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Abstract

This paper presents a study of state-of-the-
art unsupervised and linguistically unsophis-
ticated keyword extraction algorithms, based
on statistic-, graph-, and embedding-based ap-
proaches, including, i.a., Total Keyword Fre-
quency, TF-IDF, RAKE, KPMiner, YAKE,
KeyBERT, and variants of TextRank-based
keyword extraction algorithms.

The study was motivated by the need to se-
lect the most appropriate technique to extract
keywords for indexing news articles in a real-
world large-scale news analysis engine.

The algorithms were evaluated on a corpus of
circa 330 news articles in 7 languages. The
overall best F1 scores for all languages on av-
erage were obtained using a combination of
the recently introduced YAKE algorithm and
KPMiner (20.1%, 46.6% and 47.2% for exact,
partial and fuzzy matching resp.).

1 Introduction

Keyword Extraction (KE) is the task of automated
extraction of single or multiple-token phrases from
a textual document that best express all key aspects
of its content and can be seen as automated genera-
tion of a short document summary. It constitutes an
enabling technology for document indexing, clus-
tering, classification, summarization, etc.

This paper presents a comparative study of the
performance of some state-of-the-art unsupervised
linguistically-lightweight keyword extraction meth-
ods and combinations thereof applied on news arti-
cles in seven languages. The main drive behind the

reported work was to explore the usability of these
methods for adding another level of indexing of
news articles gathered and analysed by the Europe
Media Monitor (EMM)1 (Steinberger et al., 2017),
a large-scale multilingual real-time news gathering
and analysis system, which processes an average
of 300,000 online news articles per day in up to
70 languages and is serving several EU institutions
and international organisations.

While a vast bulk of research and tools for KE
have been reported in the past, the specific focus
of our research was to select the most suitable KE
methods for indexing news articles taking specifi-
cally into account the operational, multilingual and
real-time processing character of EMM. Hence,
only unsupervised, scalable vis-a-vis multilingual-
ity and robust algorithms that do not require any
sophisticated linguistic resources and are capable
of processing single news article in a time-efficient
manner were considered.

Keyword extraction has been the subject of re-
search for decades. Both unsupervised and super-
vised approaches exist, the unsupervised being par-
ticularly popular due to the scarcity of annotated
data as well as their domain independence.

The unsupervised approaches are usually divided
in three phases: (a) selection of candidate tokens
that can constitute part of a keyword using some
heuristics based on statistics and/or certain linguis-
tic features (e.g., belonging to a specific part-of-
speech or not being a stop word, etc.), (b) rank-

1https://emm.newsbrief.eu/

https://emm.newsbrief.eu/
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ing the selected tokens, and (c) generating key-
words out of the selected tokens, where the final
rank is computed using the scores of the individ-
ual tokens. The unsupervised methods are divided
into: statistics-, graph-, embeddings- and language
model-based ones. The statistics-based methods ex-
ploit frequency, positional and co-occurrence statis-
tics in the process of selecting candidate keywords.
The graph-based methods create a graph from tex-
tual documents with nodes representing the can-
didate keywords and edges representing some re-
latedness to other candidate keywords, and then
deploy graph ranking algorithms, e.g. PageRank,
TextRank, to rank the final set of keywords. Re-
cently, a third group of methods emerged which are
based on word (Mikolov et al., 2013) and sentence
embeddings (Pagliardini et al., 2018). Linguis-
tic sophistication constitutes another dimension to
look at the keyword extraction algorithms. Some
of the methods use barely any language-specific
resources, e.g., only stop word lists, whereas oth-
ers exploit part-of-speech tagging or even syntactic
parsing.

The supervised methods are simply divided into
shallow and deep learning methods. The shallow
methods exploit either binary classifiers to decide
whether a token sequence is a keyword, linear
regression-based models to rank the candidate key-
words, and sequence labelling techniques. The
deep learning methods exploit encoder-decoder and
sequence-to-sequence labelling approaches. Most
of the supervised machine-learning approaches re-
ported in the literature deploy more linguistic so-
phistication (i.e., linguistic features) vis-a-vis unsu-
pervised methods.

Extensive surveys on keyword extraction meth-
ods and comparison of their relative performance
are provided in (Papagiannopoulou and Tsoumakas,
2020; Hasan and Ng, 2014; Kilic and Cetin, 2019;
Alami Merrouni et al., 2019).

Since only a few monolingual corpora with key-
word annotation of news articles exist (Marujo
et al., 2013, 2012; Bougouin et al., 2013) that use
different approaches to keyword annotation, we
have created a new multilingual corpus of circa 330
news articles annotated with keywords covering 7
languages which is used for evaluation purposes in
our study. We are not aware of any similar multi-
lingual resource available for research purposes.

The paper is organized as follows. First, Sec-
tion 2 introduces the Keyword Extraction task for

news article indexing. Section 3 gives an overview
of the methods explored. Next, Section 4 describes
the creation of a multi-lingual data set and experi-
ment results. Finally, we end up with conclusions
and an outlook on future work in Section 5.

2 Keyword Extraction Task

The purpose of KE might vary depending on the do-
main in which it is deployed. In media monitoring
and analysis the main objective is to capture from
the text of each news article the main topics dis-
cussed therein, the key events reported, the entities
involved in these events and what is the outcome,
impact and significance thereof. For the sake of
specifying what the expected output of KE should
be, and in order to guide human annotators tasked
to create test datasets, the following constraints on
keyword selection were introduced (here in simpli-
fied form):

• a keyword can be a single word or a sequence
of up to 5 consecutive words (unless it is
a long proper name) as they appear in the
news article or the title thereof,

• a minimum of 5 and ideally not more than
15 keywords (with ca 30% margin - to provide
some flexibility) should be selected, however
the set of selected keywords may not consti-
tute more than 50% of the body of the news
article,

• a single keyword may not include more than
one entity,

• a keyword has to be either a noun phrase,
proper name, verb, adjective, phrasal verb,
or part of a clause (e.g., ‘Trump died’),

• a stand-alone adverb, conjunction, deter-
miner, number, preposition or pronoun may
not constitute a keyword,

• a full sentence can never constitute a key-
word,

• keywords should not be converted into their
corresponding base forms, disregarding the
fact that a base form would appear more natu-
ral,

• if there are many candidate keywords to rep-
resent the same concept, only one of them
should be selected.
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3 Methods

Given the specific context of real-time media mon-
itoring, our experiments imposed the following
main selection criteria to the keyword extraction
techniques to explore and evaluate:

• efficiency: ability to process a single news
article within a fraction of a second,

• multi-linguality: ability to quickly adapt the
method to the processing of many different
languages,

• robustness: ability to process corrupted data
without impacting performance.

Consequently, we have selected methods that: (a)
do not require any language-specific resources ex-
cept stop word lists and off-the-shelf pre-computed
word embeddings, (b) exploit only information that
can be computed in a time-efficient manner, e.g.,
frequency statistics, co-occurrence, positional in-
formation, string similarity, etc., (c) do not require
any external text corpora (with one exception for
a baseline method). The pool of methods (and
variants thereof) explored includes:

Total Keyword Frequency (TKF) exploits only
frequency information to rank candidate keywords,
where candidates are 1-3 word n-grams from text
that do not contain punctuation marks, and which
neither start nor end with a stop word.

Term Frequency–Inverse Document Frequency
(TF-IDF) constitutes the main baseline algorithm
in our study. For the computation of TF-IDF scores
a corpus consisting of 34.5M news articles gathered
by EMM that span over the first 6 months of 2020
and covering ca. 70 languages was exploited.2 A
maximum of min(20, N/6) keywords with high-
est TF-IDF scores are returned for a news article,
where N stands for the total number of tokens in
the article.

Rapid Automatic Keyword Extraction (RAKE)
exploits both frequency and co-occurrence infor-
mation about tokens to score candidate keyword
phrases (token sequences that do contain neither
stop words nor phrase delimiters) (Rose et al.,

2In particular, the pool of 34.5M news articles included:
11309K English, 6746K Spanish, 2322K French, 2001K Ital-
ian, 1431K German, 760K Romanian and 183K Polish articles,
which covers the languages of the evaluation dataset (see Sec-
tion 4.1).

2010). More specifically, the score for a candi-
date keyword phrase is computed as the sum of its
member word scores. We explored three options
for scoring words: (a) s(w) = frequency(w)
(RAKE-FREQ), (b) s(w) = degree(w) (RAKE-
DEG), which stands for the number of other
content words that co-occurr with w in any
candidate keyword phrase, and (c) s(w) =
degree(w)/frequency(w) (RAKE-DEGFREQ).

Keyphrase Miner (KP-Miner) exploits fre-
quency and positional information about candidate
keywords (word n-grams that do not contain punc-
tuation marks, and which neither start nor end with
a stop word) with some weighting of multi-token
keywords (El-Beltagy and Rafea, 2009). More pre-
cisely, the score of a candidate keyword (in the case
of single document scenario) is computed as:

s(k) = freq(k) ·max(
|K|

α · |Km|
, ω) · 1

AvgPos(k)

where freq(k), K, Km denote frequency of k, the
set of all candidate keywords and the set of all
multi-token candidate keywords resp., whereas α
and ω are two weight adjustment constants, and
AvgPos(k) denotes the average position of the
keyword in a text in terms of regions separated by
punctuations. KP-Miner also has a specific cut-off
parameter, which determines the number of tokens
after which if the keyword appears for the first
time it is filtered out and discarded as a candidate.
Our version of KP-Miner does not include stem-
ming different from the original one (El-Beltagy
and Rafea, 2009) due to our multilingual context
and the specification of KE task (see Section 2). Fi-
nally, KP-Miner scans the top n ranking candidates
and removes the ones which constitute sub-parts of
others and adjusts the scores accordingly. Based on
the empirical observations the specific parameters,
namely, α, ω and cut-off were set to 1.0, 3.0 and
1000 resp.

Yet Another Keyword Extraction (Yake) ex-
ploits a wider range of features (Campos et al.,
2020) vis-a-vis RAKE and KP-Miner in the pro-
cess of scoring single tokens. Like the two algo-
rithms introduced earlier, YAKE selects as candi-
date keywords word n-grams that do not contain
punctuation marks, and which neither start nor end
with a stop word. However, on top of this, an addi-
tional token classification step is then carried out
in order to filter out additional tokens that should
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not constitute part of a keyword (e.g. non alphanu-
meric character sequences, etc.). Single tokens are
scored using the following formula:

Score(t) =
Trel−context(t) · Tposition(t)

Tcase(t) +
Tfreq−norm(t)+Tsentence(t)

Trel−context(t)

where: (a) Tcase(t) is a feature that reflects statis-
tics on case information of all occurrences of t
based on the assumption that uppercase tokens are
more relevant than lowercase ones, (b) Tposition(t)
is a feature that exploits positional information and
boosts tokens that tend to appear at the beginning
of a text, (c) Tfreq−norm is a feature that gives
higher value to tokens appearing more than the
mean and balanced by the span provided by stan-
dard deviation, (d) Tsentence(t) is a feature that
boosts significance of tokens that appear in many
different sentences, and (e) Trel−context(t) is a re-
latedness to context indicator that ’downgrades’
tokens that co-occur with higher number of unique
tokens in a given window (see (Campos et al., 2020)
for details). The score for a candidate keyword
k = t1t2 . . . tn is then computed as:

Score(k) =

n∏
i=1

Score(ti)

frequency(k) · (1 +
n∑

i=1
Score(ti))

Once the candidate keywords are ranked, po-
tential duplicates are removed by adding them in
relevance order. When a new keyword is added it
is compared against all more relevant candidates
in terms of semantic similarity, and if this simi-
larity is below a specified threshold it is discarded.
While the original YAKE algorithm exploits for this
purpose the Levenshtein distance, our implemen-
tation uses Weighted Logest Common Substrings
string distance metric (Piskorski et al., 2009) which
favours overlap in the initial part of the strings com-
pared.

Embedding-based Keyword Extraction
(KEYEMB) exploits document embeddings
and cosine similarity in order to identify candidate
keywords. First, a document embedding is
computed, then word n-grams of different sizes
are generated, which are subsequently ranked
along their similarity to the embedding of the
document (Grootendorst, 2020).

We tested three different out-of-the-box
transformer-based sentence embeddings. BERT-
based ones are taken from (Reimers and Gurevych,
2020), which are both multilingual and fine-tuned
on natural language inference and semantic
text similarity tasks. One version uses a basic
BERT model (KEYEMB-BERT-B) and the other
a lightweight BERT model (KEYEMB-BERT-
D). Finally, KEYEMB-LASER is based on
LASER (Artetxe and Schwenk, 2019) embeddings.
Contrary to BERT, they have not been fine-tuned
on semantic similarity tasks, but for the task of
aligning similar multilingual concepts to the same
semantic space.

Filtering stop words without applying any of the
different post-processing steps proposed in (Groo-
tendorst, 2020) provided the best results and there-
fore is the setting we used in the evaluation and
comparison against other methods.

Graph-based Keyword Extraction: (GRAPH)
exploits properties of a graph whose nodes are sub-
strings extracted from the text in order to identify
which are the most important (Litvak and Last,
2008). This approach differs from TextRank (Mi-
halcea and Tarau, 2004), in two ways: firstly,
the graph is constructed in a fundamentally dif-
ferent way yielding smaller graphs and therefore
faster processing time; secondly, different lower-
complexity graph measures are also explored, al-
lowing even faster processing time.

A node of the graph corresponds either to a sen-
tence, a phrase delimited by any punctuation marks
or a token sequence delimited by stop words. Two
nodes are connected only if they share at least 20%
of words after removal of stop words.

The importance of the nodes can be defined in
different ways. In this study we looked at: (a)
degree (GRAPH-DEGREE), which measures the
absolute number of related sentences in the text,
(b) centrality (GRAPH-CENTR) which intuitively
measures the extent to which a specific node serves
as a bridge to connect any unrelated pieces of in-
formation, (c) clustering (GRAPH-CLUST) which
measure the level of interconnection between the
neighbours of a node and itself, and finally, (d)
the sum of the centrality and clustering measure
(GRAPH-CE&CL). Please refer to (Brandes, 2005)
for further details on these graph measures.

Although more sophisticated linguistic process-
ing resources such as POS taggers and dependency
parsers are available for at least several languages
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we did not consider KE techniques that exploit
them since the range of languages covered would
be still far away from the ca. 70 languages covered
by EMM. Furthermore, although the BERT-based
approaches to KE (even without any tuning) are
known to be orders of magnitudes slower than the
other methods, we explored them given the wide
range of languages covered in terms of off-the-shelf
embeddings.

4 Experiments

4.1 Dataset

For the evaluation of the KE algorithms we created
random samples of circa 50 news articles published
in 2020 for 7 languages: English, French, German,
Italian, Polish, Romanian and Spanish. The se-
lection of the languages was motivated to cover
all three main Indo-European language families:
Germanic, Romance and Slavic languages.

The news articles were annotated with keywords
by two human experts for each language in the
following manner. Initially, all annotators were pre-
sented with the task definition, keyword selection
guidelines, and annotated a couple of trial articles.
Next, the annotators were tasked to select keywords
for the proper set of 50 news articles for each lan-
guage. The annotation was done by each annotator
separately since we were interested to measure the
discrepancies between annotators and differences
between the languages. The final sets of documents
used for evaluation for some of the languages con-
tained less than 50 news articles due to some near
duplicates encountered, etc.

Table 1 shows the differences in terms of key-
word annotation distribution across languages. The
average number of keywords per article varies from
8.68 for French to 13.20 for German. At the to-
ken level, the average ranges from 20.66 annotated
tokens (French) per article to 30.24 (Romanian).
The discrepancies between annotators differ sig-
nificantly across languages, e.g., for Polish, only
9.37% of the keywords are shared between the
two annotators, whereas for Romanian, they are
48.68%. However, when one measures the dif-
ferences at the token level the discrepancies are
significantly smaller, i.e., for Polish, 49.67% of the
tokens are shared between the annotators, whereas
for Romanian, 69.16%. This comparison between
annotators is completed by computing the percent-
age of "fuzzy" common tokens (Table 1), corre-
sponding to the common 4-gram characters. As

expected, the percentage of "fuzzy" common to-
kens is higher than for exact common tokens for all
languages. It increases by ca. 2 points for English,
French, Italian, Spanish and more than 4 points for
German, Polish and Romanian.

Based on the relatively high level of discrepan-
cies between each pair of annotators per language
(see Table 1) we decided to create the ground truth
for evaluation by merging the respective keyword
sets for each languages. The statistics of the result-
ing ground truth data are summarized in Table 2.
We can observe that the average number of key-
words per article for Italian and French is signif-
icantly lower than for the other languages. The
average number of tokens per keyword is quite sta-
ble, from 2.33 (Spanish) to 2.79 (English), except
for German, 1.75 tokens per keyword, due to the
frequent use of compounds in this language.

4.2 Evaluation Methodology
We have used the classical precision (P ), recall (R)
and F1 metrics for the evaluation purposes. The
overall P , R and F1 scores were computed as an
average over the respective scores for single news
articles.

We have computed the scores in three different
ways. In the exact matching mode, we consider that
an extracted keyword is matched correctly only if
exactly the same keyword occurs in the ground
truth (or vice versa).

In the partial matching mode, the match of a
given keyword c vis-a-vis Ground Truth GT =
{k1, . . . , kn} is computed as follows:

match(c) = max
k∈GT

2 · commonTokens(c, k)
|c|T + |k|T

where commonTokens(c, k) denotes the number
of tokens that appear both in c and k, and |c|T
(|k|T ) denote the number of tokens the keyword c
(k) consists of. The value of match(c) is between
0 and 1.

Analogously, in the fuzzy matching mode, the
match of a given keyword c vis-a-vis Ground Truth
GT = {k1, . . . , kn} is computed as follows:

match(c) = max
k∈GT

Similarity(c, k)

where Similarity(c, k) is computed using
Longest Common Substring similarity met-
ric (Bergroth et al., 2000), whose value is between
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Language average number of percentage average number of percentage of percentage of
annotated keywords of common annotated tokens exact common fuzzy common

per article keywords per article tokens tokens
English 11.63 17.35% 28.95 53.08% 53.77%
French 8.68 42.97% 20.66 63.95% 65.00%
German 13.20 44.10% 22.37 62.91% 67.56%
Italian 9.81 43.86% 21.87 63.94% 64.74%
Polish 11.01 9.37% 27.77 49.67% 55.28%
Romanian 12.72 48.68% 30.24 69.16% 72.19%
Spanish 12.72 24.13% 26.71 58.06% 59.19%

Table 1: Exact and fuzzy overlap of keywords and tokens for annotator pairs for each language.

Language #articles avg. nb of avg. nb of
keywords tokens per
per article keyword

English 50 22.04 2.79
French 47 14.34 2.70
German 50 21.36 1.75
Italian 50 16.16 2.34
Polish 39 21.18 2.67
Romanian 49 20.61 2.62
Spanish 48 22.75 2.33

Table 2: Ground Truth statistics.

0 and 1. Both P and R are computed analogously
using the concept of partial and fuzzy matching.

The main rationale behind using the partial and
fuzzy matching mode was the fact that exact match-
ing is simply too strict in terms of penalisation of
automatically extracted keywords which do have
strong overlap with keywords in the ground truth.

Finally, we have also computed standard de-
viation (SD) for all metrics in order to observe
whether any of the algorithms is prone to produc-
ing response outliers.

4.3 Results
We have evaluated all the algorithms described in
Section 3 with the following settings, unless spec-
ified elsewhere differently: (a) the max. number
of tokens per keyword is 3, whereas the minimum
(maximum) number of characters is set to 2 (80),
(b) keywords can neither start nor end with a stop
word, (c) keywords cannot contain tokens com-
posed only of non-alphanumeric characters, and
(d) the default maximum number of keywords to
return is 15. The main drive behind setting the
maximum number of keywords to 15 is based on
empirical observation, optimizing both F1 score
and not returning too long list of keywords.

The overall performance of each algorithm av-
eraged across languages, in term of P , R and F1

scores is listed in Table 3, respectively for exact,
partial and fuzzy matching. In general, only the

results for the best settings per algorithm type are
provided except for YAKE and KPMINER, which
performed overall best. More specifically, the ta-
ble contains results of some additional variants of
YAKE and its combinations with KPMiner, namely:
(a) YAKE-15 and YAKE-20 which return 15 and
20 keywords resp., (b) YAKE-KPMINER-I (inter-
section) which returns the intersection of the results
returned by YAKE-15 and KP-Miner, (c) YAKE-
KPMINER-U (union) which merges up to 10 top
keywords returned by YAKE and KP-Miner output,
and (d) YAKE-KPMINER-R (re-ranking) which
sums the ranks of the keywords returned by YAKE-
15 and KPMINER and selects top 15 keywords
after the re-ranking.

Across the three types of matching, the list of
algorithms obtaining good results is quite stable
(cf. Table 3). YAKE-KPMINER-R constantly ob-
taining the best F1, respectively 20.1%, 46.6% and
47.2% for the exact, partial and fuzzy matching,
followed or equaled by the YAKE-KPMINER-U.

YAKE-KPMINER-I obtained the best precision,
respectively 28.5%, 55.9% and 57.2%. In terms
of standard deviation (SD), YAKE-KPMINER-I
appears to be the most unstable since it is constantly
the algorithm with the highest SD, for P , R and
F1, and for all types of matching.

As expected, the results obtained with partial and
fuzzy matching are better than with exact match-
ing. More interestingly, the fuzzy matching also al-
lows to smooth the discrepancy between languages.
Figure 1 highlights for YAKE-KPMINER-R algo-
rithm how some languages like Polish, a highly
inflected language, have a poor F1 for exact match-
ing, but are close to the all-language average for
fuzzy matching. Figure 2 aims at comparing the re-
sults obtained in each language with a selection of
algorithms for the fuzzy matching. The KPMINER
algorithm appears to be best suited for the French
language, whereas German the group of YAKE
algorithms appears to be a better choice. There
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are some other language specific aspects accord-
ing to the different algorithms, but less significant.
As a matter of fact, the observations on YAKE and
KPMINER strengths when applying on texts in spe-
cific languages were the main drive to introduce the
various variants of combining these KE algorithms.

One can also conclude from the evaluation fig-
ures that YAKE-KP-MINER-R appears to be the
best "all-rounder" algorithm. In this context it is
also important to emphasize that the performance
of the various algorithms relies on the quality and
coverage of the stop word lists, which are used by
almost all algorithms compared here. In particu-
lar, the respective algorithms used identical stop
word lists, covering: English (583 words), French
(464), German (604), Italian (397), Polish (355),
Romanian (282), and Spanish (352).

KEYEMB-based approaches tend to focus only
on the most important sentence in the news article.
As such, frequently, several 3-grams candidates
originating from the same sentence are returned,
where most of them are redundant. Interestingly,
as regards fuzzy matching KEYEMB-LASER per-
forms better than BERT-based ones despite not
being specially trained on similarity tasks, while
KEYEMB-BERT-D performs overall best out of
the three. It is worth mentioning that this approach
is by far the slowest of the reported approaches in
terms of time efficiency.

GRAPH-based approaches suffer from a similar
focusing bias: they tend to focus on the most im-
portant concepts, as such they are always present
but so are some variations thereof, e.g. reporting
most frequent words within all the different con-
texts they appear in, therefore generating redundant
keywords. Among this family of algorithms, the
GRAPH-DEGREE performed best, meaning that
a high co-occurrence count is a good indicator of
relevance for KE.

Embedding and graph-based approaches over-
focus on the key concepts of a text. The fact that
they are based on an indirect form of counting the
most important words, without any further post-
processing, may in part explain why their perfor-
mance is comparable to TF-IDF, which relies di-
rectly on frequency count. An advantage of graph-
based approaches compared to embedding-based
ones and TF-IDF is that they don’t need to be
trained in advance on any corpora.

Figure 1: F1 scores for exact, partial and fuzzy match-
ing for YAKE-KPMINER-R.

4.3.1 Deduplication
Based on the results presented in the previous Sec-
tion we carried out some additional experiments
in order to explore whether the best performing
algorithm, namely, YAKE-KPMINER-R, could be
improved. In particular, given that this algorithm
combines merging of keywords of two different
algorithms, we have added an additional dedupli-
cation step. To be more precise, all keyword candi-
dates that are properly included in other keyword
candidates are discarded. We evaluated this new
variant with different settings as regards the maxi-
mum allowed number of keywords returned. While
we have not observed significant improvements in
terms of the F1 score when increasing the number
of keywords returned by the algorithms described
in the previous Section, the evaluation of YAKE-
KPMINER-R with deduplication revealed that in-
creasing this parameter yields some gains. Figure 3
and 4 provide P , R and F1 curves for fuzzy match-
ing according to the maximum number of keywords
allowed to be returned for the English and German
subcorpus.

One can observe that shifting the maximum num-
ber of keywords to ca. 25 results in some improve-
ment for F1 and R. While these findings pave
the way for some future explorations on parameter
tuning to improve F1 figures, one needs to empha-
size here that increasing the number of keywords,
even if resulting in some small gains in F1 is not a
desired feature from an application point of view,
where analysts expect and prefer to ‘see less than
more’.

4.4 Time efficiency performance

We have carried out a small comparison of the run-
time behaviour of the algorithms with respect to
the time needed to process a collection of 16983
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Exact (%) Partial (%) Fuzzy (%)
Algorithm P R F1 SD P R F1 SD P R F1 SD

TF-IDF 14.2 12.1 12.6 09.2 33.5 30.7 31.2 10.1 34.0 31.1 31.6 10.8
KPMINER 17.8 15.4 15.9 08.6 49.4 38.1 41.9 12.3 51.3 37.2 41.7 14.5
RAKE-DEG 13.1 11.9 12.0 09.0 45.9 33.3 37.1 14.8 47.5 30.6 35.0 18.3
RAKE-DEGFREQ 10.4 09.5 09.5 09.3 37.6 30.5 32.6 13.4 35.2 27.0 29.2 16.1
RAKE-FREQ 14.0 12.6 12.8 09.4 46.8 34.1 38.0 14.3 49.2 31.6 36.3 18.2
KTF 16.8 14.5 14.8 09.6 39.4 30.7 33.5 12.2 43.3 31.5 35.3 13.6
KEYEMB-BERT-D 08.1 08.1 07.6 07.0 38.6 24.5 28.6 16.0 40.3 27.5 31.7 13.9
KEYEMB-BERT-B 04.5 05.0 04.5 05.8 22.6 17.2 18.6 10.7 36.2 27.1 29.9 12.1
KEYEMB-LASER 02.9 03.5 03.0 05.6 18.8 15.1 16.1 11.2 39.4 29.0 32.4 13.2
GRAPH-CENTR 03.2 04.0 03.7 05.9 17.7 12.1 14.3 12.2 29.1 20.0 22.9 12.6
GRAPH-CLUST 04.1 03.8 03.8 05.4 17.2 13.0 14.2 09.2 29.0 24.6 25.9 10.7
GRAPH-CE&CL 03.9 03.9 03.8 05.5 19.1 13.4 14.7 10.4 31.4 24.8 26.7 12.2
GRAPH-DEGREE 04.2 04.4 04.1 05.9 21.2 15.3 16.8 11.2 34.5 27.3 29.4 11.6
YAKE-15 22.0 17.8 19.1 10.3 45.9 42.3 43.1 10.6 46.6 42.9 43.5 11.3
YAKE-20 19.2 20.3 19.2 09.1 41.9 47.2 43.6 09.5 42.1 48.3 44.0 10.0
YAKE-KPMINER-I 28.5 08.8 12.6 18.3 55.9 24.3 32.2 26.4 57.2 23.5 31.3 28.7
YAKE-KPMINER-R 19.9 21.9 20.1 08.5 48.2 47.1 46.6 09.4 49.8 47.2 47.2 10.6
YAKE-KPMINER-U 19.4 21.7 19.8 08.6 48.7 46.6 46.6 09.6 50.4 46.4 47.0 11.0

Table 3: Overall performance overview: exact, partial and fuzzy matching.

Figure 2: F1 fuzzy matching figures for a selection of algorithms and all languages.

Figure 3: P , R and F1 curves for fuzzy matching for
the varying number of maximum number of keywords
returned for the English subcorpus.

Figure 4: P , R and F1 curves based on varying num-
ber of maximum number of keywords returned for the
German news subcorpus.
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Algorithm time (seconds)
KTF 12.13
RAKE-DEG 9.36
RAKE-FREQ 9.33
RAKE-DEGFREQ 9.37
KPMINER 21.12
YAKE-15 21.04
YAKE-KPMINER-R 42.56

Table 4: Time efficiency comparison on a set of circa
17K news articles in English on Covid-19.

news articles on Covid-19 in English (84.9 MB
of space on disk). The time given in seconds to
run KTF, Rake, KPMiner, Yake and some variants
thereof are provided in Table 4. All the aforemen-
tioned algorithms have been implemented in Java
and optimized in term of efficient data structures
used that correspond to the upper bounds of the re-
spective time complexity of these algorithms. Both
embedding- and graph-based algorithms explored
in our study were implemented in Python, using
some existing libraries, and were not optimized for
speed. For these reasons, it is not meaningful to
report their exact time performance. As before, on
a given CPU, embedding-based approaches run an
order of magnitude slower than graph based algo-
rithms, which themselves run a magnitude slower
than the simpler algorithms, whose performance is
reported in Table 4.

5 Conclusions and Outlook

This paper presented the results of a small com-
parative study of the performance of some state-
of-the-art knowledge-lightweight keyword extrac-
tion methods in the context of indexing news ar-
ticles in various languages with keywords. The
best performing method, namely, a combination of
Yake and KPMiner algorithms, obtained F1 score
of 20.1%, 46.6% and 47.2% for the exact, par-
tial and fuzzy matching respectively. Since both
of these algorithms exploit neither any language-
specific (except stop word lists) nor other external
resources like domain-specific corpora, this solu-
tion can be easily adapted to the processing of many
languages and constitutes a strong baseline for fur-
ther explorations.

The comparison presented in this paper is not
exhaustive, other linguistically-lightweight unsu-
pervised approaches could be explored, e.g., the
graph-centric approach presented in (Skrlj et al.,
2019), and some post-processing filters to merge
redundant keywords going beyond exploiting string

similarity metrics, and simultaneously, techniques
to improve diversification of the keywords returned.

Extending the approaches explored in this study,
e.g., through use of part-of-speech-based patterns
to filter out implausible keywords (e.g., imposing
constraints to include only adjectives and nouns
as elements of keywords), use of more elaborated
graph-based keyword ranking methods (e.g. Page
Rank), integration of semantics (e.g., linking se-
mantic meaning to text sequences through using
knowledge bases and semantic networks (Papa-
giannopoulou and Tsoumakas, 2020; Hasan and
Ng, 2014; Kilic and Cetin, 2019; Alami Merrouni
et al., 2019)) would potentially allow to improve
the performance. However, these extensions would
require significantly more linguistic sophistication,
and consequently would be more difficult to port
across languages.

For matters related to accessing the ground truth
dataset created for the sake of carrying out the
evaluation presented in this paper please contact
the authors.
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