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Abstract

Linguistic Acceptability is the task of deter-
mining whether a sentence is grammatical or
ungrammatical. It has applications in sev-
eral use cases like Question-Answering, Nat-
ural Language Generation, Neural Machine
Translation, where grammatical correctness is
crucial. In this paper we aim to understand
the decision-making process of BERT (Devlin
et al., 2019) in distinguishing between Lin-
guistically Acceptable sentences (LA) and Lin-
guistically Unacceptable sentences (LUA). We
leverage Layer Integrated Gradients Attribu-
tion Scores (LIG) to explain the Linguistic Ac-
ceptability criteria that are learnt by BERT on
the Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2018) benchmark dataset. Our
experiments on 5 categories of sentences lead
to the following interesting findings: 1) LIG for
LA are significantly smaller in comparison to
LUA, 2) There are specific subtrees of the Con-
stituency Parse Tree (CPT) for LA and LUA
which contribute larger LIG, 3) Across the
different categories of sentences we observed
around 88% to 100% of the Correctly classi-
fied sentences had positive LIG, indicating a
strong positive relationship to the prediction
confidence of the model, and 4) Around 43% of
the Misclassified sentences had negative LIG,
which we believe can become correctly classi-
fied sentences if the LIG are parameterized in
the loss function of the model.

1 Introduction

Linguistic acceptability is an important criteria
in Natural Language Processing and is one of
the tasks in the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2018). With the evolution of language encoders
like BERT (which leverages the multi-head self-
attention mechanism (Vaswani et al., 2017) in its
architecture) that have been a breakthrough in lan-
guage understanding and achieved state-of-the-art

results, the field of probing these architectures for
understanding their behaviours has become impor-
tant.

While there have been several works on interpret-
ing and understanding the different layers of BERT
with respect to lexical, syntactic and semantic be-
haviours (Jawahar et al., 2019; Lin et al., 2019;
Clark et al., 2019; Vashishth et al., 2019; Rogers
et al., 2020), the focus on explaining the linguistic
acceptability (grammaticality) learnt by BERT has
been sparse. Some of the recent works have used
probing tasks to understand the model’s knowl-
edge on particular grammatical features (Shi et al.,
2016; Ettinger et al., 2016; Tenney et al., 2019),
relying on language model probabilities to judge
grammatical acceptability on sentences that dif-
fer minimally (Marvin and Linzen, 2018; Wilcox
et al., 2019), or probing the model’s by training
with boolean grammaticality judgement objectives
(Linzen et al., 2016; Warstadt et al., 2018; Kann
et al., 2019; Warstadt et al., 2019). These meth-
ods have made significant progress in uncovering
that BERT has indeed learnt various aspects of
grammatical knowledge, however their focus has
not been on explaining the black box details of
how BERT arrives at a grammaticality judgement.
Our paper attempts to address this by explaining
the model’s linguistic acceptability judgement with
LIG and CPT (a type of grammar tree) representa-
tions.

Attention mechanism based methods (Bahdanau
et al., 2014; Vaswani et al., 2017) provide inter-
pretable understanding of the model’s behaviour,
however the attention scores cannot be solely re-
lied upon since a feature could influence the output
in multiple ways (for e.g. through memory cells,
recurrent states etc. in LSTM networks). Feature
attribution methods aim to understand the relation-
ship between the model’s output and the input fea-
tures. They are helpful in interpreting the black-
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Sentence Category
rebecca saw the play . CIALA

the play saw . CIALUA

i surprised myself . RAALA

i surprised himself . RAALUA

the boy is here . SVALA

the boy are here . SVALUA

michael read the book . SVOLA

michael the book read . SVOLUA

what did rebecca read ? WHELA

what did rebecca read the book ? WHELUA

Table 1: Sample sentences across the 5 categories from
the CoLA Targeted Test Sets.

box details of neural networks and provide insights
that can be used to improve model performance.
While previous feature attribution methods such
as DeepLift (Shrikumar et al., 2016, 2017), Layer-
wise relevance propagation (Binder et al., 2016)
and LIME (Ribeiro et al., 2016) have provided in-
teresting frameworks, they break at least one of
the two axioms that are fundamental for attribution
methods, namely Sensitivity and Implementation
Invariance (Sundararajan et al., 2017).

In our paper we have chosen the Integrated Gra-
dients (IG) (Sundararajan et al., 2017) attribution
method as it satisfies both the aforementioned ax-
ioms. IG is a post-hoc interpretability technique
which aggregates the gradients of the input by in-
terpolating in small steps along the straight line
between a baseline (typically a vector with all ze-
ros) and the input. A large positive or negative IG
score indicates that the feature strongly increases
or decreases the network output respectively, while
a score close to zero indicates that the feature does
not influence the network output. This can also be
understood as follows: a positive score indicates
that the feature tends to agree with the model’s
prediction, while a negative score indicates that
the feature tends to disagree with the model’s pre-
diction. LIG are computed as the IG between the
model output and a particular layer’s input or out-
put. Our work attempts to answer the following
Research Questions:

1. Can LIG of a Constituency Parse Tree (CPT)
give insights on LA vs LUA?

2. Can LIG be reliably used to explain the Lin-
guistic Acceptability criteria learnt by BERT?

3. Is there a relationship between LIG and the

prediction confidence of the model?

2 Experiment Setup

CoLA dataset sentences have a boolean acceptabil-
ity judgement, namely LA and LUA. We have used
the fine-tuned BERT-Base-Uncased-CoLA model
(12 encoder layers with 12 attention heads) pro-
vided by TextAttack (Morris et al., 2020), the Cap-
tum PyTorch Interpretability library (Kokhlikyan
et al., 2020) for computing LIG and the Stanford
CoreNLP toolkit (version 4.2.1) (Manning et al.,
2014) for constructing the CPT. Integrated Gradi-
ents (IG) across the ith dimension of input x and
baseline x′ are computed as follows:

IG = (xi−x′i)×
∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi
dα

Captum library approximates the above inte-
gral using the Gauss-Legendre approximation al-
gorithm over 50 uniform steps of α ∈ [0, 1]. The
baseline was selected as a 768 dimension zero vec-
tor. The attribution score for each word is summed
across the dimensions (768 in the case of BERT-
Base) and normalized using the Euclidean norm of
the scores of all the words in the sentence.

We analyzed 5 different categories of sen-
tences within the CoLA Targeted Test Sets:
Causative-Inchoative Alternation (CIA), Reflexive-
Antecedent Agreement (RAA), Subject-Verb
Agreement (SVA), Subject-Verb-Object (SVO) and
Wh-Extraction (WHE). A few sample sentences
across the categories can be seen in Table 1.

The primary focus of our experiments relied on
the LIG computed between the predicted class logit
and the token embedding of the words. Further we
also computed LIG heatmaps with respect to the In-
put (Token + Segment + Position) embedding and
across the 12 Encoder layer embeddings of BERT
to analyze the LIG characteristics. Figure 1 shows
the LIG heatmaps of the top 10 CPT patterns for
the LA and LUA in the WHE category. The unique
CPT patterns were extracted for the correctly clas-
sified sentences of each category, corresponding to
which the LIG of each subtree were computed. LIG
of a subtree is equal to the sum of the LIG of the
words appearing as leaf nodes in the subtree. The
results in Table 2, Table 3, Figure 2 and Figure 3
represent the LIG computed between the predicted
class logit and the token embedding of the words.
For Out-Of-Vocabulary words (OOV), the LIG are
summed across its tokenized sub-words.
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CPT Pattern Avg. LIG Category
(S(NP(NN))(VP(VBD)(NP(DT)(NN)))(.)) 0.065 CIALA

(S(NP(DT)(NN))(VP(VBD))(.)) 1.351 CIALUA

(S(NP(PRP))(VP(VBD)(NP(PRP)))(.)) 0.061 RAALA

(S(NP(PRP))(VP(VBD)(NP(PRP)))(.)) 0.926 RAALUA

(S(NP(DT)(NN))(VP(VBZ)(ADVP(RB)))(.)) 0.064 SVALA

(S(NP(DT)(NN))(VP(VBP)(ADJP(JJ)))(.)) 1.067 SVALUA

(S(NP(NN))(VP(VBD)(NP(DT)(NN)))(.)) -0.012 SVOLA

(S(NP(NP(NN))(NP(DT)(NN)))(VP(VBD))(.)) 1.226 SVOLUA

(SBARQ(WHNP(WP))(SQ(VBD)(NP(NN))(VP(VB)))(.)) 0.205 WHELA

(SBARQ(WHNP(WP))(SQ(VBD)(NP(NN))(VP( 1.394 WHELUA

VB)(NP(DT)(NN))))(.))

Table 2: Average normalized LIG of most frequent CPT patterns on 5 categories of Correctly classified CoLA
Targeted Test Sets sentences. Subtrees in bold have the largest LIG in the respective categories.

Figure 1: LIG heatmaps of the top 10 scoring CPT patterns ranked in descending order based on averaged LIG
across the different BERT layers for LA (Left) and LUA (Right) of the WHE category.

Figure 2: LIG visualization for a LA sentence (Top) and
LUA sentence (Bottom) of the SVO category. Green
highlighted words contributed strongly towards the
model output to be predicted as LA and LUA.

3 LIG for Constituency Parse Tree
patterns

CPT is a type of grammar tree which captures the
relations between the constituents of a sentence.
We believe that analyzing the CPT patterns will
give us insights into the grammatical structure of
LA and LUA. Computing the LIG for CPT patterns
at different subtree levels can give us an indica-
tion into the constituents which contribute largely
towards making the sentence LA or LUA.

For each of the 5 category of sentences, we ex-
tracted all the CPT patterns for correctly classified
sentences at every subtree level and picked the most
frequent patterns at the root level (Table 2). The
subtree patterns in bold are the highest ranking sub-
trees based on LIG. BERT has been shown to learn
surface level features in the early layers, syntactic
features in the middle layers and semantic features
in the higher layers (Jawahar et al., 2019). Hence,
we also wanted to analyse the LIG behaviour across
the 12 layers and especially the early to middle lay-
ers which are relevant for grammar understanding.
Across each of the categories in the LIG heatmaps,
it was seen that the top subtree CPT patterns based
on token embedding LIG were also dominating
across the input and encoder layers of BERT and
hence were also found in the top 10 patterns. Fur-
ther, it can be observed in Figure 1 that there are
specific subtrees which dominate more (shades of
orange) as compared to others. This characteristic
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Category C CC MC CC+ CC- MC+ MC- CC+% MC+%
CIA 182 162 20 144 18 7 13 88.88 35
RAA 144 100 44 100 0 2 42 100 4.54
SVA 676 476 200 441 35 148 52 92.64 74
SVO 500 400 100 362 38 54 46 90.5 54
WHE 520 516 4 465 51 0 4 90.11 0

Table 3: LIG assessment for Correctly classified sentences (CC) and Misclassified (MC) sentences (C: Count, CC+:
Count of CC having positive LIG, CC-: Count of CC having negative LIG, MC+: Count of MC having positive LIG,
MC-: Count of MC having negative LIG, CC+%: Percentage of CC+ in CC, MC+%: Percentage of MC+ in MC).

Figure 3: Prediction Probability vs LIG Scatter plots for Correctly classified (Left) and Misclassified (Right)
sentences.

is especially useful for debugging LUA as it helps
us to understand which phrase contributed largely
towards making it unacceptable.

Further, it can be observed in Table 2 that the
LIG for LUA are significantly larger than LA. The
dominating CPT subtree patterns had a large spike
in the LIG for LUA in comparison to LA, indicat-
ing that linguistically acceptable patterns were not
being adhered. In Figure 2 we can see how the
different words in the LA and LUA of the SVO cat-
egory contributed in varying magnitudes towards
the model’s prediction.

4 LIG and Prediction confidence of the
model

We investigated to check if there is a relationship
between the LIG and the prediction confidence of
the model. We found that the range of correctly
classified sentences having positive LIG is between
88% to 100% (CC+% in Table 3) indicating that
whenever the input contributes strongly towards
a particular class (whether it is LA or LUA), the
model has a higher confidence in making the cor-
rect prediction. Around 43% (MC- in Table 3)
of the total misclassified sentences had negative
LIG which showed that the features disagreed with

the model’s prediction. This behaviour can be
observed distinctly in the Figure 3 scatter plots,
where we notice that there a large number of points
near the top right corner for the correctly classi-
fied sentences, and a large number of points near
the bottom left corner in the case of misclassified
sentences.

We believe that this indication can be used to im-
prove the model’s performance by parameterizing
the LIG in the loss function during the later stages
of the training process once the model has achieved
a reasonable performance (to ensure that the gradi-
ents computed are meaningful) and hence serve as
a correction mechanism for the model. This aligns
with a previous work (Erion et al., 2021) which
showed that axiomatic attribution priors improved
model performance on many real-world tasks.

5 Conclusion

We have proposed a novel approach for explain-
ing the Linguistic Acceptability criteria learnt by
BERT using LIG and CPT patterns. As there is a
strong relationship between LIG and the prediction
confidence of the model, our future work will focus
on parameterizing the LIG in the loss function and
observing the model’s performance.
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