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Abstract

Recent Deep Learning (DL) summarization
models greatly outperform traditional sum-
marization methodologies, generating high-
quality summaries. Despite their success,
there are still important open issues, such as
the limited engagement and trust of users in
the whole process. In order to overcome
these issues, we reconsider the task of sum-
marization from a human-centered perspec-
tive. We propose to integrate a user inter-
face with an underlying DL model, instead
of tackling summarization as an isolated task
from the end user. We present a novel sys-
tem, where the user can actively participate
in the whole summarization process. We
also enable the user to gather insights into
the causative factors that drive the model’s
behavior, exploiting the self-attention mecha-
nism. We focus on the financial domain, in
order to demonstrate the efficiency of generic
DL models for domain-specific applications.
Our work takes a first step towards a model-
interface co-design approach, where DL mod-
els evolve along user needs, paving the way
towards human-computer text summarization
interfaces.

1 Introduction

The ever increasing amount of online text docu-
ments, such as blog posts, newswire articles and
academic publications, during the last decades, has
created the urgent need for appropriate natural lan-
guage understanding tools. Summarization, i.e.,
shortening an initial text document by keeping only
the most important information, plays a key role in
addressing this information overload.

A lot of sophisticated summarization models
have been proposed in the past, with a recent focus
on Deep Learning (DL) architectures. DL models
(See et al., 2017; Kryściński et al., 2018; Celiky-
ilmaz et al., 2018; Chen and Bansal, 2018; Liu

and Lapata, 2019; Song et al., 2019; Zhang et al.,
2020) achieve great results in the task of summa-
rization, outperforming most of the previously used
methods. Typical DL models involve sequence to
sequence architectures with RNNs (Nallapati et al.,
2016; See et al., 2017) often combined with atten-
tion mechanisms (Luong et al., 2015; Bahdanau
et al., 2015), as well as Transformers (Vaswani
et al., 2017; Lewis et al., 2020; Raffel et al., 2020a).

Despite the success of DL models, some signif-
icant challenges remain. The low interpretability
of these models (Brunner et al., 2020; Vig and Be-
linkov, 2019; Serrano and Smith, 2019; Vashishth
et al., 2019) is a major drawback that limits signifi-
cantly the trust of users in the whole process.

In addition, existing pipelines do not adequately
engage the human in the summarization process
(Trivedi et al., 2018; Shapira et al., 2017), providing
isolated and static predictions. The engagement of
users and their feedback in the whole process can
be a key factor in creating high-quality models and
improving the quality of existing models (Stiennon
et al., 2020; Ghandeharioun et al., 2019).

To overcome the above limitations, we revisit
the task of neural summarization from a human-
centered perspective and with a unifying view of
user interfaces and underlying summarization mod-
els. More specifically, we present a system that
allows the active involvement of the user, setting
the basis for human-computer text summarization
interfaces. Our system allows users to choose over
different decoding strategies and control the num-
ber of alternative summaries that are generated.
Users can give their feedback by combining parts
of the different generated summaries as a target
summary for the corresponding input. These sum-
maries are recorded, and can then be used as ad-
ditional training examples, which in turn will im-
prove the performance of the model and customize
it to the preferences of the users.
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In addition, our system provides useful insights
about the inner workings of the model, based on the
self-attention mechanism of Transformers. Know-
ing which parts of the source document are most
important for the generation of the final summary,
can build up the trust between users and the ma-
chine.

We present a case study of the proposed system
on the challenging, domain-specific task of finan-
cial articles summarization, to demonstrate the abil-
ity of the suggested approach to successfully em-
ploy generic DL models for domain-specific appli-
cations that often have different requirements. In-
deed, domain-focused summarization models (Kan
et al., 2001; Reeve et al., 2007) are generally more
challenging, as they require deeper knowledge of
the specific domain intricacies in order to generate
salient summaries with logical entailment. To this
end, we compiled a novel financial-focused dataset,
which consists exclusively of financial articles from
Bloomberg1.

The rest of this paper is structured as follows.
The main features of the proposed human-centered
system are detailed in Section 2. The case study on
financial news summarization is presented in Sec-
tion 3. Finally, conclusions and interesting future
research directions are discussed in Section 4.

2 HCI meets Summarization

In this section we will introduce the main fea-
tures of our human-centered summarization system.
We first present the approach used for interpreting
the summaries generated by the model. Then we
present the different decoding strategies we employ
during inference. Finally, we explain how users can
interact with our system.

2.1 Peeking into the Black Box

Our interface assumes the existence of a
Transformer-based model with self-attention
(Vaswani et al., 2017), which are the backbone
of most modern summarization approaches. To
provide insights into the produced summaries, we
exploit the fact that the self-attention mechanism
offers an implicit explanation about the factors that
drive the behavior of the model. In particular, it
helps the model identify input-output text depen-
dencies by focusing on different parts of the input
in order to generate the final sequence representa-
tion. This mechanism is typically combined with

1https://www.bloomberg.com

multiple attention heads. The attention weights
of each head are concatenated with each other to
compute the final weights.

Extracting the weights of each encoder layer sep-
arately, gives us useful insights about the model’s
behavior. In particular, we observe that different
layers give us different types of insights regarding
the way that the model perceives natural language.
The first layers tend to focus on named entities and
phrases taking a whole picture of the text, while
the last layers attend additionally prepositions and
articles in order to learn the language structure. In
order to provide an overview of the model, we aver-
age all the self-attention layers along with all their
attention heads, giving the user an overall picture
regarding the model’s learning process.

Assuming that a word which is attended by many
words is more salient for the final decision of the
model, we highlight the words according to their
self-attention weights. Thus, high-weight words
are strongly highlighted, while lower-weight words
are faintly highlighted. This allows users to get a
glimpse of where the model focuses on to generate
the final summary.

2.2 Decoding Strategies
The selection of the right decoding strategy during
inference can play a critical role in the whole pro-
cess as it greatly affects the quality of a model’s
predictions (Holtzman et al., 2020), with different
decoding strategies exhibiting different behaviors
(Ippolito et al., 2019). Some decoding strategies,
such as greedy search, suffer from redundancy is-
sues (Shao et al., 2017), while others, such as beam
search, might generate almost identical hypotheses
among the different generated beams (Gimpel et al.,
2013). Beam search is widely used in generative
models, but there are also attempts that utilize other
decoding mechanisms, such as top-k sampling (Fan
et al., 2018b).

Our system allows for the active involvement of
users into the underlying summarization process,
by offering them the opportunity to select among
the following decoding strategies:

• Random sampling selects randomly a token
out of the word probability distribution. Often
combined with a temperature parameter to
control the entropy of the distribution (Ficler
and Goldberg, 2017; Fan et al., 2018b; Caccia
et al., 2020).

• Top-k sampling limits the space of possible

https://www.bloomberg.com
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next tokens to the top-k higher-ranked tokens
of the distribution (Fan et al., 2018b) .

• Top-p or nucleus sampling selects the next
token from a subset of tokens with cumulative
probability up from a predefined threshold p
(Holtzman et al., 2020). It can also be com-
bined with top-k sampling.

• Greedy search selects the token with the
highest probability at each time step.

• Beam search selects not only the token with
the highest probability at each time step, but
also a number of tokens with the highest prob-
ability according to the beam width. The num-
ber of the final generated beams is equal to the
beam width. Beam search with beam width
set to 1 degenerates to greedy search.

• Diverse beam search follows the beam
search algorithm, but also adds a diversity
penalty to enhance the diversity between the
top most probable generated beams (Vijayaku-
mar et al., 2016).

2.3 User Interaction
The interaction of a user with our system consists
of the following steps. It starts with the user enter-
ing the source text into a text box. Then users have
the option to view the visualization of the attention
weights, as well as choose a particular visualization
color. Next users can select among the available
decoding strategies, which also gives them the op-
portunity to change the default hyperparameters of
each decoding strategy. Finally, they can click on
a button to obtain the summaries. It is also possi-
ble for users to mix and match sentences from the
alternative produced summaries, as well as enter
their own text, in order to create a personalized
summary. This summary can then be saved, and
later be used for further fine-tuning of the model.

3 Case Study: Financial Summarization

In this section, we detail our experiments with the
case study of financial summarization. We first
describe the data collection process and the pre-
processing steps we followed. Then we discuss the
models that we constructed and their evaluation.
Finally we discuss concrete examples of the user
experience. The code and instructions for this case
study of our system is publicly available2.

2https://bit.ly/human-centered-summarization-notebook

Table 1: Dataset Statistics

Initial Preprocessed

min. document length (words) 20 79
max. document length (words) 3758 2537
avg. document length (words) 676 669
avg. summary length (words) 23 23
# single-sentence summaries 21 0

# total documents 2120 2096

3.1 Dataset

We compiled a novel collection of financial news
articles along with human-written summaries using
the Bloomberg Market and Financial News API by
RapidAPI3. The articles concern different financial
and business categories, such as stocks, markets,
currency, rates, cryptocurrencies and industries.

We removed outlier documents, i.e., relatively
small (up to 70 tokens) and very large (over 3,000
tokens) ones. As most of the summaries consist
of two sentences, we also removed single-sentence
summaries to maintain a consistent target structure.
Table 1 presents some basic statistics about our
dataset before and after this simple pre-processing
pipeline.

3.2 Models

We use the recently proposed PEGASUS model
(Zhang et al., 2020), which is based on the trans-
former encoder-decoder architecture. It features 16
layers for both the encoder and the decoder, each
of them with 16 attention heads. PEGASUS is
already pre-trained on two large corpora, C4 (Raf-
fel et al., 2020b) and HugeNews, and fine-tuned
on 12 different downstream datasets. The model
uses SentencePiece, a subword tokenizer (Kudo
and Richardson, 2018), which divides rare tokens
into known subword units allowing for the efficient
handling of unknown words.

We experimented with two models fine-tuned
on two different newswire datasets respectively,
namely Extreme Summarization (XSum) (Narayan
et al., 2018) and CNN/Daily Mail (Hermann et al.,
2015). We used the open-sourced weights of these
models to initialize our summarizers, and then
further fine-tuned them on the collected financial
dataset.

We observed that both model variants quickly
adapted to the new dataset, and after only a few

3https://rapidapi.com/marketplace

https://bit.ly/human-centered-summarization-notebook
https://rapidapi.com/marketplace
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Figure 1: Examples of generated summaries before and
after fine-tuning.

training epochs they were capable of generating
salient, non-redundant financially-focused sum-
maries, which target explicit economic and busi-
ness issues. Examples of the generated summaries
before and after fine-tuning are shown in Figure
1. Fine-tuning on our dataset, leads to an improve-
ment in performance by approximately 10 ROUGE-
1 (F1 score) points (Lin, 2004) for the XSum model,
which is eventually used in our system. The evalu-
ation results are shown in Table 2.

Table 2: Evaluation Results. We measure the F1 scores
for ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-S.

CNN/Daily Mail model XSum model

Fine-tuning R-1 R-2 R-L R-S R-1 R-2 R-L R-S
No 20.00 4.86 15.04 16.97 13.80 2.40 10.63 12.03
Yes 23.34 6.30 17.98 21.04 23.55 6.99 18.14 21.36

3.3 Samples from the User Experience
An example of the visualized self-attention weights
is shown in Figure 2. The model focuses on basic
named entities of the source text, which are indeed
important for the final generation. We also observe
that different layer depths provide different insights
regarding the model’s learning process as shown
in Figure 3. For example, the first layers attempt
to focus on every word of the input document in

Figure 2: Visualization of the encoder self-attention
weights. The underscore before a token indicates the
start of the token according to the subword tokenizer.

Layer 1

Layer 6

Layer 16

Figure 3: Self-attention weights of layers 1, 6 and 16.

order to capture phrases and sentences, while the
last layers pay close attention to prepositions and
articles attempting to learn language structure.

An example of the output differentiation be-
tween different decoding strategies for the same
input text is shown in Figure 4. The different sum-
maries that are generated by the model, demon-
strate the value of selecting an appropriate decod-
ing strategy for the final generation.

4 Conclusions and Future Work

We presented a novel system for human-centered
summarization that actively engages the user into
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Figure 4: Output for different decoding strategies.

the whole process of summarization, enabling per-
sonalized summaries and models. The users in-
teract with the model, by entering a source text,
selecting different decoding strategies, viewing a
visualization of the model’s attention and synthe-
sizing a final summary from parts of multiple sum-
maries, which can be used for further fine-tuning.
We also presented a case study of our work, along
with a novel dataset, on summarizing financial
news. We observed that pre-trained PEGASUS
models adapt quickly to our dataset, generating
salient financially-focused summaries. Our work
aims to inspire future research in human-centered
techniques for neural summarization systems.

In future work, human involvement in the sum-
marization process could be enhanced by using
approaches that allow users to control different as-
pects of the generated summaries, such as length

(Kikuchi et al., 2016; Liu et al., 2018; Takase and
Okazaki, 2019; Fan et al., 2018a), style (Fan et al.,
2018a) or generation based on a specific entity of
the text (He et al., 2020; Fan et al., 2018a).

The interface we designed can be also further
extended, allowing the user to evaluate the gener-
ated summaries, assessing different aspects of the
text, such as salience, readability and coherence.
Finally, more advanced approaches can be explored
for leveraging the user submitted feedback in order
to further improve the underlying model (Lertvit-
tayakumjorn et al., 2020; Li et al., 2016).
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Nazneen Rajani, and Caiming Xiong. 2020. Ctrl-
sum: Towards generic controllable text summariza-
tion. arXiv preprint arXiv:2012.04281.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Advances in neural information
processing systems, 28:1693–1701.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Daphne Ippolito, Reno Kriz, João Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Com-
parison of diverse decoding methods from condi-
tional language models. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3752–3762, Florence, Italy.
Association for Computational Linguistics.

Min-Yen Kan, Kathleen R McKeown, and Judith L Kla-
vans. 2001. Domain-specific informative and indica-
tive summarization for information retrieval. In In:
Workshop on text summarization (DUC 2001. Cite-
seer.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Control-
ling output length in neural encoder-decoders. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1328–1338, Austin, Texas. Association for Compu-
tational Linguistics.

Wojciech Kryściński, Romain Paulus, Caiming Xiong,
and Richard Socher. 2018. Improving abstraction
in text summarization. In Proceedings of the 2018

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1808–1817, Brussels, Bel-
gium. Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Piyawat Lertvittayakumjorn, Lucia Specia, and
Francesca Toni. 2020. FIND: human-in-the-loop
debugging deep text classifiers. In Proceedings
of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pages 332–348.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Jiwei Li, Alexander H. Miller, Sumit Chopra,
Marc’Aurelio Ranzato, and Jason Weston. 2016. Di-
alogue learning with human-in-the-loop. CoRR,
abs/1611.09823.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yang Liu and Mirella Lapata. 2019. Text Summariza-
tion with Pretrained Encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3721–3731.

Yizhu Liu, Zhiyi Luo, and Kenny Zhu. 2018. Con-
trolling length in abstractive summarization using
a convolutional neural network. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4110–4119, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
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