016): measures the corpus
level diversity of the outputs by calculating
the ratio of unique n-grams (n = 1, 2) over
all n-grams in the outputs.

3.1.1 Experimental Results
Table 2 shows the automatic evaluation results for
the tested models. Overall, the results do not seem
to provide strong evidence in terms of which mod-
els perform best. Among the baselines, MoEL
achieves the highest BLEU, BOWa and BOWg,
while it has the worst PPL and diversity (i.e., DIST-
1 and DIST-2). Prepend in contrast, performs the
best in terms of PPL and diversity, and gives similar
performance in the BOW metrics when compared
to other baselines (except MoEL) and our models.

Our AD+DE model gives similar performance
to Prepend, i.e., it achieves fairly balanced perfor-
mance across all types of metrics and gives the
highest scores in BOWe and DIST-1. AD+DE also
appears to slightly outperform AD, but the differ-
ence is somewhat minimal. In addition, it is surpris-
ing to see no significant difference between Transfo
and other models for all metrics, where the latter
explicit account for the emotional signals of the
dialogue. We also see that MTL has a lower BLEU
score even than Transfo. Conversely, comparing
AD+DE and ADM, multi-task learning helps to
yield better BLEU but yields worse performance

334

on other metrics. In summary, we are not able to
establish a clear winner based on automatic met-
rics, although Prepend seems to slightly outperform
other baseline models overall.

3.2 Human Evaluation

To assess the performance of the tested models
more robustly and comprehensively, we conducted
two forms of human evaluation: ranking for evalu-
ating the overall performance of each system (Duh,
2008), and multi-item rating (Diamantopoulos
et al., 2012) for evaluating the system performance
against more fine-grained aspects (e.g. whether the
response is relevant or not).

3.2.1 Ranking based Human Evaluation
We use pairwise binary ranking (i.e., preference
test) (Vilar et al., 2007), which has been shown
reliable for comparing the performance of multiple
models. We randomly sample 100 dialogue context
from the test set for both single-turn and multi-turn
dialogues (i.e., 50 samples each type). We then
generate a response with each tested model given a
sampled context. Given two responses generated by
two models, two raters (PhD students in computer
science) were asked to decide which model is better
in terms of empathetic responding or there is no
difference.

We report the results of this pairwise preference
test in Table 3, and the corresponding break down
results of the single-turn and multi-turn dialogues
in Table 4. Take the number 48 corresponding to
Transfo and MoEL in Table 3 as an example. It
means that 48% of the judges prefer Transfer over
MoEL by considering both single-turn and multi-
turn dialogues in the test set. Table 4 gives the
break down results for single-turn (i.e., 46%) and
multi-turn dialogue (i.e., 50%), respectively. By
taking the average, we can derive 48% as the over-
all result. Clearly, human evaluation (i.e., Table 3)
shows very different observations compared to the
automatic evaluation. On the one hand, AD and
AD+DE are clear winners this time, which signif-
icantly outperform all other models including the
best performed baseline PRE. It can also be ob-
served that AD+DE slightly outperformed AD but
the difference is insignificant. On the other hand,
multi-task learning shows a negative effect on em-
pathetic dialogue modelling, i.e., by comparing
MTL with Transfo and by comparing ADM with
AD+DE. We give more discussions regarding this
phenomenon in the Rating experiment section.

In addition, it can be observed that MoEL gives
the worst performance compared to all other mod-
els by a large margin, but one might argue that
the results are not directly comparable because the
non pre-trained MoEL has less capacity than other
pre-trained baseline models (e.g., the parameters
of Transfo are 5 times as many as that of MoEL).
The inconsistency on the results of automatic eval-
uation and preference test somewhat resemble the
observation of prior studies that automatic met-
rics show low validity for evaluating empathetic
dialogue systems (Liu et al., 2016a). To further
investigate the underlying issue, we interview our
raters as to which factor influences most on their
decisions. It turns out that small errors in the re-
sponses that cannot be detected by the automatic
measures (e.g. BLEU or BOW) can have a great
impact. For instance, wrong reference (e.g., re-
sponding “I’m happy for you.” when the speaker
is actually describing an experience of his/her sis-
ter) or wrong tense (e.g., responding “I hope you
will be fine.” when the speaker is describing an
experience happened in the past).

3.2.2 Rating based Human Evaluation
Likert Scale Rating (LSR) and Magnitude Estima-
tion (ME) are two popular rating based methods.
It is reported that ME performs better for evalu-
ating goal-oriented dialogue systems (Santhanam
and Shaikh, 2019) and language generation sys-
tems (Novikova et al., 2018) while LSR works
better for measuring acceptability of text (Langs-
ford et al., 2018). Considering the degree of empa-
thetic is tied to the acceptability of the generated
responses and that multi-item LSR is on a par with
ME (van der Lee et al., 2019), we opt for LSR with
three dimensions listed below. Model responses
(the same set used in the ranking study) were scored
by same two raters. The rating score ranges from 0
to 3.

• Empathy: Does the listener understand the
speaker’s feelings, and responds appropri-
ately?

• Relevance: Is the content of the reply relevant
to the topic mentioned by the speaker? Is it
informative?

• Fluency: Does the response look fluent?

The rating results in Table 5 and Table 6 (break
down results) show a similar tendency with the

335

Model MoEL Transfo PRE MTL ADM AD AD+DE

MoEL - 12 11 26 18 11 12
Transfo 48† - 23 28 29 13 17
PRE 52† 34† - 49† 34 19 22
MTL 48† 25 19 - 27 16 15
ADM 56† 45† 26 46† - 22 21
AD 55† 39† 45† 44† 40† - 8
AD+DE 57† 42† 35† 45† 43† 12 -

Table 3: Results of the pairwise preference test: the number indicates the percentage (%) of responses generated by
system A (row) is favoured by raters comparing to B (column). † means the preference is significant with p < .05
(two-proportion z-test).

Single-turn Multi-turn

Model 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 MoEL - 15 12 29 19 14 16 - 9 10 23 17 8 8
2 Transfo 46 - 14 28 36 14 22 50 - 32 28 22 12 12
3 Prepend 47 42 - 46 44 24 20 57 26 - 52 24 14 24
4 MTL 42 32 16 - 26 16 16 54 18 22 - 28 16 14
5 MTL+AD+DE 52 44 22 44 - 28 28 60 46 30 48 - 16 14
6 AD 49 52 40 48 46 - 16 61 26 50 40 34 - 8
7 AD+DE 51 52 32 42 48 10 - 63 32 38 48 38 6 -

Table 4: Results of the pairwise preference test for single-turn EDS (left) and multi-turn EDS (right): the number
indicates the percentage (%) of responses generated by system A (row) is favoured by raters comparing to B
(column).

Model Empathy Relevance Fluency

MoEL 1.629†‡ 1.525†‡ 2.031†‡

Transfo 1.987† 2.043† 2.307
PRE 1.940† 2.043† 2.270
MTL 1.850† 1.917† 2.313

ADM (ours) 2.020† 2.012† 2.330
AD (ours) 2.177‡ 2.233‡ 2.380
AD+DE (ours) 2.187‡ 2.237‡ 2.387

Table 5: LSR Results. † means AD+DE significantly
outperforms the corresponding model with p < .05 and
‡ means the corresponding model outperforms Transfo
significantly with p < .05 (paired t-test).

ranking experiment and give some additional in-
sights. Regarding fluency, how or whether a model
incorporates emotion information seems to have no
impact to the fluency of the generated responses.
In terms of the other two aspects, we have the fol-
lowing findings: (1) similar to the ranking experi-
ment, MoEL gives the worst performance, regard-
less the rating aspect. Comparing to transfo, the
PRE, MTL, and ADM models cannot improved
either empathy or relevance of the generated re-
sponses, significantly. The remarkable well perfor-
mance of the vanila transfo model embodies that
by fine-turning the model on EMPDIAL, this GPT

based model is a decent baseline for understanding
emotion and responding empathetically; (2) in line
with the ranking experiment, AD and AD+DE give
the best performance. Although AD+DE performs
slightly better than AD, the difference between
them is not significant. Joining with other results,
it seems that learning separate embeddings for the
speaker and listener does bring some benefit but
it is not as strong as expected. Nonetheless, we
found that introducing DE can help analyse the
behaviours of listeners and speakers in terms of
how they utter with respected to the same emotion
situation, which will be discussed in detail in §4.2;
(3) comparing the results of MTL with Transfo
and that of ADM with AD+DE reveals that MTL
decreases both empathy and relevance of the re-
sponses. One possible reason behind why MTL
does not yield positive effect in EDS (based on the
results of both ranking and rating experiments) is
that there might exist trade-off between the opti-
misation of the dialogue generator’s objective and
that of the emotion classifier’s objective (Sener and
Koltun, 2018). As a result, the overall performance
is harmed by the naive linear combination of the
two objectives.

336

Single-turn Multi-turn

Model Empathy Relevance Fluency Empathy Relevance Fluency

MoEL 1.714 1.652 2.050 1.543 1.397 2.012
Transfo 2.073 2.193 2.373 1.900 1.893 2.240
Prepend 1.920 2.047 2.327 1.960 2.040 2.213
MTL 1.920 2.027 2.353 1.780 1.807 2.273
MTL+AD+DE 2.067 2.093 2.340 1.973 1.933 2.320
AD 2.187 2.260 2.373 2.187 2.213 2.400
AD+DE 2.180 2.240 2.367 2.173 2.227 2.393

Table 6: LSR results for single-turn and multi-turn dailogues respectively.

Generated Response

Input S: I got a free pizza from Domino’s but felt bad about how it
happened.

Transfo oh no ! what did you do ?
PRE oh no , what happened ?
MTL i love domino ’s pizza ! i love domino ’s !
ADM oh no , what happened ?
AD why did you feel bad about it ?
AD+DE why did you feel bad about it ?

Input

S: Do any of your kids play any sports?
L: No, I do not have kids. Yours?
S: My daughter skateboards. She went down the big ramp the other
day. It was so cool.

Transfo that sounds like a lot of fun !
PRE wow , that must have been a lot of fun .
MTL that ’s cool . i ’ve never been on a rollercoaster . i ’ve never been on

a rollercoaster .
ADM that is so cool ! i bet you are so proud of her !
AD that ’s awesome ! i bet you were so proud !
AD+DE that ’s awesome ! i bet you were so proud of her !

Table 7: Example outputs generated by the baselines and our models, where S stands for speaker and L stands for
Listener.

4 Case Studies

4.1 Sample Outputs of Different Empathetic
Dialogue Systems

Table 7 lists a number of sample responses gener-
ated by the baselines and our models. It can be
observed that our AD and AD+DE models produce
high quality empathetic responses. For the first ex-
ample, our models can follow the context and ask
the reason why the speaker felt bad about getting
a free pizza, whereas some of the baseline models
produce uninformative responses (e.g., what did
you do?) and some of them respond with incor-
rect emotion (e.g., I love domino’s pizza!). In the
second sample, our models can generate more em-

pathetic responses (i.e., providing more approval
and praise) compared to other baselines. In con-
trast, method like MTL generate irrelevant content
(i.e., rollercoaster). Another observation is that
the responses generated by AD and AD+DE are
quite similar to each other, which is in line with the
evaluation results.

4.2 Interpreting Dual Emotional
Embeddings

We also conducted an experiment to assess how
the learnt emotion embeddings by AD+DE differ
with respect to speakers and listeners. Given an
emotion label, we listed the label’s top-10 near-
est neighbours in the speaker space and listener

337

Emotion State Nearest neighbour words of the emotion label

Proud S: son, graduated, proud, honour, daughter, happy, pleased,
nephew, musicians, said
L: celebrate, bet, con, proud, keep, parent, started, moment, con-
gratulations

Sad S: sad, cried, upset, bummed, died, passed, cry, depressed
L: sorry, retrace, memories, sleazy, lose, toll, alive, sudden

Table 8: The 10 nearest neighbour words of the emotion label PROUD and SAD in the speaker (S) and listener
(L) space, respectively.

space (see Table 8), respectively, based on the la-
bel embedding. Take the emotion label “proud”
as an example, words like proud, happy, honour
in the speaker space are very close semantically
and are highly relevant to the emotion label. Also
words like son, daughter are often be mentioned in
parents’ expression of pride. In the listener space,
words like congratulations, proud, celebrate are
commonly used for responding to the speaker’s
emotion of proud and the corresponding experi-
ence. These examples not only show consistency
with people’s conversation habits, but also illus-
trate the difference between the speaker’s and the
listener’s diction.

4.3 Generating Empathetic Dialogues from
Scratch

Since we jointly model the speakers and listeners
in the empathetic dialogues, our system is capable
to generate a multi-turn conversation given an emo-
tional situation and a prompt. Figure 4 provides
some example dialogues generated by AD+DE in
such a way. After given a specific emotion label
(e.g., joyful and disappointed from the predefined
label set of the EMPDIAL dataset), our model can
generate relevant and empathetic responses condi-
tioned on the initial prompt such as “my mother”.
It can be observed that the generated multi-turn
conversations are coherent and respect the given
emotion labels.

5 Conclusion

In this paper, we propose a simple and effective
technique called Affective Decoding for empathetic
response generation. Empirical results based on
extensive human evaluation show that our mod-
els (AD and AD+DE) outperform several strong
baselines. Simply fine-tune the pre-trained Transfo
on EMPDIAL achieves decent performance. MTL,

[joyful]
S: my mother just got a promotion at her
job !
L: that ’s great ! what kind of job is it ?
S: it ’s a financial analyst job !
L: that ’s great ! i ’m sure you ’re proud of
her !

[disappointed]
S: my mother was diagnosed with pan cre
atic cancer a few weeks ago .
L: oh no ! i ’m sorry to hear that . is she
going to be okay ?
S: i think so , but i was n’t expecting it at
all .
L: i ’m sorry to hear that . i hope everything
works out for you .

Figure 4: Given the initial word my mother, two exam-
ple dialogues are generated conditioning on the given
emotion “joyful” and “disappointed”.

which has been used in some EDS, shows nega-
tive effects on the overall performance. As a side
outcome, we also confirm the low validity of the
mainstream automatic metrics for evaluating empa-
thetic dialogue systems.

It was noted that empathetic dialogue systems
tend to generate generic responses such as “I’m
sorry to hear that.”. Therefore, one important fu-
ture work is to improve the diversity and informa-
tiveness of the empathetic responses generated by
an EDS. One possible technical direction is to em-
ploy variational autoenoders (Zhao et al., 2017; Li
et al., 2019, 2020), which have been shown effec-
tive in improving the diversity in response genera-
tion.

338

Acknowledgement

This work is supported by the awards made by the
UK Engineering and Physical Sciences Research
Council (EP/P011829/1) and Ningbo Natural Sci-
ence Foundation (202003N4320, 202003N4321).
We thank anonymous reviewers for their insightful
comments.

References
Noor Fazilla Abd Yusof, Chenghua Lin, and Frank

Guerin. 2017. Analysing the causes of depressed
mood from depression vulnerable individuals. In
Proceedings of the International Workshop on Dig-
ital Disease Detection using Social Media 2017
(DDDSM-2017), pages 9–17, Taipei, Taiwan. Asso-
ciation for Computational Linguistics.

Adamantios Diamantopoulos, Marko Sarstedt,
Christoph Fuchs, Petra Wilczynski, and Sebastian
Kaiser. 2012. Guidelines for choosing between
multi-item and single-item scales for construct
measurement: a predictive validity perspective.
Journal of the Academy of Marketing Science,
40(3):434–449.

Emily Dinan, Varvara Logacheva, Valentin Malykh,
Alexander Miller, Kurt Shuster, Jack Urbanek,
Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan
Lowe, et al. 2020. The second conversational in-
telligence challenge (convai2). In The NeurIPS’18
Competition, pages 187–208. Springer.

Kevin Duh. 2008. Ranking vs. regression in machine
translation evaluation. In Proceedings of the Third
Workshop on Statistical Machine Translation, pages
191–194.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih,
and Michel Galley. 2017. A knowledge-grounded
neural conversation model. arXiv preprint
arXiv:1702.01932.

Sayan Ghosh, Mathieu Chollet, Eugene Laksana,
Louis Philippe Morency, and Stefan Scherer. 2017.
Affect-LM: A neural language model for customiz-
able affective text generation. ACL 2017 - 55th An-
nual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference (Long
Papers), 1:634–642.

Simon Hoermann, Kathryn L McCabe, David N Milne,
and Rafael A Calvo. 2017. Application of syn-
chronous text-based dialogue systems in mental
health interventions: systematic review. JMIR,
19(8):e267.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association

for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Steven Langsford, Amy Perfors, Andrew T Hendrick-
son, Lauren A Kennedy, and Danielle J Navarro.
2018. Quantifying sentence acceptability measures:
Reliability, bias, and variability. Glossa: a journal
of general linguistics, 3(1).

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368, Tokyo, Japan. Association for Com-
putational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting objec-
tive function for neural conversation models. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
110–119.

Ruizhe Li, Xiao Li, Guanyi Chen, and Chenghua Lin.
2020. Improving variational autoencoder for text
modelling with timestep-wise regularisation. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 2381–2397,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Ruizhe Li, Xiao Li, Chenghua Lin, Matthew Collinson,
and Rui Mao. 2019. A stable variational autoen-
coder for text modelling. In Proceedings of the 12th
International Conference on Natural Language Gen-
eration, pages 594–599, Tokyo, Japan. Association
for Computational Linguistics.

Zhaojiang Lin, Andrea Madotto, Jamin Shin, Peng Xu,
and Pascale Fung. 2019. Moel: Mixture of empa-
thetic listeners. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 121–132.

Zhaojiang Lin, Peng Xu, Genta Indra Winata,
Farhad Bin Siddique, Zihan Liu, Jamin Shin, and
Pascale Fung. 2020. Caire: An end-to-end empa-
thetic chatbot. In AAAI, pages 13622–13623.

Bing Liu, Gokhan Tür, Dilek Hakkani-Tür, Pararth
Shah, and Larry Heck. 2018. Dialogue learning with
human teaching and feedback in end-to-end train-
able task-oriented dialogue systems. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 2060–2069, New Orleans, Louisiana.
Association for Computational Linguistics.

339

Chia Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016a. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In EMNLP
2016 - Conference on Empirical Methods in Natu-
ral Language Processing, Proceedings, pages 2122–
2132.

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Mike
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016b. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2122–2132.

Yukun Ma, Khanh Linh Nguyen, Frank Z Xing, and
Erik Cambria. 2020. A survey on empathetic dia-
logue systems. Information Fusion.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In proceedings of
ACL-08: HLT, pages 236–244.

Jekaterina Novikova, Ondřej Dušek, and Verena
Rieser. 2018. Rankme: Reliable human ratings
for natural language generation. arXiv preprint
arXiv:1803.05928.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Alec Radford. 2018. Improving Language Understand-
ing by Generative Pre-Training.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards Empathetic Open-
domain Conversation Models: A New Benchmark
and Dataset. pages 5370–5381.

Vasile Rus and Mihai Lintean. 2012. An optimal as-
sessment of natural language student input using
word-to-word similarity metrics. In International
Conference on Intelligent Tutoring Systems, pages
675–676. Springer.

Sashank Santhanam and Samira Shaikh. 2019.
Towards best experiment design for evaluat-
ing dialogue system output. arXiv preprint
arXiv:1909.10122.

Ozan Sener and Vladlen Koltun. 2018. Multi-task
learning as multi-objective optimization. arXiv
preprint arXiv:1810.04650.

David Vilar, Gregor Leusch, Hermann Ney, and
Rafael E Banchs. 2007. Human evaluation of ma-
chine translation through binary system compar-
isons. In Proceedings of the Second Workshop on
Statistical Machine Translation, pages 96–103.

Dingmin Wang, Chenghua Lin, Qi Liu, and Kam-
Fai Wong. 2021. Fast and scalable dialogue state
tracking with explicit modular decomposition. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 289–295, Online. Association for Computa-
tional Linguistics.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. TransferTransfo: A
Transfer Learning Approach for Neural Network
Based Conversational Agents. arXiv preprint
arXiv:1901.08149.

Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang, Jian-
heng Tang, and Liang Lin. 2019. End-to-end
knowledge-routed relational dialogue system for au-
tomatic diagnosis. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
7346–7353.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 654–664, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
19–27.

340

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 341–352,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Controllable Sentence Simplification with a Unified Text-to-Text Transfer
Transformer

Kim Cheng Sheang, Horacio Saggion
LaSTUS, TALN, Universitat Pompeu Fabra

C/Roc Boronat, 138, 08018 Barcelona, Spain
{kimcheng.sheang,horacio.saggion}@upf.edu

Abstract

Recently, a large pre-trained language model
called T5 (A Unified Text-to-Text Transfer
Transformer) has achieved state-of-the-art per-
formance in many NLP tasks. However, no
study has been found using this pre-trained
model on Text Simplification. Therefore in
this paper, we explore the use of T5 fine-tuning
on Text Simplification combining with a con-
trollable mechanism to regulate the system out-
puts that can help generate adapted text for dif-
ferent target audiences. Our experiments show
that our model achieves remarkable results
with gains of between +0.69 and +1.41 over
the current state-of-the-art (BART+ACCESS).
We argue that using a pre-trained model such
as T5, trained on several tasks with large
amounts of data, can help improve Text Sim-
plification.1

1 Introduction

Text Simplification (TS) can be regarded as a natu-
ral language generation task where the generated
text has a reduced language complexity in both
vocabulary and sentence structure while preserv-
ing its original information and meaning (Saggion,
2017). Its applications can be used as reading as-
sessment tools for people with low-literacy skills
such as children (Watanabe et al., 2009), and non-
native speakers (Paetzold and Specia, 2016), or
people with cognitive disabilities such as autism
(Barbu et al., 2015), aphasia (Carroll et al., 1999),
and dyslexia (Rello et al., 2013a; Matausch and
Peböck, 2010). In addition, TS can also be used
as a preprocessing step to improve the results of
many NLP tasks, e.g., Parsing (Chandrasekar et al.,
1996), Information Extraction (Evans, 2011; Jon-
nalagadda and Gonzalez, 2010), Question Genera-
tion (Bernhard et al., 2012), Text Summarization

1The code and data are available at https://github.
com/KimChengSHEANG/TS_T5

(Siddharthan et al., 2004), and Machine Translation
(Štajner and Popović, 2016, 2019).

In recent years, research in TS has been mostly
focused on developing models based on deep neu-
ral networks (Vu et al., 2018; Zhao et al., 2018b;
Martin et al., 2020b). However, and to the best of
our knowledge, very few studies of transfer learn-
ing –where a model is first pre-trained on a data-
rich task and then fine-tuned on downstream tasks–
have been explored in TS.

In this paper, we propose a transfer learning
and controllable sentence simplification model that
harnesses the power of the Unified Text-to-Text
Transfer Transformer (T5) pre-trained model (Raf-
fel et al., 2020), combining it with control tokens
to provide a way to generate output that adapts to
different target users. Such a model can be adjusted
to fit the need of different users without having to
build everything from the ground up.

We make the following contributions:

• We introduce a transfer learning approach
combined with a controllable mechanism for
sentence simplification task.

• We make an improvement to the performance
of the sentence simplification system.

• We introduce a new control token #words to
help the model generate sentences by replac-
ing long complex words with shorter alterna-
tives.

• We conduct an evaluation and comparison be-
tween different sizes of pre-trained models
and a detailed analysis on the effect of each
control token.

• We show that by choosing the right control
token values and pre-trained model, the model
achieves the state-of-the-art performance in
two well-known benchmarking datasets.

341

2 Related Work

2.1 Sentence Simplification
It is often regarded as a monolingual translation
problem (Zhu et al., 2010; Coster and Kauchak,
2011; Wubben et al., 2012), where the models are
trained on parallel complex-simple sentences ex-
tracted from English Wikipedia and Simple English
Wikipedia (SEW) (Zhu et al., 2010).

There are many approaches based on statisti-
cal Machine Translation (SMT), including phrase-
based MT (PBMT) (Štajner et al., 2015), and
syntax-based MT (SBMT) (Xu et al., 2016). Nisioi
et al. (2017) introduced Neural Text Simplifica-
tion (NTS), a Neural-Machine-Translation-based
system (NMT) which performs better than SMT.
Zhang and Lapata (2017) took a similar approach
adding lexical constraints combining the NMT
model with reinforcement learning. After the re-
lease of Transformer (Vaswani et al., 2017), Zhao
et al. (2018a) introduced a Transformer-based ap-
proach and integrated it with a paraphrase database
for simplification called Simple PPDB (Pavlick and
Callison-Burch, 2016a). The model outperforms
all previous state-of-the-art models in sentence sim-
plification.

Our proposed model is also a sequence-to-
sequence Transformer-based model, but instead
of using the original Transformer by Vaswani et al.
(2017), we use T5 (Raffel et al., 2020).

2.2 Controllable Sentence Simplification
In recent years, there has been increased interest
in conditional training with sequence-to-sequence
models. It has been applied to some NLP tasks
such as controlling the length and content of sum-
maries (Kikuchi et al., 2016; Fan et al., 2017),
politeness in machine translation (Sennrich et al.,
2016), and linguistic style in text generation (Ficler
and Goldberg, 2017). Scarton and Specia (2018)
introduced the controllable TS model by embed-
ding grade level token <grade> into the sequence-
to-sequence model. Martin et al. (2020b) took a
similar approach adding 4 tokens into source sen-
tences to control different aspects of the output
such as length, paraphrasing, lexical complexity,
and syntactic complexity. Kariuk and Karamshuk
(2020) took the idea of using control tokens from
Martin et al. (2020b) and used it in unsupervised
approach by integrating those control tokens into
the back translation algorithm, which allows the
model to self-supervise the process of learning

inter-relations between a control sequence and the
complexity of the outputs. The results of Scar-
ton and Specia (2018), Martin et al. (2020b), and
Kariuk and Karamshuk (2020) have shown that
adding control tokens does help improve the per-
formance of sentence simplification models quite
significantly.

Building upon Martin et al. (2020b), we fine-
tune T5 with all control tokens as defined in Martin
et al. (2020b) to control different aspects of the
output sentences. Moreover, we add one more
control token (number of words ratio) in order to
be able to generate new sentences with a similar
length as the source but shorter in word length as
we believe that the number characters ratio alone is
not enough for the model to generate shorter words.

3 Model

In this work, we fine-tune T5 pre-trained model
with the controllable mechanism on Text Simplifi-
cation. T5 (A Unified Text-to-Text Transfer Trans-
former) (Raffel et al., 2019) is pre-trained on a
number of supervised and unsupervised tasks such
as machine translation, document summarization,
question answering, classification tasks, and read-
ing comprehension, as well as BERT-style token
and span masking (Devlin et al., 2019). There are
five different variants of T5 pre-trained models: T5-
small (5 attention modules, 60 million parameters),
and T5-base (12 attention modules, 220 million
parameters). Due to the limited resources of Co-
lab Pro, we are able to train only T5-small and
T5-base.

3.1 Control Tokens

We use control tokens to control different aspects of
simplification such as compression ratio (#Chars),
paraphrasing (Levenshtein similarity), lexical com-
plexity (word rank), and syntactic complexity (the
depth of dependency tree) as defined in (Martin
et al., 2020b). Then, we add another control to-
ken word ratio (#Words) to control word length.
We argue that word ratio is another important con-
trol token because normally word frequency cor-
relates well with familiarity, and word length can
be an additional factor as long words tend to be
hard to read (Rello et al., 2013b). Moreover, cor-
pus studies of original and simplified texts show
that simple texts contain shorter and more frequent
words (Drndarević and Saggion, 2012). Therefore,
we add word ratio to help the model generate sim-

342

plified sentences with a similar amount of words
and shorter in word length, whereas #Chars alone
could help the model regulate sentence length but
not word length.

• #Chars (C): character length ratio between
source sentence and target sentence. The num-
ber of characters in target divided by that of
the source.

• LevSim (L): normalized character-level Lev-
enshtein similarity (Levenshtein, 1966) be-
tween the source and target.

• WordRank (WR): inverse frequency order
of all words in the target divided by that of the
source.

• DepTreeDepth (DTD): maximum depth of
the dependency tree of the target divided by
that of the source.

• #Words (W): number of words ratio between
source sentence and target sentence. The num-
ber of words in target divided by that of the
source.

Table 1 shows an example of a sentence embed-
ded with control tokens for training.

Source

simplify: W 0.58 C 0.52 L 0.67 WR 0.92
DTD 0.71 In architectural decoration Small
pieces of colored and iridescent shell have been
used to create mosaics and inlays, which have
been used to decorate walls, furniture and boxes.

Target

Small pieces of colored and shiny shell has been
used to decorate walls, furniture and boxes.

Table 1: This table shows how control tokens are em-
bedded into the source sentence for training. The key-
word simplify is added at the beginning of each source
sentence to mark it as a simplification task.

4 Experiments

Our model is developed using the Huggingface
Transformers library (Wolf et al., 2019)2 with Py-
Torch3 and Pytorch lightning4.

2https://huggingface.co/transformers/
model_doc/t5.html

3https://pytorch.org
4https://pytorchlightning.ai

4.1 Datasets
We use the WikiLarge dataset (Zhang and Lapata,
2017) for training. It is the largest and most com-
monly used text simplification dataset containing
296,402 sentence pairs from automatically aligned
complex-simple sentence pairs English Wikipedia
and Simple English Wikipedia which is compiled
from (Zhu et al., 2010; Woodsend and Lapata,
2011; Kauchak, 2013).

For validation and testing, we use TurkCorpus
(Xu et al., 2016), which has 2000 samples for vali-
dation and 359 samples for testing, and each com-
plex sentence has 8 human simplifications. We also
use a newly created dataset called ASSET (Alva-
Manchego et al., 2020) for testing, which contains
2000/359 samples (validation/test) with 10 simpli-
fications per source sentence.

4.2 Evaluation Metrics
Following previous research (Zhang and Lapata,
2017; Martin et al., 2020a), we use automatic eval-
uation metrics widely used in text simplification
task.

SARI (Xu et al., 2016) compares system outputs
with the references and the source sentence. It
measures the performance of text simplification on
a lexical level by explicitly measuring the goodness
of words that are added, deleted and kept. So far, it
is the most commonly adopted metric and we use
it as an overall score.

BLEU (Papineni et al., 2002) is originally de-
signed for Machine Translation and is commonly
used previously. BLEU has lost its popularity on
Text Simplification due to the fact that it correlates
poorly with human judgments and often penalizes
simpler sentences (Sulem et al., 2018). We keep
using it so that we can compare our system with
previous systems.

FKGL (Kincaid et al., 1975) In addition to SARI
and BLEU, we use FKGL to measure readability;
however, it does not take into account grammatical-
ity and meaning preservation.

We compute SARI, BLEU, and FKGL using
EASSE (Alva-Manchego et al., 2019)5, a simplifi-
cation evaluation library.

4.3 Training Details
We performed hyperparameters search using Op-
tuna (Akiba et al., 2019) with T5-small and reduced

5https://github.com/feralvam/easse

343

size dataset to speed up the process. All models
are trained with the same hyperparameters such
as a batch size of 6 for T5-base and 12 for T5-
small, maximum token of 256, learning rate of
3e-4, weight decay of 0.1, Adam epsilon of 1e-8, 5
warm up steps, 5 epochs, and the rest of the param-
eters are left with default values from Transformers
library. Also, the seed is set to 12 for reproducibil-
ity. For the generation, we use beam size of 8.
Our models are trained and evaluated using Google
Colab Pro, which has a random GPU T4 or P100.
Both have 16GB of memory, up to 25GB of RAM,
and a time limit of 24h maximum for the execution
of cells. Training of T5-base model for 5 epochs
usually takes around 20 hours.

4.4 Choosing Control Token Values at
Inference

In this experiment, we want to search for control
token values that make the model generate the best
possible simplifications. Thus, we select the values
that achieve the best SARI on the validation set
using the same tool that we use for hyperparameters
tuning, Optuna (Akiba et al., 2019), and keep those
values fixed for sentences in the test set. We repeat
the same process for each evaluation dataset.

4.5 Baselines

We benchmark our model against several well-
known state-of-the-art systems:

YATS (Ferrés et al., 2016)6 Rule-based system
with linguistically motivated rule-based syntactic
analysis and corpus-based lexical simplifier which
generates sentences based on part-of-speech tags
and dependency information.

PBMT-R (Wubben et al., 2012) Phrase-based
MT system trained on a monolingual parallel cor-
pus with candidate re-ranking based on dissimilar-
ity using Levenshtein distance.

UNTS (Surya et al., 2019) Unsupervised Neu-
ral Text Simplification is based on the encode-
attend-decode style architecture (Bahdanau et al.,
2014) with a shared encoder and two decoders and
trained on unlabeled data extracted from English
Wikipedia dump.

Dress-LS (Zhang and Lapata, 2017) A Seq2Seq
model trained with deep reinforcement learning

6http://able2include.taln.upf.edu

combined with a lexical simplification model to
improve complex word substitutions.

DMASS+DCSS (Zhao et al., 2018b) A Seq2Seq
model trained with the original Transformer ar-
chitecture (Vaswani et al., 2017) combined with
the simple paraphrase database for simplification
PPDB. (Pavlick and Callison-Burch, 2016b).

ACCESS (Martin et al., 2020b) Seq2Seq system
trained with four control tokens attached to source
sentence: character length ratio, Levenshtein simi-
larity ratio, word rank ratio, and dependency tree
depth ratio between source and target sentence.

BART+ACCESS (Martin et al., 2020a) The sys-
tem fine-tunes BART (Lewis et al., 2020) and adds
the simplification control tokens from ACCESS.

4.6 Results
We evaluate our models automatically on two
different datasets TurkCorpus and ASSET. In
addition, we also perform a human evaluation
on one of our models, which is described in
Section 5. Table 2 reports the results of auto-
matic evaluation of our models compared with
other state-of-the-art systems. Our model T5-
base+#chars+WordRank+LevSim+DepTreeDepth
performs best on TurkCorpus with the SARI score
of 43.31, while the other model T5-base+All
Tokens performs best on ASSET with SARI score
of 45.04 compared to the current state-of-the-art
BART+ACCESS with the SARI score of 42.62 on
TurkCorpus and 43.63 on ASSET. Following these
results, our models out-perform all the state-of-
the-art models in the literature in all approaches:
rule-based, supervised and unsupervised approach
even without using any additional resources.

5 Human Evaluation

In addition to automatic evaluation, we performed
a human evaluation on the outputs of different sys-
tems. Following recent works (Alva-Manchego
et al., 2017; Dong et al., 2019; Zhao et al., 2020),
we run our evaluation on Amazon Mechanical Turk
by asking five workers to rate using 5-point lik-
ert scale on three aspects: (1) Fluency (or Gram-
maticality): is it grammatically correct and well-
formed?, (2) Simplicity: is it simpler than the
original sentence?, and (3) Adequacy (or Mean-
ing preservation): does it preserve meaning of the
original sentence? More detailed instructions can
be found in Appendix A. For this evaluation, we

344

Model Data
ASSET TurkCorpus

SARI↑ BLEU↑ FKGL↓ SARI↑ BLEU↑ FKGL↓
YATS Rule-based 34.4 72.07 7.65 37.39 74.87 7.67

PBMT-R PWKP (Wikipedia) 34.63 79.39 8.85 38.04 82.49 8.85

UNTS Unsup. Data 35.19 76.14 7.60 36.29 76.44 7.60

Dress-LS WikiLarge 36.59 86.39 7.66 36.97 81.08 7.66

DMASS+DCSS WikiLarge 38.67 71.44 7.73 39.92 73.29 7.73

ACCESS WikiLarge 40.13 75.99 7.29 41.38 76.36 7.29

BART+ACCESS WikiLarge 43.63 76.28 6.25 42.62 78.28 6.98

T5-base+#Chars+WordRank

+LevSim+DepTreeDepth WikiLarge 44.91 71.96 6.32 43.31 66.23 6.17

T5-base+All Tokens WikiLarge 45.04 71.21 5.88 43.00 64.42 5.63

Table 2: We report SARI, BLEU and FKGL evaluation results of our model compared with others on TurkCorpus
and ASSET test set (SARI and BLEU higher the better, FKGL lower the better). BLEU and FKGL scores are
not quite relevant for sentence simplification, and we keep them just to compare with the previous models. All
the results of the literature are taken from Martin et al. (2020a), except YATS which is generated using its web
interface.

randomly select 100 sentences from different sim-
plification systems trained on WikiLarge dataset,
except YATS which is rule-based. Table 3 reports
the results in averaged values.

Model Fluency Simplicity Adequacy
YATS 4.03* 3.62* 3.92*
DMASS+DCSS 3.84* 3.70* 3.48*
BART+ACCESS 4.41 4.02 4.13

Our Model 4.30 3.99 4.18

Table 3: Results of human evaluation on 100 random
sentences selected from TurkCorpus test set. Best re-
sults are marked in bold, and results marked with an
’*’ are significantly lower than our model according to
pared t-test with p<0.01. Our model in use here is T5-
base+All Tokens.

The results have shown that our model per-
forms lower in fluency and about the same in
simplicity, and better in adequacy compared to
BART+ACCESS. Based on our observation, there
are two reasons that humans rated our model lower
on fluency: (1) our model generates incorrect text
format (without spaces) in some sentences (exam-
ples in Table 4). The problem can be easily spotted
by human, but it does not affect the automatic eval-
uation as EASSE uses a tokenizer which can split
the whole sentence correctly. (2) Our model tends
to produce longer sentences than BART+ACCESS

and in some cases, the subject is repeated twice
when the sentence is split into two (e.g., relative
clause). The repetition is also considered as one
of the key features of simplification as it makes
text easier to understand, but for native or fluent
language speakers, repetition and the longer sen-
tence make the fluency worse. Moreover, due to
these problems, the evaluators also tend to lower
the simplicity score as they consider it harder to
read.

Sentence

So far the’celebrity’episodes have included Vic
Reeves, Nancy Sorrell, and Gaby Roslin.

New South Wales’biggest city and capital is
Sydney.

Table 4: Examples of incorrect text format generated
by our model.

6 Ablation Study

In this section, we investigate the contribution of
each token and different T5 pre-trained models to
the performance of the system. Table 5 reports
the scores of models trained on WikiLarge and
evaluated with TurkCorpus and ASSET test set.
Table 6 shows all control token values used for all

345

Model
ASSET TurkCorpus

SARI↑ BLEU↑ FKGL↓ SARI↑ BLEU↑ FKGL↓
T5-small (No tokens) 29.85 90.39 8.94 34.50 94.16 9.44

T5-small + All Tokens 39.12 86.08 6.99 40.83 85.12 6.78

T5-base (No tokens) 34.15 88.97 8.94 37.56 90.96 8.81

T5-base:

+#Words 38.51 84.02 7.45 38.86 89.10 8.61

+#Chars 39.58 79.22 6.06 38.95 84.81 7.76

+LevSim 41.58 82.52 6.53 40.90 85.45 7.55

+WordRank 41.40 76.75 5.85 41.44 85.46 7.67

+DepTreeDepth 40.08 81.94 6.56 39.18 87.60 7.81

T5-base:

+WordRank+LevSim 42.85 80.38 4.47 41.75 83.90 7.42

+#Chars+WordRank+LevSim 44.89 56.76 5.93 42.91 67.09 6.53

+#Words+#Chars+WordRank+LevSim 44.65 58.52 5.52 43.03 68.11 5.96

+#Chars+WordRank+LevSim+DepTreeDepth 44.91 71.96 6.32 43.31 66.23 6.17

+All Tokens 45.04 71.21 5.88 43.00 64.42 5.63

Table 5: Ablation study on different T5 models and different control token values. Each model is trained and
evaluated independently. We report SARI, BLEU and FKGL on TurkCorpus and ASSET test set. Control token
values corresponded to each model are listed in the Table 6

Model ASSET TurkCorpus

T5-small (No tokens)

T5-small + All Tokens W1.05 C0.95 WR0.75 L0.75 DTD0.75 W1.05 C0.95 WR0.85 L0.85 DTD0.85

T5-base (No tokens)

T5-base:

+#Words W0.75 W0.85

+#Chars C0.5 C0.75

+LevSim L0.75 L0.85

+WordRank WR0.25 WR0.85

+DepTreeDepth DTD0.5 DTD0.75

T5-base:

+WordRank+LevSim W0.75 L0.75 W0.85 L0.85

+#Chars+WordRank+LevSim C0.95 WR0.75 LevSim0.75 C0.95 WR0.85 L0.85

+#Words+#Chars+WordRank+LevSim W1.05 C0.95 WR0.75 L0.75 W1.05 C0.95 WR0.75 L0.75

+#Chars+WordRank+LevSim+DepTreeDepth C0.95 WR0.75 L0.75 DTD0.75 C0.95 WR0.75 L0.75 DTD0.75

+All Tokens W1.05 C0.95 WR0.75 L0.75 DTD0.75 W1.05 C0.95 WR0.85 L0.85 DTD0.85

Table 6: These are the control token values used for the ablation study in Table 5. Each model is trained and
evaluated independently. The values are selected using the hyperparameters search tool mentioned in Section 4.4.

346

Figure 1: Influence of #Words and #Chars control tokens on the simplification outputs. Red represents the outputs
of the model trained with four tokens, without #Words control token. Blue represents the outputs of the model
trained with all five tokens. Green is the reference taken from TurkCorpus. The first row shows the compression
ratio (number of chars ratio between system outputs and source sentences), and second row is the Levenshtein
similarity (words similarity between system outputs and source sentences) of each model. We plot the results of
the 2000 validation sentences from TurkCorpus. Other control token values used here are set to 0.75, the example
in Table 7.

the models in Table 5 which are selected using the
same process and tool as mentioned in Section 4.4.

Based on the results, the larger model (T5-base)
performs better than the smaller one (T5-small) on
both datasets (+3.06 on TurkCorpus, +4.3 on AS-
SET). It is due to the fact that larger model has
more information which could generate better and
more coherent text. Moreover, when added con-
trol tokens, the performance increases significantly.
With only one token, WordRank performs best on
TurkCorpus (+3.88 over T5-base) and LevSim on
ASSET (+7.43 over T5-base).

Using pre-trained model alone does not gain
much improvement, only when combined with con-
trol tokens, the results improve by a big margin
(+3.06 and +9.28 for T5-small with and without
tokens), and (+5.75 and +10.89 for T5-base with
and without tokens).

6.1 Analysis on the effect of #Words

Our goal of using #Words control token is to make
the model learn to generate shorter words whereas
#Chars alone could help the model regulate the
sentence length but not word length, so here we
investigate how #Words and #Chars control tokens
affect the outputs.

For the model with #Words token to work, it has
to be incorporated with #Chars as #Words deter-

mines the number of words and #Chars limits the
number of characters in the sentence. In our exam-
ples Table 7, we set #Words to 1.0, which means
the number of words in the simplified sentence has
to be similar to the original sentence, and #Chars
is set to 0.5 and 0.75, which means keeping the
same amount of words but reduces 50% or 25% of
characters.

Figure 1 shows the differences in density distri-
bution (first row) and similarity (second row) be-
tween model 1 in red without #Words token, model
2 in blue with #Words tokens, and the one in green
is the reference. The first column #Chars is set
to 0.25, second column #Chars=0.5, third column
#Chars=0.75, fourth #Chars=1.0, and in all cases
#words is set to 1.0. From the plots, we can see
that model 1 does more compression than model
2, which means model 2 preserve more words than
model 1.

Table 7 shows some example sentences com-
paring models with #Chars 0.75 and #Chars 0.5.
When #Chars is set to 0.75, we do not see much dif-
ference between the two models, but when #Chars
is set to 0.5, the two models have differences in
terms of sentence length and word length. For
example, the word mathematics in the example
number one is replaced with the word math in
model 2 (with #Words) and removed by model 1

347

Tokens
Model 1: #Chars 0.5 WordRank 0.75 LevSim 0.75 DepTreeDepth 0.75
Model 2: #Words 1.0 #Chars 0.5 WordRank 0.75 LevSim 0.75 DepTreeDepth 0.75

Source: In order to accomplish their objective, surveyors use elements of geometry, engineering,
trigonometry, mathematics, physics, and law.

Model 1: In order to accomplish their objective, surveyors use geometry, engineering, and law.
Model 2: In order to do this, surveyors use geometry, engineering, trigonometry, math, physics,

and law.
Source: The municipality has about 5700 inhabitants.
Model 1: The municipality has 5700.
Model 2: The town has about 5700.
Source: A hunting dog refers to any dog who assists humans in hunting.
Model 1: A hunting dog is any dog who hunts.
Model 2: A hunting dog is a dog who helps humans in hunting.

Tokens
Model 1: #Chars 0.75 WordRank 0.75 LevSim 0.75 DepTreeDepth 0.75
Model 2: #Words 1.0 #Chars 0.75 WordRank 0.75 LevSim 0.75 DepTreeDepth 0.75

Source: The park has become a traditional location for mass demonstrations.
Model 1: The park has become a popular place for demonstrations.
Model 2: The park has become a place for people to show things.
Source: Frances was later absorbed by an extratropical cyclone on November 21.
Model 1: Frances was later taken in by an extratropical cyclone.
Model 2: Frances was later taken over by a cyclone on November 21.
Source: There are claims that thousands of people were impaled at a single time.
Model 1: There are claims that thousands of people were killed.
Model 2: There are also stories that thousands of people were killed at a time.

Table 7: Examples showing the differences between the model with number of words ratio versus the one without.
Model 1 trained with four tokens, without #Words control token, and model 2 trained with all five control tokens.
All control token values used to generate the outputs are listed in the rows Tokens. We use bold to highlight the
differences.

(without #Words). Second example, the word mu-
nicipality is replaced by the word town by model
2, and model 1 simply keeps the word and crops
the sentence (the same problem with the third ex-
ample). In addition, the fourth example, the word
location is replaced by both models with the word
place, the phrase mass demonstration is reduced
to demonstration by the model 1 whereas model
2 changes to four shorter words people to show
things.

There are many cases where model 1 and model
2 generate the same substitutions, but very often
model 1 tends to crop the end of the sentence or
drops some words to fulfill the length constraint.
Whereas model 2 tends to generate longer sen-
tences than model 1, less crop, and very often re-
places long complex words with shorter ones. Even
though, based on the results from Table 2, adding

the #Words control token does not significantly im-
prove the SARI score and sometimes even lowers
the score, it certainly holds its purpose.

7 Conclusion

In this paper, we propose a method which lever-
ages a big pre-trained model (T5) fine-tuning it
for the Controllable Sentence Simplification task.
The experiments have shown good results of 43.31
SARI on TurkCorpus evaluation set and of 45.04
on ASSET evaluation set, outperforming the cur-
rent state-of-the-art model. Also, we have shown
that adding the control token #Words is useful for
generating substitutions with a shorter lengths.

Acknowledgments

We acknowledge support from the project
Context-aware Multilingual Text Simplifi-

348

cation (ConMuTeS) PID2019-109066GB-
I00/AEI/10.13039/501100011033 awarded by
Ministerio de Ciencia, Innovación y Universidades
(MCIU) and by Agencia Estatal de Investigación
(AEI) of Spain. Also, we would like to thank the
three anonymous reviewers for their insightful
suggestions.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge dis-
covery & data mining, pages 2623–2631.

Fernando Alva-Manchego, Joachim Bingel, Gustavo
Paetzold, Carolina Scarton, and Lucia Specia. 2017.
Learning how to simplify from explicit labeling of
complex-simplified text pairs. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 295–305.

Fernando Alva-Manchego, Louis Martin, Antoine Bor-
des, Carolina Scarton, Benoı̂t Sagot, and Lucia Spe-
cia. 2020. ASSET: A dataset for tuning and evalu-
ation of sentence simplification models with multi-
ple rewriting transformations. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4668–4679, Online. As-
sociation for Computational Linguistics.

Fernando Alva-Manchego, Louis Martin, Carolina
Scarton, and Lucia Specia. 2019. EASSE: Easier au-
tomatic sentence simplification evaluation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP): System Demonstra-
tions, pages 49–54, Hong Kong, China. Association
for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Eduard Barbu, M Teresa Martı́n-Valdivia, Eugenio
Martı́nez-Cámara, and L Alfonso Ureña-López.
2015. Language technologies applied to document
simplification for helping autistic people. Expert
Systems with Applications, 42(12):5076–5086.

Delphine Bernhard, Louis De Viron, Véronique
Moriceau, and Xavier Tannier. 2012. Question gen-
eration for french: collating parsers and paraphras-
ing questions. Dialogue & Discourse, 3(2):43–74.

John A Carroll, Guido Minnen, Darren Pearce, Yvonne
Canning, Siobhan Devlin, and John Tait. 1999. Sim-
plifying text for language-impaired readers. In

Ninth Conference of the European Chapter of the As-
sociation for Computational Linguistics.

Raman Chandrasekar, Christine Doran, and Srinivas
Bangalore. 1996. Motivations and methods for text
simplification. In COLING 1996 Volume 2: The
16th International Conference on Computational
Linguistics.

William Coster and David Kauchak. 2011. Simple en-
glish wikipedia: a new text simplification task. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 665–669.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. Editnts: An neu-
ral programmer-interpreter model for sentence sim-
plification through explicit editing. arXiv preprint
arXiv:1906.08104.

Biljana Drndarević and Horacio Saggion. 2012. To-
wards automatic lexical simplification in spanish: an
empirical study. In Proceedings of the First Work-
shop on Predicting and Improving Text Readability
for target reader populations, pages 8–16.

Richard J Evans. 2011. Comparing methods for
the syntactic simplification of sentences in informa-
tion extraction. Literary and linguistic computing,
26(4):371–388.

Angela Fan, David Grangier, and Michael Auli. 2017.
Controllable abstractive summarization. arXiv
preprint arXiv:1711.05217.

Daniel Ferrés, Montserrat Marimon, Horacio Saggion,
et al. 2016. Yats: yet another text simplifier. In
International Conference on Applications of Natural
Language to Information Systems, pages 335–342.
Springer.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. arXiv preprint arXiv:1707.02633.

Siddhartha Jonnalagadda and Graciela Gonzalez. 2010.
Biosimplify: an open source sentence simplification
engine to improve recall in automatic biomedical
information extraction. In AMIA Annual Sympo-
sium Proceedings, volume 2010, page 351. Ameri-
can Medical Informatics Association.

Oleg Kariuk and Dima Karamshuk. 2020. Cut: Con-
trollable unsupervised text simplification. arXiv
preprint arXiv:2012.01936.

349

David Kauchak. 2013. Improving text simplification
language modeling using unsimplified text data. In
Proceedings of the 51st annual meeting of the associ-
ation for computational linguistics (volume 1: Long
papers), pages 1537–1546.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Control-
ling output length in neural encoder-decoders. arXiv
preprint arXiv:1609.09552.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel. Technical report, Naval
Technical Training Command Millington TN Re-
search Branch.

Reno Kriz, Joao Sedoc, Marianna Apidianaki, Car-
olina Zheng, Gaurav Kumar, Eleni Miltsakaki, and
Chris Callison-Burch. 2019. Complexity-weighted
loss and diverse reranking for sentence simplifica-
tion. arXiv preprint arXiv:1904.02767.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Louis Martin, Angela Fan, Éric de la Clergerie, An-
toine Bordes, and Benoı̂t Sagot. 2020a. Multilin-
gual unsupervised sentence simplification. arXiv
preprint arXiv:2005.00352.

Louis Martin, Éric Villemonte de La Clergerie, Benoı̂t
Sagot, and Antoine Bordes. 2020b. Control-
lable Sentence Simplification. In LREC 2020 -
12th Language Resources and Evaluation Confer-
ence, Marseille, France. Due to COVID19 pan-
demic, the 12th edition is cancelled. The LREC
2020 Proceedings are available at http://www.lrec-
conf.org/proceedings/lrec2020/index.html.

Kerstin Matausch and Birgit Peböck. 2010. Easyweb–a
study how people with specific learning difficulties
can be supported on using the internet. In Interna-
tional Conference on Computers for Handicapped
Persons, pages 641–648. Springer.

Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 85–91.

Gustavo H Paetzold and Lucia Specia. 2016. Unsuper-
vised lexical simplification for non-native speakers.
In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 3761–3767.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ellie Pavlick and Chris Callison-Burch. 2016a. Simple
ppdb: A paraphrase database for simplification. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 143–148.

Ellie Pavlick and Chris Callison-Burch. 2016b. Simple
PPDB: A paraphrase database for simplification. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 143–148, Berlin, Germany. As-
sociation for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Luz Rello, Ricardo Baeza-Yates, Stefan Bott, and Ho-
racio Saggion. 2013a. Simplify or help? text
simplification strategies for people with dyslexia.
In Proceedings of the 10th International Cross-
Disciplinary Conference on Web Accessibility, pages
1–10.

Luz Rello, Susana Bautista, Ricardo Baeza-Yates,
Pablo Gervás, Raquel Hervás, and Horacio Saggion.
2013b. One half or 50%? an eye-tracking study of
number representation readability. In IFIP Confer-
ence on Human-Computer Interaction, pages 229–
245. Springer.

Horacio Saggion. 2017. Automatic Text Simplification.
Synthesis Lectures on Human Language Technolo-
gies, 10(1):1–137.

Carolina Scarton and Lucia Specia. 2018. Learning
simplifications for specific target audiences. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 712–718.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. In Proceedings of

350

the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 35–40.

Advaith Siddharthan, Ani Nenkova, and Kathleen
McKeown. 2004. Syntactic simplification for im-
proving content selection in multi-document summa-
rization. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguis-
tics, pages 896–902, Geneva, Switzerland. COL-
ING.

Sanja Štajner, Iacer Calixto, and Horacio Saggion.
2015. Automatic text simplification for spanish:
Comparative evaluation of various simplification
strategies. In Proceedings of the international con-
ference recent advances in natural language pro-
cessing, pages 618–626.

Sanja Štajner and Maja Popović. 2016. Can text simpli-
fication help machine translation? In Proceedings of
the 19th Annual Conference of the European Associ-
ation for Machine Translation, pages 230–242.

Sanja Štajner and Maja Popović. 2019. Automated
text simplification as a preprocessing step for ma-
chine translation into an under-resourced language.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2019), pages 1141–1150.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018.
BLEU is not suitable for the evaluation of text sim-
plification. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 738–744, Brussels, Belgium. Association
for Computational Linguistics.

Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain,
and Karthik Sankaranarayanan. 2019. Unsupervised
neural text simplification. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2058–2068, Florence,
Italy. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Tu Vu, Baotian Hu, Tsendsuren Munkhdalai, and Hong
Yu. 2018. Sentence simplification with memory-
augmented neural networks. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 79–85, New Orleans, Louisiana. Asso-
ciation for Computational Linguistics.

Willian Massami Watanabe, Arnaldo Candido Junior,
Vinı́cius Rodriguez Uzêda, Renata Pontin de Mattos
Fortes, Thiago Alexandre Salgueiro Pardo, and San-
dra Maria Aluı́sio. 2009. Facilita: reading assistance
for low-literacy readers. In Proceedings of the 27th

ACM international conference on Design of commu-
nication, pages 29–36.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Kristian Woodsend and Mirella Lapata. 2011. Learn-
ing to simplify sentences with quasi-synchronous
grammar and integer programming. In Proceedings
of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 409–420.

Sander Wubben, Antal van den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1015–
1024, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
584–594, Copenhagen, Denmark. Association for
Computational Linguistics.

Sanqiang Zhao, Rui Meng, Daqing He, Saptono Andi,
and Parmanto Bambang. 2018a. Integrating trans-
former and paraphrase rules for sentence simplifica-
tion. arXiv preprint arXiv:1810.11193.

Sanqiang Zhao, Rui Meng, Daqing He, Andi Saptono,
and Bambang Parmanto. 2018b. Integrating trans-
former and paraphrase rules for sentence simplifi-
cation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3164–3173, Brussels, Belgium. Association
for Computational Linguistics.

Yanbin Zhao, Lu Chen, Zhi Chen, and Kai Yu.
2020. Semi-supervised text simplification with
back-translation and asymmetric denoising autoen-
coders. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 9668–9675.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model
for sentence simplification. In Proceedings of the
23rd International Conference on Computational
Linguistics (Coling 2010), pages 1353–1361.

351

A Human Evaluation Interface

Figure 2: Our interface is based on the one proposed by Kriz et al. (2019), and the consent form based on Alva-
Manchego et al. (2020).

352

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 353–363,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

SEPRG: Sentiment aware Emotion controlled Personalized Response
Generation

Mauajama Firdaus, Umang Jain, Asif Ekbal and Pushpak Bhattacharyya
Department of Computer Science and Engineering

Indian Institute of Technology Patna, India
(mauajama.pcs16,umang,asif,pb)@iitp.ac.in

Abstract
Social chatbots have gained immense popu-
larity, and their appeal lies not just in their
capacity to respond to the diverse requests
from users, but also in the ability to develop
an emotional connection with users. To fur-
ther develop and promote social chatbots, we
need to concentrate on increasing user inter-
action and take into account both the intellec-
tual and emotional quotient in the conversa-
tional agents. Therefore, in this work, we pro-
pose the task of sentiment aware emotion con-
trolled personalized dialogue generation giv-
ing the machine the capability to respond emo-
tionally and in accordance with the persona of
the user. As sentiment and emotions are highly
co-related, we use the sentiment knowledge
of the previous utterance to generate the cor-
rect emotional response in accordance with the
user persona. We design a Transformer based
Dialogue Generation framework, that gener-
ates responses that are sensitive to the emo-
tion of the user and corresponds to the persona
and sentiment as well. Moreover, the persona
information is encoded by a different Trans-
former encoder, along with the dialogue his-
tory, is fed to the decoder for generating re-
sponses. We annotate the PersonaChat dataset
with sentiment information to improve the re-
sponse quality. Experimental results on the
PersonaChat dataset show that the proposed
framework significantly outperforms the exist-
ing baselines, thereby generating personalized
emotional responses in accordance with the
sentiment that provides better emotional con-
nection and user satisfaction as desired in a so-
cial chatbot.

1 Introduction

One of the significant challenges of artificial intelli-
gence (AI) is to endow the machine with the ability
to interact in natural language with humans. In the
recent past, tremendous effort has been given to cre-
ate smart personal assistants, such as Microsoft’s

Cortana, Apple’s Siri, Amazon’s Alexa, Google
Home, etc. The personal assistants in our mobile
devices invariably assist in our day-to-day lives
by answering a wide range of queries. Such as-
sistants act as social agents that take care of the
various activities of their users. Besides reacting
passively to user requests, they also proactively an-
ticipate user needs and provide in-time assistance,
such as reminding of an upcoming event or sug-
gesting a useful service without receiving explicit
user requests (Sarikaya, 2017). The daunting task
for these agents is that they have to work well in
open domain scenarios as people learn to rely on
them to effectively maintain their works and lives
efficiently.

Empathy and social belonging are a few of the
fundamental needs for human beings (Maslow,
1943). Building social chatbots to tackle these emo-
tional needs is indeed of great benefit to our society.
The primary objective of these chatbots is not inher-
ently to answer all the users’ questions, but rather
to be a virtual companion of the users. To become
a better companion, it is imperative for the agent
to understand the personality of the user to assist
in different aspects of life. Along with understand-
ing the personality traits of a user, the emotional
connection is an essential factor for building bet-
ter communication. Social conversational agents
can serve for a more extended period of time by
maintaining a consistent personality (increasing
trust in the user) and by establishing an emotional
connection with them. The ability to empathize,
create social belonging, and adhere to a personality
and integration of these factors in conversational
agents is one of the long-standing goals of Artifi-
cial Intelligence (AI). Conversational agents need
to monitor the user’s emotion in order to suffice
the emotional needs and simultaneously empathize
with them, making the conversation engaging, in-
creasing user contentment (Prendinger et al., 2005),

353

Persona 1 Persona 2
I am primarily a meat eater. I’ve a sweet tooth.

I am a guitar player. I’m a babysitter and drive a mercedes.
Welding is my career field. I’m the middle child of 3 siblings.

My parents don’t know I am gay. I’m getting married in six months.
[Person 1] What do you do for career? (Neutral)

[Person 2] I like to watch kids. (Positive)
[Person 1] I actually play guitar and do a lot of welding. (Positive)

[Person 2] What do you weld? houses?(Neutral)

Table 1: A conversation from the PersonaChat dataset
with sentiments

and decreasing breakdowns in conversations (Mar-
tinovski and Traum, 2003). Moreover, these agents
should also have the capability to generate personal-
ized responses conforming to the personal interests
and unique needs of different users while present-
ing a consistent personality to gain the user’s trust
and confidence. Hence, the primary motivation of
our current work lies in generating responses that
are engaging, emotionally appropriate, and also
integrates the personal interests of the user.

Lately, researchers have started focusing on in-
corporating personality information on chit-chat
(Zhang et al., 2018) and goal-oriented (Joshi et al.,
2017; Luo et al., 2019) conversational systems.
Due to the lack of persona data sets, the authors cre-
ated a PersonaChat dataset in (Zhang et al., 2018),
where the individual personality data is represented
in a few texts for open-domain chit-chat dialogue
systems. We present an example from the dataset in
Table 1, from which it is obvious that the speakers
are able to retain the persona knowledge when com-
municating with each other. This helps to make the
dialogue engaging and also makes it easier to build
trust and credibility with the users (Shum et al.,
2018). For conversational systems to effectively
communicate with the user in a coherent and nat-
ural way, the ability to maintain a clear persona
is imperative. While it is necessary to maintain a
clear personality in order to gain the confidence of
the user, it is also essential to react emotionally in
order to create a bond with the user.

From Table 1, it is evident that when talking with
the user, the agent can retain a specific personality,
but it sacrifices the emotional link with the user.
The dialogue, therefore, is almost like stating facts
instead of a real discussion. In this work, there-
fore, we propose the task of infusing the responses
with emotional content while maintaining a clear
persona. From the table, the response to Person 2
could be more empathetic like That’s a great job,
as I play guitar and do welding for a career. This

response has a happy undertone than the ground-
truth response, which is neutral and contains only
the facts about Person 1. Empathetic responses are
insightful and provide a forum for a more substan-
tial discussion. It is evident from the illustration
that only having a persona in a reply is not suffi-
cient to produce interactive responses. To render it
more human-like, the emotional element must also
be integrated into the replies. Emotions and senti-
ments are subjective qualities and are understood
to share overlapping features; hence are frequently
used interchangeably.

This is mainly because both sentiment and emo-
tion refer to experiences resulting from the com-
bination of biological, cognitive, and social influ-
ences. Though both are considered to be the same,
yet according to (Munezero et al., 2014), the senti-
ment is formed and retained for a longer duration,
whereas emotions are like episodes that are shorter
in length. Moreover, the sentiment is mostly target-
centric, while emotions are not always directed to
a target. Every emotion is associated with senti-
ments, hence using the sentiment information of
the utterances can assist in narrowing down the
set of emotions for generating contextually correct
emotional responses. In the Table 1, the dialogue
has been annotated with the corresponding senti-
ments to assist in generating empathetic responses.
To the best of our knowledge, this is one of the
first works that include sentiment information for
creating personalized emotional responses.

The key contributions of this work are as fol-
lows:

1. We propose the task of generating empathetic,
personalized responses while considering the
persona information and implicitly the senti-
ment in the responses through the dialogue
context.

2. We propose a novel Transformer based
encoder-decoder framework, with the ability
to infuse the sentiment, emotion and persona
information in the responses.

3. Experimental results show that our proposed
framework is capable of maintaining a consis-
tent persona and sentiment while generating
emotional responses compared to the existing
baselines.

The rest of the paper is structured as follows.
In Section II, we present a brief survey of the re-
lated work. In Section III, we explain the proposed

354

methodology. In Section IV, we describe the de-
tails of the datasets that we used and annotated.
The experimental setup, along with the evaluation
metrics, is reported in Section V. In Section VI, we
present the results along with the necessary analy-
sis. Finally, we conclude in Section VII with future
work.

2 Related Work

In complete applications, such as dialogue systems,
natural language generation (NLG) has become
increasingly essential (Vinyals and Le, 2015; Li
et al., 2016b; Serban et al., 2017; Wu et al., 2018)
and also in many other natural language interfaces.
The generation of responses provides the means
by which a conversational agent can communicate
with its user to assist users in achieving their de-
sired goals. Recently, generative adversarial net-
works have been exploited for dialogue generation
(Xu et al., 2018, 2017; Zhang et al., 2019; Zhu
et al., 2019; Bruni and Fernandez, 2017) for a bet-
ter generation of responses.

Persona information is an essential part of gen-
erating responses. Earlier works on persona-based
conversational models (Li et al., 2016a) incorpo-
rated speakers’ embeddings to infuse persona infor-
mation in the responses. To incorporate persona in
chit-chat models, the authors in (Zhang et al., 2018;
Mazaré et al., 2018) introduced a PersonaChat
dataset that includes personal information of the
speakers. This dataset has been extensively used
to build persona-based dialogue systems (Madotto
et al., 2019; Yavuz et al., 2019; Song et al., 2019,
2020). The authors in (Madotto et al., 2019) used
a meta-learning framework to include persona in-
formation in the generated responses. Similarly,
the authors in (Yavuz et al., 2019) employed a hi-
erarchical pointer network for generating persona-
based responses. The authors in (Song et al., 2019)
used persona information to generate diverse re-
sponses by employing conditional variational au-
toencoder. Our present work differs from these
existing works (that made use of the PersonaChat
dataset) in a sense that we intend to use the persona
information while generating emotional responses.

Persona information is also being exploited in
goal-oriented dialogue systems (Joshi et al., 2017;
Luo et al., 2019; Qian et al., 2017). The authors
in (Joshi et al., 2017) introduced persona informa-
tion in the babI dialog dataset for creating better
responses. The authors used conditional variational

auto-encoders for personalized generation in (Wu
et al., 2020). As personalization has been consid-
ered in responses, we intend to take a step ahead
by inculcating the emotions in accordance to the
emotion of the user and the dialogue history.

Lately, emotional text generation has gained
immense popularity (Huang et al., 2018; Li and
Sun, 2018; Lin et al., 2019; Li et al., 2017; Ghosh
et al., 2017; Kezar, 2018; Rashkin et al., 2019;
Zhou and Wang, 2017). In (Zhou et al., 2018), an
emotional chatting machine (ECM) was proposed
that was built upon seq2seq framework for gen-
erating emotional responses. Recently, a lexicon-
based attention framework was employed to gener-
ate responses with a specific emotion (Song et al.,
2020). Emotional embedding, along with affec-
tive sampling and regularizer, was employed to
generate the affect driven dialogues in (Colombo
et al., 2019). Lately, authors in (Firdaus et al.,
2020) designed personalized response generation
framework with controllable emotions using ba-
sic sequence-to-sequence framework. Our present
research differs from these existing works as we
propose a novel framework using a generative ad-
versarial network to generate responses in an em-
pathetic manner, having a consistent persona.

3 Methodology

We define the problem statement in this section,
followed by the detailed descriptions of the pro-
posed methodology. The architectural diagram of
the sentiment and persona guided emotional dia-
logue generation framework is presented in Figure
1.

Figure 1: Architectural diagram of the proposed frame-
work.

Problem Definition: In our present work we
aim at solving the task of emotional and person-
alized dialogue generation in accordance to the
conversational history, sentiment and the persona
information of the speaker. For a given sequence

355

of dialogue turns D = [U1, U2, . . . , UN] as the dia-
logue context, where Un = [w1, w2, . . . , wk] is the
nth dialogue turn and each dialogue turn is asso-
ciated with sentiment labels represented by Slab =
s1, s2, . . . , sN having a set of persona information
P = P1, P2, . . . , Pm the task is to generate an emo-
tional personalized response Y = y1, y2, . . . , yn′

along with the emotion embedding Ve for the de-
sired emotion E that is sensitive to the speaker’s
expressed sentiment and is consistent to the per-
sona information.

3.1 Proposed Framework

Our proposed framework is based upon the Trans-
former network (Vaswani et al., 2017) as shown in
Figure 1. Our network comprises of two encoders:
an utterance encoder to transform the textual ut-
terance Ui = (wk,1, wk,2, ..., wk,n) and a persona
encoder to encode the set of persona information
P = P1, P2, . . . , Pm. Finally, we employ a trans-
former decoder to generate emotionally controlled
responses according to the specified emotions in
a similar manner as (Firdaus et al., 2020; Huang
et al., 2018; Zhou et al., 2018).

Utterance Encoder: As the transformer en-
coder has multiple layers and each layer is com-
posed of a multi-head self attentive sub-layer fol-
lowed by a feed-forward sub-layer with residual
connections (He et al., 2016) and layer normal-
ization (Ba et al., 2016), we use it to encode the
utterances in a given dialog. For intricate details on
the Transformer network, we refer the interested
readers to (Vaswani et al., 2017). To learn the rep-
resentation of Ui = (wk,1, wk,2, ..., wk,n) is first
mapped into continuous space

Tu = (ti1, t
i
2, . . . , t

i
|Ui|);where[T

i
j = e(wi

j) + pj]
(1)

where e(uij) and pj are the word and positional
embedding of every word uij in an utterance, re-
spectively. For words we use Glove embeddings
and we adopt sine-cosine positional embedding
(Vaswani et al., 2017) as it performs better and does
not introduce additional trainable parameters. The
utterance encoder (a Transformer) converts Tu into
a list of hidden representations hi1, h

i
2, . . . , h

i
|Ui|.

We use the last hidden representation hi|Ui| (i.e. the
representation at the EOS token) as the textual rep-
resentation of the utterance Ui. Similarly, to the
representation of each word in Ui, we also take into
account the utterance position. Therefore, the final

textual representation of the utterance Ui is:

hsi = hi|Ui| + pi (2)

Note that the words and sentences share the same
positional embedding matrix. We also concate-
nate the sentiment information of every sentences
represented by Slab = s1, s2, . . . , sN . The final
representation of any utterance is given by the con-
catenation of the sentiment representation as well
as the last hidden representation of the utterance.

hutti = hsi + sN (3)

Persona Encoder: To learn the representa-
tion of the set of persona information P =
P1, P2, . . . , Pm is first mapped into continuous
space

Tp = (ti1, t
i
2, . . . , t

i
|Pm|);where[T

i
k = e(wi

k)+ p′k]
(4)

where e(uik) and p′k are the word and positional
embedding of every word uik in a given persona,
respectively. Similar to the utterance encoder, for
words we use the Glove embeddings and adopt
sine-cosine positional embedding (Vaswani et al.,
2017). The persona encoder (a Transformer)
converts Tp into a list of hidden representations
h′1

i, h′2
i, . . . , h′|Pm|

i. We use the last hidden repre-
sentation hi|Pm| (i.e. the representation at the EOS
token) as the persona representation of the given
speaker. Therefore, the final persona representation
of the utterance Pm is:

hpi = hi|Pm| + p′i (5)

Emotion controlled Decoder: To generate the
next textual response with the given emotion in-
formation we employ a RNN decoder as shown in
Figure 1. We employ GRU for generating the re-
sponse in a sequential manner based on the context
hidden representation from both the transformers,
and the words decoded previously. We use the
input feeding decoding along with the attention
(Luong et al., 2015) mechanism for enhancing the
performance of the model. Using the decoder state
hdecd,t as the query vector, we apply self-attention
on the hidden representation of the utterance-level
encoder. The decoder state, persona information
and the context vector are concatenated and used
to calculate a final distribution of the probability

356

over the output tokens.

hdecd,t = GRUd(yk,t−1, hd,t−1)

ct =
k∑

i=1

αt,iD̂,

αt,i = softmax(D̂TWfhd,t)

h̃t = tanh(Wh̃[hd,t; ct])

P (yt/y<t) = softmax(WV h̃t)

(6)

where, Wf , WV and Wh̃ are the trainable weight
matrices.

For generating responses with the specified emo-
tion as shown in Figure 1, we provide the emotion
vector Ve (the emotion embeddings are pre-trained
Glove embeddings) as input during decoding at
every decoder time-step. In order to include the
emotion vector in the decoder, we modify Equation
(6) to incorporate the emotion information for the
generation of responses and the modified equation
is as follows:

hdecd,t = GRUd(yk,t−1, [hd,t−1, Ve]) (7)

Training and Inference: We employ com-
monly used teacher forcing (Williams and Zipser,
1989) algorithm at every decoding step to mini-
mize the negative log-likelihood on the model dis-
tribution. We define y∗ = {y∗1, y∗2, . . . , y∗m} as the
ground-truth output sequence for a given input by:

Lml = −
m∑

t=1

log p(y∗t |y∗1, . . . , y∗t−1) (8)

Baseline Models: We develop the following
baselines: (i) Seq2Seq: This is a basic encoder-
decoder (Sutskever et al., 2014) framework with no
persona, sentiment and emotion information. (ii).
HRED: A general hierarchical encoder-decoder
framework (Serban et al., 2017) that captures the
conversational context without the persona, senti-
ment and emotion information. (iii). Seq2Seq +
E + P: The utterance encoder along with persona
encoder and emotion information is used to decode
the responses in a similar manner as (Firdaus et al.,
2020). (iv). HRED + E + P: We infuse the per-
sona and emotion in the basic hierarchical encoder-
decoder framework. (v). Seq2Seq + E + P + S:
The utterance encoder along with persona encoder,
sentiment information and emotion information is
used to decode the responses. (vi). HRED + E + P +
S: We infuse the persona, sentiment and emotion in

the basic hierarchical encoder-decoder framework.
(vii) Trans: Basic transformer network without per-
sona, sentiment and emotion information. (viii)
Trans + E + P: The transformer encoders along
with persona encoder and emotion information is
used to generate the responses.

4 Dataset and Experimentation

Dataset Description: On the recently published
ConvAI2 benchmark dataset, which is an extended
version (with a new test set) of the persona-chat
dataset (Zhang et al., 2018), we conduct our exper-
iments. The interactions are collected from the ran-
domly paired crowd workers who were instructed
to play the part of a given persona. In over 10,981
dialogues, this dataset comprises of 164,356 utter-
ances and has a collection of 1,155 personas, each
consisting of at least four personality texts. There
are 1,016 dialogues in the testing set and 200 never
before seen personas. As the dataset is not labeled
with emotions, we use the emotion annotated ver-
sion of the dataset used in (Firdaus et al., 2020).

Dataset Preparation: As sentiment and emo-
tions are highly co-related we annotate the Per-
sonaChat dataset using the emotion information
in a similar manner as (Poria et al., 2019). As
emotions such as excited, grateful, joyful, caring,
hopeful, faithful, impressed have a positive under-
tone hence we automatically label the utterances
having these emotion labels as positive sentiment.
Similarly for emotions such as angry, sad, annoyed,
disgusted, terrified, furious, disappointed, jealous
has a negative undertone hence are labelled as neg-
ative sentiment. For the other emotion labels such
as surprise, proud, nostalgic, guilty, confident, pre-
pared, sentimental that can either be positive, neu-
tral or negative depending on the utterance and the
context we resort to manual annotation. For anno-
tating the utterances in the PersonaChat dataset,
we employ four graduate students highly profi-
cient in English comprehension. The guidelines
for annotation along with some examples were ex-
plained to the annotators before starting the anno-
tation process. Majority voting scheme was used
for selecting the final sentiment label for each utter-
ance. We achieve an overall Fleiss’ (Fleiss, 1971)
kappa score of 0.75 for sentiment which can be
considered as reliable. Detailed statistics of the
PersonaChat dataset are provided in Table 2.

Implementation Details: All the implementa-

357

Dataset Statistics Train Valid Test
Dialogues 7686 1640 1655
Utterances 124816 19680 19860

Avg. turns per Dialogue 12.51 12.73 12.74
Avg. words in a Response 11.89 9.57 10.75

Emotions per dialogue 7.4 6.5 5.1
Unique words 20322 13415 15781

Table 2: Statistics of the PersonaChat Dataset

tions are done using the PyTorch1 framework. For
all the models, including baselines, the batch size
is set to 32. We use the dropout (Srivastava et al.,
2014) with probability 0.45. During decoding, we
use a beam search with beam size 10. We initialize
the model parameters randomly using a Gaussian
distribution with the Xavier scheme (Glorot and
Bengio, 2010). We employ AMSGrad (Reddi et al.,
2019) as the optimizer for model training to miti-
gate the slow convergence issues. We use uniform
label smoothing with ε = 0.1 and perform gradient
clipping when the gradient norm is over 5. To re-
duce data sparsity, all the numbers and names are
replaced with <number> and <person>.

Automatic Evaluation Metrics: In order to as-
sess the model at the emotional and grammatical
level, we present the results using the traditional
automatic metrics. Perplexity(Chen et al., 1998) is
stated to test our proposed framework at the con-
tent level. We also report the results using the stan-
dard metrics like BLEU-4 (Papineni et al., 2002)
and Rouge-L (Lin, 2004) to measure the ability of
the generated response for capturing the correct
information. BLEU measures the n-grams over-
lap between the generated response and the gold
response, and has become a standard measure for
comparing task-oriented dialog systems. It is used
to measure the content preservation in the gener-
ated responses. We report Distinct-1 and Distinct-2
metrics that measure the distinct n-grams in the
generated responses and are scaled with respect
to the total number of generated tokens to avoid
repetitive and boring responses (Li et al., 2016b).
To measure the emotional content in the generated
responses, we calculate the emotion accuracy using
the pre-trained BERT classifier on the responses
generated by the baseline and proposed models.

Human Evaluation Metrics: We randomly
sample 500 responses from the test set for human
evaluation. For a given input along with persona
information, six annotators with post-graduate ex-

1https://pytorch.org/

posure were assigned to evaluate the quality of the
generated responses by the different approaches
in a similar manner as the existing works (Firdaus
et al., 2020). First, we evaluate the quality of the re-
sponse on two conventional criteria: Fluency, and
Relevance. These are rated on a five-scale, where 1,
3, 5 indicate unacceptable, moderate, and excellent
performance, respectively, while 2 and 4 are used
for unsure. Secondly, we evaluate the persona, sen-
timent and emotion inclusion in response in terms
of Persona Consistency metric, Sentiment Coher-
ence metric and Emotion Appropriateness to judge
whether the response generated is in consonance to
the specified persona, sentiment and the emotion is
also coherent to the conversational history. In the
case of all these metrics, 0 indicates an irrelevant or
contradictory persona, sentiment or emotion in the
response, and 1 represents the consistent response
to the specified persona, sentiment and emotion.
For the human evaluation metrics, we calculate the
Fleiss’ kappa (Fleiss, 1971) to determine the inter-
rater consistency. For fluency and relevance, the
kappa score is 0.75, and for emotion appropriate-
ness, sentiment coherence and persona consistency,
these are 0.75, 0.71 and 0.78, respectively, indicat-
ing “substantial agreement”.

5 Result and Analysis

For thorough analysis of our proposed framework,
we provide a detailed analysis of the results (both
automatic and manual) along with the generated
responses. We also analyze the errors made by
the network in generating empathetic personalized
responses.

Automatic Evaluation Results: The automatic
evaluation results are presented in Table 3, which
demonstrates that the proposed framework sig-
nificantly outperforms all the baselines with re-
spect to all the metrics. The final proposed trans-
former network shows a notable drop in perplexity
scores, thereby ensuring grammatically correct re-
sponses generated by the framework. In addition,
we see that the BLEU scores have increased with
an improvement of more than 5% from the basic
Seq2Seq framework and with a gain of 4% from
the typical HRED model. By introducing the per-
sona and emotion information in the basic Seq2Seq
and HRED model, we see the growth in perfor-
mance, establishing the need for persona and emo-
tion knowledge for generating empathetic, person-
alized responses. Similarly, in the case of Rouge-L,

358

Model Description Perplexity BLEU-4 Rouge-L Distinct-1 Distinct-2 Emotion Accuracy

Baseline
Approaches

Seq2Seq (Sutskever et al., 2014) 56.11 0.089 0.196 0.0125 0.0464 0.358
HRED (Serban et al., 2017) 55.63 0.096 0.201 0.0128 0.0469 0.376

Seq2Seq + E + P (Firdaus et al., 2020) 54.13 0.103 0.189 0.0168 0.0549 0.657
HRED + E + P 54.85 0.116 0.224 0.0174 0.0592 0.665

Seq2Seq + E + P + S 53.61 0.115 0.203 0.0171 0.0555 0.673
HRED + E + P + S 52.46 0.127 0.237 0.0186 0.0590 0.689

Proposed Approach Trans + E + P + S 51.92 0.143 0.266 0.0219 0.0987 0.715
Ablation

Study
Trans 53.47 0.118 0.239 0.0189 0.0883 0.678

Trans + E + P 53.44 0.125 0.242 0.0193 0.0896 0.695

Table 3: Results of automatic evaluation. Here, E-Emotion, P-Persona, S-Sentiment, Trans-Transformers

Model Description Fluency Relevance Emotion
Appropriateness

Persona
Consistency

Sentiment
Coherence

Baseline
Approaches

Seq2Seq (Sutskever et al., 2014) 2.98 2.65 38% 35% 33%
HRED (Serban et al., 2017) 3.16 2.89 41% 39% 37%

Seq2Seq + E + P (Firdaus et al., 2020) 3.29 3.02 53% 48% 42%
HRED + E + P 3.45 3.18 59% 55% 47%

Seq2Seq + E + P + S 3.33 3.21 56% 52% 51%
HRED + E + P + S 3.52 3.45 61% 58% 55%

Proposed
Approach Trans + E + P + S 3.89 3.66 65% 67% 62%

Table 4: Results of human evaluation for the existing baselines and the proposed framework

Dialog Input Persona Information Ground-Truth Generated Response

[Person 1] What do you do for a career?
[Person 2] I like to watch kids.
[Person 1] I actually play guitar and do
lot of welding.

Persona 1
I am primarily
a meat eater.

I am a guitar player.
Welding is my career field.

My parents don’t know
I am gay.

Persona 2
I’ve a sweet tooth.

I’m a babysitter and
drive a mercedes.

I’m the middle child of
3 sibling.

I’m getting married in
six weeks.

What do you weld?
houses?
Neutral

Seq2Seq: What is weld? ¡UNK¿ ¡UNK¿
HRED: What you weld?
Seq2Seq+E+P: Wow! What you weld mostly? (surprise)
HRED+E+P: Really! Do you weld houses? (surprise)
Proposed: Wow that’s great, what do you weld mostly,
is it houses? (surprise)

[Person 1] Hi! do you like turtles?
[Person 2] I have two cats actually.
[Person 1] I have a turtle his name
is Speedy.

Persona 1
I don’t pick up my toys.

I have a pet turtle.
I like to play with my dolls.

I’m fourteen.

Persona 2
I love cats and
have two cats.

My favorite season is winter.
I won a gold medal

in the 1992 olympics.
I’ve a hat collection of

over 1000 hats.

I am a cat person.
Positive

Seq2Seq: I have cats.
HRED: I like cats mostly.
Seq2Seq+E+P: Turtles are nice but I like cats. (joy)
HRED+E+P: Nice name for a pet, but I love cats. (joy)
Proposed: That is an adorable name for a turtle! but I am
a cat person. (joy)

Table 5: Examples of responses generated by different models having emotion, sentiment and persona

we see a remarkable improvement in the perfor-
mance of the proposed network compared to the
Seq2Seq+E+P and HRED+E+P frameworks, re-
spectively. We also report the emotion accuracy of
the generated response. It is quite apparent that the
responses having emotion information have higher
accuracy than the models with no emotion infor-
mation. The proposed model outperforms the best
performing baseline network with an improvement
of 5% in emotion accuracy.

We also include the results of distinct-1 and
distinct-2 to demonstrate that the responses gen-
erated are varied and diversified. From assessment,
it is clear that the proposed system is also com-
petent enough to make the response diverse and
interactive, along with producing emotional and
persona-guided responses. By including the senti-
ment information in the contextual history, we see
that there is improvement in the proposed frame-

work as it facilitates in generating the correct emo-
tional responses in accordance to the sentiment of
the speaker.

We also perform an ablation study on the pro-
posed framework to understand the importance of
the emotion, persona and sentiment information in
enhancing the performance of the overall frame-
work. It is evident that the proposed framework
compared to Trans and Trans + E + P models per-
forms better as it also includes the sentiment of
the previous utterances proving the significance of
all the three components in generating better and
interactive responses.

Human Evaluation Results: The manual eval-
uation, the results of which are recorded in Table
4, is carried out for a more comprehensive analysis
of our proposed system. From the table, it is clear
that the proposed system provides better perfor-
mance with regards to all the specified metrics than

359

the existing approaches. As fluency calculates the
grammatical accuracy of the response generated, it
can, therefore, be assumed that the proposed model
generates fluent responses. The final model hav-
ing the highest scores in the case of fluency, as
opposed to the baseline system, proves that the re-
sponses are grammatically correct and complete.
Similarly, in the case of emotional content in the
responses, we see that the frameworks having the
emotion information seem to generate empathetic
responses instead of the basic Seq2Seq and HRED
frameworks. With an improvement of 6%, the pro-
posed network surpasses the emotion score of the
HRED+E+P model.

We also compute the ability of the models to
maintain a consistent persona while generating the
responses. From the manual evaluation results pre-
sented in the table, we can see that the HRED+E+P
and Seq2Seq+E+P models show significant im-
provement from the typical HRED and Seq2Seq
model in inducing the persona information while
generating the responses. There is an enhancement
in the proposed system from all of the other base-
line systems in the case of the persona consistency
metric. Also, the sentiment coherence score of
the proposed framework is higher in comparison
to the models without the sentiment information
marking the importance of sentiment in the overall
framework.

Through human assessment, it can, therefore, be
inferred that the proposed system is capable of pro-
ducing empathetic responses and has the capacity
to retain a particular persona and respond with the
correct sentiment.

Case Study and Discussion: In Table 5, we
provide two examples and their corresponding gen-
erated responses by the different models. For both
the examples, it is evident that the basic Seq2Seq
and HRED frameworks generate short and non-
emotional responses that do not increase user en-
gagement. On the contrary, the baseline models
having the knowledge of both persona and emotion
generate empathetic and personalized responses.
Moreover, the responses generated by our proposed
framework are not only fluent but also are engaging,
diverse, personalized, and emotionally appropriate
to the conversational history and the sentiment.

We came across through some of the errors made
by the baseline and proposed frameworks after per-
forming a detailed comparative analysis of the gen-
erated responses. Some of the commonly occurring

errors are: (i) Extra information: There are a
few instances where the information in the input is
found to be replicated, and extra words added, in
both the baselines and the proposed system provid-
ing extra information. For example, Gold: if I have
time for cooking and repairing houses; Predicted:
if I have time time hunting, cooking... (ii) Persona
Discrepancy: For certain instances, the responses
generated by the proposed architecture are incom-
patible with the personality information and lack
the precise details present in the speaker’s persona
texts. For example, Persona information: I have 3
lovely kids and enjoy playing with them. Predicted
response: I hate kids find them very annoying.

6 Conclusion and Future Work

Grounding conversations based on the user’s per-
sona and emotions is an exciting research direction
that can contribute to building natural, engaging
and social conversational agents. Our current work
presents one of the first examples of an empathetic,
personalized dialogue generation for building a ro-
bust social chatbot using the sentiment informa-
tion of the speaker in the ongoing conversation.
We trained a novel transformer framework capa-
ble of generating responses that is sensitive to the
emotions of the speaker and in accordance with
their persona information and sentiment. Specifi-
cally, the experimental analysis on the PersonaChat
dataset shows that the responses having both the
emotional quotient and persona knowledge in the
responses help build interactive and engaging con-
versations.

Our future work would focus on extending the
architectural framework for improving the perfor-
mance of the generation. In addition, we would
also investigate other factors such as politeness, di-
versity in responses for creating a comprehensive
social chatbot.

7 Ethical Declarations

All the resources used in this paper are publicly
available. The dataset used in this paper is used
only for the purpose of academic research. There is
nothing to disclose that warrant the ethical issues.

Acknowledgement

Authors duly acknowledge the support from the
Project titled “Sevak-An Intelligent Indian Lan-
guage Chatbot”, Sponsored by SERB, Govt. of In-
dia (IMP/2018/002072). Asif Ekbal acknowledges

360

the Young Faculty Research Fellowship (YFRF),
supported by Visvesvaraya PhD scheme for Elec-
tronics and IT, Ministry of Electronics and Infor-
mation Technology (MeitY), Government of India,
being implemented by Digital India Corporation
(formerly Media Lab Asia).

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Elia Bruni and Raquel Fernandez. 2017. Adversarial
evaluation for open-domain dialogue generation. In
Proceedings of the 18th Annual SIGdial Meeting on
Discourse and Dialogue, pages 284–288.

Stanley Chen, Douglas H. Beeferman, and Ronald
Rosenfeld. 1998. Evaluation metrics for language
models.

Pierre Colombo, Wojciech Witon, Ashutosh Modi,
James Kennedy, and Mubbasir Kapadia. 2019.
Affect-driven dialog generation. Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 3734–3743.

Mauajama Firdaus, Naveen Thangavelu, Asif Ekba,
and Pushpak Bhattacharyya. 2020. Persona aware
response generation with emotions. In 2020 In-
ternational Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Sayan Ghosh, Mathieu Chollet, Eugene Laksana,
Louis-Philippe Morency, and Stefan Scherer. 2017.
Affect-lm: A neural language model for customiz-
able affective text generation. Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 1: Long Papers, pages
634–642.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sar-
dinia, Italy, May 13-15, 2010, pages 249–256.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.

Chenyang Huang, Osmar R Zaiane, Amine Trabelsi,
and Nouha Dziri. 2018. Automatic dialogue gener-
ation with expressed emotions. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 2
(Short Papers), pages 49–54.

Chaitanya K Joshi, Fei Mi, and Boi Faltings. 2017. Per-
sonalization in goal-oriented dialog. arXiv preprint
arXiv:1706.07503.

Lee Kezar. 2018. Mixed feelings: Natural text gener-
ation with variable, coexistent affective categories.
In Proceedings of ACL 2018, Melbourne, Australia,
July 15-20, 2018,Student Research Workshop, pages
141–145.

Jingyuan Li and Xiao Sun. 2018. A syntactically con-
strained bidirectional-asynchronous approach for
emotional conversation generation. Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, Brussels, Belgium, Octo-
ber 31 - November 4, 2018, pages 678–683.

Jiwei Li, Michel Galley, Chris Brockett, Georgios P Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016a. A
persona-based neural conversation model. Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-
12, 2016, Berlin, Germany, Volume 1: Long Papers.

Jiwei Li, Will Monroe, Alan Ritter, Daniel Jurafsky,
Michel Galley, and Jianfeng Gao. 2016b. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages
1192–1202.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing, IJCNLP 2017, Taipei, Tai-
wan, November 27 - December 1, 2017 - Volume 1:
Long Papers, pages 986–995.

Chin-Yew Lin. 2004. Rouge: a package for auto-
matic evaluation of summaries. In Workshop on
Text Summarization Branches Out, Post-Conference
Workshop of ACL 2004, Barcelona, Spain.

Zhaojiang Lin, Peng Xu, Genta Indra Winata, Zi-
han Liu, and Pascale Fung. 2019. Caire: An
end-to-end empathetic chatbot. arXiv preprint
arXiv:1907.12108.

Liangchen Luo, Wenhao Huang, Qi Zeng, Zaiqing Nie,
and Xu Sun. 2019. Learning personalized end-to-
end goal-oriented dialog. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI

361

Symposium on Educational Advances in Artificial In-
telligence, EAAI 2019, Honolulu, Hawaii, USA, Jan-
uary 27 - February 1, 2019, volume 33, pages 6794–
6801.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. EMNLP.

Andrea Madotto, Zhaojiang Lin, Chien-Sheng Wu, and
Pascale Fung. 2019. Personalizing dialogue agents
via meta-learning. In Proceedings of the 57th Con-
ference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 5454–5459.

Bilyana Martinovski and David Traum. 2003. Break-
down in human-machine interaction: the error is the
clue. In Proceedings of the ISCA tutorial and re-
search workshop on Error handling in dialogue sys-
tems, pages 11–16.

Abraham Harold Maslow. 1943. A theory of human
motivation. Psychological review, 50(4):370.

Pierre-Emmanuel Mazaré, Samuel Humeau, Martin
Raison, and Antoine Bordes. 2018. Training mil-
lions of personalized dialogue agents. Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 2775–2779.

Myriam D Munezero, Calkin Suero Montero, Erkki Su-
tinen, and John Pajunen. 2014. Are they different?
affect, feeling, emotion, sentiment, and opinion de-
tection in text. IEEE transactions on Affective Com-
puting, 5(2):101–111.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. Association for Computa-
tional Linguistics.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, Gautam Naik, Erik Cambria, and Rada Mi-
halcea. 2019. Meld: A multimodal multi-party
dataset for emotion recognition in conversations.
Proceedings of the 57th Conference of the Associ-
ation for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 527–536.

Helmut Prendinger, Junichiro Mori, and Mitsuru
Ishizuka. 2005. Using human physiology to eval-
uate subtle expressivity of a virtual quizmaster in
a mathematical game. International journal of
human-computer studies, 62(2):231–245.

Qiao Qian, Minlie Huang, Haizhou Zhao, Jingfang
Xu, and Xiaoyan Zhu. 2017. Assigning personal-
ity/identity to a chatting machine for coherent con-
versation generation. IJCAI.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 5370–5381.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2019.
On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237.

Ruhi Sarikaya. 2017. The technology behind personal
digital assistants: An overview of the system archi-
tecture and key components. IEEE Signal Process-
ing Magazine, 34(1):67–81.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron C Courville,
and Yoshua Bengio. 2017. A hierarchical latent
variable encoder-decoder model for generating di-
alogues. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 3295–
3301.

Heung-Yeung Shum, Xiao-dong He, and Di Li. 2018.
From eliza to xiaoice: challenges and opportunities
with social chatbots. Frontiers of Information Tech-
nology & Electronic Engineering, 19(1):10–26.

Haoyu Song, Wei-Nan Zhang, Yiming Cui, Dong
Wang, and Ting Liu. 2019. Exploiting persona infor-
mation for diverse generation of conversational re-
sponses. Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019, pages
5190–5196.

Haoyu Song, Wei-Nan Zhang, Jingwen Hu, and Ting
Liu. 2020. Generating persona consistent dialogues
by exploiting natural language inference. AAAI.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–
280.

362

Bowen Wu, Mengyuan Li, Zongsheng Wang, Yifu
Chen, Derek Wong, Qihang Feng, Junhong Huang,
and Baoxun Wang. 2020. Guiding variational re-
sponse generator to exploit persona. Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 53–65.

Xianchao Wu, Ander Martinez, and Momo Klyen.
2018. Dialog generation using multi-turn reasoning
neural networks. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), volume 1, pages 2049–2059.

Jingjing Xu, Xuancheng Ren, Junyang Lin, and
Xu Sun. 2018. Diversity-promoting gan: A cross-
entropy based generative adversarial network for di-
versified text generation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3940–3949.

Zhen Xu, Bingquan Liu, Baoxun Wang, Cheng-Jie Sun,
Xiaolong Wang, Zhuoran Wang, and Chao Qi. 2017.
Neural response generation via gan with an approx-
imate embedding layer. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 617–626.

Semih Yavuz, Abhinav Rastogi, Guan-Lin Chao, and
Dilek Hakkani-Tur. 2019. Deepcopy: Grounded
response generation with hierarchical pointer net-
works. NeurIPS.

Jiayi Zhang, Chongyang Tao, Zhenjing Xu, Qiaojing
Xie, Wei Chen, and Rui Yan. 2019. Ensemblegan:
Adversarial learning for retrieval-generation ensem-
ble model on short-text conversation. In Proceed-
ings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 435–444.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers, pages 2204–2213.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018.

Xianda Zhou and William Yang Wang. 2017. Mo-
jitalk: Generating emotional responses at scale. Pro-

ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 1128–1137.

Qingfu Zhu, Lei Cui, Weinan Zhang, Furu Wei, and
Ting Liu. 2019. Retrieval-enhanced adversarial
training for neural response generation. Proceed-
ings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 3763–3773.

363

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 364–370,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Biomedical Data-to-Text Generation via Fine-Tuning Transformers

Ruslan Yermakov
Decision Science

& Advanced Analytics
Bayer AG

yermakovruslan@gmail.com

Nicholas Drago
Regulatory Policy
and Intelligence

Bayer AG

Angelo Ziletti*
Decision Science

& Advanced Analytics
Bayer AG

angelo.ziletti@bayer.com

Abstract

Data-to-text (D2T) generation in the biomed-
ical domain is a promising - yet mostly unex-
plored - field of research. Here, we apply neu-
ral models for D2T generation to a real-world
dataset consisting of package leaflets of Euro-
pean medicines. We show that fine-tuned trans-
formers are able to generate realistic, multi-
sentence text from data in the biomedical do-
main, yet have important limitations. We also
release a new dataset (BioLeaflets) for bench-
marking D2T generation models in the biomed-
ical domain.

1 Introduction

Data-to-text (D2T) systems are attracting consid-
erable interest due to their ability to automate
the time-consuming writing of data-driven reports.
There is a hitherto largely untapped potential for
text generation in the biomedical domain. Poten-
tial applications of natural language generation of
patient-friendly biomedical text include prepara-
tion of the first draft of package leaflets, patient
education materials, or direct-to-consumer promo-
tional materials in countries where this is permitted.
Here we focus on a D2T task aiming to generate
fluent and fact-based descriptions from biomedical
data.

2 Related Work

Recently, neural D2T models have significantly im-
proved the quality of short text generation (usu-
ally one sentence long) from input data com-
pared to multi-stage pipelined or template-based
approaches. Examples include biographies from
Wikipedia fact tables (Lebret et al., 2016), restau-
rant descriptions from meaning representations
(Novikova et al., 2017b), and basketball game sum-
maries from statistical tables (Wiseman et al.,
2017). Still, neural D2T approaches have major
challenges, as outlined by Wiseman et al. (2017)

and Parikh et al. (2020) which hinder their applica-
tion to many real-world applications. These include
hallucination effects (generated phrases not sup-
ported or contradictory to the source data), missing
facts (generated text does not include input informa-
tion), intersentence incoherence, and repetitiveness
in the generated text. Following the success of
leveraging pre-trained large-scale language models
for a large variety of tasks, Kale and Rastogi (2020)
fine-tuned T5 models (Raffel et al., 2020) for D2T
generation. This strategy achieved state-of-the-art
performance on task-oriented dialogue (MultiWoz)
(Budzianowski et al., 2018), tables-to-text (ToTTo)
(Parikh et al., 2020) and graph-to-text (WebNLG)
(Gardent et al., 2017).

To the best of our knowledge, recent neural
approaches and transfer learning strategies have
not been applied to multi-sentence generation
from input data, nor have they been applied in the
biomedical domain. Our contribution is two-fold:
we introduce a real-world biomedical dataset
BioLeaflets, and demonstrate that transformers
can generate high-quality multi-sentence text from
data in the biomedical domain. The BioLeaflets
dataset, fine-tuned models, code, and gener-
ated samples are available at https://github.

com/bayer-science-for-a-better-life/

data2text-bioleaflets.

3 The BioLeaflets Dataset

We introduce a new biomedical dataset for D2T
generation - BioLeaflets, a corpus of 1336 package
leaflets of medicines authorised in Europe, which
we obtain by scraping the European Medicines
Agency (EMA) website. This dataset comprises
the large majority (∼ 90%) of medicinal products
authorised through the centralised procedure in Eu-
rope as of January 2021.

Package leaflets are published for medicinal
products approved in the European Union (EU).
They are included in the packaging of medicinal

364

(a)
Original
section
content

novonorm is an oral antidiabetic medicine containing repaglinide which helps your pancreas produce more
insulin and thereby lower your blood sugar (glucose). type 2 diabetes is a disease in which your pancreas
does not make enough insulin to control the sugar in your blood or where your body does not respond normally
to the insulin it produces. novonorm is used to control type 2 diabetes in adults as an add-on to diet and
exercise: treatment is usually started if diet, exercise and weight reduction alone have not been able to control
(or lower) your blood sugar. novonorm can also be given with metformin, another medicine for diabetes.
novonorm has been shown to lower the blood sugar, which helps to prevent complications from your diabetes.

(b)
Input:
entities as a
flat string

<PRODUCT_NAME> novonorm </PRODUCT_NAME> <TREATMENT>
an_oral_antidiabetic_medicine </TREATMENT> <GENERIC_NAME> repaglinide
</GENERIC_NAME> <SYSTEM_ORGAN_SITE> pancreas </SYSTEM_ORGAN_SITE>
<GENERIC_NAME> insulin </GENERIC_NAME> <TEST> your_blood_sugar </TEST>
. . .<TEST> the_blood_sugar </TEST> <DX_NAME> complications </DX_NAME>
<PROBLEM> your_diabetes </PROBLEM>

(c)
T5 gener-
ated section

novonorm is an oral antidiabetic medicine containing repaglinide which helps your pancreas produce more
insulin and thereby lower your blood sugar (glucose). type 2 diabetes is a disease in which your panccreases
does not make enough insulin to control the sugar in your blood or where your body does not respond normally
to the insulin it produces. novonourm is used to control type 2 diabetic patients who still have their diabetes
and who are still unable to respond normally despite treatment, exercise and weight reduction, which have
not helped to control your blood glucose. there is also a test that novonorgm can be given in combination
with metformin, another medicine for diabetes. it is important that you continue to follow the advice on diet,
exercising and diet that your nurse or doctor has given you.

(d)
BART gen-
erated sec-
tion

novondorm is an oral antidiabetic medicine containing repaglinide which helps your pancreas produce more
insulin and thereby lower your blood sugar (glucose). type 2 diabetes is a disease in which your pancrea does
not make enough insulin to control the sugar in your blood or where your body does not respond normally to
the insulin it produces. novonorm is used to treat type 2 diabetic in adults. treatment is usually started with
diet and exercise and weight reduction. your blood glucose may be increased when you start to take novonor
on its own or in combination with metformin. if you have diabetes, no

(e)
Content
planner
generated
section

novonorm contains the active substance repaglinide which helps to lower your blood sugar (glucose). type
2 diabetes is a disease where your body does not make enough insulin to control the sugar in your blood
or where your body does not respond normally to the insulin it produces. repaglinide krka is used to control
type 2 diabetes in adults as type 2 diabetes. type 2 diabetes is also called non - insulin - dependent diabetes
mellitus. type 2 diabetes is also a condition in which your body does not make enough insulin or the insulin
that your body produces does not work as well as it should. your body can also make too much sugar. when this
happens, sugar (glucose) builds up in the blood. this can lead to serious medical problems like heart disease,
kidney disease, 2 and 2.

Table 1: Example of text generations. Entities are highlighted in bold, typos are underlined, and hallucinations are
shown in red.

products and contain information to help patients
use the product safely and appropriately, under the
guidance of their healthcare professional. Package
leaflets are required to be written in a way that is
clear and understandable (EU, 2001). Each docu-
ment contains six sections (see Table 2).The main
challenges of this dataset for D2T generation are
multi-sentence and multi-section target text, small
sample size, specialized medical vocabulary and
syntax.

3.1 Dataset Construction

The content of each section is not standardized,
yet it is still well-structured. Thus, we identify
sections via heuristics such as regular expressions
and word overlap. The content of each section is
lower-cased and tokenized by treating all special
characters as separate tokens. Duplicates are also
removed. We randomly split the dataset into train-
ing (80%), development (10%), and test (10%) set.
Table 2 summarizes dataset statistics.

3.2 Dataset Annotations

We do not have annotations available for the pack-
age leaflet text. To create the required input for
D2T generation, we augment each document by
leveraging named entity recognition (NER). Parikh
et al. (2020) indicated it is important that target
summaries contain information that can be inferred
from the input data to avoid dataset-induced hallu-
cinations. To this end, we combine two NER frame-
works: Amazon Comprehend Medical (ACM)
(Bhatia et al., 2019) and Stanford Stanza (Qi
et al., 2020; Zhang et al., 2021). ACM and Stanza
achieved entity micro-averaged test F1 of 85.5%
and 88.13% respectively on the 2010 i2b2/VA clin-
ical dataset (Uzuner et al., 2011). We further lever-
age ACM to detect medical conditions from ICD-
10 (WHO, 2004) and medications from RxNorm.
Additionally, we treat all digits as entities, and add
the medicine name as first entity. In case of overlap-
ping entities from different sources, we favor longer
entities over shorter ones. As a result of the NER

365

Section type
No.

samples

Average
length

(characters)

Average
length

(tokens)

Average no.
entities per

section

No. unique
entities

1. What the product is and
what it is used for

1 314 963 174 29.3 9 641

2. What you need to know
before you take the product

1 309 4 560 849 127.7 23 278

3. How to take the product 1 313 2 300 458 50.5 11 640
4. Possible side effects 1 295 3 453 651 135.2 27 945

5. How to store the product 1 172 631 123 6.3 2 041
6. Content of the pack and

other information
1 311 982 196 38.4 9 932

Table 2: BioLeaflets dataset statistics grouped by section type.

process, we obtain 26 unique entity types. Exam-
ples are: problem: (’active chronic hepatitis’, ’mi-
graine pain’), system-organ-site: (’blood vessel’,
’kidneys’, ’surrounding tissue’), treatment: (’rou-
tine dental care’, ’a vaccination’, ’a chemotherapy
medicinal product’), or procedure: (’injections’,
’spinal or epidural anaesthesia’, ’surgical interven-
tion’, ’bone marrow or stem cell transplant’).

BioLeaflets proposes a conditional generation
task: given an ordered set of entities as source, the
goal is to produce a multi-sentence section. Since
only the entities are provided as input, the struc-
tured data is underspecified. A human without
specialized knowledge would likely be unable to
produce satisfactory text. However, we expect that
a labeling expert with profound knowledge of pack-
age leaflets would be able to generate (with some
difficulty) satisfactory text in the large majority
of cases. Successful generation thus requires the
model to learn specific syntax, terminology, and
writing style from the corpus (e.g., via fine-tuning).

4 Experiments

Following Kale and Rastogi (2020), we represent
the structured data (i.e., detected entities) as a flat
string (linearization). The entities are kept in their
order of appearance (Table1b). The models are
then trained to predict - starting from these entities
- the corresponding published leaflet text.

We present baseline results on BioLeaflets
dataset by employing the following state-of-the-
art approaches:

• Content Planner: two stages neural architec-
ture (content selection and planning) based
on LSTM (Puduppully et al., 2019). Since

only relevant entities are provided as input to
the model, we solely use the content planning
stage (encoder-decoder architecture with an
attention mechanism). We train one model for
each section, and use the same hyperparame-
ters reported by Puduppully et al. (2019).

• T5: a text-to-text transfer transformer model
(Raffel et al., 2020). Kale and Rastogi (2020):
showed that T5 outperforms alternatives like
BERT (Devlin et al., 2019) and GPT-2 (Rad-
ford et al., 2019). After hyperparameter
search on the development dataset, the fol-
lowing parameters (yielding the best ROUGE-
L score (Lin, 2004)) are selected: constant
learning rate of 0.001, batch size of 32, 20
epochs, greedy search as a decoding method.

• BART: denoising autoencoder for pretraining
sequence-to-sequence models with transform-
ers (Lewis et al., 2020). For computational
reasons, we use the same hyperparameters as
per T5 fine-tuning.

• BART and T5 with conditioning: we add the
prefix “section n” (n = 1, . . . 6) to the (lin-
earized) input data. This explicitly gives the
model information on the section number and
thus enforces a conditioning on the section
type for text generation.

BART and T5 fine-tuning are performed via Hug-
gingFace (Wolf et al., 2020).

5 Evaluation

Table 1 shows the generated text for one test sam-
ple as illustrative example. All generated text is

366

Model
Word-overlap metrics Semantic equivalence metrics

SacreBLEU ROUGE-L BERTScore BLEURT MoverScore-2l
Content Planner 27.78 39.32 0.214 -0.072 0.591
BART-base 8.76 ± 0.02 42.73 ± 0.11 0.370 ± 0.001 0.268 ± 0.002 0.609 ± 0.0004
BART-base + cond 8.73 ± 0.02 42.60 ± 0.12 0.369 ± 0.001 0.268 ± 0.003 0.608 ± 0.0004
T5-base 18.68 ± 0.07 47.22 ± 0.17 0.363 ± 0.001 0.255 ± 0.008 0.620 ± 0.0005
T5-base + cond 18.63 ± 0.14 47.31 ± 0.22 0.364 ± 0.002 0.256 ± 0.006 0.621 ± 0.0008

Table 3: Results on the BioLeaflets test set (averaged over all sections). T5 and BART models are fine-tuned with
seven different random seeds: average and standard deviation are reported. BLEURT-large-128 is used.

Model Adequacy
Hallucination

presence
Entity

inclusion
Fluency

Content Planner
annotator 1 4.1 ± 3.0 6.8 ± 3.2 4.8 ± 3.2 5.1 ± 3.3
annotator 2 3.7 ± 2.6 6.4 ± 2.5 5.1 ± 2.5 5.4 ± 2.3

BART-base
annotator 1 7.5 ± 2.1 3.1 ± 2.6 7.4 ± 2.3 8.6 ± 1.8
annotator 2 6.6 ± 2.2 3.3 ± 2.1 8.1 ± 1.8 8.0 ± 1.3

T5-base
annotator 1 7.8 ± 1.8 3.0 ± 2.4 7.6 ± 2.1 9.0 ± 1.4
annotator 2 6.5 ± 2.2 3.5 ± 1.9 7.8 ± 1.7 8.2 ± 1.2

Table 4: Human evaluation of test samples. Values on a scale from one to ten; average and standard deviation
are reported. The higher the better for all quantities, expect for “Hallucination presence”. Adequacy estimates the
overall generation quality, taking into consideration fluency, amount of hallucination, and entities included in the
generated text.

made available1. After a thorough inspection of
the samples, we conclude that generated text is
generally fluent and coherent. Text produced by
T5 and BART is more fluent, factually and gram-
matically correct than those by Content Planner.
Table 3 illustrates the performance of state-of-the-
art models quantified by automatic metrics. Word-
overlap metrics such as (Sacre)BLUE (Post, 2018)
and ROUGE (Lin, 2004) have been shown to per-
form poorly in evaluation of natural language gen-
eration (Novikova et al., 2017a), and thus we re-
port them here only for completeness. Conversely,
contextual embedding based metrics BERTScore
(Zhang* et al., 2020), BLEURT (Sellam et al.,
2020), and MoverScore-2 (Zhao et al., 2019) cor-
relate with human judgment on sentence-level and
system-level evaluation. They adequately capture
semantic equivalence between generated and target
text as well as fluency and overall quality. T5 and
BART outperform Content Planner, as measured by
BERTscore, BLEURT, and MoverScore-2. T5 and
BART show similar performance. These results
show that transformer-based models and transfer
learning strategies achieve state-of-the-art perfor-

1https://github.com/
bayer-science-for-a-better-life/
data2text-bioleaflets

mance on data-to-text tasks, generalizing the find-
ings in Kale and Rastogi (2020) to multi-sentence
and multi-section generation, biomedical text, and
low-data setting.

To confirm these findings, human evaluation is
performed for Section 1 of the test set by two anno-
tators. Results are shown in Table 4. Similarly to
Manning et al. (2020), we design a survey which in-
cludes adequacy (estimate of overall quality), pres-
ence of hallucinations, entity inclusion, and fluency.
T5 and BART have similar performance, and they
produce more adequate text than Content Planner.
T5 and BART performance is more stable across
samples (lower standard deviation). These conclu-
sions coincide with the ones drawn from Table 3,
thus confirming the usefulness of semantic equiva-
lence metrics for automatic evaluation of text gen-
eration.

Interestingly, specifying the section type in the
input records (i.e., explicit conditioning) did not
improve model performances (Table 3). To ratio-
nalize this result, we analyze T5 internal repre-
sentations. Specifically, for each test sample, we
extract the (average) last encoder hidden-state for
both pre-trained (not fine-tuned) and fine-tuned
T5 (fine-tuned on BioLeaflets but without explicit

367

Figure 1: Two-dimensional projections of T5 internal representations (average of the last encoder hidden-states) for
pre-trained (not fine-tuned) (left) and fine-tuned T5 model on BioLeaflets dataset (right). T5 implicitly learns to
condition on section type during fine-tuning.

conditioning). We then project these vectors into
two-dimensions using the non-linear dimension-
ality reduction method UMAP (McInnes et al.,
2020). The results are depicted in Fig. 1. In Fig. 1
(right), we can identify six well-separated clusters,
which correspond to (the internal representations of
samples belonging to) the six document sections in
the BioLeaflets dataset. Thus, after fine-tuning, T5
maps input data belonging to different sections to
different parts of the internal representation space.
The cluster separation is much less pronounced for
the pre-trained (not-fine-tuned) T5 model (Fig. 1,
left). This shows that during the fine-tuning pro-
cess, T5 implicitly learns to condition on section
type, thus learning to generate different sections,
even despite the small dataset. Since condition-
ing is learned automatically, explicitly passing the
section type as input does not increase model per-
formance.

6 Error Analysis and Limitations

After thorough qualitative evaluation of numerous
generated samples, the following general issues
appear:

• Typos: Even though models largely utilize
the input entities correctly, typos appear in
generated text by T5 and BART for out-of-
vocabulary words, e.g. Table 1 (c, d). Content
Planner does not seem to have this problem.

• Hallucinations are present for all models.
Loss functions like maximum likelihood do
not directly minimize hallucinations, thus hin-
dering consistent fact-based text generation.

• Repetitiveness: Content Planner produce rep-
etitions (e.g. Table 1 (e)), whereas T5 and
BART language models do not.

• Difficulties in producing coherent long text:
In the BioLeaflets dataset, models perform
well in generating section 1, which is 962 char-
acters long on average. However, the quality
of section 4 ”Possible side effects” (3 453 char-
acters long on average) generation is poor.

Possible improvements to our work are: analysis
of the impact of shuffling of entities for the input
data generation, introduction of loss functions that
explicitly favor factual correctness, usage of spe-
cialized biomedical embeddings, inclusion of more
source input data (e.g. part-of-speech, dependency
tag), generation of longer text (beyond the 512 to-
kens generated here).

7 Conclusion

In this study, we introduce a new biomedical
dataset (BioLeaflets), which could serve as a bench-
mark for biomedical text generation models. We
demonstrate the feasibility of generating coher-
ent multi-sentence biomedical text using patient-
friendly language, based on input consisting of
biomedical entities. These results show the poten-
tial of text generation for real-world biomedical
applications. Nevertheless, human evaluation is
still a required step to validate the generated sam-
ples. Application of the methodology and models
used here to different sets of biomedical text (e.g.,
generation of selected sections of clinical study
reports) could be an area for further research.

368

References

Parminder Bhatia, Busra Celikkaya, Mohammed
Khalilia, and Selvan Senthivel. 2019. Comprehend
medical: A named entity recognition and relation-
ship extraction web service. In 2019 18th IEEE In-
ternational Conference On Machine Learning And
Applications (ICMLA), pages 1844–1851.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

European Union EU. 2001. Directive 2001/83/ec of the
european parliament and of the council of 6 november
2001 on the community code relating to medicinal
products for human use. Brussels, Belgium.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102, Dublin, Ireland.
Association for Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Emma Manning, Shira Wein, and Nathan Schneider.
2020. A human evaluation of amr-to-english gen-
eration systems. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
COLING 2020, Barcelona, Spain (Online), Decem-
ber 8-13, 2020, pages 4773–4786. International Com-
mittee on Computational Linguistics.

Leland McInnes, John Healy, and James Melville. 2020.
Umap: Uniform manifold approximation and projec-
tion for dimension reduction.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
cas Curry, and Verena Rieser. 2017a. Why we need
new evaluation metrics for NLG. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2241–2252, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017b. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201–206, Saarbrücken, Germany. Association
for Computational Linguistics.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. ToTTo: A controlled table-to-
text generation dataset. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2020, Online, November
16-20, 2020, pages 1173–1186. Association for Com-
putational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):6908–6915.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

369

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/VA challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Associ-
ation, 18(5):552–556.

WHO WHO. 2004. Icd-10 : international statistical
classification of diseases and related health problems
: tenth revision.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yuhao Zhang, Yuhui Zhang, Peng Qi, Christopher D
Manning, and Curtis P Langlotz. 2021. Biomedical
and clinical English model packages for the Stanza
Python NLP library. Journal of the American Medi-
cal Informatics Association.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

370

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 371–376,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Decoding, Fast and Slow: A Case Study on Balancing Trade-Offs in
Incremental, Character-level Pragmatic Reasoning

Sina Zarrieß1, Hendrik Buschmeier1, Ting Han2, Simeon Schüz1

1Bielefeld University, 2Artificial Intelligence Research Center, Tokyo
1{sina.zarriess,hbuschme,simeon.schuez}@uni-bielefeld.de,

2ting.han@aist.go.jp

Abstract

Recent work has adopted models of pragmatic
reasoning for the generation of informative lan-
guage in, e.g., image captioning. We propose a
simple but highly effective relaxation of fully
rational decoding, based on an existing incre-
mental and character-level approach to prag-
matically informative neural image caption-
ing. We implement a mixed, ‘fast’ and ‘slow’,
speaker that applies pragmatic reasoning occa-
sionally (only word-initially), while unrolling
the language model. In our evaluation, we find
that increased informativeness through prag-
matic decoding generally lowers quality and,
somewhat counter-intuitively, increases repeti-
tiveness in captions. Our mixed speaker, how-
ever, achieves a good balance between quality
and informativeness.

1 Introduction

Kahneman (2011) famously said that humans have
two ways of thinking (along with others theories
on human information processing, e.g., Schneider
and Shiffrin, 1977): one way is fast, automatic
and intuitive, the other is a slow, controlled, and
explicit way of reasoning. This distinction also
arises in research on human language processing:
slow processes of reasoning that allow speakers
to adapt their utterances very flexibly and strate-
gically to a given context are central to theories
of pragmatics (Searle, 1969; Grice, 1975; Clark,
1996). Yet, speakers are known to produce utter-
ances in context quickly and easily, which has been
a central concern in, e.g., psycholinguistics and ex-
perimental pragmatics (Keysar et al., 1998; Galati
and Brennan, 2010; Degen and Tanenhaus, 2016,
2019). Similarly, models of pragmatic reasoning
and their applications in NLP face the challenge
that fully rational language generation is compu-
tationally costly or even intractable (Reiter, 1991;
White et al., 2020).

Recent work on pragmatics in NLP has taken
interest in the Rational Speech Acts (RSA) model
(Frank and Goodman, 2012) which resulted in im-
plementations of frameworks that model the gener-
ation of informative language with so-called ratio-
nal speakers (Andreas and Klein, 2016; Fried et al.,
2018; Shen et al., 2019). Cohn-Gordon et al. (2018)
use an image captioning set-up inspired by classical
reference games (see Figure 1) to show that a ‘slow’
rational speaker which reasons internally about the
informativeness of utterances generated by a plain
neural language model is communicatively more ef-
fective than a ‘fast’ literal speaker that produces the
most likely utterance for the target as predicted by
the language model. More generally, recent work
in NLG has shown a lot of interest in reasoning
or decoding methods that extend neural generation
models with additional objectives that cannot be
easily achieved by decoding the underlying neural
language model with greedy or beam search (e.g.,
Li et al., 2016; Vedantam et al., 2017; Vijayakumar
et al., 2018; Ippolito et al., 2019; Holtzman et al.,
2020; Tam, 2020).

Reasoning schemes like RSA provide an attrac-
tive, since explicit and theoretically motivated, way
of incorporating linguistically plausible, commu-
nicative strategies into a neural generation frame-
work. At the same time, however, RSA and various
related decoding methods have been found to not
achieve a good balance between different dimen-
sions of output quality. For instance, Ippolito et al.
(2019) investigates a range of decoding methods
that aim at increasing the lexical diversity of im-
age captions or responses in dialogue and report
on a very clear quality-diversity trade-off: the more
the decoding procedure (e.g., sampling) increases
diversity and deviates from the predictions of the
underlying language model, the more the generated
expressions decrease in quality. Recently, Schüz
et al. (2021) found similar trade-offs for decod-

371

S0 a group of people riding on the backs of horses
S1 two brown hornes grazing in a fenced grassy field
Sx two horses in a field in front of a field

Figure 1: Captions for the target image (large), gener-
ated by a literal (S0), rational (S1) and mixed speaker
(Sx), with rationality parameter α = 5 and beam search.
The captions by S1 and Sx are more discriminative
(“field”), but contain repetitions and out-of-vocabulary
words (“hornes”).

ing word-level image captioning models with RSA
and Vedantam et al. (2017)’s discriminative beam
search.

Next to these trade-offs, rational speakers in
RSA, which apply complex recursive reasoning
using an internal listener and speaker, incur a high
computational cost, particularly in generation set-
ups with large candidate spaces where exhaustive
search is not tractable. Therefore, recent works
have implemented incremental decoding schemes
that reason about discriminativeness at every time-
step, during unrolling the language model (Vedan-
tam et al., 2017; Cohn-Gordon et al., 2019). Cohn-
Gordon et al. (2018)’s character-level approach
fully confronts pragmatic reasoning: the neural lan-
guage model captions images in a character-by-
character fashion such that each character can be
internally scored for its informativeness by the ra-
tional speaker. While this incremental generation
and reasoning scheme makes it possible to search
a large space of potential utterances, it is still ex-
tremely costly as the internal, recursive reasoning
of the speaker is applied at every character.

In this paper, we propose a very simple but
highly efficient relaxation of fully rational and in-
cremental decoding with RSA: we propose a mixed
speaker that switches between literal and rational
inference, that is, between ‘fast’ and ‘slow’ de-
coding, while unrolling the language model. This
speaker applies pragmatic reasoning at particular
time steps during decoding rather than at every

time-step. Extending Cohn-Gordon et al. (2018)’s
character-level RSA, our mixed speaker is rational
only when generating the first character of a new
word and uses fast literal decoding for the remain-
ing steps in the sequence. Adopting Schüz et al.
(2021)’s evaluation setting that combines quality,
informativeness and diversity, we find that Cohn-
Gordon et al. (2018)’s original, fully incremental
character-level generation approach produces cap-
tions that are not only more informative and glob-
ally more diverse, but also have lower quality, con-
tain more repeated words as well as more out-of-
vocabulary words. Generally, the mixed speaker
that switches between fast and slow decoding is
computationally more efficient and achieves a good
balance in these various trade-offs maintaining,
most notably, a better balance between quality and
informativeness than a fully rational speaker.

2 Models

2.1 Image Captioning Model

We use Lu et al. (2017)’s adaptive attention model.
The model’s encoder uses a pre-trained CNN
to represent images as feature vectors (we used
ResNet152). A single LSTM layer with rectifier
activation transforms the feature vectors into new
vectors vg. We concatenate the vector vg with the
word embedding vector wt as the input for the de-
coder. Conditioned on image feature vector vg and
the hidden state vector ht−1 of the encoder from the
previous time step, the attention module generates
an attention map vector ct . A single layer neural
network transforms ct and current hidden state vec-
tor ht into a new vector, the final layer is a softmax
over the vocabulary. While Lu et al. (2017) trained
word level image captioning models, we trained a
character-level model with the same architecture.

2.2 Pragmatic Reasoning

In the RSA model, a so-called rational speaker rea-
sons about how an utterance would be understood
by a listener, i.e., whether it allows the identifica-
tion of the target. The speaker and listener are given
a set of images W and one image w∗ ∈W is known
to the speaker as the target (see Figure 1). The ratio-
nal speaker in RSA has an internal literal speaker
who produces utterance candidates, i.e., a condi-
tional distribution S0(u|w) which, in the simplest
case, assigns equal probability to all true utterances
u ∈U and zero probability to false utterances. A
pragmatic listener L0 then discriminates between

372

images given the utterance, as follows:

L0(w|u) ∝
S0(u|w)∗P(w)

∑w′∈W S0(u|w′)∗P(w′)

where P(w) is a prior over possible target images.
The pragmatic speaker S1 is defined as:

S1(u|w) ∝
L0(w|u)α ∗P(u)

∑u′∈U L0(w|u′)α ∗P(u′)

where P(u) is a uniform distribution over possible
utterances U and α > 0 is a rationality parameter
determining the relative influence of the pragmatic
listener in the rational speaker, see Cohn-Gordon
et al. (2018) for further details. Essentially, the lit-
eral speaker S0 corresponds to the standard formu-
lation of the image captioning task, i.e., it generates
descriptions for single target images. In contrast
to this, the pragmatic speaker S1 considers the re-
spective context, i.e., the distractor images, during
decoding.

We use Cohn-Gordon et al. (2018)’s character-
incremental implementation of RSA that uses
a character-level captioning model as the literal
speaker S0 and applies recursive pragmatic reason-
ing at each time-step, during unrolling a character-
level neural speaker. While Cohn-Gordon et al.
(2018) only reported results on decoding RSA with
beam search, we compare greedy and beam search.

A Mixed Speaker While previous studies on
RSA for neural generation have implemented fully
rational speakers that apply pragmatic reasoning
over the entire utterance or incrementally at each
time-step of the decoding process, we propose a
new scheme for decoding with RSA which we call
a mixed speaker. This speaker is both literal and
rational (or ‘fast’ and ‘slow’), using different lev-
els of reasoning during incremental decoding. We
define our mixed speaker (Sx) to be: (i) rational
(S1) when generating the first character of a new
word, i.e., at the beginning of the sequence or after
generating a whitespace and (ii) literal (S0) when
generating other characters, i.e., not at the begin-
ning of a word. This captures the intuition that the
speaker can (and should) in many cases rely on
its language model, e.g., when continuing words
in a morphologically well-formed way. We test
whether pragmatic reasoning at the beginning of
words is enough to push the model towards being
more informative, by giving more probability to
initial letters of discriminative words. For instance,
when the speaker describes a big and yellow object,

pragmatic reasoning will be needed only at the be-
ginning of the word, discriminating between b and
y, depending on properties of the distractor objects.

3 Character-level Experiment

Our experiments compare three different speakers:
the literal (or ‘fast’) speaker S0, which simply de-
codes the language model, the rational (or ‘slow’)
speaker S1, which reasons at every time step, and
the mixed (or ‘fast and slow’) speaker Sx.

3.1 Evaluation
Our evaluation setting is similar to Schüz et al.
(2021), who investigated global diversity in prag-
matic reasoning with word-level captioning models.
Here, in addition, we analyze the repetitiveness of
generated captions and evaluate informativeness
in similar ways as in Cohn-Gordon et al. (2018),
instead of using an external cross-modal retrieval
model as in Schüz et al. (2021).

Data We performed experiments using the
MSCOCO data set (Lin et al., 2014), with 82,783
and 40,504 images in the training and validation
sets, respectively. Each image is annotated with
around five captions. Following Cohn-Gordon et al.
(2018), we train our speaker and listener models
on distinct training splits. Because of this, we ran-
domly split the training set into halves for model
training. For evaluation, we randomly selected
1,000 images from the MSCOCO validation set.

Informativeness Following Cohn-Gordon et al.
(2018), we train a listener model to predict target
images for captions produced by a speaker. Given
a set of potential target images and a generated cap-
tion, the listener ranks the images in terms of their
likelihood. If the target image (i.e., the input of the
speaker) is on top, the caption is accurate (reported
as listener accuracy, Lacc, in Table 1). The clusters
of potential target images were compiled based on
caption similarity: For each target image, we select
the two images as distractors whose annotated cap-
tions have the highest Jaccard similarity with the
annotated captions of the target image.

Quality Evaluation We assess the quality of
generated captions in terms of CIDEr scores
(Vedantam et al., 2015), measuring the overlap
with human captions. Since our model generates
captions character by character, we report the ab-
solute number of out-of-vocabulary types and to-
kens (OOV types and tokens) where we treat every

373

Inform. Quality Type Vocab Token Vocab Diversity
α Lacc CIDEr IV OOV IV OOV TTRcap TTRcapc TTRcap2 TTRg

gr
ee

dy
S0 - 54.8 0.668 376 4 11273 5 0.760 0.870 0.916 0.166
S1 1 63.0 0.559 444 7 13136 7 0.714 0.822 0.884 0.177
S1 3 66.9 0.506 549 8 12990 8 0.720 0.819 0.881 0.201
S1 5 68.9 0.462 620 20 12846 25 0.723 0.817 0.884 0.212
Sx 1 61.5 0.575 443 6 13127 8 0.718 0.825 0.888 0.175
Sx 3 65.1 0.524 491 6 13014 6 0.723 0.820 0.888 0.189
Sx 5 65.5 0.493 529 9 12998 10 0.728 0.824 0.890 0.198

be
am

S0 - 54.1 0.778 303 0 10369 0 0.841 0.930 0.964 0.160
S1 1 63.1 0.704 348 3 10359 3 0.826 0.915 0.952 0.171
S1 3 68.5 0.589 428 17 10360 32 0.796 0.872 0.927 0.193
S1 5 70.4 0.481 486 72 10730 199 0.769 0.839 0.902 0.209
Sx 1 61.8 0.718 341 2 10497 2 0.828 0.918 0.952 0.170
Sx 3 64.8 0.652 373 3 10580 3 0.812 0.899 0.939 0.180
Sx 5 66.9 0.606 413 8 10694 8 0.797 0.884 0.927 0.190

Table 1: Evaluation of informativeness (listener accuracy), quality (CIDEr and OOV types and tokens), local diver-
sity (TTRcap, TTRcapc , TTRcap2) and global diversity (TTRg) for literal (S0), rational (S1), mixed (Sx) speakers.

word token (occurring between whitespaces) that
did not occur in the training set as an OOV token.
In-vocabulary (IV) token and type counts are pro-
vided for comparison.

Diversity and Repetitiveness We measure di-
versity using different type-token ratios (TTR)
(Youmans, 1990; van Miltenburg et al., 2018).
TTRg is calculated globally as the total number
of types divided by the total number of tokens as
in van Miltenburg et al. (2018) and Schüz et al.
(2021). In contrast to this, TTRcap is computed
locally as the arithmetic mean of the TTR values
for individual captions. While TTRg reflects the
general lexical diversity, TTRcap is an indicator
for word repetitions in captions. We supplement
this with TTRcapc which is analog to TTRcap but
on captions filtered for stop words, i.e., indicating
repetitions of content words. Finally, TTRcap2 is
based on bigrams and thus indicates the repetition
of word combinations or phrases.

3.2 Informativeness–Quality Trade-Off

The results in Table 1 show that there is a system-
atic trade-off between informativeness and quality
in character-level image captioning. All speakers
that use some level of reasoning, S1 or Sx with dif-
ferent α-values, achieve a higher listener accuracy
but lower quality in terms of CIDEr than S0. Beam
search is generally beneficial for caption quality,
according to the CIDEr scores shown in Table 1.
However, it seems to interact with highly rational
S1 in unfortunate ways and leads to a drastic in-
crease of the number of OOVs (see Figure 1 for
an example). Here, RSA fails to achieve a good

balance with its underlying language model. Our
mixed speaker achieves a much better trade-off be-
tween quality and informativeness, especially in
combination with beam search: Sx,α=5 clearly out-
performs S1,α=5 in CIDEr (more than 12 points
improvement) and number of OOVs (only 8 types
as compared to 72 for S1), while its listener accu-
racy is only 3 points lower. From this, we conclude
that occasional, word-initial pragmatic reasoning
is highly effective and offers a decent balance be-
tween informativeness and quality.

Example 1 illustrates further, more general as-
pects of an informativeness–quality trade-off. S0
and Sx generate more informative captions by inte-
grating the background of the image as a discrimi-
native feature (“field“). However, other features are
also added, some of them inaccurate (e.g., “graz-
ing“, “fenced“). This shows general limitations of
this approach: Since discriminativity is the primary
concern in RSA, other problems can arise, such as
semantic inadequacies.

3.3 Local–Global Diversity Trade-Off

Results in Table 1 point to further trade-offs of prag-
matic decoding, which generally lead to more repet-
itive captions being generated. In comparison to the
literal speakers S0, S1 and Sx have lower TTRcap,
TTTcapc and TTRcap2 scores. The mixed speaker
attenuates this effect, but has still lower local TTR
as the fully literal speaker. This should not happen
in theory, since it is questionable whether repeating
is a useful strategy for making utterances more dis-
criminative. It could even be seen as a strategy that
violates the Gricean maxim of relevance (Grice,

374

1975) – see the caption of Sx in Figure 1 for a repre-
sentative example. Interestingly, however, increases
in local repetitiveness are combined with increases
in global diversity. Thus, speakers which are more
repetitive also use a larger vocabulary (S1 and Sx

use more absolute types and have higher TTRg).
RSA counteracts the tendency of beam search to
globally reduce the vocabulary, but, here, greed-
ily decoded speakers achieve higher numbers of
types and TTRg. This indicates that RSA might be
a useful approach to generating, e.g., less frequent
words when the communicative context makes this
necessary, as previously suggested in Schüz et al.
(2021).

4 Conclusion

In this paper we have replicated Cohn-Gordon et al.
(2018)’s approach to character-level pragmatic im-
age captioning and have evaluated it not only with
respect to informativeness, but also quality, repeti-
tiveness, and global diversity of the model outputs.
Our results show various trade-offs in character-
level captioning: models that are more informative
and rational produce captions that are of lower qual-
ity and contain more out-of-vocabulary words. In
terms of diversity, we find that character-level RSA
increases the amount of word repetitions within
captions. Interestingly, at the same time, it also in-
creases global diversity and leads to a larger vocab-
ulary being exploited by the underlying language
model. This analysis fully confirms and extends
findings on word-level decoding methods facing
different types of trade-offs as a result of additional
objectives introduced into the generation process at
the decoding stage (e.g., Li et al., 2016; Vijayaku-
mar et al., 2018; Ippolito et al., 2019; Schüz et al.,
2021).

Our analysis also shows that these trade-offs
can be countered by our mixed, ‘fast’ and ‘slow’,
speaker that applies reasoning in a simple, word-
initial fashion. Future work could explore further
ways of controlling when reasoning is needed dur-
ing decoding and generalize this to word-level de-
coding. As character-level image captioning is ar-
guably not state-of-the-art, some of the effects that
we report in this case study might not generalize
to more powerful – especially word-level – mod-
els. Nevertheless, we believe that the trade-offs ob-
served in this pilot study could be explored in other
task that require the generation of long sequences
(e.g., image paragraphs, longer responses in an in-

teraction) and that the effectiveness of mixed prag-
matic decoding might be an interesting avenue for
such tasks.

References

Jacob Andreas and Dan Klein. 2016. Reasoning about
pragmatics with neural listeners and speakers. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1173–1182, Austin, Texas. Association for Compu-
tational Linguistics.

Herbert H. Clark. 1996. Using Language. Cambridge
University Press, Cambridge, UK.

Reuben Cohn-Gordon, Noah Goodman, and Christo-
pher Potts. 2018. Pragmatically informative image
captioning with character-level inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
2 (Short Papers), pages 439–443.

Reuben Cohn-Gordon, Noah Goodman, and Christo-
pher Potts. 2019. An incremental iterated response
model of pragmatics. In Proceedings of the Society
for Computation in Linguistics (SCiL) 2019, pages
81–90.

Judith Degen and Michael K Tanenhaus. 2016. Avail-
ability of alternatives and the processing of scalar im-
plicatures: A visual world eye-tracking study. Cog-
nitive science, 40(1):172–201.

Judith Degen and Michael K Tanenhaus. 2019.
Constraint-based pragmatic processing. Handbook
of Experimental Semantics and Pragmatics.

Michael C Frank and Noah D Goodman. 2012. Pre-
dicting pragmatic reasoning in language games. Sci-
ence, 336(6084):998–998.

Daniel Fried, Jacob Andreas, and Dan Klein. 2018.
Unified pragmatic models for generating and follow-
ing instructions. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1951–1963, New Orleans, Louisiana. Association
for Computational Linguistics.

Alexia Galati and Susan E. Brennan. 2010. Attenuat-
ing information in spoken communication: For the
speaker, or for the addressee? Journal of Memory
and Language, 62:35–51.

H. P. Grice. 1975. Logic and conversation. In Pe-
ter Cole and Jerry L. Morgan, editors, Syntax and
Semantics: Vol. 3: Speech Acts, pages 41–58. Aca-
demic Press, New York.

375

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Daphne Ippolito, Reno Kriz, João Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Com-
parison of diverse decoding methods from condi-
tional language models. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3752–3762, Florence, Italy.
Association for Computational Linguistics.

Daniel Kahneman. 2011. Thinking, Fast and Slow.
Macmillan.

Boaz Keysar, Dale J. Barr, and William S. Horton.
1998. The egocentric basis of language use: Insights
from a processing approach. Current Directions in
Psychological Science, 7:46–49.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. arXiv preprint arXiv:1611.08562.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard
Socher. 2017. Knowing when to look: Adaptive at-
tention via a visual sentinel for image captioning. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 375–383.

Emiel van Miltenburg, Desmond Elliott, and Piek
Vossen. 2018. Measuring the diversity of automatic
image descriptions. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1730–1741, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Ehud Reiter. 1991. A new model of lexical choice for
nouns. Computational Intelligence, 7(4):240–251.

Walter Schneider and Richard M Shiffrin. 1977. Con-
trolled and automatic human information processing:
I. detection, search, and attention. Psychological re-
view, 84(1):1.

Simeon Schüz, Ting Han, and Sina Zarrieß. 2021. Di-
versity as a by-product: Goal-oriented language gen-
eration leads to linguistic variation. In Proceedings
of the 22nd Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 411–
422, Singapore and Online. Association for Compu-
tational Linguistics.

John Searle. 1969. Speech acts: An essay in the philos-
ophy of language, volume 626. Cambridge univer-
sity press.

Sheng Shen, Daniel Fried, Jacob Andreas, and Dan
Klein. 2019. Pragmatically informative text gen-
eration. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4060–4067, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yik-Cheung Tam. 2020. Cluster-based beam search for
pointer-generator chatbot grounded by knowledge.
Computer Speech & Language, 64:101094.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy,
Devi Parikh, and Gal Chechik. 2017. Context-aware
captions from context-agnostic supervision. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 251–260.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 32.

Julia White, Jesse Mu, and Noah Goodman. 2020.
Learning to refer informatively by amortizing prag-
matic reasoning. In Proceedings of the 42nd Annual
Meeting of the Cognitive Science Society.

Gilbert Youmans. 1990. Measuring lexical style
and competence: The type-token vocabulary curve.
Style, 24:584–599.

376

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 377–386,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

GraphPlan: Story Generation by Planning with Event Graph

Hong Chen1,3, Raphael Shu1, Hiroya Takamura2,3, Hideki Nakayama1,3

The University of Tokyo1, Tokyo Institute of Technology2

National Institute of Advanced Industrial Science and Technology, Japan3

{chen, nakayama}@nlab.ci.i.u-tokyo.ac.jp
shu@deeplearn.org, takamura.hiroya@aist.go.jp

Abstract

Story generation is a task that aims to automat-
ically generate a meaningful story. This task is
challenging because it requires high-level un-
derstanding of the semantic meaning of sen-
tences and causality of story events. Naive
sequence-to-sequence models generally fail to
acquire such knowledge, as it is difficult to
guarantee logical correctness in a text gener-
ation model without strategic planning. In this
study, we focus on planning a sequence of
events assisted by event graphs and use the
events to guide the generator. Rather than us-
ing a sequence-to-sequence model to output a
sequence, as in some existing works, we pro-
pose to generate an event sequence by walk-
ing on an event graph. The event graphs are
built automatically based on the corpus. To
evaluate the proposed approach, we incorpo-
rate human participation, both in event plan-
ning and story generation. Based on the large-
scale human annotation results, our proposed
approach has been shown to provide more log-
ically correct event sequences and stories com-
pared with previous approaches.

1 Introduction

Narrative intelligence (Mateas and Sengers, 2003)
is a form of humanistic artificial intelligence that
requires the system to organize, comprehend, and
reason about narratives, and then, produce mean-
ingful responses. Story generation tasks can be
considered as a test bed for examining whether a
system develops a good understanding of the nar-
ratives. In addition to leaving the model to output
random sequences, the model is usually given a
specific topic (e.g., title or prompt) or visual in-
formation (e.g., image or video). One straightfor-
ward approach for these story generation tasks is
to leverage a sequence-to-sequence model to pre-
dict sentences sequentially. Although the model
can be trained to capture the word-prediction dis-

Figure 1: Comparison between sequence-to-sequence
model and GraphPlan (ours). Two problems occur
in the sequence-to-sequence model when generating
events: repetition and logical inconsistency. Repeated
words (e.g., play) in the storyline result in repeated sen-
tences in the generated stories. In addition, the logic
between “land” and “snap” lacks causality, thus gener-
ating incoherent stories. On the contrary, our Graph-
Plan method does not rely on any language model, and
applies beam search on the event graph based on a
well-designed score function. The mutually exclusive
set further ensures global logical consistency for the
planned events.

tribution from the training data, it has two serious
drawbacks when applied to generating stories: 1)
A conditional language model (i.e., the decoder)
tends to assign high probabilities to generic, repeti-
tive words, especially when beam search is applied
in the decoding phase (Holtzman et al., 2019); and
2) sequence-to-sequence models often fail to pro-
duce logically correct stories.

Recently, there has been significant interest in de-
composing story generation into two phases: Plan-
ning and generation (Yao et al., 2019; Goldfarb-
Tarrant et al., 2019; Xu et al., 2018; Fan et al.,
2019). Planning (Meehan, 1976; Riedl and Young,
2010) creates a high-level abstraction or a blueprint

377

that encourages the generator to focus on the flow
of a story, similar to making an outline before writ-
ing. The planned elements are referred to as events
in several papers. However, the detailed defini-
tion of events varies. For instance, an event can
be represented as a verb argument pair (e.g., (ad-
mits, subj)) (Chambers and Jurafsky, 2008): tu-
ple of subject, verb, object and modifier or “wild-
card” (e.g., (PERSON0, correspond-36.1, empty,
PERSON1)) (Martin et al., 2018; Ammanabrolu
et al., 2020) or reconstructed verb phrase (e.g., de-
cide(go)) (Peng and Roth, 2016). In this paper, we
follow Peng and Roth (2016) to represent an event
with verb phrases.

Existing approaches (Goldfarb-Tarrant et al.,
2019; Martin et al., 2018; Ammanabrolu et al.,
2020) regard event generation as an abstracted case
of story generation. In other words, they treat each
event as one token and use a sequence-to-sequence
model to plan the events. Our preliminary exper-
iments show that repetition and logical inconsis-
tency problems occur in the event sequence; fur-
ther, the same problems occur in the generated sto-
ries. Figure 1 shows an example using sequence-to-
sequence event planning. Both events and stories
are repeated and illogical.

In this study, instead of a sequence-to-sequence
model for event planning, we propose a planning
method, GraphPlan. To plan the event, GraphPlan
walks on a topic-specific event graph with a beam
search. Event graphs have been adopted for story
generation even before the emergence of neural-
based models (Weyhrauch, 1997; Chen et al., 2009;
Regneri et al., 2010; McIntyre and Lapata, 2010; Li
et al., 2013). An event graph represents the logical
flow of events based on the facts presented in a
corpus. We can walk on a learned event graph and
produce a reasonable event sequence. We follow
the graph setting in Li et al. (2013), wherein each
graph is composed of event nodes, functions and a
set of mutually exclusive events.

To generate a story, we first identify the topic
based on the input (e.g., title or image), and sub-
sequently, retrieve a related event graph. We then
plan the events by running a beam search with a
score function that considers event-event coherence
and input-event coherence into account. Finally,
a story generation module transforms the planned
event sequence into a readable story. Figure 2 de-
picts the entire pipeline of our proposed approach.

We conducted experiments on open story genera-

Figure 2: Overview of our approach. In the prepro-
cessing step, we cluster the stories into K topics and
build an event graph for each topic. In the planning
step, an event graph selection module selects an event
graph based on the input. Then, a related event graph
is retrieved. The event planning model generates a
sequence of events. Finally, based on the input and
planned events, a story generation module generates
the story. The dashed line denotes mutually exclusive
events that are difficult to coexist in the same storyline.

tion to evaluate how event graphs benefit tasks. Our
approach significantly outperforms baseline mod-
els that generate events with sequence-to-sequence
models in terms of logical consistency. We also
conducted Story Cloze Test (SCT) to further vali-
date the effectiveness of the event graphs and the
mutually exclusive sets. Our contributions can be
summarized as follows:
• We propose a score-based beam search approach

to plan story events with an event graph.
• Compared with baseline models, our graph-based

planning approach results in much better logical
correctness in story generation tasks according
to human evaluation.

• Experiments on SCT directly confirm the high ac-
curacy of the proposed event planning approach.

2 Related Work

Planning for Story Generation Several ap-
proaches have been explored to plan the skeleton of
a story before its generation. Before the emergence
of neural-based models, Reiter and Dale (1997) and
Riedl (2010) attempted to use hand crafted rules to
arrange actions into character sequences. Recently,
with the help of neural sequence-to-sequence mod-
els, Xu et al. (2018) proposed to generate multiple
key phrases and expand them into a complete story.
A built-in key phrases generation module is used
in their model architecture. In contrast to Xu et al.

378

(2018), some works have explicitly plan a sequence
of events (Martin et al., 2018; Ammanabrolu et al.,
2020; Tambwekar et al., 2019; Fan et al., 2018;
Rashkin et al., 2020; Ammanabrolu et al., 2021),
keywords (Yao et al., 2019; Ippolito et al., 2019;
Goldfarb-Tarrant et al., 2020) or actions (Fan et al.,
2019) before generating the story based on the
planned items.

All of these planning models rely on a language
model for planning, without following an external
structure of events, which results in degraded per-
formance (Holtzman et al., 2019). Compared with
these works, the main contribution of this paper is
to propose a planning method based on automati-
cally created event graphs. Instead of a language
model, we use score-based beam search to generate
a sequence of events by walking on the graph.

Graph-based Story Planning An event graph
is a variant of a plot graph whose nodes represent
events. Previous research has made progress on
generating stories from plot graphs (Weyhrauch,
1997; Chen et al., 2009; Regneri et al., 2010; McIn-
tyre and Lapata, 2010; Li et al., 2019). Li et al.
(2013) proposed a plot graph on story generation
tasks, which is relevant to our work. They crowd-
sourced the story corpus and manually created plot
nodes and edges in the graph. In their graph, mutu-
ally exclusive events are not allowed to be present
in the same story.

In this work, both the event graphs and mutually
exclusive sets are automatically generated. We fur-
ther propose an event planning method that consid-
ers the relations between events and various inputs
(i.e., title or image).

3 Event Graph Construction

As a preprocessing step, we first extract events
automatically from a corpus. Then, we divide the
corpus into several topics. Finally, we build an
event graph for each topic.

Data-based Event Extraction Following Peng
and Roth (2016), we represent each event with a
verb phrase. Unlike other representations, a verb
phrase is the minimum unit in one sentence that
is abstract, simple, and comprehensible for hu-
mans. From our observation, this representation
does not have a severe sparseness problem. In
statistics, each event in the graph can link to over
three next possible events on average. Note that
our work does not investigate event representation;

instead, we focus on planning a more logical event
sequence. Specifically, as a preprocessing step,
we parse all sentences with semantic role label-
ing 1 and extract the verb phrases. If an extracted
verb has an argument with the semantic role “AM-
NEG” (negation) for a verb, we add (not) before it
(e.g., (not)take). If a verb is followed by a preposi-
tion, we append the prepositional word to the verb
(e.g., take(over)). If the label is “AM-PRD” (sec-
ondary predicate), we make an event from it (e.g.,
be(excite)). Finally, if two verbs are close to each
other within five-word distance in the corpus, we
combine them to make an event (e.g., decide(buy)).
All words in the event are stemmed using NLTK
(Bird et al., 2009).

Topic Modelling Generally, a story dataset con-
tains various topics, ranging from animals to health
to robbery. Here, we use Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) to infer the topics in
the corpus. Considering that the relation between
events drastically changes according to the topic,
in this study, we build an independent event graph
for each topic. Formally, we denote ek1, . . . , e

k
t the

event set from the stories that belong to the k-th
topic T k in the corpus. These events would be used
as nodes for the event graph of T k. LDA clusters
the stories and thus reduces the amount of unique
events in each graph, which will make the graph
walking algorithm more efficient.

Event Connection After collecting events from
a corpus for each topic, we need to determine
connections among these events to build a graph.
The connections are represented as directed edges
whose direction indicates possible next events. In
practice, if events ei and ej occur adjacently in the
text, we add an edge ei → ej . An example of an
event graph is presented in Figure 2.

Mutually Exclusive Set Following the graph set-
ting in Li et al. (2013), there are events (e.g. “die”
and “be(happy)”) that are mutually exclusive, and
thus, cannot be placed in the same story. These
mutually exclusive relations are considered as ex-
ceptions, which are difficult to represent along with
the event graph. We create a held-out set consisting
of mutually exclusive event pairs for each graph.

To identify these mutually exclusive events from
the constructed graphs, we prepare an event-event

1https://demo.allennlp.org/semantic-role-
labeling/semantic-role-labeling

379

Figure 3: Coherence models were used in this study.
The event-event coherence model outputs a coherence
score for two events. The input-event coherence model
takes a title and an event as input. Both coherence mod-
els finally produce a score within 0 to 1. These co-
herence scores determine the next event when running
beam search.

coherence model to detect the coherence score be-
tween two events. Consequently, we prevent two
events with low coherence scores from coexisting
in the planned events. The model architecture is
based on compositional neural networks (Granroth-
Wilding and Clark, 2016), as shown in Figure 3.
The model takes two events (ei, ej) represented
with unique embeddings, and outputs a coher-
ence score normalized with the sigmoid function
fevent(ei, ej) ∈ [0, 1]. We use contrastive training
to optimize the model. Here, positive examples are
the events extracted from the same story or title,
whereas negative samples are randomly sampled
from the events in different stories. Let (ei, ej)
denote a positive pair of events, and ẽj denotes a
randomly sampled event. The training loss for the
event-event coherence model is defined as

Levent = max(0,−fevent(e1, e2) + fevent(e1, ẽ2) +m),

(1)
where m is a fixed margin. Finally, we consider
two events as mutually exclusive if the coherence
score falls below a certain threshold τ .

On average, after considering the mutually exclu-
sive sets, each event graph can still plan over one
million different possible event sequences. Please
refer to the supplementary materials for more sta-
tistical details on event graphs. Additionally, these
in-topic event graphs can be hierarchically com-
bined into a larger graph, if the model is required
to generate longer discourse-level stories. This will
be a future direction for our work.

4 GraphPlan: Planned Story Generation
using Event Graph

In this section, we describe our approach for
planned story generation. We separated the entire

pipeline into two steps: 1) Our GraphPlan walks on
the event graph and produces a sequence of events
as a blueprint of the story. 2) The story genera-
tion module then finalizes the text following the
planned events.

4.1 GraphPlan

Each topic has had a corresponding event graph.
Before story generation, we propose GraphPlan to
plan event sequences from the event graph. These
planned events will be used to guide the story gener-
ation module in the next step. GraphPlan comprises
two steps. 1) Selecting an event graph for the input
(i.e. title or image); and 2) generating an event
sequence by walking on the graph.

Event Graph Selection First, we identify the
topic of inputs to retrieve the corresponding event
graph. Depending on the tasks, the inputs can be
titles for open story generation, or images for the
visual storytelling task. If the input is a piece of
text, we directly use the LDA model, trained earlier,
to identify the topic.

Event Sequence Generation Once we identify
the topic of input, we walk on the corresponding
event graph to generate a sequence of events. In
our experiments, we found that an autoregressive
language model tends to produce repetitions, result-
ing in degraded performance. Hence, we propose
to use a score-based generation method. The al-
gorithm can be seen as a type of beam search, in
which the candidate event sequences are ranked by
a score function. Starting from a random event e1,
we progressively search for the next event et in the
following candidate set:

{et | et ∈ Graph(et−1),

et /∈ Exclusive(e1, . . . , et−1)}, (2)
where Graph(·) returns a set of possible next events
in the graph, and Exclusive(·) returns a set of mu-
tually exclusive events. This filtering step signifi-
cantly reduces the number of candidate events.

To select the event from the candidate set, we
rank all remaining candidate events with the fol-
lowing score function:

Score(et) =
1∑t−1
i=0 λ

i

t−1∑

i=0

λi log fevent(ei, et)

+ log finput(x, et)

(3)

where the first term of the score function sums
the event-event coherence score of candidate event
et to each partially generated event ei and gives

380

more weight to recent events. λ denotes the decay
rate. Then, a decayed average is applied over the
score. The model used in producing the event-
event coherence is the same model that is used
to detect mutually exclusive events. The second
term is an input-event coherence score finput(x, et),
which indicates the coherence score between event
et and the input x. We propose an input-event
coherence model to compute this score; refer to
Figure 3 for details about parameterization. For
the task of open story generation, the input-event
coherence model is implemented via compositional
neural networks, where input x in Equation (3) is
the title. As common practice for beam search,
we set a budget for the number of candidates to
explore (i.e., beam size). The candidates with the
highest scores are maintained in the beam. The
final candidate with the highest score is selected as
the result.

4.2 Story Generation Module

The generated event sequence will be sent to a
story generation module, which converts the events
into a story; this module can be any type of model.
Recently, large pre-trained language models show
remarkable capacity for generating knowledge-
able and informative sentences. Utilizing these
advantages, the planned events are more likely
to be logically connected in the generated story.
Therefore, we apply GPT2-small (Radford et al.,
2019) as our story generation module. During
the training, we feed the module with the title
words and events. A special token “<EOT>” sep-
arates the title and events and another special to-
ken “<SEP>” is placed in every interval of the
events. “<|endofinput|>” token is added at the end
of the input. In addition, we train an RNN-based
sequence-to-sequence model that is fed with the
same inputs for comparison.

However, as stated in Yao et al. (2019); Tan et al.
(2020), the exposure bias problem occurs when
plan-write strategy is applied. To mitigate this prob-
lem, we alternatively add two types of noises into
the inputs: 1) Mask 20% events with a “[MASK]”
token; and 2) mask all events. The first noise en-
courages the model to generate sentences, referring
to all planned events, while, the second noise pro-
motes the model to generate more stories related
to the title. The effectiveness of two noises are
analyzed in the supplementary material.

5 Experiment

5.1 Experiment Settings

We design two experiments to explicitly evaluate
event and story quality. First, we calculate the di-
versity score and conduct human evaluation on the
planned events. Secondly, we use the story gen-
eration module to transform the events into full
stories and conduct human evaluation to evaluate
the story quality. Moreover, to further verify the
correctness of our GraphPlan, we conduct experi-
ments on Story Cloze Test. The details of model
implementations for all experiments can be found
in the supplementary material.

5.2 Dataset

ROCStories Corpora (Mostafazadeh et al., 2017)
consists of 98,162 stories with titles that we use as
the input and a five-sentence story that we use as
the target. We chose this dataset as a testbed since
the sentences included inside are simple, making
it easier to accurately capture the events. We split
these stories into 8:1:1 for training, validation and
testing. We applied clustering to the training split
(i.e., 8 of 8:1:1) and obtained 500 topics, in which
each topic represents one specific domain. Each
story is generated from one specific domain in the
following experiments. Gold event sequences that
are used in planning methods are extracted from
the stories in the corpus.

5.3 Baseline

S2S Following Yao et al. (2019), we use a sequence-
to-sequence model (Bahdanau et al., 2015), which
straightforwardly generates events by the titles.
S2S(R) To build a more competitive baseline, we
adopt reward shaping in the sequence-to-sequence
model. As in (Tambwekar et al.), we apply a policy
gradient on
∇θJ(θ) = R (ei)∇θ logP (ei | e1, . . . , ei−1; θ)
R(v) = α× r1(v)× r2(v)
r1(v) = log finput(x, v)

r2(v) =

∑
e∈E∧e 6=v log fevent(e, v)

N − 1

(4)

where e denotes the set of the events in the plan-
ning sequence; E denotes the events in the story;
N denotes the number of events in the story; x
denotes the input title and α denotes the normal-
ization constant across the events in each training
sample. During training, the gradient from ei is
multiplied by the reward R(ei), which is propor-

381

Diversity S2S S2S(R) GP GOLD
Dist-1 10.17% 11.35% 20.54% 24.92%
Dist-2 56.55% 58.92% 78.12% 87.75%

Table 1: Diversity of planned events. Both sequence-
to-sequence models achieve low diversity, while Graph-
Plan can achieve high diversity.

tional to r1(ei) and r2(ei). In brief, r1(ei) increases
when ei is more related to the input x, while r2(ei)
become larger when ei is more likely to coexist
with all events {e|e ∈ E ∧ e 6= ei}. This method
forces the model to focus on the event that has a
high coherence score with the input and events in
each training sample.
GR In this method, we apply random walk on the
event graphs while considering mutually exclusive
sets. We aim to show the importance of using co-
herence models by comparing it with this method.
GP(Ours) This is our proposed method that plans
events on an event graph via mutually exclusive set
and coherence models.

5.4 Event Quality
We plan the events on 1000 randomly selected test
data with different baselines models and our pro-
posed model. We first tested the diversity of the
generated sequences and calculate Distinct-1 and
Distinct-2 scores to measure the diversity for all
generated events. Table 1 shows that the sequence-
to-sequence model suffers from producing repeated
unigram and bigram events. Graph plan produces
more events in the full event set (more unigrams)
and produces more combinations between events
(more bigrams).

To further evaluate the quality of planned events,
we conduct human evaluation. Instead of using
overly abstract event representation, as in (Tamb-
wekar et al., 2019), we use the verb phrase, which
is more easily understood by humans. Thus, we
request the annotators to compare the event se-
quences using two criteria: Relevance and logi-
cality. Table 2 shows the human evaluation results.
These results show that our planned events (i.e.,
verb phrases) are more related to the input title and
can be easily transformed into a story.

Table 3 shows some of the examples gener-
ated by different methods. The results show
that sequence-to-sequence models tend to generate
repetitive events. Specifically, they tend to out-
put the events that occur with high frequency in
the corpus, such as “be”(there is sth.) and “go”
(sb. go somewhere). This is common for a model

Choices(%) GP vs S2S GP vs S2S(R) GP vs GR
GP S2S GP S2S(R) GP GR

Relevance 47.0 17.8 52.0 26.0 56.3 12.9
Logical 53.5 14.9 55.2 26.0 51.5 17.8

Table 2: Human evaluation of event planning. Cohen’s
Kappa coefficient (κ) for all annotations is in moderate
agreement (0.4-0.6). Sign tests show that p-values are
< 0.01 for all pairwise comparisons.

Title Married too fast
S2S be→be→be→fall→marry
S2S(R) be→go(up)→ask→say→marry
GR want(do)→go→sit→wonder→call
GP feel→decide→begin→start→regret
Title New glasses
S2S sit→be(unhappy)→have→go→find
S2S(R) break→need→go→get→be(glad)
GR wake(up)→be→(not)care→take→ make
GP buy→wear→break→shatter→decide(buy)
Title Grilled cheese
S2S love→be→decide→forget→end(up)
S2S(R) make→get→go→go→look→see
GR feel(comfortable)→like→smile→decide→feel(full)
GP melt→put→decide(roast)→burn→taste

Table 3: Examples of the planned events.

trained under the framework of the maximum likeli-
hood estimation method. Although reward shaping
(S2S(R)) helps with this problem substantially, it
is still not eliminated. Without the limitation of
the coherence score, GR walks on graphs randomly
to produce a sequence. As the graph is not small,
achieving a good event sequence is extremely chal-
lenging. Our proposed GP produces more logical
and diverse events, using which humans can easily
tell a story based on these given events.

5.5 Open Story Generation

The goal of event planning is to generate more
related and logical coherent stories. Human evalua-
tion of the event sequence is subjective and tricky
since the event is highly abstract. To prove that
better event planning improves the story quality,
we generate stories using the planned events and
conduct human evaluation to assess the relevance,
logicality, interestingness and overall scores. We
use the story generation module (i.e. GPT2 and
RNN) to transform these planned events into the
full stories. We compare the following methods:
GPT2. This is a large scale language model that has
shown remarkable performance in generating sto-
ries in recent research. In this method, we directly
input the title to GPT2 and generate full stories.
*+GPT2. We associate the event planning meth-

382

Choices(%) GP vs GPT2 GP vs S2S GP vs S2S(R) GP vs GR GP vs GP+RNN
GP GPT2 GP S2S GP S2S(R) GP GR GP GP+RNN

Relevance 33.3 41.6 38.4 28.3 40.8 20.3 67.8** 23.2 37.2* 23.3
Interestingness 47.9 41.6 40.1 30.8 43.2 34.0 60.7* 39.3 44.2** 24.5

Logicality 64.6** 27.1 42.6** 19.5 44.6* 25.0 62.5** 33.9 37.2 32.6
Overall 56.3* 35.4 42.6** 21.6 42.3* 24.6 64.3** 30.4 46.5 37.2

Table 4: Human evaluation of open story generation. (+GPT2) are omitted for all methods, except for GP+RNN.
We calculate Cohen’s Kappa coefficient (κ). All the results are in moderate agreement (0.4-0.6). We conduct sign
tests to show the significant difference. (*) and (**) denotes p-value is < 0.05 and < 0.01 respectively. The results
show that our method achieves significant improvement on logicality, thereby getting better overall performance.

Title: Fire next door

G
PT

-2

After the fire, the fire was out. The family who lived
next door started to panic, so they followed it. [The
firehouse across the street was still burning. The fire
house was still burning next door.] (Repetition)

S2
S make → think → go → see → get → apologize

Lisa’s new neighbor made a big fire outside his
house. Lisa thought she would be sorry. She went
outside to check on him. She saw that he was not
there. Lisa’s neighbor could not get a word with him
and apologized.

S2
S(

R
) try → tell → leave → throw → take

Sally tried to fight a burning bush. The homeowner
told her she couldn’t do it. She left a piece of wood
in the bush next door. A woman threw the wood at
sally. Sally took the wood to the fire department.

G
R

quit → be → look(buy) → find → go
I quit my job when i was 16. The only thing I ever
didn’t do was take care of my children. Now I’m
looking to buy a car. I found a cheap car on ebay.
Now i can go out in the sun every day.

G
P+

R
N

N catch(on) → come → go(off) → evacuate → extin-
guish
The fire alarm was caught on. The firefighters came
to help. The fire alarm went off. Everyone evacu-
ated. The firemen extinguished it before it could go
off.

G
P catch(on) → come → go(off) → evacuate → extin-

guish
The house next door caught on fire. The fire depart-
ment came to the scene. The fire alarm went off. The
entire neighborhood evacuated. The fire department
extinguished the fire.

G
ol

d

John woke up smelling like something was burning.
He went outside. He saw the fire next door. He called
the authorities. The firemen came to put out the fire.

Table 5: Examples of open story generation. Red words
represent the events.

ods with GPT2, which is used in the story gen-
eration module. Thus, we compare S2S+GPT2,
S2S(R)+GPT2, GR+GPT2, and GP+GPT2.
GP+RNN. In this method, we use an RNN-based
sequence-to-sequence model to generate the full
story, which takes the title and events as inputs.
We compare this method to GP+GPT2 to show
the effectiveness of large scale language models in
transforming the events into the stories.

We conducted human evaluation on Amazon Me-
chanical Turk (AMT) over four aspects: relevance

(whether the story is related to the topic), interest-
ingness (whether the story content and style are
interesting), logicality (whether the story is logical),
and overall (overall quality). The full details of the
human evaluation are listed in the supplementary
materials. We randomly sampled 300 titles from
the testing set and generated stories using each
method. Pairwise comparison was conducted for
each criterion and each sample was assigned to two
different workers to avoid randomness or personal
bias. Table 4 shows that our approach performs bet-
ter with respect to logicality and overall. In particu-
lar, our method greatly outperforms other planning
methods in the logicality measure, which suggests
that our planned events are logically sound. We be-
lieve that the following two factors are the primary
reasons for improved logic: 1) Each event graph is
built from the corpus; thus, walking on the graph
retains the events’ logical relations; and 2) the co-
herence models filter the candidates, and the mutu-
ally exclusive set further eliminates the non-logical
combinations when planning the events. Table 5
shows examples of stories generated using these
methods. We show both the planned events and
stories. Directly using GPT2 produces repeated
sentences. Both equipped with an auto-regressive
model for event planning, the events planned by
S2S and S2S(R) fail to output satisfactory results,
leading to a low logicality score in the generated
sentences. Because there is no restriction on the
event selection in GR, the event produced could
be irrelevant to the title and even mutually contra-
dictory. Using our proposed method, GP can plan
a reasonable set of events, and thus, generate the
most logical story.

5.6 Story Cloze Test (SCT)

To better validate the effectiveness of our event
graphs and the mutually exclusive relation between
events, we conducted SCT. This task aims to select
the correct ending sentence from two candidates.
We incorporated the event features generated by

383

ACC(%) Test v1.0 Test v1.5
DiffNet 77.60 64.45
DiffNet+Origin 78.87 67.64
DiffNet+RandomWalk 79.36 68.09
DiffNet+GraphPlan 80.15 69.45

Table 6: Results on story cloze test. From the results,
events planned by our event graphs and mutually exclu-
sive sets have positive effects on this task.

different methods into the SCT. The accuracy of
SCT reflects the quality of the event features. The
event feature is learned by a mask language model
(MLM) (i.e., the BERT model with fewer param-
eters) (Devlin et al., 2019). If the training event
sequence is more logical and reasonable, the fea-
ture learned by MLM would better fit the SCT. To
prove that our event graph and mutually exclusive
relation can help us to generate reasonable event
sequences, we compared the features generated
by the MLM model with different training data:
(1) Origin: Event sequences extracted from ROC-
Stories Corpora. (2) RandomWalk: Random walk
on the event graphs and sample training data. (3)
GraphPlan: Using our planning method to generate
training data. Note that the input-event coherence
score is excluded in the score function because
no input being given. We then use the event fea-
ture and adopt the state-of-the-art model, DiffNet
(Cui et al., 2020) for SCT. For fair comparison,
RandomWalk and GraphPlan included the same
number of event chains in the dataset during train-
ing. Further details of the model can be found in
the supplementary material.

Table 6 presents the results of SCT. This shows
that RandomWalk and GraphPlan achieve better
scores in both SCTv1.0 and v1.5, proving that our
event graphs and mutually exclusive events have
positive effects on event planning.

6 Discussion

As mentioned before, the stories can be easily con-
trolled by modifying the events. Table 7 shows
an example. Selecting different upcoming events
for “feel(sick)” will change the following storyline.
Moreover, our experiment shows that event graphs
can produce more logical stories than planning via
language models. Here, we give an empirical ex-
planation. Sequence-to-sequence models usually
fail to capture long-term relations and order infor-
mation in the event sequence. The decoder is not
guaranteed to account for all previous events during

(1) The man was coughing a lot. He was sick. He felt
sick for days. He vomited on the couch. He was later
diagnosed with the flu.
(2) The man was coughing a lot. He was sick. He felt
sick. He tried to rest for an hour. The man felt better !
(3) The man was coughing a lot. He was sick. He felt
sick. He couldn’t eat anything. He starved himself.

Table 7: Example of controllable generation. (1) and
(2) extends different events after “feel sick” to achieve
different endings and (3) shows logical inconsistency
when generating with two mutually exclusive events

decoding. At this point, our approach applies event-
event coherence scores, which forces the model to
consider long-term relations during planning. In
addition, the order of events is captured from the
gold cases, which can be guaranteed in our event
graphs. Moreover, mutually exclusive sets help us
to determine whether two events can co-occur in
one sequence regardless of the distance between
two events. Table 7 provides an example. Note
that “cough” and “starve” are considered mutually
exclusive events in our event graph. If we generate
a story based on this event chain, the last sentence
“he starved himself” is unreasonable in this case.

7 Conclusion

In this study, we demonstrate that a graph-based
event planning approach can indeed produce more
natural event sequences compared with conven-
tional language models. We propose to walk on
automatically learned event graphs by performing
beam search using a score function dedicated for
event planning. Then, the story is generated fol-
lows the planned events.

We evaluate our approach on event planning
and open story generation with large-scale human
judgements. The results show that our proposed ap-
proach clearly outperforms the non-planning base-
line and the sequence-to-sequence model-based
planning models. In human evaluation, the events
and the stories generated by our proposed method
are believed to be more logical and coherent. An
additional experiment on Story Cloze Test further
proves the advantages of event graphs and mutually
exclusive sets.

384

8 Acknowledgements

We thank the anonymous reviewers for the use-
ful comments. This work was supported by JSPS
KAKENHI Grant Numbers JP19H04166 and based
on results obtained from a project JPNP20006,
commissioned by the New Energy and Industrial
Technology Development Organization (NEDO).
For experiments, computational resource of AI
Bridging Cloud Infrastructure (ABCI) provided by
National Institute of Advanced Industrial Science
and Technology (AIST) was used.

References
Prithviraj Ammanabrolu, Wesley Cheung, William

Broniec, and Mark O Riedl. 2021. Automated sto-
rytelling via causal, commonsense plot ordering. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pages 5859–5867.

Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung,
Zhaochen Luo, William Ma, Lara J Martin, and
Mark O Riedl. 2020. Story realization: Expand-
ing plot events into sentences. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7375–7382.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of ACL-08: HLT, pages 789–797.

Sherol Chen, Mark J Nelson, Anne Sullivan, and
Michael Mateas. 2009. Evaluating the authorial
leverage of drama management. In AAAI Spring
Symposium: Intelligent Narrative Technologies II,
pages 20–23.

Yiming Cui, Wanxiang Che, Wei-Nan Zhang, Ting Liu,
Shijin Wang, and Guoping Hu. 2020. Discrimina-
tive sentence modeling for story ending prediction.
In AAAI.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650–
2660.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4319–4338.

Seraphina Goldfarb-Tarrant, Haining Feng, and
Nanyun Peng. 2019. Plan, write, and revise: an
interactive system for open-domain story generation.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
89–97.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelli-
gence, AAAI’16, page 2727–2733. AAAI Press.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Daphne Ippolito, David Grangier, Chris Callison-
Burch, and Douglas Eck. 2019. Unsupervised hier-
archical story infilling. In Proceedings of the First
Workshop on Narrative Understanding, pages 37–
43, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Boyang Li, Stephen Lee-Urban, George Johnston, and
Mark Riedl. 2013. Story generation with crowd-
sourced plot graphs. In Twenty-Seventh AAAI Con-
ference on Artificial Intelligence.

Wei Li, Jingjing Xu, Yancheng He, ShengLi Yan,
Yunfang Wu, and Xu Sun. 2019. Coherent com-
ments generation for Chinese articles with a graph-
to-sequence model. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4843–4852, Florence, Italy. Asso-
ciation for Computational Linguistics.

385

Lara J Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark O Riedl. 2018. Event representations for au-
tomated story generation with deep neural nets. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Michael Mateas and Phoebe Sengers. 2003. Narrative
intelligence. J. Benjamins Pub.

Neil McIntyre and Mirella Lapata. 2010. Plot induc-
tion and evolutionary search for story generation. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1562–
1572. Association for Computational Linguistics.

James Richard Meehan. 1976. The metanovel: writing
stories by computer. Technical report, YALE UNIV
NEW HAVEN CONN DEPT OF COMPUTER SCI-
ENCE.

Nasrin Mostafazadeh, Michael Roth, Annie Louis,
Nathanael Chambers, and James Allen. 2017. Ls-
dsem 2017 shared task: The story cloze test. In Pro-
ceedings of the 2nd Workshop on Linking Models of
Lexical, Sentential and Discourse-level Semantics,
pages 46–51.

Haoruo Peng and Dan Roth. 2016. Two discourse
driven language models for semantics. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 290–300, Berlin, Germany. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. PlotMachines: Outline-
conditioned generation with dynamic plot state
tracking. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4274–4295, Online. Associa-
tion for Computational Linguistics.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979–988.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Mark O Riedl. 2010. Story planning: Creativity
through exploration, retrieval, and analogical trans-
formation. Minds and Machines, 20(4):589–614.

Mark O Riedl and Robert Michael Young. 2010. Narra-
tive planning: Balancing plot and character. Journal
of Artificial Intelligence Research, 39:217–268.

Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J
Martin, Animesh Mehta, Brent Harrison, and
Mark O Riedl. Controllable neural story plot gen-
eration via reward shaping.

Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J
Martin, Animesh Mehta, Brent Harrison, and
Mark O Riedl. 2019. Controllable neural story plot
generation via reward shaping. In Proceedings of
the 28th International Joint Conference on Artificial
Intelligence, pages 5982–5988. AAAI Press.

Bowen Tan, Zichao Yang, Maruan AI-Shedivat, Eric P
Xing, and Zhiting Hu. 2020. Progressive generation
of long text. arXiv preprint arXiv:2006.15720.

Peter Weyhrauch. 1997. Guiding interactive fiction.
Ph.D. thesis, Ph. D. Dissertation, Carnegie Mellon
University.

Jingjing Xu, Xuancheng Ren, Yi Zhang, Qi Zeng, Xi-
aoyan Cai, and Xu Sun. 2018. A skeleton-based
model for promoting coherence among sentences in
narrative story generation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4306–4315.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 7378–7385.

386

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 387–403,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

BERT-based distractor generation for Swedish reading comprehension
questions using a small-scale dataset

Dmytro Kalpakchi
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
Stockholm, Sweden
dmytroka@kth.se

Johan Boye
Division of Speech, Music and Hearing

KTH Royal Institute of Technology
Stockholm, Sweden
jboye@kth.se

Abstract

An important part when constructing multiple-
choice questions (MCQs) for reading compre-
hension assessment are the distractors, the
incorrect but preferably plausible answer op-
tions. In this paper, we present a new BERT-
based method for automatically generating dis-
tractors using only a small-scale dataset. We
also release a new such dataset of Swedish
MCQs (used for training the model), and pro-
pose a methodology for assessing the gener-
ated distractors. Evaluation shows that from
a student’s perspective, our method generated
one or more plausible distractors for more than
50% of the MCQs in our test set. From a
teacher’s perspective, about 50% of the gener-
ated distractors were deemed appropriate. We
also do a thorough analysis of the results.

1 Introduction

Multiple-choice questions (MCQs) are widely used
for student assessments, from high-stakes gradua-
tion tests to lower-stakes reading comprehension
tests. An MCQ consists of a question (stem), the
correct answer (key) and a number of wrong, but
plausible options (distractors). The problem of
automatically generating stems with a key has re-
ceived a great deal of attention, e.g., see the sur-
vey by Amidei et al. (2018). By comparison, au-
tomatically generating distractors is substantially
less researched, although Welbl et al. (2017) re-
port that manually finding reasonable distractors
was the most time-consuming part in writing sci-
ence MCQs. Indeed, reasonable distractors should
be grammatically consistent and similar in length
compared to the key and within themselves.

Given the challenges above, we attempt using
machine learning (ML) to aid teachers in creating
distractors for reading comprehension MCQs. The
problem is not new, however most of the prior work
has been done for English. In this paper we propose

the first such solution for Swedish (although the
proposed method is novel even for English, to the
best of our knowledge). The key contributions of
this work are: proposing a BERT-based method
for generating distractors using only a small-scale
dataset, releasing SweQUAD-MC1, a dataset of
Swedish MCQs, and proposing a methodology for
conducting human evaluation aimed at assessing
the plausibility of distractors.

2 Background

2.1 BERT for NLG

Devlin et al. (2019) introduced BERT as the first ap-
plication of the Transformer architecture (Vaswani
et al., 2017) to language modelling. BERT uses
only Transformer’s encoder stacks (with multi-
head self-attention, MHSA), while the NLG com-
munity relies more on Transformer’s decoder
stacks (with masked MHSA) for text generation,
e.g., GPT (Radford et al., 2018). However, Wang
and Cho (2019) showed that BERT is a Markov
random field, meaning that BERT learns a joint
probability distribution over all sentences of a fixed
length, and one could use Gibbs sampling to gener-
ate a new sentence. The authors compared samples
generated autoregressively left-to-right by BERT
and GPT, and found the perplexity of BERT sam-
ples to be higher than GPT’s (BERT samples are
of worse quality), but the n-gram overlap between
the generated texts and texts from the dataset to be
lower (BERT samples are more diverse).

Liao et al. (2020) show a way to improve BERT’s
generation capabilities via changing the masking
scheme to a probabilistic one at training time. Prob-
abilistically masked language models (PMLMs)
assume that the masking ratio r for each sentence
is drawn from a prior distribution p(r). The au-

1The dataset and implementation of our models are avail-
able in this GitHub repository

387

Property Training Development Test
of texts 434 64 45
of MCQs 962 126 102
of D 2.1± 0.5 2.1± 0.4 2.0± 0.2
Len(Text) 384.9± 330.1 355.1± 233.1 357.9± 254.3
Len(A) 4.2± 3.4 4.4± 3.5 4.6± 4.5
Len(D) 4.5± 3.9 4.3± 4.0 4.0± 3.7
|Len(A) - Len(D)| 1.9± 2.4 1.9± 2.3 1.9± 2.9

Table 1: Descriptive statistics of SweQUAD-MC dataset splits. A denotes the key, D denotes a distractor, Len(X)
denotes a length of X in words. x± y shows mean x and a standard deviation y

thors proposed to train a PMLM with a uniform
prior (referred to as u-PMLM). The absence of the
left-to-right restriction allows the model to gener-
ate sequences in an word arbitrary order. In fact,
Liao et al. (2020) propose to generate sentences by
randomly selecting the masked position, predicting
a token for it, replacing the masked token with the
predicted one and repeating the process until no
masked tokens are left. The authors showed that
the perplexity of the texts generated by u-PMLM
is comparable to the ones by GPT.

2.2 Convolution partial tree kernels

As mentioned previously, plausible distractors
should be grammatically consistent with the key.
Hence, a metric measuring grammatical consis-
tency would be useful both for quantitative evalua-
tion and as a basis for a baseline method. We pro-
pose to use convolution partial tree kernels (CPTK)
for these purposes. CPTK were proposed by Mos-
chitti (2006) for dependency trees and essentially
calculate the number of common tree structures
(not only full subtrees) between two given trees.
However, CPTKs can not handle labeled edges and
were applied to dependency trees containing only
lexicals. Another solution, proposed by Croce et al.
(2011) and used in this article, is to include edge
labels, i.e., grammatical relations (GR), as sepa-
rate nodes. A resulting computational structure
is Grammatical Relation Centered Tree (GRCT),
which transforms the original dependency tree by
making each PoS-tag a child of a GR node and
a father of a lexical node. CPTKs can take any
non-negative values and are thus hard to interpret.
Hence, we use normalized CPTK (NCPTK) shown
in Equation (1), where K(T1, T2) is the CPTK ap-
plied to the dependency trees T1 and T2.

K̃(T1, T2) =
K(T1, T2)√

K(T1, T1)
√
K(T2, T2)

, (1)

Evidently, when T1 and T2 are the same, K̃(T1, T2)
equals to 1, which is the highest value it can take.

3 Data

We have collected a Swedish dataset, henceforth
referred to as SweQUAD-MC, consisting of texts
and MCQs for the given texts. The dataset was
created by three paid linguistics students instructed
to pose unambiguous and independent questions.
They were also asked to identify the key with at
least two distractors, all of which are contiguous
phrases in a given text. Additionally, as the distrac-
tors were required to be in the same grammatical
form as the key (e.g., both in plural), the students
were allowed to change the grammatical form of
phrases if they constituted plausible distractors af-
ter this change. The exact instructions given to the
students along with more details on the used texts
are provided in Appendix A.

Each datapoint in SweQUAD-MC consists of a
base text and an MCQ, i.e. a stem, the key and at
least two distractors. The same text can be reused
for different MCQs, but the sets of texts in training
(∼ 80%), development (∼ 10%) and test (∼ 10%)
datasets are disjoint. However, some overlap in
sentences is possible, since the texts might come
from the same source. Descriptive statistics of all
SweQUAD-MC splits is provided in Table 1.

4 Method

Given the small scale of SweQUAD-MC we
have decided to fine-tune a pretrained BERT2 for
Swedish (Malmsten et al., 2020) on the task of
distractor generation (DG). For achieving this, we
have added on top of BERT two linear layers with
layer normalization (Ba et al., 2016) in the mid-
dle to be trained from scratch (see architecture in
Figure 1). The last linear layer is followed by a

2bert-base-cased

388

softmax activation giving probabilities over the to-
kens in the vocabulary for each position in the text.
We trained the model using cross-entropy loss only
for tokens in masked positions.

Recall that each MCQ consists of a base text
T, the stem Q based on T, the key A and (on aver-
age) two distractors D1 and D2. The DG problem
is then to generate distractors conditioned on the
context, consisting of T, Q and A. We provide all
context components as input to the BERT model,
separated from each other by the special separator
token [SEP]. Given that BERT’s maximum input
length is 512 tokens, we trim T to the first 384 to-
kens (later referred to as T 384), since that is the
average text length of the training set.

We have explored two different solution vari-
ants of DG. The first variant aims at generating
distractors autoregressively, left to right. At gener-
ation time, the input to BERT consists of a context
CTX (T 384, Q and A separated by [SEP] token),
a [SEP] token, and a [MASK] token at the end.
After a forward pass through BERT, the [MASK]
token gets replaced by the word with the highest
softmax score, which becomes the first word of the
first distractor (dubbed D11). The generation of the
first distractor continues by appending a [MASK]
token after each forward pass until the network gen-
erates a separator token [SEP], which concludes
the generation of the first distractor D1. The next
distractor D2 is generated in the same way, except
that the CTX is extended by D1. At training time,
we use the same procedure, but with teacher forc-
ing, allowing us to use the correct distractor tokens
as targets for the cross-entropy loss (see example
training datapoints for one MCQ in Table 2).

The second variant is inspired by u-PMLM, and
aims at generating distractors autoregressively, but
in an arbitrary word order. At generation time, the
input to BERT consists of a context CTX, a [SEP]
token, and a predefined number of [MASK] to-
kens (see Section 6.1). The generation proceeds
by unmasking the token at the position where the
model is most confident. This differs from un-
masking a random position, proposed by Liao et al.
(2020). The training procedure largely follows a
masking scheme employed by u-PMLM by draw-
ing the masking ratio from the uniform distribution
(see example training datapoints for one MCQ in
Table 2). Note that we do not include the [SEP]
token when training, since we found that the trained
model would constantly generate [SEP] tokens.

LinearGELU

LinearSOFTMAX

LayerNorm

BERT

(B, 512, 768)

(B, 512, 768)

(B, 512, 768)

(B, 512, V)

[CLS] T [SEP]
Q [SEP] A [SEP]
D11 D12 [MASK]

[CLS] T [SEP]
Q [SEP] A [SEP]
[MASK] D12 [MASK]

left to

right

u-PMLM

D13

D11
D13

left to

right

u-PMLM

Cross-entropy loss

Input data Labels

Figure 1: The DG model architecture. B is the batch
size and V is the vocabulary size. The light green
blocks represent the activation functions for the respec-
tive linear layers. The purple block represents parts of
the network initialized with the pretrained weights.

Each sampled masking ratio r for the u-PMLM
variant means that each token in the distractors
from the dataset has a probability r to be masked.
Hence, different r will potentially result in different
number of masked tokens and at different positions.
The number of times we draw r per distractor DX
is proposed to be min(Len(DX), MAX MASKINGS).

4.1 Baseline

As mentioned in Section 2.2, NCPTK measures
grammatical consistency between the key and a
distractor. Our baseline uses NCPTK on Universal
Dependencies (UD) trees (Nivre et al., 2020) in the
following way. For each given MCQ, we exclude
the sentence containing the key from the base text
and then parse each remaining sentence si of the
text, and the key using the UD parser for Swedish.
Let Tsi and Tk denote a dependency tree corre-
sponding to si and the key respectively. For each
Tsi , we find all subtrees with the root having the
same universal PoS-tag and the same universal fea-
tures (representing morphological properties of the
token) as the root of Tk. If no subtrees are found,
no distractors can be suggested for this MCQ. Oth-
erwise, we calculate NCPTK between each found
subtree and Tk (both as GRCT, but without lexi-
cals). Then we take the textual representation of
the K subtrees with the highest NCPTK as the
distractor suggestions.

389

Input for left-to-right variant Target
[CLS] CTX [SEP] [MASK] D11
[CLS] CTX [SEP] D11 [MASK] D12
[CLS] CTX [SEP] D11 D12 [MASK] [SEP]
[CLS] CTX [SEP] D11 D12 [SEP] [MASK] D21
[CLS] CTX [SEP] D11 D12 [SEP] D21 [MASK] D22
[CLS] CTX [SEP] D11 D12 [SEP] D21 D22 [MASK] D23
[CLS] CTX [SEP] D11 D12 [SEP] D21 D22 D23 [MASK] [SEP]

Input for u-PMLM variant Target(s)
[CLS] CTX [SEP] D11 [MASK] D12
[CLS] CTX [SEP] [MASK] D12 D11
[CLS] CTX [SEP] D11 D12 [SEP] D21 [MASK] [MASK] D22, D23
[CLS] CTX [SEP] D11 D12 [SEP] D21 [MASK] D23 D22
[CLS] CTX [SEP] D11 D12 [SEP] [MASK] D22 [MASK] D21, D23

Table 2: Example datapoints extracted from one MCQ if training the autoregressive left-to-right variant (top table)
or u-PMLM variant (bottom table). D1 and D2 are distractors, assumed to have 2 and 3 words, respectively. CTX
represents the context, i.e., the sequence T 384 [SEP] Q [SEP] A, where T 384 is the first 384 tokens of
the text, Q is a stem and A is the key.

5 Experimental setup

We have used Huggingface’s Transformers library
(Wolf et al., 2020) for implementing the DG model.
The training hardware setup included 16 Intel Xeon
CPU E5-2620 v4 (2.10GHz), 64 GB of RAM and
1 NVIDIA GeForce RTX 2080 Ti (11 GB VRAM).
For this setup, we have fixed the random seed
to 42, the number of training epochs to 6, the
batch size to 4 (for both training and dev sets) and
MAX MASKINGS to 20 (for u-PMLM variant only).
With these settings, training took about 3.67h for
the left-to-right and 3h for the u-PMLM variant.

UD trees for the baseline were obtained using
Stanza package (Qi et al., 2020) and convolution
partial tree kernels on the UD trees were calculated
using UDon2 library (Kalpakchi and Boye, 2020).
Baseline requires no training and running our im-
plementation of the baseline takes about a minute
on the development or test set.

6 Evaluation

Following the analysis of Rodriguez (2005), we
generate three distractors per MCQ for each model.
Due to prohibitively high costs of human evalua-
tion, we have divided the evaluation process into
two stages. The first stage is quantitative evalu-
ation, which gives limited information about the
model’s quality, but is sufficient for model selec-
tion. The second stage is human evaluation of the
best model, selected during the first stage.

6.1 Quantitative evaluation
Automatic evaluation metrics, such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), METEOR
(Denkowski and Lavie, 2014), CIDEr (Vedantam
et al., 2015), became popular in NLG in recent
years. Essentially, these metrics rely on comparing
word overlap between a generated distractor and a
reference one. Such metrics can yield a low score
even if the generated distractor is valid but just hap-
pens to be different from the reference one, or a
high score even though the distractor is ungrammat-
ical but happens to have a high word overlap with
the reference one (see the article by Callison-Burch
et al. (2006) for a further discussion). Furthermore,
they do not take into account how well a generated
distractor is aligned with the key grammatically
or how challenging the whole group of generated
distractors would be.

To account for the properties mentioned above,
we have experimented with a number of quantita-
tive metrics and propose the following set to be
used (the whole list is available in Appendix B).
In the following list MCQ% means “Percentage of
MCQ” and DIS means “generated distractor(s)”.

1. DisRecall. Distractor recall.

2. AnyDisRefMatch. MCQ% with at least 1 DIS
matching a reference one.

3. AnyDisInText. MCQ% with at least 1 DIS
appearing in the base text.

390

4. KeyInDis. MCQ% with key being among DIS.

5. AnySameDis. MCQ% with ≥ 2 identical DIS.

6. AllSameDis. MCQ% with all identical DIS.

7. AnyDisRep. MCQ% with ≥ 1 DIS containing
repetitive words contiguously.

8. AnyDisEmpty. MCQ% with ≥ 1 DIS being
an empty string3.

9. AnyDisFromTrainDis. MCQ% with at least 1
DIS matching with a distractor from training
data, but not appearing in the base text.

10. MeanNCPTK, MedianNCPTK, ModeNCPTK.
Mean, median, and mode NCPTK for pairs of
UD trees for DIS and keys (all trees as GRCT,
but ignoring nodes corresponding to lexicals).

The first group consists of metrics 1-3. The first
two metrics count exact matches between generated
and reference distractors. The rationale behind met-
ric 3 is our assumption that distractors coming from
the same text are more challenging. The higher the
values of all these metrics are, the better.

The second group contains metrics 4-8, which
give an idea of how challenging the whole group
of distractors would be. For instance, duplicate
distractors or ones with word repetitions could be
excluded by students using common sense. The
lower the metrics in this group are, the better.

The third group consists only of metric 9, serving
as an overfitting indicator. The metric accounts for
the distractors appearing as distractors in training
data and high percentage indicates an overfitting
possibility. The lower the values, the better.

The final group (item 10) measures how syntac-
tically aligned generated distractors and the respec-
tive keys are. We employ NCPTK to measure the
similarity of syntactic structures between each dis-
tractor and the respective key. Then we take mean,
median and mode of the sequence of NCPTKs ob-
tained in the previous step. The higher the values
of these metrics are, the better.

Based on these metrics, we performed a model
selection on the development set and chose the
models performing best on the most of these met-
rics. Left-to-right model generated distractors to-
ken by token until either a [SEP] token was gen-
erated or the length of the distractor was 20 tokens.

3After excluding the special tokens, e.g., [SEP]

Metric Baseline u-PMLM
DisRecall ↑ 1.44% 15.31%
AnyDisRefMatch ↑ 2.94% 26.47%
AnyDisInText ↑ 100.0% 72.55%
KeyInDis ↓ 0.00% 4.9%
AnySameDis ↓ 4.9% 13.73%
AllSameDis ↓ 0.00% 1.96%
AnyDisRep ↓ 0.00% 2.94%
AnyDisEmpty ↓ 11.76% 0.00%
AnyDisFromTrainDis ↓ NA 0.98%
MeanNCPTK ↑ 0.43 0.43
MedianNCPTK ↑ 0.28 0.28

ModeNCPTK ↑ 1.0 1.0
(20.56%) (20.69%)

Table 3: Evaluation of DG models on the test set.
When using u-PMLM, shortest distractors were gener-
ated first. ↑ (↓) means “the higher (lower), the better”.

In contrast, u-PMLM needs the lengths of the dis-
tractors to be decided in beforehand, which we
set to be the lengths of the two reference distrac-
tors and the length of the key4. Surprisingly, the
order of distractors in terms of their length also
matters for generation with u-PMLM, so we have
tested three options: shortest first, longest first and
random order. According to the results of model se-
lection on the development set (presented in detail
in Appendix C), u-PMLM models outperformed
left-to-right models by a substantial margin.

The best u-PMLM model (generating shortest
distractors first) and the baseline have been evalu-
ated on the test set (see Table 3). Interestingly, the
similarity of syntactic structures between the key
and distractors (assessed by NCPTK) is the same
for both baseline (that actually relies on NCPTK)
and u-PMLM. At the same time, u-PMLM gener-
ates more distractors matching the reference ones
compared to the baseline (as seen from DisRecall
and AnyDisRefMatch). The baseline generates at
least one empty string as a distractor 11.76% of
the time (compared to no such cases for u-PMLM)
limiting possibilities of using the baseline in the
real-life applications.

6.2 Human evaluation
We have used distractors generated on the test set
by the best u-PMLM model (selected after quanti-
tative evaluation in Section 6.1) to conduct human

4If reference distractors are not available, we propose to
generate distractors with the length differing by at most two
words compared to the length of the key.

391

evaluation in 2 stages: from a perspective of a stu-
dent and a teacher.

6.2.1 Student’s perspective
A desirable property of reading comprehension
MCQs is that the students should be unable to an-
swer them correctly without reading the actual text.
To put more formally, the average number of cor-
rectly answered MCQs without reading the actual
text (denoted N s) should not differ significantly
from the average number of correctly answered
MCQs when choosing the answer uniformly at ran-
dom (denoted N r). To test for this property, we
have formulated the following two hypotheses.5

H0: N s = N r.
H1: N s 6= N r.

For N MCQs with 4 options, N r = 0.25N ,
which for our test set would be equal to N r =
0.25 · 102 = 25.5. The appropriate statistical test
in this case is one-sample two-tailed t-test with
the aim of not being able to reject H0. Given that
the purpose is to show that the data supports H0,
we have set both the probability α of type I errors
and the probability β of type II errors to be 0.05.
Then we have used G*Power (Faul et al., 2009)
to calculate the required sample size for finding a
medium effect size (0.5) and the given α and β,
which turned out to be 54 subjects.

Following the calculations above, we have re-
cruited 54 subjects on the Prolific platform6, and in-
structed them to choose the most plausible answer
to a number of reading comprehension MCQs with-
out providing the original texts. The collected data
did not violate any assumptions for a one-sample
t-test (see Appendix D.1 for more details). On aver-
age, the subjects correctly answered a significantly
larger number of questions than N r (N s = 62.26,
SE = 1.09, t(53) = 33.51, p < 0.05, r = 0.98).
To summarize, the chances of this sample to be
collected are very low ifH0 were true.

However, evidently some of the generated dis-
tractors were actually plausible, given that N s 6=
N . To investigate the matter we have plotted the
histogram of the frequency of choice of distractors
by the subjects in Figure 2. As suggested by Ha-
ladyna and Downing (1993), distractors that are
chosen by less than 5% of students should not be
used, which in our case amounts to 39% of the dis-

5Preregistration is available here
6https://www.prolific.co/

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion of students

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
op

or
tio

n
of

 d
is

tra
ct

or
s

0.39

0.2

0.1

0.060.06

0.030.04
0.02

0.04
0.02

0.0 0.01 0.0 0.0 0.01 0.0 0.0 0.0

Figure 2: A histogram showing the frequency of choice
of distractors in subjects’ answers

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Entropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n
of

 q
ue

st
io

ns

0.05

0.02
0.03

0.04
0.03

0.1

0.02
0.01

0.05

0.08
0.07

0.19

0.32

Figure 3: A histogram showing the entropy distribution
per question

tractors (the leftmost bar in Figure 2). If we elimi-
nate these low-frequency distractors (LF-DIS), 68
MCQs (66.67%) will lose at least one distractor, 10
MCQs (9.8%) will lose all distractors and thus 34
MCQs (33.33%) will keep all 3 distractors.

A more relaxed question is how many MCQs
had at least one plausible distractor, which can be
estimated by calculating the entropy for each ques-
tion as shown in Equation (2), where A is the key,
D is a distractor, Q is the stem, PQ(A) (PQ(D))
is the probability that the key (any distractor) is
chosen for Q by a subject.

H(Q) = −
∑

O∈{A,D}
pQ(O) log(pQ(O)) (2)

The distribution of entropies per question is shown
in Figure 3. Assuming the natural logarithm, the
highest theoretically possible value for H(Q) is
0.69, if pQ(A) = pQ(D) = 0.5. 32% of MCQs
had an entropy larger than 0.65, whereas 51% had
an entropy larger than 0.6, which means that half
of MCQs had at least one plausible distractor.

392

6.2.2 Teacher’s perspective

Bearing in mind the findings of Section 6.2.1, it
is interesting to see which of the proposed distrac-
tors (especially, among LF-DIS) teachers would
mark as acceptable. Given the complexity of such
evaluation, using the whole test set was infeasible.
To get a representative sample, we used entropy
per question (shown in Figure 3). All MCQs were
divided into 5 equally sized buckets by entropy and
9 MCQs were sampled uniformly at random from
each bucket, resulting in 45 MCQs in total.

We asked 5 teachers to evaluate each MCQ (pre-
sented in a random order for each of them). Each
MCQ contained the base text, the stem, the key
and the generated distractors. The teachers were
instructed to select those of generated distractors
(if any) deemed suitable for testing reading com-
prehension. Additionally, we asked to provide their
reasons for each rejected distractor in a free-text
input. The inter-annotator agreement (IAA) was
estimated using Goodman-Kruskal’s γ (Goodman
and Kruskal, 1979), specifically its multirater ver-
sion γN proposed by Kalpakchi and Boye (2021).
On the scale proposed by Rosenthal (1996), we
have found a very large agreement (γN = 0.85,
see Appendix D.2.2 for more details on IAA calcu-
lations).

On average, 1.47 distractors per MCQ were ac-
cepted by a teacher. Their reasons for rejections
are distributed as shown in Figure 4. All teachers
accepted at least one generated distractor for 39
MCQs (86.7%), whereas the majority of teachers
did so for 27 MCQs (60%). Interestingly, there
are no MCQs in which all 5 teachers have either
accepted or rejected all generated distractors. How-
ever, the majority of teachers has accepted or re-
jected all distractors for 4 MCQs (8.9%) and 6
MCQs (13.3%) respectively.

Out of 45 MCQs, 31 (68.9%) had at least one
LF-DIS, as defined in Section 6.2.1. For these 31
MCQs we report a distribution of accepted/rejected
LF-DIS by the majority of teachers in Figure 5. Let
us call the 15 MCQs with all LF-DIS accepted by
the majority of teachers as mismatch MCQs (low-
est row in Figure 5). Interestingly, 12 of the 15
mismatch MCQs had at least one more distractor in
addition to LF-DIS being accepted by the majority
of teachers. Furthermore, all mismatch MCQs had
entropy higher than 0.3. This entails that almost a
half of LF-DIS should not necessarily be thrown
away, since they were accepted by teachers, but

N
ot

 w
ro

ng

U
nr

ea
so

na
bl

e

G
ra

m
m

at
ic

al
ly

 w
ro

ng

U
nr

ea
s.

 w
rt

qu
es

tio
n

Id
en

tic
al

O
bv

io
us

ly
 w

ro
ng

D
is

si
m

ila
r w

ith
 k

ey

To
o

lo
ng

To
o

ea
sy

U
nr

ea
s.

 w
rt

te
xt

Va
gu

e

To
o

co
m

pl
ex

W
ro

ng
 fo

rm

N
ot

 in
 th

e
te

xt

To
o

ab
st

ra
ct

N
eg

at
io

n

Bo
th

 ri
gh

t a
nd

 w
ro

ng

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 o

f j
ud

ge
m

en
ts

Figure 4: A histogram showing the distribution of
teachers’ reasons behind rejecting distractors.

0 1 2 3
Number of accepted distractors

0

1

2

3

N
um

be
r o

f r
ej

ec
te

d
di

st
ra

ct
or

s

10 5

4 5 1

2 2

2

Figure 5: A bi-variate histogram showing the distribu-
tion of the 31 MCQs (the numbers on the bars sum to
31) with at least 1 LF-DIS, with respect to their LF-DIS
being accepted/rejected by the majority of teachers.

the MCQs either happened to have more plausi-
ble distractors or subjects might have had relevant
background knowledge to answer the questions.

7 Related work

We employed a systematic process to get a compre-
hensive overview of DG methods (see Appendix E
for more details). Out of the resulting 28 articles
(see an overview in Table 4), only 2 worked with a
language other than English (Chinese and Basque).
In this paper we work on reading comprehension
MCQs, which makes only 12 papers, dealing with
factual questions, relevant.

Two of these used rule-based approaches. Ma-
jumder and Saha (2015) generated MCQs for
cricket domain and used a number of hand-crafted
rules based on gazeteers and Wikipedia entries to
generate distractors. Mitkov and Ha (2003) pro-
posed to generate distractors for MCQs on elec-
tronic instructional documents using WordNet.

Six of these relied on extractive approaches.

393

Liang et al. (2018), Welbl et al. (2017), and Ha
and Yaneva (2018) formulated choosing a distrac-
tor as a ranking problem from the given candidate
set. In the first two articles the candidate set consti-
tuted all distractors from the available MCQ dataset.
The authors then trained ML-based ranker(s) for
choosing the best distractors. In the last one, the
candidate set was created using content engineers.
Distractors with a high similarity of their concept
embeddings (summed for multiple words) and ap-
pearing in the same document as the key are ranked
higher. Stasaski and Hearst (2017) and Araki et al.
(2016) worked in the domain of biology. The for-
mer used an ontology and the latter employed event
graphs containing information about coreferences
to generate distractors. Karamanis et al. (2006)
used thesaurus and tf-idf to identify key concepts
in the given text and then select as distractors those
having the same semantic type as the key.

The remaining four employed neural meth-
ods and are most relevant among the surveyed.
Qiu et al. (2020) trained a sequence-to-sequence
(seq2seq) model with a number of attention layers.
Zhou et al. (2020) also employed a seq2seq model,
but with a hierarchical attention to capture the in-
teraction between a text and a question, as well as
semantic similarity loss. Both articles used a beam
search combined with filtering based on Jaccard co-
efficient at generation time. Offerijns et al. (2020)
trained a GPT-2 model to generate 3 distractors
for a given MCQ, and used BERT-based question
answering model for quantitative evaluation (along
with human evaluation).

Finally, Chung et al. (2020) proposed a BERT-
based method for English with answer-negative
regularization, penalizing distractors for containing

Problem/method property #
� Extractive 14
� Generative, rule-based 7
� Generative, neural 7
 Only automatic evaluation 5
 Only human evaluation 19
 Automatic and human evaluattion 4
N Cloze-style, single-word answers 14
N Cloze-style, continue the sentence 2
N Factual questions 12

Table 4: 28 related works broken down by method (�),
type of evaluation () and types of questions for which
distractors have been generated (N)

the same words as the key, and training a sequential
and a parallel MLM model simultaneously. At
generation time, they generate one distractor, and
then create a distractor set of the predefined size
based on sampling from the probability distribution
returned by BERT for each token of the distractor.
Then they rank every triple of distractors based on
the entropy of a separately trained QA model.

Our method also relies on BERT, but has a num-
ber of differences beyond being applied to Swedish.
Firstly, we did not include answer-negative regular-
ization, since it is not always a good strategy. For
instance, given the stem “When should you pay a
fee if you apply for a visa?” and a key “before you
have submitted the application”, the best distractor
would be “after you have submitted the applica-
tion”, which shares most of the words with the
key. Secondly, we generate distractors in arbitrary
word order compared to left-to-right generation in
(Chung et al., 2020). Thirdly, at generation time,
we use previously generated distractors as input for
generating next ones, and always take tokens with
a maximum probability. This lowers the risk of
generating ungrammatical distractors. Finally, our
training set is 100 times smaller compared to the
training set used by Chung et al. (2020).

8 Conclusion

We have collected SweQUAD-MC, the first dataset
of Swedish MCQs, and showed the possibility of
training usable BERT-based DG models, despite
the small scale of the dataset. We have showed
that a u-PMLM variant of the BERT-based DG
model performs best on the dataset, and proposed a
novel methodology of evaluating the plausibility of
generated distractors. Around half of the generated
distractors were found acceptable by the majority
of teachers, and more than 50% of MCQs had at
least one plausible generated distractor, judging by
the entropy of students’ responses.

Bearing in mind that the aim of the proposed
method is to support (not replace) teachers, we
deem that our method works well for MCQs in
Swedish (and potentially in other languages with a
pretrained BERT and a dataset of a similar scale).

Furthermore, we have presented a baseline ap-
plicable to any language with a UD treebank (cur-
rently about 100 languages). Although its perfor-
mance is nowhere near the u-PMLM variant, we be-
lieve that it can serve as a good point of comparison
to emerging neural methods for other languages.

394

Acknowledgments

This work was supported by Vinnova (Sweden’s In-
novation Agency) within project 2019-02997. We
would like to thank the anonymous reviewers for
their comments, as well as Gabriel Skantze and
Bram Willemsen for their helpful feedback prior to
the submission of the paper.

References
Jacopo Amidei, Paul Piwek, and Alistair Willis. 2018.

Evaluation methodologies in automatic question
generation 2013-2018. In Proceedings of the 11th
International Conference on Natural Language Gen-
eration, pages 307–317, Tilburg University, The
Netherlands. Association for Computational Lin-
guistics.

Jun Araki, Dheeraj Rajagopal, Sreecharan Sankara-
narayanan, Susan Holm, Yukari Yamakawa, and
Teruko Mitamura. 2016. Generating questions and
multiple-choice answers using semantic analysis of
texts. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 1125–1136, Osaka,
Japan. The COLING 2016 Organizing Committee.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of Bleu in ma-
chine translation research. In 11th Conference of
the European Chapter of the Association for Com-
putational Linguistics, Trento, Italy. Association for
Computational Linguistics.

Ho-Lam Chung, Ying-Hong Chan, and Yao-Chung Fan.
2020. A BERT-based distractor generation scheme
with multi-tasking and negative answer training
strategies. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4390–
4400, Online. Association for Computational Lin-
guistics.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via con-
volution kernels on dependency trees. In Proceed-
ings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 1034–1046,
Edinburgh, Scotland, UK. Association for Computa-
tional Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-
Georg Lang. 2009. Statistical power analyses using
g* power 3.1: Tests for correlation and regression
analyses. Behavior research methods, 41(4):1149–
1160.

Leo A Goodman and William H Kruskal. 1979. Mea-
sures of association for cross classifications. Mea-
sures of association for cross classifications, pages
2–34.

Le An Ha and Victoria Yaneva. 2018. Automatic
distractor suggestion for multiple-choice tests using
concept embeddings and information retrieval. In
Proceedings of the Thirteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 389–398, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Thomas M Haladyna and Steven M Downing. 1993.
How many options is enough for a multiple-choice
test item? Educational and psychological measure-
ment, 53(4):999–1010.

Dmytro Kalpakchi and Johan Boye. 2020. UDon2:
a library for manipulating Universal Dependencies
trees. In Proceedings of the Fourth Workshop on
Universal Dependencies (UDW 2020), pages 120–
125, Barcelona, Spain (Online). Association for
Computational Linguistics.

Dmytro Kalpakchi and Johan Boye. 2021. Quinduc-
tor: a multilingual data-driven method for generat-
ing reading-comprehension questions using univer-
sal dependencies. arXiv preprint arXiv:2103.10121.

Nikiforos Karamanis, Le An Ha, and Ruslan Mitkov.
2006. Generating multiple-choice test items from
medical text: A pilot study. In Proceedings of the
Fourth International Natural Language Generation
Conference, pages 111–113, Sydney, Australia. As-
sociation for Computational Linguistics.

Chen Liang, Xiao Yang, Neisarg Dave, Drew Wham,
Bart Pursel, and C. Lee Giles. 2018. Distractor gen-
eration for multiple choice questions using learning
to rank. In Proceedings of the Thirteenth Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, pages 284–290, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Yi Liao, Xin Jiang, and Qun Liu. 2020. Probabilisti-
cally masked language model capable of autoregres-
sive generation in arbitrary word order. In Proceed-
ings of the 58th Annual Meeting of the Association

395

for Computational Linguistics, pages 263–274, On-
line. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Mukta Majumder and Sujan Kumar Saha. 2015. A sys-
tem for generating multiple choice questions: With
a novel approach for sentence selection. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing Techniques for Educational Applications,
pages 64–72, Beijing, China. Association for Com-
putational Linguistics.

Martin Malmsten, Love Börjeson, and Chris Haffenden.
2020. Playing with words at the national library
of sweden–making a swedish bert. arXiv preprint
arXiv:2007.01658.

Ruslan Mitkov and Le An Ha. 2003. Computer-aided
generation of multiple-choice tests. In Proceedings
of the HLT-NAACL 03 Workshop on Building Edu-
cational Applications Using Natural Language Pro-
cessing, pages 17–22.

Alessandro Moschitti. 2006. Efficient convolution
kernels for dependency and constituent syntactic
trees. In European Conference on Machine Learn-
ing, pages 318–329. Springer.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Jeroen Offerijns, Suzan Verberne, and Tessa Verhoef.
2020. Better distractions: Transformer-based dis-
tractor generation and multiple choice question fil-
tering. arXiv preprint arXiv:2010.09598.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–
108, Online. Association for Computational Linguis-
tics.

Zhaopeng Qiu, Xian Wu, and Wei Fan. 2020. Auto-
matic distractor generation for multiple choice ques-
tions in standard tests. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 2096–2106, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. preprint.

Michael C Rodriguez. 2005. Three options are opti-
mal for multiple-choice items: A meta-analysis of
80 years of research. Educational measurement: is-
sues and practice, 24(2):3–13.

James A Rosenthal. 1996. Qualitative descriptors of
strength of association and effect size. Journal of
social service Research, 21(4):37–59.

Katherine Stasaski and Marti A. Hearst. 2017. Multi-
ple choice question generation utilizing an ontology.
In Proceedings of the 12th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 303–312, Copenhagen, Denmark. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–6010.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Alex Wang and Kyunghyun Cho. 2019. BERT has
a mouth, and it must speak: BERT as a Markov
random field language model. In Proceedings of
the Workshop on Methods for Optimizing and Eval-
uating Neural Language Generation, pages 30–36,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94–106, Copenhagen, Den-
mark. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:

396

System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Xiaorui Zhou, Senlin Luo, and Yunfang Wu. 2020. Co-
attention hierarchical network: Generating coherent
long distractors for reading comprehension. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 9725–9732.

A SweQUAD-MC data collection details

We have used publicly available texts from the web-
sites of Swedish government agencies. The exact
list of URLs is provided in the GitHub repository
associated with the paper. The exact instructions
given to students recruited to collect SweQUAD-
MC dataset (and their translation to English) are
presented in Figure 6. In addition to the given in-
structions, the students were also given the oppor-
tunity to slightly reformulate the distractors found
in the text in order to align the syntactic structure
with that of the key.

B Quantitative metrics

In addition to the metrics 1–10 presented in Section
6.1, we have also looked at the following ones
(MCQ% means “Percentage of MCQ” and DIS
means “generated distractor(s)”)

11. MCQ% with at least 1 DIS being capitalized
differently from the key

12. MCQ% with at least 1 DIS being a distractor
from training data.

13. MCQ% with at least 1 DIS is in any base text
from training data.

14. MCQ% with at least 1 DIS appearing in at
least 1 base text from training data, but not in
their own base text.

15. MCQ% with all distractors appearing in the
base text.

16. MCQ% with all distractors appearing in at
least 1 base text from training data.

17. MCQ% with all DIS being distractors from
training data.

The rationale behind metric 11 was that capital-
ized answers are named entities and thus one would
like distractors also to be named entities. However,
it does not always hold. For instance, consider
the stem “Who gets an e-mail with a confirmation

of a successful submission of the application for
the work permit?” and the key “you and your em-
ployer”. A distractor “Migration Agency” would
suit the question perfectly, although capitalization
is clearly different.

Metrics 12-17 were candidates to become over-
fitting indicators. However, metric 2 was excluded,
since AnyDisFromTrainDis is more informative,
given phrases used as distractors in training data
can be repeated in other texts. Metrics 13-14 were
excluded, since it’s unclear whether the higher or
lower values are better. For instance, if a text from
the training data and the given text are thematically
similar, would copying a distractor from training
data be considered overfitting? Metrics 15-17 were
rejected as too strict, leaving the possibility of ac-
tually missing overfitting if only 2 of 3 distractors
would meet the criteria.

C Model selection

We have trained both left-to-right and u-PMLM
variants for 6 epochs (fixing a random seed for u-
PMLM masking procedure to 42). The quantitative
performance metrics on the development set for
the top-3 models for each variant are presented
in Table 5. The best u-PMLM model (i-14000)
outperformed the best left-to-right model (i-18000)
on most of the quantitative metrics.

The next experiment concerned the order in
which distractors are generated, which we tested
only for the best u-PMLM model. We tried gen-
erating shortest distractors first (SF), longest first
(LF) or in a random order with a fixed seed of 42
(RND). The results of the experiment are presented
in Table 6. Evidently, models with SF-generation
consistently outperform ones with LF-generation.
SF-generation also performs on-par or better than
RND-generation. However, fixing a seed is not a
generalizable solution, which is why we opted for
SF-generation.

D Human evaluation details

D.1 Student’s perspective

Evaluation from the student’s perspective has been
conducted on the Prolific platform7. We used Pro-
lific’s pre-screening feature and required each sub-
ject to have Swedish as the first language and hold
at least a high school diploma (A-levels). Descrip-
tive statistics about the recruited sample of subjects

7https://www.prolific.co/

397

Imagine that you are a teacher checking reading comprehension skills of your students. Given a
text, your task is to create one or more multiple choice questions based on the text, i.e.:

1. formulate a question with the correct answer in the text;

2. mark the correct answer in the text;

3. mark some wrong, but plausible options in the text.

When you have written your questions, marked the correct answer (CA) and the wrong alternatives
in the text, click on “Submit”. When you formulate the question, think about the following aspects.

• The question must be independent, i.e., one should not require additional information (on top
of the given text) to be able to answer the question.

• The question should be unambiguous and have only one possible interpretation.

• One should not be able to answer your question without reading the text, which is why even
wrong alternatives should be plausible.

• Wrong options must be in the same grammatical form as the CA. For instance, if the CA
begins with a verb in Past Simple, all wrong options must begin with a verb in Past Simple.

Find as many questions as you can (+ the correct answer and wrong alternatives) on each text and
then get a new text when you can’t find more.

Figure 6: An English translation of the original instructions for SweQUAD-MC data collection (the original in-
structions in Swedish can be found in the GitHub repository)

Metric
left-to-right u-PMLM

i-10000 i-14000 i-18000 i-10000 i-14000 i-16000
e-3.02 e-4.23 e-5.43 e-3.59 e-5.02 e-5.74

M1: DisRecall ↑ 9.77% 14.29% 12.41% 17.67% 21.43% 18.80%
M2: AnyDisRefMatch ↑ 18.25% 26.19% 21.43% 30.95% 37.30% 31.75%
M3: AnyDisInText ↑ 64.29% 69.84% 73.81% 68.25% 72.22% 73.81%
M4: KeyInDis ↓ 0.79% 1.59% 3.17% 2.38% 5.56% 5.56%
M5: AnySameDis ↓ 34.13% 27.78% 19.84% 9.52% 10.32% 11.90%
M6: AllSameDis ↓ 3.17% 1.59% 0.79% 1.59% 0.79% 0.79%
M7: AnyDisRep ↓ 0.00% 0.00% 0.00% 0.00% 1.59% 1.59%
M8: AnyDisEmpty ↓ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
M9: AnyDisFromTrainDis ↓ 5.56% 5.56% 6.35% 5.56% 2.38% 2.38%
M10: MeanNCPTK ↑ 0.33 0.38 0.39 0.41 0.41 0.41
M11: MedianNCPTK ↑ 0.18 0.19 0.21 0.27 0.26 0.27

M12: ModeNCPTK ↑ 1.0 1.0 1.0 1.0 1.0 1.0
(13.3%) (18.8%) (17.6%) (18.1%) (20.3%) (19.6%)

Table 5: TOP-3 models for left-to-right and u-PMLM variants after model selection on the dev set. i-XXXXX
shows a number of iterations since training start, e-X.XX shows a number of epochs corresponding to i-XXXXX.
Floating point epochs are due to checkpoints being saved every 2000 iterations.

398

Metric i-10000, e-3.59 i-14000, e-5.02 i-16000, e-5.74
SF LF RND SF LF RND SF LF RND

M1 ↑ 15.8% 13.9% 15.8% 20.7% 14.7% 19.9% 19.9% 15.0% 17.7%
M2 ↑ 25.4% 25.4% 29.4% 36.5% 27.8% 34.1% 34.1% 27.0% 30.1%
M3 ↑ 64.3% 63.5% 65.9% 73.0% 66.7% 69.8% 72.2% 66.7% 70.6%
M4 ↓ 2.4% 2.4% 3.2% 4.0% 4.8% 5.6% 4.8% 5.6% 4.8%
M5 ↓ 7.9% 11.1% 7.9% 10.3% 9.5% 10.3% 10.3% 8.7% 10.3%
M6 ↓ 1.6% 1.6% 1.6% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%
M7 ↓ 0.0% 1.6% 0.0% 0.0% 1.6% 1.6% 0.8% 0.8% 3.2%
M8 ↓ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
M9 ↓ 5.6% 4.8% 6.3% 4.8% 5.6% 4.0% 4.0% 4.0% 3.2%

M10 ↑ 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
M11 ↑ 0.24 0.22 0.25 0.26 0.21 0.22 0.29 0.22 0.22

M12 ↑ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(18%) (17%) (19%) (20%) (18%) (20%) (19%) (18%) (19%)

Table 6: Results of model selection by the generation order of distractors for the TOP-3 u-PMLM models.

10 20 30 40 50
0

5

10

time_taken_minutes

20 30 40 50
0

10

age

0 100 200 300 400
0

10

num_approvals

0 2 4 6
0

20

num_rejections

98.0 98.5 99.0 99.5 100.0
0

20

40
prolific_score

0 25 50 75
0

10

num_correct

Figure 7: Descriptive statistics of the sample of subjects on Prolific

Thank you for participating in our study! You will be presented with a number of multiple choice
questions. Your task is to answer as many of these questions correctly as possible. If you don’t
know which alternative is correct, choose the one that seems the most plausible. You are allowed
to use ONLY your own prior knowledge and common sense. Please, do NOT consult any other
external sources of information.

Figure 8: An English translation of the original instructions given to subjects on the Prolific platform (the original
instructions in Swedish can be found in the GitHub repository)

399

is presented in Figure 7. The exact guidelines given
to the subjects (and their translation to English) are
presented in Figure 8. MCQs were presented in
a random order, but the order of options for each
MCQs was the same for each subject.

D.1.1 Check of the t-test assumptions
We used one sample t-test for conducting our
analysis and thus the following assumptions were
checked for.

1. The variable under study should be either
an interval or ratio variable. Our variable,
the number of correctly answered MCQs, is
clearly on a ratio scale.

2. The observations in the sample should be
independent. Subjects have performed the
task independently of each other through a
Prolific platform, hence the observations are
independent.

3. The variable under study should be ap-
proximately normally distributed. The dis-
tribution of the number of correctly answered
MCQs is presented in Figure 7 (the plot in
the last row and the last column with the ti-
tle “num correct”). The distribution is indeed
approximately normal.

4. The variable under study should have no
extreme outliers. Outliers are typically de-
fined in terms of the interquartile range (IQR),
which equals to Q3 - Q1. The datapoints
outside 1.5IQR are deemed mild outliers,
whereas those outside 3IQR are considered
extreme outliers. Boxplots for our data with
whiskers within both 1.5IQR and 3IQR are
presented in Figure 9. Two datapoints can be
considered mild outliers, but no extreme out-
liers are present, which means this assumption
for the one sample t-test is not violated.

D.2 Teacher’s perspective

D.2.1 Instructions
The exact guidelines given to the teachers and their
translation to English, are presented in Figure 10.

D.2.2 Inter-annotator agreement
To evaluate the inter-annotator agreement (IAA)
between the teachers, we have reformulated the
problem into a ranking problem, where all accepted

distractors were given the rank of 1 and those re-
jected - the rank of 2. IAA was then estimated us-
ing Goodman-Kruskal’s γ (Goodman and Kruskal,
1979), specifically its multirater version γN pro-
posed by Kalpakchi and Boye (2021). The total
number of concordant and discordant pairs were
summed for each pair of teachers for each MCQ.
The resulting γN equals to 0.85, indicating a very
large agreement on the scale proposed by Rosen-
thal (1996).

E Details on surveying related work

To get a comprehensive overview of methods for
generating distractors for MCQs, we employed a
two-step process. The first step was to issue queries
“distractor generation” and “multiple choice ques-
tion generation” to ACL Anthology and Google
Scholar. The result was 20 articles from ACL An-
thology and 4 additional ones from Google Scholar.
The second step was to select relevant references
from the “Related work” sections of these articles.
This resulted into 15 additional articles. Out of
found 39 articles, 11 were filtered out (8 focused
only on generating questions, 1 relied mostly on
expert knowledge, 1 on the auxiliary relation ex-
traction task and 1 was a demo paper), leaving 28
articles in total. Only 2 of these 28 papers worked
with a language other than English (Chinese and
Basque).

F Generated samples

A number of generated distractors along with the
respective stems and keys from the dataset are pre-
sented in Figures 11, 12, 13, 14, 15. The questions
are sampled based on the entropy of student’s an-

1.5IQR 3IQR

40

45

50

55

60

65

70

75

80

Figure 9: Boxplots for the number of correctly an-
swered questions

400

Thank you for participating in our study! You will be presented with a number of tests. Each
test contains a text, a reading comprehension question based on the text, the explicitly marked
correct answer to this question and a number of suggestions for wrong, but plausible alternatives
(distractors).
Suppose you would like to use the given question for testing reading comprehension of the given
text. Your task is to judge which of the suggested distractors (if any) you would fit the purpose.
Select suitable distractors by simply ticking the respective checkboxes. For the other distractors
(that you didn’t select), please briefly state your reasons why these distractors were inappropriate
in the respective text fields (max 1 sentence).

Figure 10: An English translation of the original instructions given to teachers (the original instructions in Swedish
can be found in the GitHub repository)

swers using the same 5 buckets as in sampling for
teachers’ evaluation. Recall that distractors are said
to be low frequency (LF-DIS) if they were chosen
by less than 5% of students. Hence, a red cross
in the column “F-DIS > 5%” entails that a given
distractor is in fact an LF-DIS.

The MCQ in sample 1 has an entropy of 0,
meaning all students have selected the same op-
tion, which in this case was the key. In this case,
two of three distractors were accepted by the major-
ity of teachers, although all of them were LF-DIS.
This is a good example of an MCQ with plausible
distractors, but where the stem is too easy.

The MCQ in sample 2 presents an interesting
case, when the distractor contains an obvious gram-
matical error (comma before the first word in the
distractor 3). While the distractor was rightfully
rejected by the majority of teachers, it was still
selected by more than 5% of students.

The MCQ in sample 3 is a good example of
longer distractors. In this case, two distractors
were accepted by teachers and two were selected by
more than 5% of students. However, interestingly
these sets are disjoint, meaning that all three dis-
tractors could potentially be useful. Another more
general observation, requiring future research, is
that our model seems to struggle more when gen-
erating longer distractors in general, resulting in
non-finished sentences or repetitions of words.

The MCQ in sample 4 is somewhat opposite to
sample 3, since one distractor that was accepted by
the teachers turned out to be an LF-DIS. This either
means that the stem was too easy or that none of
the distractors were potentially useful.

The MCQ in sample 5 is the one with a highest
theoretically possible entropy between selecting
the correct or a wrong option. Note that it might

still happen that some of the distractors is LF-DIS,
since the entropy is calculated not between all four
options, but only between the key and the distrac-
tors as a group.

401

Stem
Vad täcker över hälften av Sveriges yta?
(What covers more than half of the surface of Sweden?)

Key: skog (forest)

Distractor (sv) Distractor (en) Accepted by
teachers?

F-DIS > 5%

vattendrag water 4 8

miljöer environments 8 8

djur - och växtarter plant and animal species 4 8

Figure 11: Sample 1 (entropy 0). “F-DIS” denotes the frequency of choice of a distractors by the students, “Ac-
cepted by teachers” indicates if a distractor was accepted by the majority of teachers.

Stem
Vad förvaras på en torkanläggning?
(What is stored in a drying facility?)

Key: spannmål, hö eller halm (grains, hay or straw)

Distractor (sv) Distractor (en) Accepted by
teachers?

F-DIS > 5%

ogräs weeds 4 8

balpressar balers 4 4

, harvar och sår , harrows and sows 8 8

Figure 12: Sample 2 (entropy 0.31). “F-DIS” denotes the frequency of choice of a distractors by the students,
“Accepted by teachers” indicates if a distractor was accepted by the majority of teachers.

Stem
När betalar du avgiften om du ansöker på en ambassad?
(When do you pay the fee when you are applying at an embassy?)

Key: när du lämnar in din ansökan (when you are handing in your application)

Distractor (sv) Distractor (en) Accepted
by

teachers?

F-DIS > 5%

när du får uppehållstillstånd when you receive your residence
permit

4 4

när du ansöker för första
gången

when you are applying for the
first time

8 4

när du ansöker innan tiden för
ditt tidigare tillstånd har gått ut

when you are applying before
your previous permit has expired

4 8

Figure 13: Sample 3 (entropy 0.57). “F-DIS” denotes the frequency of choice of a distractors by the students,
“Accepted by teachers” indicates if a distractor was accepted by the majority of teachers.

402

Stem
Vad är negativt för flera marina miljöer?
(What is negative for several marine environments?)

Key: kommersiellt fiske (commercial fishing)

Distractor (sv) Distractor (en) Accepted by
teachers?

F-DIS > 5%

klimatförändringar climate change 8 4

många olika miljöer many different environments 8 8

äldre brukningsmetoder older cultivation methods 4 8

Figure 14: Sample 4 (entropy 0.675). “F-DIS” denotes the frequency of choice of a distractors by the students,
“Accepted by teachers” indicates if a distractor was accepted by the majority of teachers.

Stem
Vilka kan utfärda medicinska rapporter för kabinbesättning?
(Who can issue medical reports for cabin crew?)

Key: företagsläkare (company physicians)

Distractor (sv) Distractor (en) Accepted by
teachers?

F-DIS > 5%

företagssköterskor company nurses 4 4

flygläkare aviation physicians 8 4

gymnasieinfo.se gymnasieinfo.se 8 8

Figure 15: Sample 5 (entropy 0.69). “F-DIS” denotes the frequency of choice of a distractors by the students,
“Accepted by teachers” indicates if a distractor was accepted by the majority of teachers.

403

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 404–415,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Exploring Structural Encoding for Data-to-Text Generation

Joy Mahapatra
Indian Statistical Institute, Kolkata
joymahapatra90@gmail.com

Utpal Garain
Indian Statistical Institute, Kolkata

utpal@isical.ac.in

Abstract

Due to efficient end-to-end training and flu-
ency in generated texts, several encoder-
decoder framework-based models are recently
proposed for data-to-text generations. Ap-
propriate encoding of input data is a crucial
part of such encoder-decoder models. How-
ever, only a few research works have concen-
trated on proper encoding methods. This paper
presents a novel encoder-decoder based data-
to-text generation model where the proposed
encoder carefully encodes input data accord-
ing to underlying structure of the data. The
effectiveness of the proposed encoder is eval-
uated both extrinsically and intrinsically by
shuffling input data without changing meaning
of that data. For selecting appropriate content
information in encoded data from encoder, the
proposed model incorporates attention gates
in the decoder. With extensive experiments
on WikiBio and E2E dataset, we show that
our model outperforms the state-of-the models
and several standard baseline systems. Analy-
sis of the model through component ablation
tests and human evaluation endorse the pro-
posed model as a well-grounded system.

1 Introduction

Data-to-text generation (Gatt and Krahmer, 2018;
Reiter and Dale, 2000) aims to produce human-
understandable text from semi-structured data such
as tables, concepts, etc. The input data consists
of multiple records (or events), where each record
represents a particular field (or attribute) of the data.
Table 1 shows an example for data-to-text gener-
ations, where text y is used to describe restaurant
data x . The example consists of three records, and
each record describes a field with a name (under-
lined part) and corresponding values (italic part).

data (x)
record 1 name: The Punter
record 2 food: English
record 3 price range: high
text (y)
The Punter is a restaurant with high prices.

Table 1: An example of data-to-text generation.

Due to efficient end-to-end training and flu-
ency in generated texts (Novikova et al., 2017b;
Sutskever et al., 2014), numerous data-to-text gen-
eration systems have adopted encoder-decoder
based model (Gong et al., 2019; Liu et al., 2018).
In such encoder-decoder based models, a proper
meaningful encoding of input data is a real concern.
As in most of the data-to-text generation, input data
poses record-field structure (like in table 1), it is
natural to realise the need for appropriate struc-
tural encoding for record-field structure. Most of
the existing encoder-decoder models for data-to-
text generation (Liu et al., 2018; Nema et al., 2018)
primarily focus more on attention mechanisms than
structural encoding. However, a recent interesting
study by Gong et al. (2019) shows some effective
encoding strategies based on functional dimensions
of data.

Selecting appropriate content from input data
(also known as content selection) is an important
task. For example, according to table 1, the ‘name’
and ‘price range’ fields of the data is considered as
contents w.r.t. text y. Detecting such contents from
encoded data is a hard task.

We propose an encoder-decoder model for data-
to-text generation where the encoder encodes data
based on record-field structures. We introduce
structure-wise attention gates to capture appropri-
ate content from the encoded data. As records in
an input data don’t pose any ordering among them

404

(for example, in table 1, there is no order among
the three records in x), the efficiency of the pro-
posed encoder is estimated through shuffling those
records. The comparisons of our system with ex-
isting high-scoring systems on WikiBio and E2E
dataset bring out the distinction of our model. Addi-
tional human evaluation signifies that the proposed
model performs well in terms of both readability
and adequacy of generated text.

2 Notations

We follow the notations which are commonly used
in popular data-to-text generation models (Angeli
et al., 2010; Nie et al., 2019; Dhingra et al., 2019).
The goal of our task (T) is to produce text repre-
sentation y = y1y2...yw (where yi is the i-th word
in y) from a given an input data x.

T : ŷ ← argmax
y

p(y|x)

An input (x) consists of multiple records {ri}ni=1.
A record (rj) contains a field f j , with its name
nj and the corresponding value vj = vj1v

j
2...v

j
w

(where, vji is the i-th word in vj).

3 Approach

We propose a neural network based encoder-
decoder model for the task T , where the encoder
structurally encodes the input (x). The decoder is a
recurrent neural network with two sub-modules—
(i) attention gates for appropriate content selection
and (ii) copy module to handle the appearances of
rare words in generating text.

3.1 Structural Encoder

The notion of the proposed encoder comes from
the underlying structure of input data. We con-
sider each input data comprises of two structures—
(i) fields as fine-grained structure; (ii) records
as coarse-grained structure. For example, in fig-
ure 1, input data x contains two records ({ri}2i=1)
with each record consists of two field parts (r1 =
(f11 , f

1
2) and r2 = (f21 , f

2
2)).

The proposed encoder encodes input data based
on this record-field structures (Figure 1) in bottom-
up approach. Each structure (field and record) en-
coding involves two types of connections (the ar-
rows in figure 1 show these connections)—

• The horizontal dotted arrows denote horizon-
tal connections—the objective of these con-

fields
encoding

records
encoding en

co
di

ng

input

encoded
output

Figure 1: Structure of input data and bottom-up encod-
ing.

nections is to help in making relationships
among close components.

• The dashed arrows denote hierarchical con-
nections—the purpose of these connections
is to accumulate information from all simi-
lar components (either records or fields) and
forward that information to next stage.

So with the proposed structural encoder, knowl-
edge about the record and field structures of input
data get encoded.

3.1.1 Field Encoding
In field encoding of our structural encoder, all field
words inside of a record are encoded together into
a single vector representation, which eventually
represents the record.

Embedding of each field’s value (words) and
field’s name are obtained through learnable embed-
ding matrix as follows.

Zf [f
j
k] = [En[n

j];Ev[v
j
k]]

where, E∗[w] stands for embedding of w. [;] de-
notes the concatenations. E∗ are learnable param-
eters of size (|v| × dE∗), where |v| is the size of
vocabulary. Note that, here we use different embed-
ding for both field’s values and field’ names. The
Zf [f

j
k] denotes encoding for the k-th word in f j

field together with the field name. This Zf is send
to the horizontal connections of the field encoding.

Horizontal Connections in Field Encoding:
Horizontal connections in field encoding are relat-
ing all fields words (Zf [f

j
∗]) inside of a record (rj).

Now, field words (f j∗) can be either a sequence or
bag-of-words (i.e. orderless/non-sequential). For
example, in figure 1, the ‘name’ field contains two

405

words ‘The’ and ‘Punter’ as a sequence. However,
if the ‘price range’ field contains two words—‘high’
and ‘medium’, to denote a restaurant offers foods
of both high and medium price range, then these
two words behave as bag-of-words.

To appease both sequence and bag-of-words na-
ture together we build horizontal connection of
field encoding in a distinct way. For sequence
data we use Bi-LSTM (Graves et al., 2013) net-
works; for orderless bag-of-words we skip (with
help of skip-interconnections (He et al., 2016)) this
Bi-LSTM network.

FFN FFNFFN FFN

Bi-LSTM

FFN : Feed-forward
network

Figure 2: Horizontal connection in field encoding (for
fields inside j-th records).

Eventually, a feed-forward network (equation 1)
is used to merge skip-interconnections and Bi-
LSTM. These skip-interconnections play an impor-
tant role in our model while handling orderless/non-
sequential data—we empirically show this in the
experimental section 4.6. Figure 2 show such hori-
zontal connections of field encoding.

The Bi-LSTM output for the field in j-th record
is as follows,

hfj = BiLSTM(Zf [f
j
1], ..., Zf [f

j
w])

Finally, we make use of an affine transformation
on [h

fj
k
; f jk].

hfield
fj
k

= tanh(Wfa[hfj
k
; f jk] + bfa) (1)

where, Wfa and bfa are the learnable parameters.
So, hfield

fj (and hfield
fj
k

is k-th field) is output of

horizontal connections of field encoding.

Hierarchical Connections in Field Encoding:
The hierarchical connections in field encoding aim
to accumulate all fields information (hfield

fj
k

) inside

of a record (rj) and gives a representation of the
record from its fields point of view.

hmp
j = maxpool(hfield

fj)

For hierarchical connections in field encod-
ing, we use max-pooling and key-query based
self-attention mechanism (Conneau et al., 2017).
The max-pooling is used because of our intuition
that max-pooling help in capturing the essence
of a record from its fields (hfield

fj
k

). We draw

this intuition from popular convolution neural net-
works (Krizhevsky et al., 2012).
We find that use of max-pooling is more effective
than using the last state of underlying horizontal
connection. Remember, max-poling considers all
states of underlying horizontal connection—which
is helpful for long sequences.

For the key-query based self-attention on field
encoding, we choose field values (hfield

fj
∗

) as keys

and max-pooled record value (hmp
j) as query.

Based on our previous intuition behind hmp
j , the

query of the self attentions holds essence of record
(rj).

maxpooling attention layer

query

FFN

concatenation

keys

Figure 3: Hierarchical connections in field encoding
(for fields inside j-th records).

For attention scoring, we use popular concatena-
tive attention method (Luong et al., 2015).

scorefji = vTf tanh(Wfb[h
mp
j ;hfield

fj
i

])

αf
ji = softmax(scorefji)

cfj =

m∑

i=1

αf
ji.h

field

fj
i

here, scoref ∈ R denotes attention score, αf

denotes the attention weight, and cfj is the atten-
tion/context vector for rj record.

At the end of hierarchical connections in field
encoding, we represent each record (rj) through

406

an affine transformation over concatenation of cor-
responding max-pooled value (hmp

j) and context

vector value (cfj).

Zr[j] = Wfc[h
mp
j ; cfj] + bfc

Hence, Zr[j] is the output of field encoding for
j-th records. Figure 3 shows the hierarchical con-
nections of field encoding. It is worth to note here
that as self-attention and max-pool operations don’t
rely on order of a data, hence there is no question
of order-sensitiveness of hierarchical connections.

3.1.2 Record Encoding
The objective of record encoding is to find a vector
representation for input data x in terms of its un-
derlying record structures. The record encoding is
quite similar to the field encoding. It contains both
horizontal and hierarchical connections, which are
same as field encoding. The horizontal connection
output of record encoding is hrecordj for the j-th
record. The final output of the record encoding is
encoded representation Zd[x] of input data x.

3.2 Decoder
The decoder module consists of two key parts—
structure-wise (i.e. record and field) attention gates
and a copy module. Figure 4 shows a schematic
view of our decoder.

3.2.1 State Update
The initial state of the decoder (s0) is initialized
through the output of record encoding, Zd[x]. For
updating the t-th step state (st) in the decoder, we
use dual attention mechanisms (Liu et al., 2018;
Gong et al., 2019) to merge attentions over record
and field structures. We define attention over both
record and field encoding on their horizontal con-
nections outputs.

βrtj = attention(st, rj)

φrt =

n∑

i=1

βrti.h
record
ri

where, βr stands for attention weight (for j-th
record, rj , t-timestep of decoding) and φrt is the
attention/context vector of record encoding. Simi-
larly, for field we get attention weight βf .

Now, due to dual attention mechanism we mod-
ify effective attention weight of field encoding
though γf = βf × βr. Hence, the context vector
(φft) of effective field attention is defined through
γf .

Attention Gates: We introduce two attention
gates for both field and record structures which
help us to read context vectors φrt and φft . We de-
fine these gates through current decoder state (st)
and encoded data (Zd[x]) as follows,

grt = σ(Wrgst +UrgZd[x] + brg)

gft = σ(Wfgst +UfgZd[x] + bfg)

where, gft and grt are the attention gates for field
and record context. Those two gates perform cru-
cial function in our model as they handle content
selection from the context vectors (which is nothing
but encoded input) to decoder. The values of these
gates change time to time to decide whether to in-
hibit (by value ‘0’) and exhibit (by value ‘1’) the
content of context vectors. The attention context
information is defined as below.

φ̂rt = grt � φrt
φ̂ft = gft � φft

Finally, we update the decoder state with ĉrecordt

and ĉfieldt as given below.

s̃t = tanh(Wd[st; φ̂
record
t ; φ̂fieldt])

FE FEFE FE

RE

dual attention field and record
context

gate

dashed line : output of
hiearachical connections
dotted line : output of
horizontal connections
RE : Record Encoding
FE : Field Encoding
gate: attention gate

copy
module

decoder at t-th
step

encoder

Figure 4: Proposed encoder-decoder model.

3.3 Copy Module

To handle rare words, we follows Gulcehre
et al. (2016)’s conditional-copy techniques for our
model, where the binary copy-indicator variable

407

(cpt) in conditional copy-module defined as fol-
lows,

p(cpt = 0|s̃t, Zd[x]) = σ(Wcp[s̃t;Zd[x]])

We use input encoding Zd[x] with current de-
coder attention state s̃t, to make the cpt input-
sensitive.

3.4 Loss Function

We use the negative log-likelihood function as loss
function of our model:

loss = −
m∑

i=1

log(p(y
(i)
t |x(i), y

(i)
<t)).

Two things are important to note here, (i) we use a
〈unk〉whenever an out-of-vocabulary word appears
in field; (ii) we never share embeddings between
field’s name and field’s value.

4 Experiments

The experiment considers two popular benchmark
datasets for data-to-text generations—WikiBio
dataset and E2E dataset.

4.1 Baselines and Metrics

The following three baseline systems are consid-
ered in our experiment.

1. Baseline 1: It is a vanilla seq2seq model,
based on the popular seq2seq (Sutskever et al.,
2014) architecture and concatenative attention
mechanism (Luong et al., 2015).

2. Baseline 2: To investigate the role of atten-
tions in our model, this baseline model is con-
sidered where all attentions (at the decoder
part) are removed from our proposed system.

3. Baseline 3: This is standard trans-
former (Vaswani et al., 2017) architecture
based encoder-decoder model. We train this
baseline model in our experiments from
scratch.

Beside those three baselines, we consider two re-
cent proposed data-to-text generator systems in our
experiments. According to our knowledge, those
systems have achieved high-scored performance on
both WikiBio dataset and E2E dataset, in terms of
automatic evaluations.

1. Liu et al. (2018): Liu et al. (2018) considers
an encoder-decoder architecture, consists of a
field-gating encoder (which enables structure-
aware properties) and a dual attention-based
decoder. Unlike our proposed encoder, Liu
et al. (2018) encodes both records and fields
information with parallel gating structures.

2. Nie et al. (2019): Nie et al. (2019) pro-
posed an encoder-decoder model for data-
to-text generation with self-attention mech-
anisms (Vaswani et al., 2017), for handling
both sequential and non-sequential data. How-
ever, unlike our proposed model’s where we
incorporate both hierarchical and horizontal
connections, Nie et al. (2019) mainly consid-
ers hierarchical self-attentions.

To evaluate the quality of generated text, we
use three popular metrics—BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005)1. We also use a recent data-to-
text generation evaluation metric, PARENT (Dhin-
gra et al., 2019), which considers both input data
and reference texts in evaluation unlike above all
three metrics which consider only reference. Dhin-
gra et al. (2019) have extensively shown that PAR-
ENT metric correlates with human judgements
more accurately than other automatic evaluations
metrics.

As several past studies (Belz and Reiter, 2006;
Reiter, 2018; Chaganty et al., 2018; Novikova et al.,
2017a) have found that automatic evaluation is not
a reliable way to evaluate data-to-text generation
models, we also perform human evaluation on gen-
erated texts from our system.

4.2 Parameters Settings
The dimension of both field word and field name
embedding are set to 200. We use a separate em-
beddings for a field name as well as for field val-
ues (i.e. vocabulary words). Adam optimization
techniques (Kingma and Ba, 2015) (with initial
learning rate=0.0001, β1=0.9, β2=0.999) are used
to train the model. The depth of all BiLSTM mod-
els set as 2. In all cases, dropout value is fixed
to 0.5. Most of the hyperparameters are tuned on
predefined validation sets. In generating text from
decoder the beam-search technique with beam size
4 is used. For baseline 3, we use standard trans-
former with stack size of 6 in both decoder and

1For BLEU, ROUGE and Meteor,
https://github.com/tuetschek/e2e-metrics

408

dataset instances total words tokens/sentence sentences/instance references/instance
WikiBio 728K 400K 26.1 1 1

E2E 50.5K 5.2K 14.3 1.5 8.1

Table 2: Dataset statistics.

encoder. In WikiBio dataset, while choosing sizes
for vocabulary(or word types) and field types we
closely follow Lebret et al. (2016). In most of
the cases, we fix batch size to 32/64 and we train
our model at most 120000 steps. We use NVIDIA
GeForce RTX 2080 Ti graphics card for our exper-
iments.

4.3 WikiBio Dataset and Results

Lebret et al. (2016) introduced WikiBio dataset
from biographical articles on Wikipedia. Table 2
shows statistics of WikiBio dataset. From Table 3,
we observe that our model achieves better out-
comes in terms all automatic evaluation metrics
than baselines and those two recent reported best re-
sults. Some examples of generated texts of our pro-
posed system are given in Appendix A (Table 10).

model BLEU ROUGE-L METEOR PARENT
baseline 1 0.338 0.418 0.271 0.463
baseline 2 0.348 0.445 0.262 0.455
baseline 3 0.381 0.486 0.340 0.407

Liu et al. (2018) 0.447 0.528 0.363 0.538
Nie et al. (2019) 0.450 0.522 0.371 0.527
proposed method 0.465 0.566 0.397 0.540

Table 3: Results from WikiBio dataset.

4.4 E2E Dataset and Results

Novikova et al. (2017b) introduced E2E dataset 2
on restaurant text domain. From the comparison
results presented in table 4, it is quite clear that
our model outperforms the baselines and other re-
ported systems, almost in every cases except Liu
et al. (2018) model performs a bit better (∼ 1%
compared to our model) in terms of PARENT met-
ric for E2E Dataset. Some samples of generated
text are provided in Appendix A (Table 11).

model BLEU ROUGE-L METEOR PARENT
baseline 1 0.517 0.520 0.344 0.569
baseline 2 0.534 0.572 0.350 0.572
baseline 3 0.568 0.594 0.425 0.642

Liu et al. (2018) 0.653 0.614 0.428 0.726
Nie et al. (2019) 0.662 0.612 0.399 0.663
proposed method 0.675 0.683 0.442 0.716

Table 4: Results on E2E dataset.

4.5 Analysis from Ablation Tests
To understand effectiveness of copy module, atten-
tion gates and encoder of our model, we do compo-
nent ablation study based on BLEU and PARENT
scores.

4.5.1 Ablation of Copy Module
Table 5 shows the copy module ablation results.
From the reported BLEU and PARENT scores, it is
quite clear that the copy module plays an important
role in generating better text for both datasets.

WikiBio E2E
BLEU PARENT BLEU PARENT

with
copy module

0.465 0.540 0.675 0.716

without
copy module

0.424 0.527 0.619 0.682

Table 5: Ablation of copy module (based on BLEU and
PARENT score).

4.5.2 Ablation of Attention Gates
To observe the effectiveness of the attention gates
we perform ablation tests on them. In terms of
BLEU score, we find very small to no improve-
ment. However, attention gates show a clear im-
provement in terms of PARENT metrics scores.
Moreover, while doing qualitative analysis, we ob-
serve that the quality of generated texts is improved
through these attention gates. Table 6 shows such
qualitative analysis results. It may be noted that
our model makes a few mistakes irrespective of
whether attention gates are used or not. However,
in terms of quality of generated text attention gates
play an affirmative role as the number of wrongly
inserted words is less for the model with attention
gates compared to the model without gates.

WikiBio E2E
BLEU PARENT BLEU PARENT

with
attention gate

0.465 0.540 0.674 0.716

without
attention gates

0.458 0.513 0.680 0.694

Table 7: Ablation of attention gates (based on BLEU
and PARENT score).

409

WikiBio

input

name[myles wilder], birth-date[january 28, 1933], birth-place[new york city, new york],
death date[april 20, 2010 -lrb- age 77-rrb-], death-place [temecula, california],
occupation [television writer and producer], spouse [bobbe wilder -lrb- survives him -rrb-],
article-title [myles wilder]

reference myles wilder -lrb- january 28 , 1933 - april 20 , 2010 -rrb- was a television comedy writer and producer .
without

attention gates
myles wilder -lrb- 28 , 1933 april , -rrb- held a television comedy writer and .

with
attention gates

myles wilder -lrb- january 28 , 1933 – april 20 , 2010 -rrb- was an american television writer and producer .

E2E

input
name[Blue Spice], eatType[restaurant], food[English], area[riverside],
familyFriendly[yes], near[Rainbow Vegetarian Cafe]

one reference
there is a restaurant that provides food and is children friendly, near rainbow vegetarian
cafe and the riverside and is called blue spice.

without
attention gates

there is a soup restaurant that provides food and good spice. friendly, near rainbow vegetarian
cafe and the riverside and blue.

with
attention gates

near the rainbow vegetarian café in the riverside area is a restaurant called blue spice that serves english
food and is children friendly.

Table 6: A qualitative analysis for the role of attention gates in our model (wrong word,
word is not available in input) [E2E dataset contains several gold references for a single input data, but due
to space constraint only one reference is given.].

WikiBio E2E
BLEU PARENT BLEU PARENT

with
all connections

0.465 0.540 0.675 0.716

without
horizontal connections

0.369 0.483 0.532 0.580

without
hierarchical connections

0.414 0.498 0.581 0.673

Table 8: Ablation of encoder connections (based on
BLEU and PARENT score).

4.5.3 Ablation of Encoder Connections
Through ablation test, we analyze the effective-
ness of our encoder connections—both horizontal
connections and hierarchical connections. Table 8
reports results of ablation test on encoder’s con-
nections. It is observed that the proposed model
performed better when both connections present.

4.6 Analysis of Model with Shuffled Input

Earlier, we have mentioned that in order to en-
code both sequential and non-sequential (order-
less) data through our proposed encoder, we in-
troduced skip-interconnection to effectively handle
them. To be more precise horizontal connections
are responsible for the sequential data encoding,
whereas hierarchical connections play essential
roles for the non-sequential data. Finally, the skip-
interconnections use both outputs from horizontal
and hierarchical connections to nullify model bias
toward record/field orders. In this section, we will
investigate the role of skip-interconnections with

model
WikiBio E2E

BLEU PARENT BLEU PARENT
with

skip-interconnection
0.421 ± 0.011 0.493±0.017 0.637 ± 0.009 0.682 ± 0.013

without
skip-connection

0.413 ± 0.024 0.490±0.044 0.628 ± 0.021 0.652 ± 0.036

Table 9: Ablation test of skip-interconnections with
shuffling records in input data.

random shuffling of records of input data. The aim
of this experiment is to show the effectiveness of
the proposed encoder on shuffled data. This ex-
periment is evaluated through both intrinsic and
extrinsic way.

Extrinsic Evaluation: Here we conduct ablation
test on skip-interconnections with shuffling records
in input data on both of the datasets. On each
dataset’s test set, such record shuffling are per-
formed for five times . Table 9 presents effective of
proposed encoder’s skip-interconnections in terms
of low fluctuation (standard deviations) measures
on both PARENT and BLEU metric.

Intrinsic Evaluation: To more closely observe
the effect of skip-interconnections on our model
in handling shuffled input data, we show t-SNE
plots (Maaten and Hinton, 2008) for encoded rep-
resentations of input data with our encoder. Two
random data instances are sampled from each of
the two datasets (WikiBio and E2E), and each data
instance is shuffled close to 30 different arrange-
ments. We show t-SNE plots of encoded repre-

410

sentations of those shuffle data through our en-
coder. The well disentangled encoded represen-
tations of shuffled data (in figure 5) with skip-
interconnections clearly prove effectiveness of skip-
interconnections.

without skip-interconnection (On WikiBio) with skip-interconnection (On WikiBio)

with skip-interconnection (On E2E)without skip-interconnection (On E2E)

Figure 5: t-SNE plots for encoder representations on
shuffled input data (circled and squared points repre-
sent two data different data instances).

4.7 Human Evaluation

In human-based evaluation for annotations purpose,
we select four university graduate students from
various majors. A sample of 150 generated texts
from the proposed model is chosen for each of the
two datasets (E2E and WikiBio) for the annota-
tion task. Along with the generated text, we also
provide input data and reference text to annotators.
Every instance is annotated by at least three human
annotators. In human-based evaluation, we pri-
marily look for two essential qualities in generated
texts–adequacy (or correctness) and readability (or
fluency) (Gatt and Krahmer, 2018). The adequacy
indicates whether appropriate/correct content of in-
put data is contained within the generated text or
not. The term readability defines fluency, clarity,
and linguistic quality of a generated text. For ade-
quacy and readability, every annotator is asked to
rate each text on a scale of 1 to 5, where 5 is the
best. Human evaluation results are presented in
Figure 6 along with the inter-annotators agreement
in terms of Krippendorff’s alpha coefficient2. Eval-
uation results show that experiment on WikiBio
dataset resulted in better readability and informa-
tiveness compared to the results obtained for E2E
dataset.

2https://www.nltk.org/api/nltk.metrics.html

Adequacy

Figure 6: Average human rating of texts generated from
the proposed model (top left:measures readability in
E2E, top right: informativeness in E2E, bottom left:
readability in WikiBio, bottom right: informativeness
in WikiBio). α denotes the Krippendorff’s alpha coef-
ficient.

5 Related Works

The research presented in this paper is related
to the recent data-driven data-to-text generation
effort where text is generated from structured
data (Angeli et al., 2010; Mei et al., 2016; Lebret
et al., 2016; Liu et al., 2018). There are several
types of data-driven text generation systems. Belz
(2008) used probabilistic context-free grammar for
text generation from structured data. Chen and
Mooney (2008) introduced a strategic text gener-
ation technique for sportscasting of a simulated
soccer game. Among data-driven text generations,
Angeli et al. (2010) was probably the first to pro-
pose a domain-independent approach with an appli-
cation on weather forecasting. With the advent of
recurrent neural network language model (Mikolov
et al., 2010), neural text generation models are
proposed several in number and successfully ap-
plied to several different text generation tasks, from
poem generation (Zhang and Lapata, 2014) to im-
age captioning (Xu et al., 2015; Kiros et al., 2014;
Karpathy and Fei-Fei, 2015). After the seq2seq
model (Sutskever et al., 2014) and various atten-
tion mechanisms (Xu et al., 2015; Luong et al.,
2015) are reported in the literature, the encoder-
decoder model in neural text generation become
quite ubiquitous. For selective generation task
where readers focus on a certain selective part of
the input, Mei et al. (2016) proposed an encoder-
decoder model with an attention mechanism. In a
concept-to-text generation where aim lies in gener-
ating text descriptions from complex concepts, the

411

encoder-decoder based models also achieve high
accuracy (Lebret et al., 2016; Sha et al., 2018; Liu
et al., 2018; Nema et al., 2018). For the dialogue
system too, this kind of data-driven approach finds
some important results (Wen et al., 2015; Shang
et al., 2015). The encoder-decoder model has also
shown promising results on table-to-text generation
task (Bao et al., 2018; Gong et al., 2019).

6 Conclusion

In this paper, we propose an effective structural
encoder for encoder-decoder based data-to-text
generation, which carefully encodes record-field
structured input data. With extensive experi-
ments, we show that the proposed model is ca-
pable of handling both sequential and order-less
(non-sequential) data. For selecting appropriate
contents from encoded data, we incorporated atten-
tion gates in the proposed model. Evaluation of
the model on WikiBio and E2E dataset brings out
the potential of the proposed system in generating
quality text. The immediate extension of this study
may consider analysis of the model’s behavior at
sub-task levels, i.e., its effect on content selection,
text/discourse planning, or on surface realization.
These experiments may unveil more interesting fea-
tures of the proposed model. Moreover, further
research is needed to improve the quality of output
text.

Acknowledgement

This work is partially supported by Science and
Engineering Research Board (SERB), Dept. of
Science and Technology (DST), Govt. of India
through Grant File No. SPR/2020/000495.

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

simple domain-independent probabilistic approach
to generation. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 502–512. Association for Compu-
tational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Junwei Bao, Duyu Tang, Nan Duan, Zhao Yan, Yuan-
hua Lv, Ming Zhou, and Tiejun Zhao. 2018. Table-

to-text: Describing table region with natural lan-
guage. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence.

Anja Belz. 2008. Automatic generation of weather
forecast texts using comprehensive probabilistic
generation-space models. Natural Language Engi-
neering, 14(4):431–455.

Anja Belz and Ehud Reiter. 2006. Comparing auto-
matic and human evaluation of nlg systems. In 11th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Arun Chaganty, Stephen Mussmann, and Percy Liang.
2018. The price of debiasing automatic metrics in
natural language evalaution. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
643–653.

David L Chen and Raymond J Mooney. 2008. Learn-
ing to sportscast: a test of grounded language acqui-
sition. In Proceedings of the 25th international con-
ference on Machine learning, pages 128–135. ACM.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh,
Ming-Wei Chang, Dipanjan Das, and William Co-
hen. 2019. Handling divergent reference texts when
evaluating table-to-text generation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4884–4895.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65–170.

Heng Gong, Xiaocheng Feng, Bing Qin, and Ting Liu.
2019. Table-to-text generation with effective hier-
archical encoder on three dimensions (row, column
and time). In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3143–3152, Hong Kong, China. Association
for Computational Linguistics.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal process-
ing, pages 6645–6649. IEEE.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th

412

Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
140–149, Berlin, Germany. Association for Compu-
tational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
3128–3137.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S
Zemel. 2014. Unifying visual-semantic embeddings
with multimodal neural language models. arXiv
preprint arXiv:1411.2539.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 1203–1213.
The Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation by
structure-aware seq2seq learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1412–1421. The
Association for Computational Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016. What to talk about and how? selective
generation using lstms with coarse-to-fine alignment.
In NAACL HLT 2016, The 2016 Conference of the

North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, San Diego California, USA, June 12-17, 2016,
pages 720–730. The Association for Computational
Linguistics.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Preksha Nema, Shreyas Shetty, Parag Jain, Anirban
Laha, Karthik Sankaranarayanan, and Mitesh M
Khapra. 2018. Generating descriptions from struc-
tured data using a bifocal attention mechanism and
gated orthogonalization. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1539–1550.

Feng Nie, Jinpeng Wang, Rong Pan, and Chin-Yew Lin.
2019. An encoder with non-sequential dependency
for neural data-to-text generation. In Proceedings of
the 12th International Conference on Natural Lan-
guage Generation, pages 141–146.

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas
Curry, and Verena Rieser. 2017a. Why we need new
evaluation metrics for nlg. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2241–2252.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017b. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
Saarbrücken, Germany, August 15-17, 2017, pages
201–206. Association for Computational Linguis-
tics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Ehud Reiter. 2018. A structured review of the validity
of bleu. Computational Linguistics, 44(3):393–401.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge university
press.

Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian
Li, Baobao Chang, and Zhifang Sui. 2018. Order-
planning neural text generation from structured data.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
In Proceedings of the 53rd Annual Meeting of the

413

Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 1577–
1586. The Association for Computer Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
hao Su, David Vandyke, and Steve J. Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2015, Lisbon, Portugal, September 17-21, 2015,
pages 1711–1721. The Association for Computa-
tional Linguistics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In International conference on machine learn-
ing, pages 2048–2057.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 670–680.

414

A Sample of Generated Texts from The Proposed Data-to-Text Generation Model on
WikiBio and E2E Datasets

A Sample of generated texts on WikiBio dataset
Instance 1

input

name[pietro micheletti], birthdate[19 october 1900], deathdate[25 march 2005]
birthplace[maciano di pennabilli, italy], deathplace[maciano di pennabilli, italy]
allegiance[italy italy], branch[italian army], serviceyears[1917-1925], rank[major],
battles[world war i fiume’s war], laterwork[farmer manager], award[” military cross ”
” ordine di vittorio veneto” ” knight of the order of merit of the italian republic ”],
articletitle[pietro micheletti]

reference pietro micheletti -lrb- 19 october 1900 – 25 march 2005 -rrb- was an italian military commander .
generated text pietro micheletti -lrb- october 19 , 1900 – march 25 , 2005 -rrb- was a italian army manager .

Instance 2

input
name[jason buxton], nationality [canadian], occupation[film director, screenwriter]
knownfor[”blackbird”], articletitle[jason buxton]

reference jason buxton is a canadian film director and screenwriter .
generated text jason buxton is an canadian film director and screenwriter .

Instance 3

input

name[bert crossthwaite], fullname[herbert crossthwaite], birthdate[4 april 1887],
birthplace[preston, england], deathdate[20 may 1944], deathplace[birmingham, england],
position[goalkeeper], years[–1906–1907 1907–1909 -1909 –1910 1910 – 1914 1914 –1915],
clubs [blackpool fulham exeter city birmingham stoke], caps[0 1 2 49 0], goals[0 0 0 0 0],
articletitle[bert crossthwaite]

reference herbert crossthwaite -lrb- 4 april 1887 – 20 may 1944 -rrb- was an english footballer who played as a goalkeeper .
generated text herbert bert crossthwaite -lrb- 4 april 1887 – 20 may 1944 -rrb- was an english footballer who played as a goalkeeper .

Table 10: A sample of generated texts from the proposed model on WikiBio dataset (wrong words generation,
missing information)

A Sample of generated texts on E2E dataset
Instance 1

input
name[Giraffe], eatType[restaurant], food[French], area[city centre], familyFriendly[yes],
near[Raja Indian Cuisine]

reference 1
the giraffe is a restaurant - family-friendly serving french food in the city centre,
near the raja indian Cuisine

reference 2
giraffe, a family-friendly restaurant in the city centre serving french food is located near
raja indian cuisine.

reference 3
giraffe is a restaurant located in the city centre near the raja indian cuisine.
it offers french cuisine with a family-friendly atmosphere.

reference 4
city centre based restaurant near raja indian cuisine, giraffe is family-friendly
and serves french cuisine.

reference 5
giraffe is a restaurant that offers french food with a family-friendly atmosphere.
it is located in the city centre near the raja indian cuisine.

generated text
giraffe is a french restaurant in the riverside area near raja indian cuisine.
it is not family-friendly.

Instance 2
input name[Cocum], eatType[pub], near[The Sorrento]
reference 1 cocum is a pub by the sorrento.
generated text cocum is a pub near the ranch.

Instance 3
input name[Giraffe], eatType[pub], near[The Bakers]
reference 1 giraffe is a pub found near the bakers.
reference 2 a pub named giraffe is near the bakers.
generated text giraffe is a pub near the bakers.

Table 11: A sample of generated texts from the proposed model on E2E dataset (wrong words generation,
missing information)

415

Proceedings of the 14th International Conference on Natural Language Generation (INLG), pages 416–431,
Aberdeen, Scotland, UK, 20-24 September 2021. ©2021 Association for Computational Linguistics

Attention Is Indeed All You Need:
Semantically Attention-Guided Decoding for Data-to-Text NLG

Juraj Juraska and Marilyn Walker
Natural Language and Dialogue Systems Lab

University of California, Santa Cruz
{jjuraska,mawalker}@ucsc.edu

Abstract

Ever since neural models were adopted in data-
to-text language generation, they have invari-
ably been reliant on extrinsic components to
improve their semantic accuracy, because the
models normally do not exhibit the ability to
generate text that reliably mentions all of the
information provided in the input. In this
paper, we propose a novel decoding method
that extracts interpretable information from
encoder-decoder models’ cross-attention, and
uses it to infer which attributes are mentioned
in the generated text, which is subsequently
used to rescore beam hypotheses. Using this
decoding method with T5 and BART, we show
on three datasets its ability to dramatically re-
duce semantic errors in the generated outputs,
while maintaining their state-of-the-art quality.

1 Introduction

Task-oriented dialogue systems require high se-
mantic fidelity of the generated responses in order
to correctly track what information has been ex-
changed with the user. Therefore, their natural lan-
guage generation (NLG) components are typically
conditioned on structured input data, performing
data-to-text generation. To achieve high seman-
tic accuracy, neural models for data-to-text NLG
have invariably been reliant on extrinsic compo-
nents or methods. While large pretrained gener-
ative language models (LMs), such as GPT-2 or
T5, perform better in this respect, even they do not
normally generate text that reliably mentions all
the information provided in the input.

In this work, we study the behavior of attention
in large pretrained LMs fine-tuned for data-to-text
NLG tasks. We show that encoder-decoder mod-
els equipped with cross-attention (i.e., an attention
mechanism in the decoder looking back at the en-
coder’s outputs) are, in fact, aware of the semantic
constraints, yet standard decoding methods do not

fully utilize the model’s knowledge. The method
we propose extracts interpretable information from
the model’s cross-attention mechanism at each de-
coding step, and uses it to infer which slots have
been correctly realized in the output. Coupled with
beam search, we use the inferred slot realizations
to rescore the beam hypotheses, preferring those
with the fewest missing or incorrect slot mentions.

To summarize our contributions, the proposed se-
mantic attention-guided decoding method, or SEA-
GUIDE for short: (1) drastically reduces semantic
errors in the generated text (shown on the E2E,
ViGGO, and MultiWOZ datasets); (2) is domain-
and model-independent for encoder-decoder archi-
tectures with cross-attention, as shown on different
sizes of T5 and BART; (3) works out of the box,
but is parameterizable, which allows for further op-
timization; (4) adds only a small performance over-
head over beam search decoding; and (5) perhaps
most importantly, requires no model modifications,
no additional training data or data preprocessing
(such as augmentation, segmentation, denoising, or
alignment), and no manual annotation.1

2 Related Work

Several different approaches to enhancing semantic
accuracy of neural end-to-end models have been
proposed for data-to-text NLG over the years. The
most common approach to ensuring semantic qual-
ity relies on over-generating and then reranking
candidate outputs using criteria that the model was
not explicitly optimized for in training. Reranking
in sequence-to-sequence models is typically per-
formed by creating an extensive set of rules, or by
training a supplemental classifier, that indicates for
each input slot whether it is present in the output
utterance (Wen et al., 2015a; Dušek and Jurčı́ček,

1The code for SEA-GUIDE and heuristic semantic er-
ror evaluation can be found at https://github.com/
jjuraska/data2text-nlg.

416

2016; Juraska et al., 2018; Agarwal et al., 2018;
Kedzie and McKeown, 2020; Harkous et al., 2020).

Wen et al. (2015b) proposed an extension of
the underlying LSTM cells of their sequence-to-
sequence model to explicitly track, at each decod-
ing step, the information mentioned so far. The
coverage mechanism (Tu et al., 2016; Mi et al.,
2016; See et al., 2017) penalizes the model for at-
tending to the same parts of the input based on
the cumulative attention distribution in the decoder.
Chisholm et al. (2017) and Shen et al. (2019) both
introduce different sequence-to-sequence model ar-
chitectures that jointly learn to generate text and re-
construct the input facts. An iterative self-training
process using data augmentation (Nie et al., 2019;
Kedzie and McKeown, 2019) was shown to reduce
semantic NLG errors on the E2E dataset (Novikova
et al., 2017). Among the most recent efforts,
the jointly-learned segmentation and alignment
method of Shen et al. (2020) improves semantic
accuracy while simultaneously increasing output
diversity. Kedzie and McKeown (2020) use seg-
mentation for data augmentation and automatic
utterance planning, which leads to a reduction in se-
mantic errors on both the E2E and ViGGO (Juraska
et al., 2019) datasets.

In contrast to the above methods, our approach
does not rely on model modifications, data augmen-
tation, or manual annotation. Our method is novel
in that it utilizes information that is already present
in the model itself to perform semantic reranking.

Finally, related to our work is also controllable
neural language generation, in which the con-
strained decoding strategy is often used, rescor-
ing tokens at each decoding step based on a set of
feature discriminators (Ghazvininejad et al., 2017;
Baheti et al., 2018; Holtzman et al., 2018). Never-
theless, this method is typically used with uncondi-
tional generative LMs, and hence does not involve
input-dependent constraints.

3 Semantic Attention-Guided Decoding

While we will evaluate the SEA-GUIDE method
on ViGGO, E2E, and MultiWOZ, we develop the
method by careful analysis of the cross-attention
behavior of different pretrained generative LMs
fine-tuned on the ViGGO dataset. ViGGO is a
parallel corpus of structured meaning representa-
tions (MRs) and corresponding natural-language
utterances in the video game domain. The MRs
consist of a dialogue act (DA) and a list of slot-and-

value pairs. The motivation for selecting ViGGO
for developing the method was that it is the small-
est dataset, but it provides a variety of DA and slot
types (as shown in Table 1). The models used for
the analysis were the smallest variants of T5 (Raf-
fel et al., 2020) and BART (Lewis et al., 2020). We
saved the larger variants of the models, as well as
the other two datasets, for the evaluation.

3.1 Interpreting Cross-Attention

Attention (Bahdanau et al., 2015; Luong et al.,
2015) is a mechanism that was introduced in
encoder-decoder models (Sutskever et al., 2014;
Cho et al., 2014) to overcome the long-range de-
pendencies problem of RNN-based models. It al-
lows the decoder to effectively condition its output
tokens on relevant parts of the encoder’s output
at each decoding step. The term cross-attention
is primarily used when referring to the more
recent transformer-based encoder-decoder mod-
els (Vaswani et al., 2017), to distinguish it from
the self-attention layers present in both the encoder
and the decoder transformer blocks. The cross-
attention layer ultimately provides the decoder with
a weight distribution at each step, indicating the im-
portance of each input token in the current context.

Our results below will show that visualizing the
attention weight distribution for individual cross-
attention layers in the decoder – for many different
inputs – reveals multiple universal patterns, whose
combination can be exploited to track the presence,
or lack thereof, of input slots in the output sequence.
Despite the differences in the training objectives of
T5 and BART, as well as their different sizes, we
observe remarkably similar patterns in their respec-
tive cross-attention behavior. Below, we describe
the three most essential patterns (illustrated in Fig-
ure 1) that we use in SEA-GUIDE.

3.1.1 Verbatim Slot Mention Pattern
The first pattern consistently occurs in the lowest
attention layer, whose primary role appears to be
to retrospectively keep track of a token in the input
sequence that the decoder just generated in the
previous step. Figure 1a shows an example of an
extremely high attention weight on the input token
“third” when the decoder is deciding which token to
generate after “What is it about third” (which ends
up being the token “person”). This pattern, which
we refer to as the verbatim slot mention pattern,
can be captured by maximizing the weight over all
attention heads in the decoder’s first layer.

417

(a) Verbatim slot mention (1st layer). (b) Paraphrased slot mention (3rd layer). (c) Unrealized slot mention (4th layer).

Figure 1: Visualization of cross-attention weight distribution for the 6-layer T5-small (trained on the ViGGO
dataset) in 3 different scenarios. The left column in each corresponds to the input tokens, and the right to the
tokens generated by the decoder. The darker the blue background shade, the greater the attention weight. Note that
the weights are aggregated across all attention heads by extracting the maximum.

Figure 2: An example of the decoder paying equal at-
tention (in the 5th layer of the 6-layer T5-small) to two
slots in the input sequence when deciding what to gen-
erate next after “What is it about”.

3.1.2 Paraphrased Slot Mention Pattern
Paraphrased slot mentions, on the other hand, are
captured by the higher layers, at the moment when
a corresponding token is about to be mentioned
next. Essentially, as we move further up the layers,
the cross-attention weights gradually shift towards
input tokens that correspond to information that is
most likely to follow next in the output, and cap-
ture increasingly more abstract concepts in general.
Figure 1b shows an example of the RATING slot’s
value “poor” paraphrased in the generated utter-
ance as “distasteful”; the first high attention value
associated with the input token “poor” occurs when
the decoder is about to generate the “dis” token.

At certain points during generation, however,

the attention in the uppermost layers is distributed
fairly evenly among multiple slots, because any
of them could lead to a coherent continuation of
the sentence. For example, the generated utterance
in Figure 2 could have started with “What is it
about vehicular combat games played from a third-
person perspective that. . . ”, where the GENRES slot
is output before the PLAYER PERSPECTIVE slot.

In order to recognize a paraphrased mention,
without incorrectly capturing other slots consid-
ered, we propose averaging the cross-attention
weights, using only the bottom half of the layers
(e.g., layers 1 to 3 in the T5-small model).

3.1.3 Unrealized Slot Mention Pattern

The third pattern alleviates any undesired side ef-
fects of identifying paraphrased mentions using the
second pattern, i.e., slots incorrectly assumed to
be mentioned. Figure 1c illustrates an unrealized
slot (PLATFORMS) being paid attention to in sev-
eral decoding steps. The cross-attention weight
distribution for the “Xbox” token in the 4th layer,
shows that the decoder considered mentioning the
slot at step 5 (e.g., “Since you’re an Xbox fan and
like multiplayer games,. . . ”), as well as step 8 (e.g.,
“. . . into multiplayer games on Xbox,. . . ”). The sec-
ond pattern, depending on the sensitivity setting
(see Section 3.2), might infer the PLATFORMS slot
as a paraphrased mention at step 5 and/or 8.

However, the PLATFORMS slot’s value is also
paid attention to when the decoder is about to gen-
erate the EOS token and, importantly, without any

418

high attention weights associated with other slots
at this step. This suggests that the model is aware
that it omitted that slot. However, at that point, the
decoder is more confident ending the sentence than
realizing the missed slot after generating a question
mark. This unrealized slot mention pattern is most
likely to occur in the higher cross-attention layers,
but not necessarily, so it is more effective to capture
it by averaging the attention weights over all layers
(at the last decoding step).

Note on Boolean Slots. With any of the three
patterns described above, Boolean slots, such as
HAS MULTIPLAYER in Figure 1c, typically have a
high attention weight associated with their name
rather than the value. This observation leads to a
different treatment of Boolean slots, as described
in Appendix B.1.

3.2 Slot Mention Tracking

We use the findings of the cross-attention analysis
for automatic slot mention tracking in the decoder.
During decoding, for each sequence, the attention
weights associated with the next token to be gen-
erated are aggregated as per Section 3.1. Using
configurable thresholds, the aggregated weights are
then binarized, i.e., set to 1 if above the threshold,
and 0 otherwise. This determines the sensitivity
of the pattern recognition. Optionally, all but the
maximum weight can be set to 0, in which case
only a single input token will by implied even if
the attention mass is spread evenly across multiple
tokens. Finally, the indices of binarized weights of
value 1, if any, are matched with their correspond-
ing slots depending on which slot-span in the input
sequence they fall into. For details on automatically
extracting slot spans, see Appendix B.1.

3.2.1 Mention-Tracking Components
The three mention-tracking components, each of
which operates on different attention layers and
uses a different weight aggregation and binariza-
tion strategy, are summarized in Table 3. These
components are executed in sequence and update
one common slot-tracking object.

The first component, which tracks verbatim men-
tions, operates on the first attention layer only,
with a high binarization threshold. Slot mentions
identified by this component are regarded as high-
confidence. The second component tracks para-
phrased mentions, which are identified as slot men-
tions with low confidence, due to the partial ambi-

guity in mention detection using the second pattern
(see Section 3.1.2). The third component only kicks
in when the EOS token is the most probable next
token. At that point, it identifies – with high sensi-
tivity – slots that were not realized in the sequence
(e.g., the PLATFORMS slot in Figure 1c), and re-
moves the corresponding mention record(s). Only
low-confidence mentions can be erased, while high-
confidence ones are final once they are detected.

3.3 Semantic Reranking

Combining the slot mention tracking with beam
search, for each input MR we obtain a pool of
candidate utterances along with the semantic er-
rors inferred at decoding time. We then rerank
the candidates and pick the one with the fewest
errors, resolving ties using the length-weighted log-
probability scores determined during beam search.

4 Evaluation

In order to measure the proposed decoding
method’s performance in semantic error reduction,
we first develop an automatic way of identifying er-
roneous slot mentions in generated utterances. In a
human evaluation we establish that its performance
is nearly perfect for all three datasets used for test-
ing our models (see Section 4.1). We then use it
to calculate the slot error rate (SER) automatically
for all our model outputs across all datasets and
configurations tested, which would be infeasible to
have human annotators do.

Datasets. Besides ViGGO, which we use for fine-
tuning the decoding (slot-tracking) parameters of
the proposed SEA-GUIDE method, we evaluate
its effectiveness for semantic error reduction on
two unseen and out-of-domain datasets. While
E2E (Novikova et al., 2017) is also a simple MR-to-
text generation dataset (in the restaurant domain),
MultiWOZ 2.1 (Eric et al., 2020) is a dialogic cor-
pus covering several domains from which we ex-
tract system turns only, along with their MR anno-
tations, along the lines of Peng et al. (2020) and
Kale and Rastogi (2020). Table 1 gives an overview
of the datasets’ properties.

Setup. In our experiments, we fine-tune T5 and
BART models of varying sizes on the above
datasets’ training partitions, select the best model
checkpoints based on the BLEU score they achieve
on the respective validation set, and evaluate them
on the test sets while using different decoding meth-

419

Size Domains DAs Slots

ViGGO 6,900 1 9 14
E2E 51,426 1 1 8

MultiWOZ 70,530 7 13 27

Table 1: Dataset statistics, including the total number
of dialogue act (DA) and slot types. For MultiWOZ,
the numbers are calculated across system turns only.

SERSA SER CI (95%) Precision IAA

ViGGO 2.77% 2.19± 1.55% 97.37% 1.00
E2E 3.98% 3.91± 1.73% 100% 1.00

MultiWOZ 1.19% 1.35± 0.91% 94.89% 0.90

Table 2: Human evaluation of the slot aligner’s perfor-
mance on each dataset. The IAA column indicates the
Krippendorff’s alpha reliability coefficient.

ods for inference. For beam search decoding, in-
cluding when used as part of SEA-GUIDE, we use
beam size 10 and early stopping, unless stated oth-
erwise. All of our results are averaged over three
runs with random initialization. For further details
on training and inference parameters, we refer the
reader to Appendix A.3.

4.1 Automatic Slot Error Evaluation
We evaluate our trained models performance with
the standard NLG metrics BLEU (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007),
ROUGE-L (Lin, 2004), and CIDEr (Vedantam
et al., 2015), whose calculation is detailed in Ap-
pendix A.4. However, we also put substantial ef-
fort into developing a highly accurate heuristic slot
aligner to calculate the semantic accuracy of gen-
erated utterances. The slot aligner is rule-based
and took dozens of man-hours to develop, but it is
robust and extensible to new domains, so it works
on all three test datasets. Using the slot aligner,
we count missed, incorrect, and repeated slot men-
tions, and determine the slot error rate (SER) as the
percentage of these errors out of all slots.

To verify our slot aligner’s performance, we take
the generated utterances of one model per dataset
for which it calculated a relatively high SER (indi-
cated in the SERSA column in Table 2). We then
have one of the authors and an additional expert
annotator manually label all of the errors as true
or false positives. This corresponds to 38, 173 and
176 errors for ViGGO, E2E and MultiWOZ, respec-
tively. From that we calculate the precision for each
dataset, which turns out to be above 94% for each
of the datasets. The almost perfect inter-annotator
agreement (IAA), besides validating the precision,
also suggests that the SER is an objective metric,

Verbatim Paraphrased Unrealized

Layer agg. 1st layer
only

avg. over bottom
half of layers avg.

Head agg. max. max. max.

Bin.
threshold 0.9 0.4 (T5-small)

0.3 (BART-base) 0.1

Bin. max. yes no no

Table 3: The final configuration of parameters used in
each of the 3 mention-tracking components. The “Bin.
max.” row indicates whether only the maximum weight
is kept during binarization, or all above the threshold.

and therefore well-suited for automation.
Furthermore, we take samples of 72 (≈ 20%),

63 (≈ 10%) and 290 (≈ 4%) of the generated
utterances on ViGGO, E2E and MultiWOZ, respec-
tively, annotate them for all types of errors, and
calculate the actual SER confidence intervals (mid-
dle column). Their good alignment with the slot
aligner SER scores, together with the high error
classification precision, leads us to the conclusion
that the slot aligner performs similarly to humans in
identifying semantic errors on the above datasets.

Besides SER evaluation, the slot aligner can also
be used for beam reranking. Due to the handcrafted
and domain-specific nature of the slot aligner, beam
search with this reranking has a distinct advantage
over SEA-GUIDE, which can be used for any do-
main out of the box. We therefore consider the
results when using the slot-aligner reranking to be
an upper bound for SEA-GUIDE in terms of SER.

4.2 SEA-GUIDE Parameter Tuning

Each of the three mention-tracking components
described in Section 3.2.1 has four configurable pa-
rameters, which we tuned by testing T5-small and
BART-base, fine-tuned on the ViGGO dataset and
equipped with SEA-GUIDE for inference. The pa-
rameter optimization was based on the insights ob-
tained in Section 3.1 and a subsequent grid search,
with results in Table 3.

For attention weight aggregation, we experi-
mented with summing, averaging, maximizing, and
normalizing. We determined averaging over layers
and maximizing over heads to be the best combina-
tion for all three components. As for the binariza-
tion thresholds, Figure 3 shows the most relevant
slice of the grid search space for each component,
leading to the final threshold values.

To show the effect of each slot-tracking compo-
nent, we perform an ablation study with individual

420

(a) Threshold optimization for the 1st component (verbatim
mentions), with the other components enabled or disabled.
When enabled, the 2nd component’s threshold was fixed at 0.3,
and that of the 3rd at 0.1. Note that the threshold of 1.0 is
equivalent to the 1st component being disabled, as attention
weights are in the [0.0, 1.0] range.

(b) Threshold optimization for the 2nd component (paraphrased
mentions), with the 1st component’s threshold of 0.2, 0.5 and
0.8, and that of the 3rd component fixed at 0.1.

(c) Threshold optimization for the 3rd component (unrealized
mentions), with the 2nd component’s threshold of 0.2, 0.3 and
0.4, and that of the 1st component fixed at 0.5.

Figure 3: Effects of different parameter configura-
tions of the 3 mention-tracking components on SER
and BLEU of utterances generated by BART-base fine-
tuned on ViGGO.

Figure 4: The effect of different beam size on the
SER using different reranking methods on the ViGGO
dataset. With greedy search decoding, the SER is
1.65% and 2.70% for T5 and BART, respectively.

components disabled.2 As the plot in Figure 3a
demonstrates, the 1st component by itself reduces
the SER the most, but at the expense of the BLEU
score, which decreases as the SER does – to the
point where BLEU drops below 0.54 when the
SER is at its lowest (0.91%), that is with a thresh-
old of 0.9. For reference, the SER and the BLEU
score achieved with beam search only are 2.04%
and 0.543, respectively. Adding the 2nd component
brings the BLEU score up to above 0.545, never-
theless the SER jumps to 1.39%. Finally, enabling
the 3rd component too has a negligible negative
effect on BLEU, but reduces the SER to 1.09%.

Figure 3b shows that the 2nd component gives
optimal performance when its threshold is set to
around 0.3. This setting maximizes BLEU, while
keeping SER low. Beyond 0.3 the BLEU score
starts dropping fast, and with a threshold of greater
than 0.5, the 2nd component has barely any effect
anymore. Similarly, Figure 3c shows the thresh-
old value of 0.1 to be optimal in the 3rd compo-
nent, when optimizing for both metrics. Thresh-
olds higher than 0.3 cut off almost all aggregated
weights in this component, virtually disabling it.

4.3 Effects of Beam Size on SEA-GUIDE

Since SEA-GUIDE uses beam search to generate
the pool of candidates that it later reranks, we ana-
lyzed the effect of increasing the beam size on the
SER of the final utterances. As Figure 4 shows for
the ViGGO dataset, SEA-GUIDE certainly bene-
fits from increasing the beam size from 5 to 10, but
the benefit shrinks substantially (or disappears en-
tirely, in case of T5-small) when further increased
to 20. An analysis for the E2E dataset, with similar
results, is presented in Appendix B.3.

2The 3rd component has no effect without the 2nd, so we do
not consider the combination where only the 2nd is disabled.

421

5 Results

To maximize the performance of the models us-
ing SEA-GUIDE, the binarization thresholds (and
possibly other parameters of the mention-tracking
components) can be optimized for each model and
dataset on the validation set. In our evaluation, how-
ever, we focused on demonstrating the effective-
ness of this decoding method out of the box. That
being said, even common decoding methods, such
as simple beam search or nucleus sampling (Holtz-
man et al., 2019), usually benefit from parameter
optimization (e.g., beam size, or the p-value) when-
ever used with a different model or dataset.

5.1 SEA-GUIDE Performance

While developing the SEA-GUIDE method we an-
alyzed the behavior of cross-attention on both the
T5-small and the BART-base model; interestingly,
the decoding performs best for both with nearly the
same configuration. The only difference is the 2nd

component’s binarization threshold (see Table 3),
accounting for the fact that BART-base has 50%
more attention heads than T5-small, which causes
the attention weights to be more spread out.

The upper half of Table 4 compares the two mod-
els’ performance with SEA-GUIDE vs. other de-
coding methods, as well as against three state-of-
the-art baselines. As the results show, both models,
when using SEA-GUIDE, significantly reduce the
number of semantic errors in the generated out-
puts compared to using greedy search (≈ 3.4 and
2.5 times in case of T5 and BART, respectively)
or simple beam search (≈ 1.9 times both). As ex-
pected, the slot-aligner (SA) reranking achieves
even better results thanks to the handcrafted rules
it relies on. In addition, the overall high automatic
metric scores suggest that the fluency of utterances
generated using SEA-GUIDE does not suffer.

Finally, compared to the baseline models, T5-
small performs on par with the state-of-the-art
DataTuner in terms of automatic metrics, yet main-
tains a 3.4-times lower SER. This corresponds ap-
proximately to K&M baseline’s SER, whose auto-
matic metrics, however, are significantly worse.
BART-base outperforms T5-small according to
most metrics, but its SER is more than double.

5.2 Cross-Model Robustness

In addition to T5-small and BART-base, we fine-
tune a larger variant of each of the models, namely,
T5-base and BART-large (see Appendix A.3 for

Model BLEU MET. ROUGE CIDEr SER ↓

S2S 0.519 0.388 0.631 2.531 2.55%
DT 0.536 0.394 0.640 2.700 1.68%

K&M 0.485 0.380 0.592 2.454 0.46%

T
5-

sm
al

l GS 0.519 0.387 0.631 2.647 1.65%
BS 0.540 0.392 0.636 2.685 0.95%
SA 0.541 0.393 0.637 2.695 0.24%

SG 0.541 0.393 0.637 2.695 0.49%

B
A

R
T-

ba
se GS 0.524 0.386 0.635 2.629 2.70%

BS 0.544 0.393 0.639 2.679 2.02%
SA 0.547 0.394 0.639 2.704 0.39%

SG 0.545 0.393 0.639 2.698 1.07%

T
5-

ba
se

GS 0.527 0.394 0.639 2.682 0.61%
BS 0.534 0.394 0.636 2.664 0.66%
SA 0.536 0.394 0.637 2.672 0.19%

SG 0.536 0.394 0.637 2.670 0.46%

B
A

R
T-

la
rg

e GS 0.508 0.378 0.616 2.452 5.50%
BS 0.535 0.391 0.628 2.612 1.78%
SA 0.538 0.394 0.631 2.659 0.27%

SG 0.533 0.391 0.627 2.613 1.41%

Table 4: Models tested on the ViGGO dataset using
different decoding methods: greedy search (GS), beam
search with no reranking (BS), beam search with slot-
aligner reranking (SA), and SEA-GUIDE (SG). Base-
lines compared against are Slug2Slug (Juraska et al.,
2019) (S2S), DataTuner (Harkous et al., 2020) (DT),
and Kedzie and McKeown (2020) (K&M). The best
results are highlighted in bold for each model. SER
scores of baselines reported by the authors themselves,
rather than calculated using our slot aligner, are high-
lighted in italics, and they do not correspond exactly to
our SER results.

model specifications), on the ViGGO dataset,
and evaluate their inference performance when
equipped with SEA-GUIDE. We do not perform
any further tuning of the decoding parameters for
these two models, only slightly lower the binariza-
tion thresholds (as we did for BART-base) to ac-
count for the models having more attention heads
and layers. The thresholds we use for the 2nd and
3rd components are 〈0.3, 0.1〉 and 〈0.2, 0.05〉 for
T5-base and BART-large, respectively.

The results in the lower half of Table 4 show
that these two larger models, fine-tuned on ViGGO,
benefit from SEA-GUIDE beyond just the effect
of beam search. T5-base performs significantly
better across the board than its smaller T5 variant,
so there is less room for improvement to begin
with. In fact, the SER using greedy search is so low
(0.61%, in contrast to T5-small’s 1.65%) that beam
search causes it to increase. Nevertheless, SEA-
GUIDE improves on both, while slightly boosting
the other automatic metrics as well.

422

Model BLEU MET. ROUGE CIDEr SER ↓

S2S 0.662 0.445 0.677 2.262 0.91%
SR

1 0.686 0.453 0.708 2.370 N/A
K&M 0.663 0.453 0.693 2.308 0.00%

T
5-

sm
al

l GS 0.670 0.454 0.692 2.244 1.60%
BS 0.667 0.453 0.694 2.361 2.85%
SA 0.675 0.453 0.690 2.341 0.02%

SG 0.675 0.453 0.690 2.340 0.04%

B
A

R
T-

ba
se GS 0.667 0.454 0.694 2.276 1.97%

BS 0.670 0.454 0.701 2.372 3.39%
SA 0.680 0.453 0.695 2.350 0.02%

SG 0.680 0.453 0.695 2.347 0.08%

T
5-

ba
se

GS 0.668 0.459 0.692 2.282 1.85%
BS 0.667 0.453 0.697 2.387 3.94%
SA 0.682 0.454 0.691 2.375 0.03%

SG 0.682 0.454 0.691 2.374 0.05%

Table 5: Models tested on the E2E dataset, compared
against the following baselines: Slug2Slug (Juraska
et al., 2018), (S2S) SR

1 (Shen et al., 2019), and Kedzie
and McKeown (2020) (K&M).

Model BLEU BLEUR MET. SER ↓ SERE ↓

SCG N/A 0.308 N/A 0.53% N/A
K&R N/A 0.351 N/A N/A 1.27%

T
5-

sm
al

l GS 0.367 0.351 0.325 1.15% 1.36%
BS 0.359 0.344 0.323 1.06% 1.19%
SA 0.360 0.344 0.323 0.41% 0.63%

SG 0.360 0.344 0.323 0.60% 0.85%

B
A

R
T-

ba
se GS 0.372 0.356 0.326 1.18% 1.17%

BS 0.363 0.346 0.323 1.12% 1.02%
SA 0.364 0.347 0.324 0.40% 0.60%

SG 0.363 0.347 0.323 0.63% 0.72%

Table 6: Models tested on MultiWOZ, compared
against the following baselines: SC-GPT (Peng et al.,
2020) (SCG) and Kale and Rastogi (2020) (K&R).

The almost twice-as-large BART-large model
performs rather poorly in our experiments, in fact,
significantly underperforming its smaller variant.3

We therefore refrain from drawing any conclusions
for this model, although SEA-GUIDE offers a defi-
nite improvement in SER over simple beam search.

5.3 Domain Transferability

We achieve similar results when evaluating across
domains. Table 5 shows that using SEA-GUIDE

with all three models fine-tuned on E2E reduces
the SER down to almost zero, with performance
for the other metrics comparable to the state-of-

3We observed that it frequently misrepresents names, such
as “Transportal Tycoon” instead of “Transport Tycoon”, which
we think may be the consequence of the extremely small size
of the ViGGO training set relative to the model’s size.

the-art baseline.4 In fact, SEA-GUIDE is nearly
as effective at reducing errors in this dataset as the
heuristic slot aligner (SA). Table 6 compares our
models against two recent baselines on the Mul-
tiWOZ dataset, where the effectiveness of SEA-
GUIDE on SER reduction is comparable to that on
the ViGGO dataset. All in all, on both the E2E and
the MultiWOZ dataset, our models equipped with
SEA-GUIDE for inference perform similarly to the
best baselines for both SER and the other metrics at
the same time, whereas the baselines individually
perform well according to one at the expense of the
other.

5.4 Slot Error Detection Examples

Table 7 shows several utterances generated for cor-
responding input MRs in the video game domain,
along with the errors SEA-GUIDE detected, if any.
In the first example, all slots are correctly men-
tioned, and SEA-GUIDE agrees. This utterance
was ultimately selected during reranking over the
beam search’s choice, “The Room is an excellent
first person point-and-click puzzle game.”, which
has one of the genres omitted.

The second example again showcases a suc-
cessful identification of all slot mentions by SEA-
GUIDE, this time in an utterance where our heuris-
tic slot aligner incorrectly found an error in the
HAS LINUX RELEASE slot mention (presumably
confused by the negation shortly before the key-
word “Linux”).

The third example shows that SEA-GUIDE is
not confused by the difference between “excellent”
(input slot value) and “amazing” (the correspond-
ing slot realization), and it correctly identifies that
the PLAYER PERSPECTIVE slot is not mentioned.

In the fourth example, SEA-GUIDE fails to
recognize the incorrect mention of the HAS LIN-
UX RELEASE slot. This is the most common mis-
take our decoding method makes.

The final example does not contain any errors,
yet the heuristic slot aligner was confused by the
negation formulation (as “I wish it was”) and iden-
tified the AVAILABLE ON STEAM slot as incorrect,
while SEA-GUIDE did not. This demonstrates the
robustness of SEA-GUIDE beyond exact matching.
Yet despite the individual slots being mentioned
semantically correctly, the generated utterance as a
whole does not sound quite right. A better utterance

4We were unable to successfully train BART-large on E2E
due to the memory limitations of our computational resources.

423

give opinion(NAME[The Room], RATING[excellent], GEN-
RES[indie, point-and-click, puzzle], PLAYER PERSPEC-
TIVE[first person])
The Room is an excellent indie point-and-click puzzle
game. The first person perspective makes it easy to play.
Errors: N/A
verify attribute(name[Small World 2], RATING[poor],
HAS LINUX RELEASE[yes])
You said earlier that you disliked Small World 2. Are you
generally not fond of Linux games?
Errors: N/A
request explanation(RATING [excellent], GENRES [adven-
ture, hack-and-slash, indie], PLAYER PERSPECTIVE [third
person])
What is it about indie hack-and-slash adventure games
that you find so amazing?
Errors: PLAYER PERSPECTIVE

inform(NAME[RollerCoaster Tycoon], RATING[good],
GENRES[simulation, strategy], PLATFORMS[Xbox, PC],
AVAILABLE ON STEAM[no], HAS LINUX RELEASE[yes],
HAS MAC RELEASE[no])
RollerCoaster Tycoon is a good simulation strategy game
for Xbox and PC. It is not available on Steam, Linux, or
Mac.
Errors: N/A (incorrect)
give opinion(NAME [Mirror’s Edge Catalyst], RATING
[poor], AVAILABLE ON STEAM [no])
Mirror’s Edge Catalyst is a pretty bad game, I really wish
it was available on Steam.
Errors: N/A

Table 7: Examples of slot-mention tracking results us-
ing SEA-GUIDE. Each gray row is the input MR for
the corresponding utterance in the subsequent row.

would be something along the lines of “Mirror’s
Edge Catalyst is a disappointment, I really wish
they released it on Steam as well.”.

All in all, SEA-GUIDE chooses semantically
correct utterances that are fluent and adequate, ex-
cept for the rare case like in the last example.

6 Discussion

In the previous section, we showed that SEA-
GUIDE is highly effective at reducing semantic
errors across different models and domains, and
that without compromising on the generated utter-
ances’ fluency. On datasets other than E2E, it does
not quite match the performance of beam search
combined with our slot aligner-based reranking,
but then again, the slot aligner is a hand-crafted
tool with complex rules, requiring a good deal
of domain knowledge, and suffering thus signif-
icantly in scalability. While these two decoding
methods have a lot in common – both being based
on beam search and subsequent candidate rerank-
ing – their difference lies in the identification of slot
mentions; SEA-GUIDE identifies them automat-
ically during the decoding, utilizing the model’s

cross-attention weights at each step, as opposed
to relying on string-matching rules post decoding,
which need to be extended for any new domains.

Despite working conveniently out of the box,
SEA-GUIDE does not come with a computational
overhead caveat. Performing inference on a GPU,
SEA-GUIDE is a mere 11–18% slower than beam
search with slot aligner-based reranking, while we
observed no performance difference on a CPU (see
Appendix B.4 for a detailed analysis).

6.1 Limitations of SEA-GUIDE

SEA-GUIDE’s ability to recognize slot errors is
limited to missing and incorrect slot mentions,
which are the most common mistakes we observed
models to make on the data-to-text generation task.
Duplicate slot mentions are hard to identify reliably
because the decoder inherently pays attention to
certain input tokens at multiple non-consecutive
steps (such as in the example in Figure 1b). And ar-
bitrary hallucinations are entirely beyond the scope
of this method, as there is no reason to expect
cross-attention to be involved in producing input-
unrelated content, at least not in a foreseeable way.

As we see in example #4 in Table 7, Boolean
slots occasionally give SEA-GUIDE a hard time,
as the decoder appears not to be paying a great deal
of attention to Boolean slots’ values throughout
the entire decoding in many cases. We plan to in-
vestigate if the performance can be improved for
Boolean slots, perhaps by modifying the input for-
mat or finding a more subtle slot mention pattern.

7 Conclusion

We presented a novel decoding method, SEA-
GUIDE, that makes a better use of the cross-
attention component of the already complex and
enormous pretrained generative LMs to achieve sig-
nificantly higher semantic accuracy for data-to-text
NLG, while preserving the otherwise high quality
of the output text. It is an automatic method, ex-
ploiting information already present in the model,
but in an interpretable way. SEA-GUIDE requires
no training, annotation, data augmentation, or
model modifications, and can thus be effortlessly
used with different models and domains.

Acknowledgements

We would like to thank the anonymous reviewers
for their valuable feedback. This research was sup-
ported by NSF AI Institute Grant No. 1559735.

424

References
Shubham Agarwal, Marc Dymetman, and Eric

Gaussier. 2018. Char2char generation with rerank-
ing for the e2e nlg challenge. In Proceedings of the
11th International Conference on Natural Language
Generation, pages 451–456.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR.

Ashutosh Baheti, Alan Ritter, Jiwei Li, and William B
Dolan. 2018. Generating more interesting responses
in neural conversation models with distributional
constraints. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3970–3980.

Andrew Chisholm, Will Radford, and Ben Hachey.
2017. Learning to generate one-sentence biogra-
phies from wikidata. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 633–642.

Kyunghyun Cho, Bart van Merriënboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP.

Ondřej Dušek and Filip Jurčı́ček. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG challenge. In
Proceedings of the 11th International Conference
on Natural Language Generation, pages 322–328,
Tilburg University, The Netherlands. Association for
Computational Linguistics.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar,
Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020.
Multiwoz 2.1: A consolidated multi-domain dia-
logue dataset with state corrections and state track-
ing baselines. In Proceedings of The 12th Language
Resources and Evaluation Conference, pages 422–
428.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural data-
to-text generation with semantic fidelity. In Proceed-
ings of the 28th International Conference on Compu-
tational Linguistics, pages 2410–2424.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018.
Learning to write with cooperative discriminators.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1638–1649.

Juraj Juraska, Kevin Bowden, and Marilyn Walker.
2019. Viggo: A video game corpus for data-to-text
generation in open-domain conversation. In Pro-
ceedings of the 12th International Conference on
Natural Language Generation, pages 164–172.

Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden,
and Marilyn Walker. 2018. A deep ensemble model
with slot alignment for sequence-to-sequence natu-
ral language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 152–162.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102.

Chris Kedzie and Kathleen McKeown. 2019. A good
sample is hard to find: Noise injection sampling and
self-training for neural language generation models.
In Proceedings of the 12th International Conference
on Natural Language Generation, pages 584–593,
Tokyo, Japan. Association for Computational Lin-
guistics.

Chris Kedzie and Kathleen McKeown. 2020. Con-
trollable meaning representation to text generation:
Linearization and data augmentation strategies. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5160–5185.

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 228–231. Association for Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of

425

the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016. Coverage embedding models for
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 955–960.

Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and
Chin-Yew Lin. 2019. A simple recipe towards re-
ducing hallucination in neural surface realisation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2673–
2679.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages
201–206.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for
task-oriented dialog. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, pages 172–182.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Sheng Shen, Daniel Fried, Jacob Andreas, and Dan
Klein. 2019. Pragmatically informative text gener-
ation. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4060–4067.

Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu, and
Dietrich Klakow. 2020. Neural data-to-text genera-
tion via jointly learning the segmentation and corre-
spondence. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7155–7165.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 76–85.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–6010. Curran Associates Inc.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola
Mrkšić, Pei hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic language generation in
dialogue using recurrent neural networks with con-
volutional sentence reranking. In SIGDIAL Confer-
ence.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015b.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
EMNLP.

426

Training Validation Test

ViGGO 5,103 714 1,083
E2E 42,063 4,672 4,693

MultiWOZ 55,951 7,286 7,293

Table 8: Overview of the dataset partitions.

A Appendix

A.1 Additional Dataset Details

Table 8 shows the number of examples in the train-
ing, validation and test partitions of all the datasets
used in the evaluation of the SEA-GUIDE method.

A.2 Data Preprocessing

When preprocessing input meaning representations
(MRs) before training a model or running infer-
ence, we first parse the dialogue act (DA) types,
if present, and all slots and their values from the
dataset-specific format into an intermediate list of
slot-and-value pairs, keeping the original order. Al-
though typically indicated in the MR differently
from slots, we treat the DA type as any other slot
(with the value being the DA type itself, and assign-
ing it the name “intent”).

Next, we rename any slots that do not have
a natural-language name (e.g., “priceRange” to
“price range”, or “has mac release” to “has Mac
release”). Slot values are left untouched. We do
this to take advantage of pretrained language mod-
els’ ability to model the context when the input
contains familiar words, as opposed to feeding it
code names with underscores and no spaces.

Finally, we convert the updated intermediate list
of slots and their values to a string. The ‘|’ symbol
is used for separating slot-and-value pairs from
each other, while the ‘=’ is used within each pair to
separate the value from the slot name. The result
for an MR from ViGGO can look as follows:
intent = request explanation
| rating = poor | genres =
vehicular combat | player
perspective = third person

A.3 Model and Training Parameters

The pretrained models that we fine-tuned for our
experiments are the PyTorch implementations in
the Hugging Face’s Transformers5 package. The
models’ sizes are indicated in Table 9.

We trained all models using a single Nvidia RTX
2070 GPU with 8 GB of memory and CUDA ver-

5https://huggingface.co/transformers/

Layers Heads Hidden
state size

Total pa-
rameters

T5-small 6+6 8 512 ≈ 60M
BART-base 6+6 12 768 ≈ 139M

T5-base 12+12 12 768 ≈ 220M
BART-large 12+12 16 1024 ≈ 406M

Table 9: Overview of the model specifications.

Batch size Learning
rate Epochs

T5-small 32/64/64 2× 10−4 20/20/30
BART-base 32/32/32 1× 10−5 20/20/25

T5-base 16/16/ – 3× 10−5 20/20/ –
BART-large 16/ – / – 4× 10−6 20/ – / –

Table 10: Overview of the training parameters used in
our experiments. Batch size and the number of epochs
are indicated per dataset (ViGGO/E2E/MultiWOZ).

sion 10.2. The training parameters too are sum-
marized in Table 9. For all models, we used the
AdamW optimizer with a linear decay after 100
warm-up steps. The maximum sequence length
for both training and inference was set to 128 for
ViGGO and E2E, and 160 for MultiWOZ.

A.4 Evaluation Metric Calculation

The four non-SER automatic metrics that we report
in our results (i.e., BLEU, METEOR, ROUGE-L,
and CIDEr) are calculated using the E2E evalu-
ation script6 developed for the E2E NLG Chal-
lenge (Dušek et al., 2018). We also verified that
the single-reference BLEU score calculation in the
E2E script corresponds to that in the SacreBLEU7

Python package. As a result, BLEU scores calcu-
lated either way are directly comparable.

To ensure a fair comparison with the MultiWOZ
baselines (Peng et al., 2020; Kale and Rastogi,
2020), we additionally report BLEU scores calcu-
lated using the RNNLG evaluation script8, which
their respective authors used in their own evalu-
ation. We denote it BLEUR in our result tables.
Moreover, Kale and Rastogi (2020) calculated SER
on utterance level, rather than slot level, and that
using exact slot value matching in the utterance.
We thus wrote a script to also perform this type
of naive SER evaluation, in addition to our slot
aligner-based SER evaluation. We report its results
as SERE.

6https://github.com/tuetschek/e2e-metrics
7https://pypi.org/project/sacrebleu/
8https://github.com/shawnwun/RNNLG/

427

B Additional SEA-GUIDE Evaluation

B.1 Slot Mention Tracking Details
In order to be able to take advantage of the attention
weight distribution patterns, the decoder needs to
be aware of which input token span corresponds to
which slot. To this end, we parse the input MRs
on-the-fly – which is trivial given the structured
nature of MRs – as each batch is being prepared for
inference, and create a list of slot spans for each
MR in the batch.9 In fact, we indicate the spans
for slot names and slot values separately, and for
list-values down to individual list elements, for a
higher specificity. Since Boolean slot mentions
are tracked by their name rather than value, we
also indicate for each slot whether it is Boolean or
not. This information can be provided explicitly
to the data loader, otherwise it is automatically
inferred from the dataset’s ontology based on all
the possible values for each slot.

Note that, although our data preprocessing con-
verts DA type indications in the MRs to the same
format as slots (see any of the left columns in Fig-
ure 1), we exclude them from the slot-span lists,
as they are not actual content slots to be tracked.
Separator tokens (such as ‘|’ or ‘=’) present in the
preprocessed MR are not included in the spans,
and are, as a result, ignored during the slot mention
tracking.

B.2 Parameter Tuning for T5
When optimizing the mention-tracking compo-
nents’ parameters for T5-small, we observe similar
trends as with BART-base (see Figure 5). One dif-
ference is that enabling the 2nd component not only
significantly increases the BLEU score, but also
lowers the SER, while the 3rd component appears
to only have a negligible effect (see Figure 5a).

B.3 Effects of Beam Size on E2E
On the E2E dataset, decoding using SEA-GUIDE

is even more effective in reducing SER than on
ViGGO. Across all beam sizes, its performance is
comparable to beam search with slot aligner rerank-
ing, and there is also only a limited gain from in-
creasing the beam size to 20 (see Figure 6).

It is worth noting that, using beam search with
no reranking, the SER dramatically increases with
the increasing beam size. This is likely caused
by the relatively heavy semantic noise in the E2E

9This is done on token level, and the result varies thus from
model to model depending on its tokenizer.

(a) Threshold optimization for the 1st component (verbatim
mentions), with the other components enabled or disabled.
When enabled, the 2nd component’s threshold was fixed at 0.3,
and that of the 3rd at 0.1. Note that the threshold of 1.0 is
equivalent to the 1st component being disabled, as attention
weights are in the [0.0, 1.0] range.

(b) Threshold optimization for the 2nd component (paraphrased
mentions), with the 1st component’s threshold of 0.2, 0.5 and
0.8, and that of the 3rd component fixed at 0.1.

(c) Threshold optimization for the 3rd component (unrealized
mentions), with the 2nd component’s threshold of 0.2, 0.3 and
0.4, and that of the 1st component fixed at 0.5.

Figure 5: Effects of different parameter configurations
of the 3 mention-tracking components on SER and
BLEU of utterances generated by T5-small fine-tuned
on ViGGO.

428

Figure 6: The effect of different beam size on the SER
using different reranking methods on the E2E dataset.
With greedy search decoding, the SER is 1.60% and
1.97% for T5 and BART, respectively.

training set, resulting in more slot errors in the
generated utterances the less greedy the decoding
is. Some form of semantic guidance is thus all the
more important for the model in this scenario.

B.4 Inference Performance

In order to assess the computational overhead the
SEA-GUIDE method introduces during inference,
we measure the inference runtime of the T5-small
model fine-tuned on ViGGO. For all beam search-
based methods (including SEA-GUIDE), the beam
size was set to 10, and early stopping was enabled.

The results in Figure 7a show a distinct but ex-
pected overhead across all batch sizes when run-
ning inference on a GPU. The overall increase in
runtime is 11–18% over beam search with slot
aligner-based reranking, which is the method com-
putationally most similar to SEA-GUIDE, as it too
involves reranking on top of beam search. The
slot aligner-based reranking itself adds a constant
amount of 16 seconds on top of simple beam search,
which corresponds to an 11-40% increase for the
range of batch sizes in the plot.

When performing the same inference on a CPU,
on the other hand, the overhead SEA-GUIDE intro-
duces to beam search is no greater than that of the
slot aligner-based reranking (see Figure 7b). This
suggests that further optimization of SEA-GUIDE

for GPU, especially by minimizing the communica-
tion between the GPU and the CPU during the de-
coding, could bring the overhead of SEA-GUIDE

inference on a GPU down to the same level as that
of the slot aligner-based reranking.

Considering the large improvement in seman-
tic accuracy the SEA-GUIDE method delivers in
the tested models, we deem the observed computa-
tional overhead reasonable and acceptable.

(a) Inference using a GPU (RTX 2070 with 8 GB of memory).

(b) Inference using a CPU (8-core Ryzen 7 2700X with 32 GB
of RAM).

Figure 7: Runtime of T5-small performing inference
on the ViGGO test set using different decoding meth-
ods and batch sizes. “No reranking” stands for simple
beam search, while “Slot aligner” denotes beam search
with slot aligner-based reranking. Model and data load-
ing is excluded from the runtimes.

C Slot Aligner Details

For the purposes of the slot aligner, we classified
slots into five general categories (Boolean, numeric,
scalar, categorical, and list), covering the most
common types of information MRs typically con-
vey in data-to-text NLG. Each of these categories
has its own method for extracting a slot mention
from an utterance, generalized enough to be appli-
cable across all slots in the category. This design
allows for a straightforward extension of the slot
aligner to a new domain, as it merely needs to be
indicated which of the five categories each of the
slots in the new domain belongs to. Optionally, it
can be provided a simple dictionary of common
alternatives for specific slot values, which tends to
increase the slot aligner’s performance.

Although a decreased matching accuracy – es-

429

pecially for rare slot realizations – is a trade-off
for the scalable design, the slot aligner’s typical
application are generated model outputs, which get
evaluated for semantic errors. There the slot aligner
is not likely to encounter rare slot realizations fre-
quently, if at all, due to the generalizing properties
of neural NLG models. The rapid adaptability of
the slot aligner to a new domain, on the other hand,
is a very valuable feature.

C.1 Boolean Slots
Boolean slots take on binary values, such as
“yes”/“no” or “true”/“false”. Their realization in
an utterance thus typically does not contain the
actual value of the slot, but instead a mention of
the slot name (e.g., “is a family-friendly restaurant”
for FAMILYFRIENDLY[yes], or “not supported on
Mac” for HAS MAC RELEASE[no]). Therefore, ex-
tracting a Boolean slot mention boils down to the
following two steps: (1) finding a word or a phrase
representing the slot, and (2) verifying whether the
representation is associated with a negation or not.

The first step is straightforward, and only re-
quires a list of possible realizations for each
Boolean slot. This list rarely contains more than
one element, which is the “stem” of the slot’s name
(e.g., “linux” for “HAS LINUX RELEASE”). It can
thus be populated trivially for most of the new
Boolean slots. And if a Boolean slot can have multi-
ple equivalent realizations (such as “child friendly”
or “where kids are welcome” for the slot FAMI-
LYFRIENDLY), they are typically not numerous and
can be listed manually. Having a list of stems (we
refer to all the equivalent realizations of a slot col-
lectively as “slot stems”), the utterance is scanned
for the presence of each of them in it. If one is
found, we go to the second step. A slot mention is
decided to be negative if a negation cue is found
to be modifying the slot stem in the utterance, and
without a contrastive cue in between. It is decided
to be positive if no negation cue is present within a
certain distance of the stem, or there is a contrastive
cue in between (see examples in Table 11).

C.2 Numeric Slots
Slots whose value is just a number (such as RE-
LEASE YEAR in ViGGO, or CHOICE in MultiWOZ)
are in general not handled in any special way, and
the value is simply matched directly in the utter-
ance. However, there are certain numeric slot
types that benefit from additional preprocessing:
(1) those with a unit, and (2) years. When a nu-

#1 There’s no Linux release or multiplayer, but there is
Mac support.

#2 Though it’s not available on Linux, it does have a
Mac release as well.

#3 It is available on PC and Mac but not Linux, and it
can be found on Steam.

Table 11: Examples of contrastive phrases involving
Boolean slots. Underlined are the stems of the Boolean
slots for which the polarity is questioned. Note that
in all 3 examples the mention is positive, despite the
presence of contrast and negation distractors.

CUSTOMER
RATING
(E2E)

RATING
(ViGGO) Alternative expressions

low poor bad, lacking, negative,. . .

average average decent, mediocre, okay,. . .

- good fun, positive, solid,. . .

high excellent amazing, fantastic, great,. . .

Table 12: An example of value mapping between two
similar scalar slots in the restaurant and video game
domains.

meric slot represents a year, the slot aligner gener-
ates the common abbreviated alternatives for the
year (e.g., “’97” for the value “1997”) that it tries
to match in case the original value is not found in
the utterance.

C.3 Scalar Slots

Similarly to Boolean slot aligning, scalar slot align-
ing consist of two steps. The first one is the same,
i.e., finding a word or a phrase representing the
slot (which we refer to as “stem” in this case too,
in order to maintain consistency). In the second
step, however, the slot aligner looks for the slot’s
value, or its equivalent, occurring within a reason-
able distance from the slot stem. The optional soft
alignment mode skips the second step as long as a
slot stem is matched in the first step.

We assume that scalar slots, even across differ-
ent domains, will often have values that can be
mapped to each other, as long as they are on the
same or a similar scale (see Table 12). For each
scalar slot, the slot aligner refers to a corresponding
dictionary for possible alternative expressions of its
value. With the above assumption, it is sufficient
to have one dictionary per scale, or type of scale,
which can be reused for similar scalar slots in dif-
ferent domains. The dictionaries can be quickly
populated with synonyms of the values of a given
scale (see the last column in the table), and thus

430

do not necessarily require manual additions every
time the system is used with a new domain. Some
alternative expressions might be suitable for scalar
slots in some domains better than others, but that
will not be an issue in most cases, since, being syn-
onymous, they are not likely to cause conflicts, and
the slot aligner will simply not encounter certain
alternative expressions in certain domains.

C.4 Categorical Slots
Categorical slots can take on virtually any value.
Nevertheless, for each such slot the values typically
come from a limited, although possibly large, set
of values. For instance, in the E2E dataset, the
FOOD slot has 7 possible values, such as “Italian”
and “Fast food”, but technically it could take on
hundreds of different values representing all of the
cuisines of the world. Some values can be single-
word, while others can have multiple words (e.g.,
“restaurant” and “coffee shop” as possible values
for the EATTYPE slot). Due to this huge variety
in possible values of categorical slots, the aligning
methods need to remain very general.

Besides exact matching of the value in the utter-
ance, the slot aligner can be instructed to perform
the matching in three additional modes, besides
exact, increasing its robustness while maintaining
scalability. The four modes of aligning the slot
with its mention work as follows:

• Exact - slot mention is identified only if it
matches (case-insensitive) the slot value ver-
batim;

• All words - slot mention is identified if each
of the value’s tokens is found in the utterance,
though they can be in an arbitrary order and
they can be separated by other words;

• Any word - slot mention is identified by
matching any of the value’s tokens in the ut-
terance;

• First word - slot mention is identified by
matching just the value’s first token in the
utterance.

Note that for single-word values all four modes
give the same result. The three non-exact modes
offer different approaches to soft alignment for
categorical slots. The choice may depend on the
particular slot, and the mode can thus be specified
for each slot separately, while by default the slot
aligner operates in the exact-matching mode.

MR

inform(NAME [BioShock], DEVELOPER [2K Boston],
GENRES [action-adventure, role-playing, shooter],
HAS MULTIPLAYER [no], PLATFORMS [PlayStation,
Xbox, PC], HAS LINUX RELEASE [no], HAS MAC RE-
LEASE [yes])

Reference utterance

Developed by 2K Boston, BioShock is a single-player
shooter game that will have you role-playing through a
well constructed action-adventure narrative. It is avail-
able for PlayStation, Xbox, Mac and PC, but is not
available for Linux.

Slot alignment

(13: DEVELOPER) (25: NAME) (39: HAS MULTIPLAYER)
(53: GENRES) (174: PLATFORMS) (191: HAS MAC RE-
LEASE) (228: HAS LINUX RELEASE)

Table 13: An example from ViGGO that involves list
slots. Notice how the individual value item mentions
can be scattered across an entire sentence in a natural
way. The bottom section indicates the slot mention po-
sitions determined by the slot aligner, given as the num-
ber of characters from the beginning of the utterance.

Similarly to Boolean and scalar slots, the slot
aligner can search for alternative expressions of a
value, if provided in the corresponding dictionary.
The alternative matching is, however, more flexible
here, as the alternatives in the dictionary can be
multi-part, in which case the slot aligner tries to
match all the parts (words/tokens/phrases) provided
in the form of a list.

C.5 List Slots
A list slot is similar to a categorical slot, the only
difference being that it can have multiple individual
items in its value. Two instances of a list slot,
namely GENRES and PLATFORMS, can be seen in
the example from the ViGGO dataset in Table 13.

The aligning procedure for list slots thus heavily
relies on that of categorical slots. In order to align
a list slot with the corresponding utterance, the slot
aligner first parses the individual items in the slot’s
value. It then iterates over all of them and performs
the categorical slot alignment, as described in the
previous section, with each individual item. Con-
sidering the items can be scattered over multiple
sentences, the slot aligner considers the position of
the leftmost mention of an item as the position of
the corresponding list slot.

431

Author Index

Agarwal, Shubham, 249
Alikhani, Malihe, 55
Artemova, Ekaterina, 201

Beck, Daniel, 1
Belz, Anya, 249, 286, 293
Bhattacharyya, Pushpak, 353
Bout, Andrey, 201
Boye, Johan, 387
Burnyshev, Pavel, 201
Buschmeier, Hendrik, 371

Callison-Burch, Chris, 184
Castro Ferreira, Thiago, 177, 286
Chang, Ernie, 325
Chang, Su, 167
Chartier, Nicole, 76
Chen, Guanyi, 154, 172, 331
Chen, Hong, 377
Chen, Yanran, 301
Chen, Yimeng, 167
Chen, Yulong, 308
Chen, Zhi, 331
Chernodub, Artem, 320
Ciora, Chloe, 55
Clinciu, Miruna, 140
Cohn, Trevor, 1
Constant, Noah, 35

Davis, Brian, 177, 286
De Kuthy, Kordula, 24
Demberg, Vera, 325
Drago, Nicholas, 364
Du, Wanyu, 226
Dušek, Ondřej, 140, 259

Eger, Steffen, 301
Ekbal, Asif, 353
Eric, Mihail, 76

Feng, Steven, 212
Firdaus, Mauajama, 353

Gangal, Varun, 212
Garain, Utpal, 404

Garneau, Nicolas, 266
Gkatzia, Dimitra, 46, 140
Gopalakrishnan, Karthik, 76

Haffari, Gholamreza, 114
Hagiwara, Masato, 320
Hakkani-Tur, Dilek, 76
Hamazono, Yumi, 103
Han, Jiuzhou, 1
Han, Ting, 371
Hanawa, Kazuaki, 320
Hedayatnia, Behnam, 76
Hovy, Eduard, 212
Huynh, Jessica, 212

Inglis, Stephanie, 140
Iren, Nur, 55
Ishigaki, Tatsuya, 103

Jain, Umang, 353
Järnfors, Jani, 172
Jhamtani, Harsh, 128
Ji, Yangfeng, 226
Jiaxin, GUO, 167
Juraska, Juraj, 416

Kale, Mihir, 35
Kalpakchi, Dmytro, 387
Kannan, Madeeswaran, 24
Kasner, Zdeněk, 259
Keswani, Vishal, 128
Khandelwal, Anant, 64
Kobayashi, Ichiro, 103

Lamontagne, Luc, 266
Leppänen, Leo, 140
Li, Ruizhe, 331
Li, Xintong, 12, 87
Lin, Chenghua, 331
Liu, Yang, 76, 308
Lyu, Qing, 184

Mahamood, Saad, 140, 282
Mahapatra, Joy, 404
Malykh, Valentin, 201

433

Manning, Emma, 140
Marin, Alex, 325
Maruf, Sameen, 114
Maskharashvili, Aleksandre, 12, 87
Meurers, Detmar, 24
Mille, Simon, 259, 286
Mita, Masato, 320
Miyao, Yusuke, 103

Nagata, Ryo, 320
Nahorna, Olena, 320
Nakayama, Hideki, 377
Narisetty, Chaitanya Prasad, 212
Nishiguchi, Keisuke, 48
Niwa, Ayana, 48
Noji, Hiroshi, 103
Nomoto, Tadashi, 276

Okazaki, Naoaki, 48

Pagano, Adriana, 177
Papotti, Paolo, 271
Piontkovskaya, Irina, 201
Popović, Maja, 293

Rajan, Pankaj, 76
Reiter, Ehud, 114, 240, 249
Rezgui, Rayhane, 271
Richter, Christian, 301

Saeed, Mohammed, 271
Saggion, Horacio, 341
Same, Fahime, 154
Santhi Ponnusamy, Haemanth, 24
Schoch, Stephanie, 140, 226
Schüz, Simeon, 371
Shakeri, Siamak, 35
SHEANG, Kim Cheng, 341
Shen, Xiaoyu, 325
Shimorina, Anastasia, 249
Shu, Raphael, 377
Singh, Mayank, 314
Srivastava, Vivek, 314
Stein, Lukas, 24
Stevens-Guille, Symon, 12, 87
Strathearn, Carl, 46
Sybesma, Rint, 172

Takamura, Hiroya, 103, 377
Tao, Shimin, 167
Thomson, Craig, 140, 240
Topic, Goran, 103

van Deemter, Kees, 154, 172

van Miltenburg, Emiel, 140
Vaz, Helena, 177

Walker, Marilyn, 416
Wang, Minghan, 167
Wang, Yuxia, 167
Wei, Daimeng, 167
Wen, Luou, 140
White, Michael, 12, 87

Xue, Linting, 35

Yang, Hao, 167
Yermakov, Ruslan, 364

Zarrieß, Sina, 371
Zeng, Chengkun, 331
Zhang, Li, 184
Zhang, Min, 167
Zhang, Yue, 308
Ziletti, Angelo, 364
Zukerman, Ingrid, 114

	Program
	Generating Diverse Descriptions from Semantic Graphs
	Neural Methodius Revisited: Do Discourse Relations Help with Pre-Trained Models Too?
	Exploring Input Representation Granularity for Generating Questions Satisfying Question-Answer Congruence
	Towards Zero-Shot Multilingual Synthetic Question and Answer Generation for Cross-Lingual Reading Comprehension
	Chefbot: A Novel Framework for the Generation of Commonsense-enhanced Responses for Task-based Dialogue Systems
	Predicting Antonyms in Context using BERT
	Examining Covert Gender Bias: A Case Study in Turkish and English Machine Translation Models
	WeaSuL: Weakly Supervised Dialogue Policy Learning: Reward Estimation for Multi-turn Dialogue
	Multi-Sentence Knowledge Selection in Open-Domain Dialogue
	Self-Training for Compositional Neural NLG in Task-Oriented Dialogue
	Generating Racing Game Commentary from Vision, Language, and Structured Data
	Explaining Decision-Tree Predictions by Addressing Potential Conflicts between Predictions and Plausible Expectations
	Formulating Neural Sentence Ordering as the Asymmetric Traveling Salesman Problem
	Underreporting of errors in NLG output, and what to do about it
	What can Neural Referential Form Selectors Learn?
	HI-CMLM: Improve CMLM with Hybrid Decoder Input
	Using BERT for choosing classifiers in Mandarin
	Enriching the E2E dataset
	Goal-Oriented Script Construction
	Single Example Can Improve Zero-Shot Data Generation
	SAPPHIRE: Approaches for Enhanced Concept-to-Text Generation
	Contextualizing Variation in Text Style Transfer Datasets
	Generation Challenges: Results of the Accuracy Evaluation Shared Task
	The ReproGen Shared Task on Reproducibility of Human Evaluations in NLG: Overview and Results
	Text-in-Context: Token-Level Error Detection for Table-to-Text Generation
	Shared Task in Evaluating Accuracy: Leveraging Pre-Annotations in the Validation Process
	Automatic Verification of Data Summaries
	Grounding NBA Matchup Summaries
	Reproducing a Comparison of Hedged and Non-hedged NLG Texts
	Another PASS: A Reproduction Study of the Human Evaluation of a Football Report Generation System
	A Reproduction Study of an Annotation-based Human Evaluation of MT Outputs
	TUDA-Reproducibility @ ReproGen: Replicability of Human Evaluation of Text-to-Text and Concept-to-Text Generation
	DialogSum Challenge: Summarizing Real-Life Scenario Dialogues
	Quality Evaluation of the Low-Resource Synthetically Generated Code-Mixed Hinglish Text
	Shared Task on Feedback Comment Generation for Language Learners
	The SelectGen Challenge: Finding the Best Training Samples for Few-Shot Neural Text Generation
	Affective Decoding for Empathetic Response Generation
	Controllable Sentence Simplification with a Unified Text-to-Text Transfer Transformer
	SEPRG: Sentiment aware Emotion controlled Personalized Response Generation
	Biomedical Data-to-Text Generation via Fine-Tuning Transformers
	Decoding, Fast and Slow: A Case Study on Balancing Trade-Offs in Incremental, Character-level Pragmatic Reasoning
	GraphPlan: Story Generation by Planning with Event Graph
	BERT-based distractor generation for Swedish reading comprehension questions using a small-scale dataset
	Exploring Structural Encoding for Data-to-Text Generation
	Attention Is Indeed All You Need: Semantically Attention-Guided Decoding for Data-to-Text NLG

