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Abstract 

Many crowdsourced NLP datasets contain sys-
tematic artifacts that are identified only after 
data collection is complete. Earlier identifi-
cation of these issues should make it easier 
to create high-quality training and evaluation 
data. We attempt this by evaluating protocols 
in which expert linguists work ‘in the loop’ 
during data collection to identify and address 
these issues by adjusting task instructions and 
incentives. Using natural language inference 
as a test case, we compare three data collection 
protocols: (i) a baseline protocol with no lin-
guist involvement, (ii) a linguist-in-the-loop in-
tervention with iteratively-updated constraints 
on the writing task, and (iii) an extension that 
adds direct interaction between linguists and 
crowdworkers via a chatroom. We find that 
linguist involvement does not lead to increased 
accuracy on out-of-domain test sets compared 
to baseline, and adding a chatroom has no ef-
fect on the data. Linguist involvement does, 
however, lead to more challenging evaluation 
data and higher accuracy on some challenge 
sets, demonstrating the benefits of integrating 
expert analysis during data collection. 

1 Introduction 

Many datasets for training and evaluating natu-
ral language understanding (NLU) models consist 
of examples written by non-expert crowdworkers. 
While it is convenient and relatively inexpensive 
to gather large datasets from non-expert crowd-
workers, the resulting datasets often suffer from 
systematic gaps and artifacts. Through post hoc 
analysis, experts have identified many such prob-
lems and found that augmenting datasets with tar-
geted examples can mitigate these issues (Yanaka 
et al., 2019; Min et al., 2020). Though non-expert 
crowdsourcing often produces flawed data, con-
cerns about scalability and crowdworker diversity 
mean there is often no viable alternative. With this 

in mind, we investigate how to leverage expert lin-
guistic knowledge during writing and annotation by 
having linguists dynamically identify artifacts and 
gaps in the data, then communicate with non-expert 
crowdworkers to instruct them towards strategies 
that address issues as they arise. 

We focus on natural language inference (NLI; 
Dagan et al., 2006, i.a.), a task where the goal is 
to predict the label (ENTAILMENT, CONTRADIC-
TION, NEUTRAL) that reflects the relationship of a 
hypothesis to a premise. For example. given the 
premise Jenny loves all animals, the hypothesis 
Jenny loves cats is an ENTAILMENT, and Jenny 
hates dogs, a CONTRADICTION. We choose NLI 
because it is among the best-studied NLU tasks, 
with demonstrated value (e.g., in pretraining (Clark 
et al., 2019)), but also multiple well-documented 
data quality issues that arise in crowdsourced data 
collection, many of which can be traced to a given 
heuristic. Because these heuristic-based issues are 
prevalent, we focus on NLI with the aim that our 
methodology can inform data collection for new 
tasks in which there are fewer known heuristics. 

Figure 1: The three protocols compared in this study. 
Each crowdworker participates in only one protocol. 

Previous efforts to develop more effective NLU 
data collection protocols have been limited in their 
ability to assess the efficacy of their interventions, 
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as they often lack direct comparisons between dif-
ferent collection methods. We directly compare 
three levels of expert involvement over five rounds 
of data collection: (i) a baseline group with no 
hands-on expert involvement (‘Baseline’), (ii) a 
group that follows linguistically-motivated con-
straints developed by experts after each data collec-
tion round to target heuristic-based weaknesses in 
the data (‘linguist-in-the-loop’ (LitL)), and (iii) a 
group that extends the LitL protocol to add direct 
interaction with the experts, including individual-
level discussion about the task, on the chat plat-
form Slack (‘LitL Chat’). These three protocols are 
shown in Figure 1, and a task example with one of 
the constraints is shown in Figure 2. 

Text: They inhabit the near-boiling water of geysers in Yellowstone, and the even 
hotter water in volcanic vents on the ocean floor. 

� The definitely correct sentence does not reuse nouns, verbs, adjectives, or adverbs 
from the text ($0.10) 

• Your definitely correct statement must not contain any of the following words: 
there, can, may, might, some, people 

Definitely correct statement: 

� The maybe correct sentence does not reuse nouns, verbs, adjectives, or adverbs 
from the text ($0.05) 

• Your maybe correct statement must not contain any of the following words: often, 
several, many, most, some, other, will 

Maybe correct statement: 

� The definitely incorrect sentence does not reuse nouns, verbs, adjectives, or ad-
verbs from the text ($0.05) 

• Your definitely incorrect statement must not contain any of the following words: 
any, never, no, nothing, not/n’t, only, always, all 

Definitely incorrect statement: 

Figure 2: Round 5 HIT with the optional No Overlap 
constraint shown. 

Qualitatively, examples in each protocol appear 
equally free of noise (incorrect labels, typos, etc.), 
and lexical diversity increases in later rounds for 
protocols with linguist intervention.1 We find that 
while expert involvement (LitL and LitL Chat) does 
not lead to better accuracy on adversarial examples 
or out-of-domain datasets, it does reduce the im-
pact of the identified artifacts and results in a more 
challenging final dataset, with model performances 
that are 5 points lower on validated data compared 
to Baseline. Surprisingly, we find no benefit to 
providing a chatroom for crowdworkers to interact 
directly with linguists. We recommend including 
expert analysis during data collection so the expert 
can address artifacts as they are identified. 

1Appendix E contains a sample of validated examples. 

2 Related Work 

NLI Data Collection Methods Large-scale 
human-elicited datasets include the Stanford Nat-
ural Language Inference Corpus (SNLI; Bowman 
et al., 2015), the Multi-genre Natural Language 
Inference Corpus (MNLI; Williams et al., 2018), 
the Chinese OCNLI corpus (Hu et al., 2020), and 
Adversarial NLI (ANLI; Nie et al., 2020). All 
four datasets use non-expert crowdworkers to write 
hypotheses and annotate labels from pre-defined 
short texts, though only OCNLI and ANLI add 
interventions to increase data diversity. In OC-
NLI, language-studies students write hypotheses in 
different data collection rounds with instructions 
for avoiding known artifacts. ANLI uses a human-
and-model-in-the-loop procedure to elicit examples 
that are progressively more difficult for their model, 
resulting in a dataset with a large human–model 
performance gap, though identifying the cause for 
model failure is left up to the discretion of the 
worker. 

Efforts to improve on sentence writing tasks for 
NLI have yielded mostly negative results in head-
to-head protocol comparisons. In an experimental 
comparison on different NLI crowdsourcing pro-
tocols, Vania et al. (2020) find that automatically 
selecting premise-hypothesis pairs for label anno-
tation does not yield a better dataset compared to a 
baseline sentence writing protocol. Bowman et al. 
(2020) compare interventions aimed at improving 
NLI writing, using protocol variants that constrain 
the worker’s task, but they see no improvements in 
transfer learning results compared to their baseline. 

Artifacts in NLI Data Several studies have iden-
tified artifacts in NLI datasets that the models 
trained on them subsequently learn (often robustly). 
Statistical regularities in the hypothesis can allow 
models to assign the correct label when trained on 
hypothesis-only input, even though the intended 
task reflects the relation between the hypothesis 
and premise (Poliak et al., 2018; Gururangan et al., 
2018, i.a.). High lexical overlap between a premise 
and hypothesis is associated with a greater prob-
ability of the label being ENTAILMENT (McCoy 
et al., 2019; Naik et al., 2018). Additional issues 
in trained models suggest the presence of gaps that 
are harder to observe directly: Sinha et al. (2021) 
note the lack of syntactic understanding in NLI 
models as one such example, demonstrating that 
models often ignore syntactic information entirely. 
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These diverse artifacts make NLI a good test case 
for protocols designed to assess issues as the data 
is collected. 

Methods for Filling the Gaps in Datasets To 
collect challenging examples for NLU tasks, re-
searchers have explored altering labeled data to cre-
ate targeted or adversarial examples. Kaushik et al. 
(2020) have crowdworkers make minimal edits to 
hypotheses to align with a revised label. Gardner 
et al. (2020) create contrast sets for evaluation by 
having experts alter already-annotated examples 
such that the resulting label changes. Wei and Zou 
(2019) use simple automatic data manipulations 
to augment datasets for several text classification 
tasks, resulting in more robust models. More lin-
guistically sophisticated manipulations have been 
used to augment MNLI to improve monotonicity 
reasoning (Yanaka et al., 2019) and to mitigate the 
lexical overlap heuristic (Min et al., 2020). These 
methods are applied after data collection is com-
plete, so it is an open question if the gaps they 
identify in a final dataset would have been avoid-
able if addressed during data collection. 

Similar to our approach, OCNLI’s instructions 
nudge writers towards writing examples that ad-
dress known artifacts. They find that encouraging 
the writers to follow constraints, such as avoid-
ing negation in a CONTRADICTION label, results 
in a harder dataset. We expand on this work by 
introducing a wider range of constraints and assess-
ing their effects throughout data collection. Our 
approach is also similar to Vidgen et al.’s (2021) 
human-generated hate-speech dataset. They intro-
duce pivots during data collection in which they 
instruct crowdworkers about how to write in ways 
that fool their model. We expand on their method 
by qualitatively assessing the crowdworkers to iden-
tify issues specific to our data as it is collected. 

Expert Interaction with Crowdworkers Tang 
et al. (2019) report that direct communication 
among crowdworkers leads to improved task perfor-
mance on image labeling, optical character recogni-
tion, and audio transcription. This suggests that col-
lecting higher quality data is possible when work-
ers have real-time group interaction. Other studies 
have reported that interaction among crowdwork-
ers is an effective tool for limiting some forms of 
bias and increasing accuracy (Drapeau et al., 2016; 
Schaekermann et al., 2018). In a different strat-
egy, Roit et al. (2020) give crowdworkers detailed 

feedback during training, then select only a small 
number of those workers for the larger task, front-
loading the work of the experts and relying on the 
selected workers to perform the task consistently. 

Despite the potential benefits of real-time inter-
action between crowdworkers and experts, there 
has not yet been a direct comparison of protocols 
that differ based on this variable. To our knowledge, 
this study is both the first to test the effect of this 
interaction and the first head-to-head experimental 
assessment of human-in-the-loop data collection 
methods, allowing us to make conclusions about 
the causal effects of the different interventions com-
pared to a baseline. 

3 Data Collection 

Task Description Our task is modeled on 
MNLI’s data collection procedure. We present 
workers with a text, for which they write statements 
they consider definitely correct, maybe correct, and 
definitely incorrect. Each round of data collection 
creates 3,500 examples, and we collect data over 
five rounds. Following each round of sentence writ-
ing, crowdworkers validate 500 of the examples 
from their protocol. We collect four validations for 
each of these example and use these labels plus the 
original one to assign a gold label based on major-
ity vote. Examples for which no gold label can be 
assigned are removed from the data. We use the 
validated data to evaluate our models and the unval-
idated data for training. Workers with a validation 
rate below 70% or whose validation responses fail 
to match the gold label at least 70% of the time are 
subject to disqualification. Throughout the study, 
we disqualified three workers from Baseline, three 
from LitL, and two from LitL Chat. 

Pay Structure To retain crowdworkers for all 
five rounds, we increase the base pay of $1/HIT2 

by $0.05 each round and pay a $20.00 bonus af-
ter the last round. 

2‘HIT’ stands for ‘Human Intelligence Task.’ Each HIT is 
a single unit that a worker accepts via the online interface. 

To ensure we collect sufficient 
examples from each worker, we award a bonus 
worth 10% of base pay for reaching milestones of 
10, 50, and 100 HITs each round. To encourage 
workers to write high-quality examples, we pay a 
$5.00 bonus each round to workers with over 25 
HITs and at least a 95% validation rate. We esti-
mate that, with bonuses, a worker who completes 
70 HITs per round with a high validation rate will 
earn $81 in Round 1 (∼$16/hr) and $95 in Round 
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5 (∼$19/hr). Workers in LitL and LitL Chat earn 
additional bonuses for completing challenge op-
tions ($0.05-$0.10), and workers in LitL Chat earn 
bonuses for participation in the chatroom ($1.50 for 
any engagement, $10.00 for active engagement). 

3.1 Crowdworker Recruitment 
We use a pre-test to recruit workers via Amazon 
Mechanical Turk (MTurk). The pre-test is open to 
workers in the United States with approval rates at 
or above 98% and more than 1000 HITs approved. 
The pre-test is a sentence-writing task where work-
ers see a premise and write hypotheses under each 
of the three NLI labels. To assess if workers can 
follow more complicated instructions, they also 
write one entailed sentence that uses a conjunction 
and one neutral sentence that does not re-use any 
words from the text. 

We collect responses from 155 crowdworkers, 
of whom 145 indicate interest in completing future, 
similar HITs. From those 145, we read their re-
sponses and exclude 24 for failing to adequately 
complete the task (many due to responses that do 
not follow instructions). The remaining 121 crowd-
workers are retained and split between the three 
experimental protocols in a pseudo-random way 
such that (i) the three workers who asked not to 
participate in a chat forum are placed in the Base-
line or LitL protocol,3 and (ii) groups are matched 
equally for workers’ initial skill level based on a 
4-point rating scale of their qualitative performance 
on the pre-test. A total of 37 crowdworkers ulti-
mately participate in data collection in Baseline, 30 
in LitL, and 32 in LitL Chat. 

3Though a potential design confound, this was necessary 
and had minimal effect. Requiring workers to sign up for a 
third party service violates Amazon’s terms of service, so we 
allow participants to opt out. Only three participants opted 
out of the chat (two of whom dropped out after Round 1), and 
many workers placed in a non-chat protocol had indicated a 
willingness to participate in the chat. 

3.2 Writing and Label Annotation Details 
Crowdworkers write examples and annotate labels 
in five rounds, with each round lasting one week 
and consisting of 1167 unique premises (result-
ing in 3501 examples). Between rounds, we con-
duct several planned diagnostics on our datasets to 
monitor the impact of our intervention and inform 
crowdworker feedback for the following round. All 
three protocols were run completely in tandem so 
that workers in the three protocols saw HITs be-
come available at the same time and were sent any 

emails or bonuses at the same time. 

Writing Stage Crowdworkers construct hypothe-
ses based on premises taken from the SLATE sub-
set of MNLI. SLATE hosts popular culture arti-
cles from the archives of Slate Magazine. After 
Round 1, we exclude premises shorter than six to-
kens based on feedback from crowdworkers that 
many of the very short premises are incomplete, 
nonsensical, or confusing to write hypotheses for. 

Diagnostic Stage After each round, we fine-tune 
RoBERTa (Liu et al., 2019) models using data 
collected up to that round. We then evaluate the 
models on diagnostic examples from GLUE (Wang 
et al., 2019) and HANS (McCoy et al., 2019). The 
GLUE examples target different aspects of linguis-
tic reasoning including lexical semantics, predicate-
argument structure, logic, and world knowledge. 
HANS tests for three shallow heuristics, including 
lexical overlap between a premise and hypothesis. 
We also train and evaluate RoBERTa models us-
ing hypothesis-only input to assess artifactual cues 
about the label present in the hypothesis (Gururan-
gan et al., 2018). Finally, we assess the distribution 
of hypothesis lengths and the pointwise mutual 
information (PMI) between each word in the vo-
cabulary and label. Hypothesis length does not 
appear to differ by protocol or label, so it never 
informs our constraints. 

We use these diagnostics as well as qualitative re-
views of the data to devise linguistically-motivated 
guidelines for the following round, allowing us to 
adapt feedback for crowdworkers in a structured 
way as the data is collected. This process is con-
ducted by five of the authors who have graduate-
level training in English syntax and semantics. 

3.3 Constraints 

Banned Words After Round 1, crowdworkers in 
LitL and LitL Chat are instructed not to use certain 
words when writing sentences for each label. We 
identify 5-7 banned words after each round. We 
use PMI to identify which words to ban under each 
label, as words with high label PMI are a major 
contributor to artifacts that allow for high perfor-
mance on hypothesis-only input. We observe high 
PMI between existentials (e.g., there, some) and 
ENTAILMENT, quantificational expressions (e.g., 
many, often) and NEUTRAL, and negations (e.g., 
not, never) and CONTRADICTION. Figure 2 shows 
examples of the banned words during Round 5. 

https://0.05-$0.10
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Challenge Options We use constraints, framed 
as challenge options to the worker, to target heuris-
tics that we identify in the data during the diag-
nostic state. By explicitly telling workers to avoid 
these heuristics, we aim to lower their contribution 
to any artifacts in the final dataset. We determine 
constraints through qualitative assessment of the 
data, taking into consideration syntactic diversity, 
lexical choice, and semantic or world-knowledge-
based reasoning patterns. For example, after notic-
ing that the majority of hypotheses relied only on 
the stated information from the premise in Round 
1, we encouraged workers in Round 2 to focus on 
“background knowledge” (last example in Table 1) 
that they know to be true, but isn’t explicitly stated, 
such as the knowledge that Britain and America are 
countries on opposite sides of the world. The 12 
challenge options are defined in Appendix A, with 
examples of each in Table 1. After Round 1, each 
HIT in LitL and LitL Chat lists one constraint. As-
signment of the constraints was completely random 
and not based on features of individual premises, 
but each constraint was presented as a possible op-
tion an approximately equal number of times across 
HITs. This task is optional for the workers, as some 
constraints are incompatible with some examples. 

3.4 Protocols 
Baseline Protocol Our Baseline protocol follows 
the task description in §3 and does not include any 
direct expert involvement. Crowdworker perfor-
mance is only measured via validation. 

Linguist-in-the-Loop (LitL) Protocol LitL ex-
tends the Baseline protocol with constraints (de-
scribed in §3.3). As the constraints make the task 
more difficult, we award bonuses of $0.05-$0.10 
per example to workers who indicate that they at-
tempted the challenge option. The bonus amount 
is determined by the linguists’ assessment of the 
difficulty; for example, the No Overlap constraint 
is more difficult to apply in entailment examples 
than neutral, so a No Overlap entailment example 
has a higher bonus. During validation, crowdwork-
ers also label whether each example adheres to the 
challenge constraint (the interface is shown in Ap-
pendix F). For any worker whose validation rate on 
the challenges is below 50%, we contact them to 
explain the source of their errors. 

LitL Chat Protocol We provide direct commu-
nication with expert linguists on Slack. We en-
courage workers to ask task-specific questions for 
anything they find challenging or confusing, and 
we encourage active discussion to help workers 

Constraint Premise Hypothesis Label Attempt rate 
LitL Litl Chat 

Hypernym or Does anyone know what happened to chaos? Whatever happened to the lack of order is E 22.8 23.7 
hyponym certainly a mystery. 
Banned word Inflation is supposed to be a deadly poison, Inflation is not supposed to be a useful E 43.7 27.7 
in diff. label not a useful medicine. medicine 
Temporal John Kasich dropped his presidential bid. They said that earlier, John Kasich had E 34.1 10.0 
reasoning dropped his presidential bid. 
Synonym or 2) This particular instance of it stinks. This instance is perceived to be a good C 39.5 24.5 
antonym thing. 
All overlap News argues that most of America’s 93 mil- News argues that volunteers aren’t doing E 21.8 30.4 

lion volunteers aren’t doing much good. much good. 
Register First, the horsemen brought out a teaser Teaser horses are commonly thought to be N 25.3 15.0 
change horse. both entertaining and tragic. 
No overlap and she doesn’t floss while driving. The woman has an automated car. N 29.2 22.3 
Relative Sun Ra’s spaceships did not come, as it were, The spaceships that belong to Sun Ra came C 35.0 24.3 
clause out of nowhere. out of nowhere 
Reverse argu- After an inquiry regarding Bob Dole’s ... It is illegal for Bob Dole to receive in- N 36.7 29.4 
ment order quiries. 
Grammar The Bush campaign has a sweet monopoly The Obama campaign had a sweet C 22.6 13.4 
change on that. monopoly on that. 
Sub-part He was crying like his mother had just wal- He cried a lot, as though he were walloped E 23.2 19.1 

loped him. on his behind. 
Background In both Britain and America, the term cov- The term generally applied to countries in E 32.9 15.9 
knowledge ers nearly everybody. two opposite sides of the world. 

Table 1: Sentence pairs displaying each challenge option. Where applicable, relevant contrasts are bolded. Exam-
ples are randomly drawn from data that passed validation on the constraint with the restriction that both sentences 
be fewer than 80 characters (∼ 32% of the data). The last column shows the percentage of the challenges attempted. 

https://0.05-$0.10
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better understand the task. Most questions seek 
to clarify if a certain strategy ‘counts’ as adhering 
to a constraint. Feedback given via email in the 
LitL protocol is instead given via direct message 
in Slack, unless the worker initiates contact over 
email, as was sometimes the case for logistical is-
sues. Additionally, at the beginning of Rounds 3–5, 
we identify creative examples written in a previous 
round and post them to Slack for inspiration, with 
a brief comment. These interactions on Slack are 
the only difference between the LitL and LitL Chat 
protocols. 

3.5 Crowdworker Performance 

Inter-Annotator Agreement Baseline shows 
the highest inter-annotator agreement on NLI labels 
with a Krippendorf’s α of 0.709, while LitL and 
LitL Chat have 0.655 and 0.640, respectively. All 
three meet the standard threshold for “substantial 
agreement.” We calculate Krippendorf’s α because 
it is both appropriate for nominal data and robust 
to missing values (Zapf et al., 2016), i.e., cases 
where not every worker rates every item. Valida-
tion rates for the NLI labels are 93.7% for Baseline, 
89.76% for LitL, and 91.36% for LitL Chat. LitL 
and LitL Chat may have slightly lower validation 
rates than Baseline because the constraints lead to 
challenging examples, making the validator’s task 
more difficult. 

Frequency of Constraint Attempts The at-
tempt rate of bonus challenges differs between con-
straints (Table 1). Overall, more abstract categories 
(e.g., background knowledge) are attempted less 
often than more concrete constraints. There are 
also differences by protocol, as LitL has a higher 
attempt rate than LitL Chat, possibly because work-
ers in LitL Chat are more selective in identifying 
appropriate examples to apply the constraints to. 
Supporting this potential explanation, we find that 
LitL Chat had higher constraint validation rates 
than LitL in Rounds 4 and 5, indicating that work-
ers in LitL Chat adhered to the constraints more 
accurately after practice. 

Use of Slack The total number of active workers 
on Slack fell from 23 in Round 1 to just 16 by 
Round 4.4 The total number of messages sent also 
fell with each round, going from about 215 posts 
and replies in Round 1 to 162 in Round 4. It may 

be that workers rely on the chat less as they become 
more familiar with the task. Though only about 
half of the workers in LitL Chat participated in 
the Slack channel, the workers who were active on 
Slack also completed a high number of HITs; if the 
chatroom has a reliable effect on the data created 
by workers using it, then we expect this effect to 
still be measurable. Further, though we heavily 
incentivized use of the Slack channel, the fact that 
many workers still chose not to use it reveals that 
this low participation rate may be a typical outcome 
on micro-task platforms such as MTurk. 

4Round 5 was even lower, but spanned the US Thanksgiv-
ing holiday, which likely artificially lowered participation. 

4 Modeling Experiments 

For each round and protocol, we collect 3.5k ex-
amples and use the 500 validated examples as val-
idation data and the remaining 3k for training.5 

We then fine-tune a RoBERTaLg (Large) model 
on all the data accumulated up to that round. For 
example, the Round 2 model is trained on exam-
ples from Rounds 1 and 2 with training and vali-
dation sizes of 6k and 1k, respectively. We also 
fine-tune a RoBERTaLg model previously trained 
on MNLI (RoBERTaLg+MNLI), though results are 
consistently similar to RoBERTaLg (details in Ap-
pendix B). After each round, we evaluate our mod-
els on the diagnostics described in §3.2. 

5Data and code are available at https://github.com/Alicia-
Parrish/ling in loop 

Estimating Confidence Intervals We estimate 
average accuracy and confidence intervals by fine-
tuning 10 additional models with a sample of 90% 
of the collected training data. We use the best hy-
perparameters for each protocol and round from 
our hyperparameter search described below. In 
sampling the data, we first sort the data by crowd-
worker and successively remove 10% of examples, 
allowing us to study variation among workers while 
controlling for training set size. This design choice 
also helps account for the potential issue of over-
estimating performance due to having the same 
writers for the training and test sets (Geva et al., 
2019), as the successive removal of 10% of the 
training data simulates the removal of all or most 
of a single worker’s writing from the train set, but 
not the test set, similarly in all protocols. 

Implementation To fine-tune our models, we 
perform a grid search over learning rate ∈ {5e − 
6, 1e−5, 2e−5, 3e−5} and batch size ∈ {16, 32}
and use the hyperparameters yielding the best in-

https://github.com/Alicia-Parrish/ling_in_loop/tree/master
https://github.com/Alicia-Parrish/ling_in_loop/tree/master
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Figure 3: Performance of RoBERTaLg fine-tuned on 
data collected through different protocols on validation 
data from the same protocol, configured normally (top) 
or using only the hypothesis (bottom). For each round, 
we include training and validation data accumulated up 
to Round n. The dashed black line marks the average 
majority class baseline across protocols. Error bars rep-
resent bootstrapped confidence intervals. 

domain validation accuracy. We train for 20 epochs, 
since each round of data collection yields 3k train-
ing examples, and longer training has been shown 
to help smaller training sets (Zhang et al., 2020). 
Our code is based on jiant (Phang et al., 2020), 
which uses PyTorch (Paszke et al., 2019) and Trans-
formers (Wolf et al., 2020). 

4.1 Results 

Evaluation Set Difficulty We test whether data 
collected with expert intervention leads to a more 
challenging test set by comparing in-domain perfor-
mance for each protocol for RoBERTaLg, using the 
validated evaluation data accumulated up to that 
round (Figure 3). This allows us to study the charac-
teristics of an iteratively collected corpus using cu-
mulative rounds in each protocol. We see that LitL 
and LitL Chat performance falls below Baseline af-
ter the introduction of linguistically-informed con-
straints in Round 2. Figure 5 shows a similar trend 
– performance from RoBERTaLg fine-tuned only on 
MNLI on the validation sets decreases or remains 
lower for LitL and LitL Chat, while performance 
on Baseline increases as more data is collected. As 
we evaluate on validated examples, it is unlikely 
that this lower performance is due to noise in the 
data. Rather, these findings indicate we are able to 
create more challenging evaluation data using the 
LitL and LitL Chat interventions, with LitL slightly 
outperforming LitL Chat. 

Hypothesis-Only Performance We test 
whether the data collected with linguist inter-
vention leads to a reduction in artifacts that 
contribute to high performance on hypothesis-only 
input. We compare accuracy for each protocol 
for RoBERTaLg trained on hypothesis-only input, 
where lower accuracy suggests fewer artifacts in 
the data (Figure 3). Both LitL and LitL Chat show 
lower accuracy than Baseline, and this gap widens 
in later rounds. To assess whether this widening 
from Round 1 to 5 is statistically reliable, we 
conduct a two-way ANOVA of round by protocol, 
which yields an interaction (p = 0.049), indicating 
that while hypothesis-only performance increases 
for all protocols with more training examples, this 
increase in artifacts is significantly reduced in 
LitL and LitL Chat compared to Baseline. The 
lower rate of artifacts in LitL and LitL Chat may 
be due to the lower average word-label PMI, 
which increases over rounds for Baseline while 
consistently falling in both LitL and LitL Chat.6 

However, for all protocols, accuracies are still 
above chance performance, leaving room to further 
reduce these artifacts. 

Diagnostic Sets We evaluate whether fine-tuning 
on data collected with linguist involvement leads to 
a model that has higher performance on challenge 
test sets. Figure 4 shows model performance on the 
GLUE diagnostic set and HANS non-entailment 
examples. A two-way ANOVA of round by pro-
tocol does not reveal any significant interactions 
or main effects for GLUE. For HANS, we see 
higher accuracy from LitL and LitL Chat for Lexi-
cal Overlap and Subsequence examples in Rounds 
4 and 5 after introducing No and All Overlap con-
straints, though the interaction is only significant 
with RoBERTaLg+MNLI (pcorr = 0.0147 and pcorr 

= 0.0119 for Lexical Overlap and Subsequence, 
respectively, after applying Bonferroni correction 
to correct for 7 comparisons against the same null 
hypothesis (Cabin and Mitchell, 2000)), despite the 
visually larger accuracy increases in RoBERTaLg. 
This is likely due to greater variance in the data, 
indicating that there may be strong effects of indi-
vidual workers on lexical overlap and subsequence 
biases. Performance on HANS entailment exam-
ples are in line with McCoy et al. (2019) with me-
dian accuracies of 90% or higher (Appendix D). 

To investigate if lexical overlap rates differ by 

6A two-way ANOVA again reveals a significant interaction 
of protocol by round (p = 0.022) on word-label PMI values. 
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Figure 4: Performance of RoBERTaLg fine-tuned on data collected through different protocols on the GLUE 
diagnostic set (top) and HANS non-entailment examples (bottom). Error bars represent bootstrapped confidence 
intervals. 
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Figure 5: Average performance of RoBERTaLg fine-
tuned on MNLI (not our data) over 10 random restarts 
on validated examples accumulated up to Round n. Er-
ror bars represent bootstrapped confidence intervals. 

protocol, we assess classification accuracy for a 
linear model trained only on the example’s overlap 
rate, defined as the proportion of words in the hy-
pothesis that are also in the premise. We observe 
that any artifactual cues introduced from overlap 
rate are strongest in the Baseline protocol, which 
performs 9.52 points above majority class guessing, 
while LitL and LitL Chat perform 8.06 and 6.88 
points above majority class guessing, respectively. 

Held-Out Evaluation Sets After the final round 
of data collection, we test whether models fine-
tuned on data collected with linguist involvement 
show better out-of-domain performance by eval-
uating models trained on our data on MNLI-
mismatched7 (Williams et al., 2018) and ANLI 
(Nie et al., 2020). Evaluating on held-out sets al-
lows us to test if our interventions lead to increased 
model accuracy on datasets generated through dif-
ferent protocols or from different sources while 

7

Figure 6: Performance of RoBERTaLg fine-tuned on 
data collected through different protocols on MNLI-
mismatched (top) and ANLI (bottom). Error bars rep-
resent bootstrapped confidence intervals. 

The MNLI corpus includes two evaluation sets, MNLI-
matched and MNLI-mismatched, with examples sourced from 
different genres. We evaluate on MNLI-mismatched, as we 
source our premise sentences from an MNLI-matched genre. 

ensuring that we do not overly tune our feedback to 
these benchmarks. Figure 6 shows that there is lit-
tle difference in ANLI and MNLI-mismatched per-
formance between models trained with data from 
different protocols. The high variability in Round 
5 accuracy for LitL Chat may be due to artifacts 
from just one or two crowdworkers, highlighting 
the importance of estimating individual workers’ 
effects on a final dataset. We perform a more gran-
ular analysis on ANLI examples using the tags 
from Williams et al. (2020) and again find no clear 
effect of protocol (details in Appendix C). Even 
though our interventions reduce some artifacts in 
the hypothesis and improve model performance on 
HANS non-entailment examples, we have no evi-
dence that these benefits transfer to out-of-domain 
examples or examples from adversarial protocols. 
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5 Considerations in Choosing a Protocol 

In broad terms, we observe a benefit from dy-
namically updating instructions and incentives to 
address artifacts identified during data collection. 
This procedure increased the average cost per ex-
ample by 4.1% over an average base cost of $0.367. 
We offered $0.05 to $0.10 per example, but given 
the somewhat low rate at which crowdworkers 
chose to attempt the challenges (28.6% and 21.2% 
for LitL and LitL Chat, respectively), we find it 
likely that increasing the amount offered per exam-
ple would have increased participation, potentially 
also increasing the benefits observed in model per-
formance. In an exit survey, over 50% of workers 
in LitL and LitL Chat indicated that they would 
have completed more optional challenges if the pay 
had been higher. We recommend that future work 
using challenge options offer bonuses worth at least 
15% of the base pay. 

Cost of Linguist Involvement The iterative 
analyses and updates to the guidelines in LitL and 
LitL Chat protocols took 10–12 hours of expert 
time per week, compared to one hour per week 
to monitor task completion in Baseline. The use 
of Slack nearly doubled the expert time needed, 
adding an additional 8–10 hours each week for 
LitL Chat over LitL, even after taking into account 
the slight reduction in time spent replying to email 
questions that shifted to Slack. If we value linguist 
time at $40/hr, this raises the final price per exam-
ple to $0.378 in Baseline, with LitL 31.2% higher, 
and LitL Chat 58.5% higher. 

Qualitative Considerations Though many 
crowdworkers in LitL Chat expressed that they 
enjoyed the extra communication, crowdworkers 
from LitL and LitL Chat rated the task as ‘more 
enjoyable’ than typical MTurk tasks at nearly 
identical rates (85.2% and 87.5% respectively, 
compared to 67.7% in Baseline). Workers’ 
ratings of the difficulty of writing and validation 
tasks were also nearly identical among the three 
protocols. We therefore find that, for typical 
data collection on MTurk, the addition of a chat 
platform to facilitate worker-expert interaction is 
ineffective at improving data quality. 

6 Conclusion 

Having experts review and analyze incoming 
crowdsourced data during data collection allows 
those experts to identify new areas of weakness at 

each round and update guidelines and constraints 
while there is still time for those interventions to 
lessen the impact of artifacts in the data. Though 
we do not observe any increases in out-of-domain 
accuracy, linguist involvement leads to more chal-
lenging evaluation data and higher accuracy on 
some challenge sets in HANS. One-on-one interac-
tions between experts and crowdworkers, though 
reported in some studies as being beneficial for 
more challenging tasks, has no measurable effect 
in our study. Future work could extend the expert-
involved protocol to identify additional interven-
tions that would lead to datasets with better gener-
alizability. 
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7 Ethical Considerations 

Typical MTurk tasks pay well below a living wage 
for the US, with median earnings at only about 
$2/hr (Hara et al., 2018). Though we target a fair 
wage of $15/hr, MTurk as a whole is not designed 
to ensure fair pay for its workers. We detail our 
estimates of worker pay to make it clear that we 
ensured a fair rate, but we recognize that any work 
using this platform has the potential to encourage 
more ‘typical’ low-paying tasks. Additionally, we 
did not control for crowdworker demographics nor 
did we explicitly give workers instructions about 
avoiding social biases in their writing. There is 
therefore no reason to expect that training a system 
on data collected via the protocol we advocate for 
here will result in a model that is more fair. 
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A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc. 

Jason Phang, Phil Yeres, Jesse Swanson, Haokun 
Liu, Ian F. Tenney, Phu Mon Htut, Clara Va-
nia, Alex Wang, and Samuel R. Bowman. 2020. 
jiant 2.0: A software toolkit for research on 
general-purpose text understanding models. http: 
//jiant.info/. 

Adam Poliak, Jason Naradowsky, Aparajita Haldar, 
Rachel Rudinger, and Benjamin Van Durme. 2018. 
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics, 
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics. 

Paul Roit, Ayal Klein, Daniela Stepanov, Jonathan 
Mamou, Julian Michael, Gabriel Stanovsky, Luke 
Zettlemoyer, and Ido Dagan. 2020. Controlled 
crowdsourcing for high-quality QA-SRL annotation. 
In Proceedings of the 58th Annual Meeting of the 
Association for Computational Linguistics, pages 
7008–7013. 

Mike Schaekermann, Joslin Goh, Kate Larson, and 
Edith Law. 2018. Resolvable vs. irresolvable dis-
agreement: A study on worker deliberation in 
crowd work. Proceedings of the ACM on Human-
Computer Interaction, 2(CSCW):1–19. 

Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, 
and Adina Williams. 2021. UnNatural Language In-
ference. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics 
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), 
pages 7329–7346, Online. Association for Computa-
tional Linguistics. 

Wei Tang, Ming Yin, and Chien-Ju Ho. 2019. Leverag-
ing peer communication to enhance crowdsourcing. 
In The World Wide Web Conference, WWW 2019, 
San Francisco, CA, USA, May 13-17, 2019, pages 
1794–1805. ACM. 

Clara Vania, Ruijie Chen, and Samuel R. Bowman. 
2020. Asking Crowdworkers to Write Entailment 
Examples: The Best of Bad Options. In Proceed-
ings of the 1st Conference of the Asia-Pacific Chap-
ter of the Association for Computational Linguistics 

and the 10th International Joint Conference on Nat-
ural Language Processing, Online. Association for 
Computational Linguistics. 

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and 
Douwe Kiela. 2021. Learning from the worst: Dy-
namically generated datasets to improve online hate 
detection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics 
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), 
pages 1667–1682, Online. Association for Computa-
tional Linguistics. 

Alex Wang, Amanpreet Singh, Julian Michael, Felix 
Hill, Omer Levy, and Samuel R. Bowman. 2019. 
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th 
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 
2019. 

Jason Wei and Kai Zou. 2019. EDA: Easy data aug-
mentation techniques for boosting performance on 
text classification tasks. In Proceedings of the 
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International 
Joint Conference on Natural Language Processing 
(EMNLP-IJCNLP), pages 6382–6388, Hong Kong, 
China. Association for Computational Linguistics. 

Adina Williams, Nikita Nangia, and Samuel Bowman. 
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American 
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 
1 (Long Papers), pages 1112–1122. Association for 
Computational Linguistics. 

Adina Williams, Tristan Thrush, and Douwe Kiela. 
2020. ANLIzing the adversarial natural language in-
ference dataset. arXiv preprint arXiv:2010.12729. 

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 
Teven Le Scao, Sylvain Gugger, Mariama Drame, 
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing: 
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics. 

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019. HELP: A dataset for identifying 
shortcomings of neural models in monotonicity rea-
soning. In Proceedings of the Eighth Joint Con-
ference on Lexical and Computational Semantics 
(*SEM 2019), pages 250–255, Minneapolis, Min-
nesota. Association for Computational Linguistics. 

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jiant.info/
http://jiant.info/
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://www.aclweb.org/anthology/2020.acl-main.626/
https://www.aclweb.org/anthology/2020.acl-main.626/
https://doi.org/10.1145/3274423
https://doi.org/10.1145/3274423
https://doi.org/10.1145/3274423
https://doi.org/10.18653/v1/2021.acl-long.569
https://doi.org/10.18653/v1/2021.acl-long.569
https://doi.org/10.1145/3308558.3313554
https://doi.org/10.1145/3308558.3313554
https://www.aclweb.org/anthology/2020.aacl-main.68/
https://www.aclweb.org/anthology/2020.aacl-main.68/
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://arxiv.org/abs/2010.12729
https://arxiv.org/abs/2010.12729
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027


4897

Antonia Zapf, Stefanie Castell, Lars Morawietz, and 
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A List of Challenge Options 

For each challenge option, we present workers with 
the name of the constraint and a brief explanation 
of what it means. The brief explanation is fol-
lowed by a longer 2-3 sentence explanation that 
includes a concrete example, such as showing what 
a relative clause is or giving an example of a hyper-
nym/hyponym pair. 

Lexical Options 

• Temporal reasoning (Round 2): The hypoth-
esis should reference two separate time points. 

• Restricted word in different label (Round 
2): The hypothesis should contain a word that 
is banned for a different label. 

• Hypernym or hyponym (Rounds 2 & 3): 
The hypothesis should contain a hypernym 
or hyponym (a more or less specific word or 
phrase) of a word in the premise. 

• Synonym or antonym (Rounds 2 & 3): The 
hypothesis should contain a synonym or 
antonym of a word in the premise. 

• No overlap (Rounds 4 & 5): The hypothesis 
should use none of the content words appear-
ing in the premise. Content words are nouns, 
verbs, adjectives, and adverbs. 

• All overlap (Rounds 4 & 5): The hypothesis 
should only use content words that appear in 
the premise. Introducing new function words 
is allowed, as is changing grammatical fea-
tures of the content words. 

Syntactic Options 

• Relative clause (Round 2): The hypothesis 
should contain a relative clause. A relative 
clause is a noun that is described by a phrase 
that begins with words like who or that. 

• Reverse argument order (Rounds 2 & 3): 
The hypothesis should contain a pair of noun 
phrases from the premise in reverse order. 

• Grammar change (Round 4): The hypothe-
sis should change a grammatical element of 
the premise, such as tense, number, or gender 
on a pronoun. 

World Knowledge Options 

• Background knowledge (Rounds 2 & 4): 
The hypothesis should target background facts 
or general knowledge that workers can infer 
from the premise. 

• Sub-part (Round 3): The hypothesis should 
refer to something that is a part of an entity in 
the premise. For example, sub-parts of a bus 
include its steering wheel and engine. 

• Register change (Round 5): The hypothesis 
should differ from the original text in its level 
of formality. 

B MNLI-Pretrained RoBERTa Results 
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Figure 7: Performance of RoBERTaLg+MNLI fine-
tuned on data collected through different protocols on 
in-domain validation data trained with either the full ex-
ample (top) or hypothesis-only (bottom) input. Higher 
hypothesis-only accuracy indicates a greater effect of 
artifacts. For each round, we include training and vali-
dation data accumulated up to Round n. Dashed black 
line marks average majority class baseline across pro-
tocols. Error bars represent bootstrapped confidence 
intervals. 

We fine-tune a RoBERTaLg model previously 
trained on MNLI (RoBERTaLg+MNLI) on the same 

https://arxiv.org/abs/2006.05987
https://arxiv.org/abs/2006.05987
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Figure 8: Performance of RoBERTaLg+MNLI fine-
tuned on data collected through different protocols on 
MNLI-mismatched (top) and ANLI (bottom). The 
black line for MNLI-mismatched and ANLI indicates 
performance of RoBERTaLg fine-tuned on MNLI alone. 
Error bars represent bootstrapped confidence intervals. 

sets of training data used for the RoBERTaLg anal-
yses. We find similar trends to those from fine-
tuning RoBERTaLg and report them in the analo-
gous plots here. 

Figure 7 shows the performance of 
RoBERTaLg+MNLI fine-tuned using either 
the full example or hypothesis-only input. For both 
types of input, we see a performance gap between 
Baseline and our intervention protocols. We 
perform a two-way ANOVA of round by protocol 
to see if this performance gap significantly changes 
between rounds 1 and 5 and find a significant 
interaction (p < 0.001 for both full example and 
hypothesis-only input). For the full example input, 
this indicates that our interventions create more 
challenging evaluation data. For hypothesis-only 
performance, Baseline performance increases 
while LitL and LitL Chat remain relatively 
unchanged, indicating that our interventions 
mitigate stronger hypothesis-only artifacts in NLI 
datasets as new data is collected. 

Figure 8 shows the performance of 
RoBERTaLg+MNLI fine-tuned on each proto-
col on MNLI-mismatched and ANLI. We find no 
significant difference among protocols for either 
held-out set. 

Figure 9 shows the performance of 
RoBERTaLg+MNLI fine-tuned on data from 
each protocol on the GLUE diagnostic set and 
HANS non-entailment examples. For the GLUE 
diagnostic set, we do not find any significant 
difference among protocols. For the HANS 

examples, we perform a two-way ANOVA of 
round by protocol and find significant interaction 
terms for all HANS categories (pcorr = 0.0126, 
0.0147, 0.0119 for Constituent, Lexical Overlap, 
and Subsequence, respectively, after applying 
Bonferroni correction for 7 tests against the 
same null hypothesis). For Lexical Overlap 
and Subsequence, these findings indicate our 
interventions lead to higher accuracy compared 
to Baseline. For the Constituent examples, the 
data from each protocol is especially noisy, with 
larger error bars and more dramatic changes in 
performance between rounds; it is unclear whether 
this is due to our protocol or the types of examples 
that the Constituent subset of HANS uses. 

C ANLI Performance by Reasoning Type 

We test whether any of the reasoning tags in 
ANLI (Williams et al., 2020) reveal an area 
where data collection with linguist involvement 
leads to improved model performance. Figure 
10 shows the performances of RoBERTaLg and 
RoBERTaLg+MNLI fine-tuned on our data and 
tested on ANLI by reasoning tag. Similar to our 
findings in Figures 6 and 8, we do not find any in-
creases in accuracy from our interventions for any 
reasoning tags. 

D HANS Entailment Peformance 

On the entailment subset of HANS, models typi-
cally achieve accuracies near 100% McCoy et al. 
(2019). This is because the three heuristics in 
HANS target instances that lead to a greater like-
lihood of the model choosing ENTAILMENT com-
pared to NEUTRAL or CONTRADICTION, and thus 
the non-entailment portion of HANS is the chal-
lenge set. Figure 11 shows the performance of 
RoBERTaLg and RoBERTaLg+MNLI fine-tuned on 
our data and tested on HANS entailment exam-
ples. For RoBERTaLg, variability in performance 
reduces in later rounds as the training set size grows 
with 3k examples per round, though median per-
formances for all rounds are still 90% or higher. 
For RoBERTaLg+MNLI, accuracies are near 100%, 
consistent with McCoy et al.’s findings. 

E Examples of Collected Data 

In order to show a representative sample of the val-
idated data, we randomly sample premises from 
Round 5 data for which annotations exist in all 
three labels for each protocol (roughly 45% of that 
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Figure 9: Performance of RoBERTaLg+MNLI fine-tuned on data collected through different protocols on the 
GLUE diagnostic set (top) and HANS non-entailment examples (bottom). The black line indicates performance of 
RoBERTaLg fine-tuned on MNLI alone. Error bars represent bootstrapped confidence intervals. 
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Figure 10: Performance of RoBERTaLg (top) and RoBERTaLg+MNLI (bottom) fine-tuned on data collected through 
different protocols on ANLI by reasoning tag from Williams et al. (2020). The black line indicates performance of 
a RoBERTaLg trained on MNLI alone. Error bars represent bootstrapped confidence intervals. 

round’s validated data). Five such examples are 
presented in Table 2. Example complexity varies 
widely from example to example, and it is not 
always the case that the example in Baseline is 
the simplest one. For premise 4, for example, the 
Baseline crowdworker has written very complex 
examples that require abstract reasoning about the 
knowledge that Harris has. For this same premise, 
the LitL Chat crowdworker has also created a tricky 
set of examples, in this case ones that do not re-use 
any words from the original premise. 

In premise 3, we see an example where the LitL 
Chat crowdworker uses the idiom seen better days 
for the entailment example, in place of just using a 
different lexical item for tough as the crowdwork-
ers in the other two protocols do. Use of idioms 
was suggested to workers in LitL and LitL Chat 
as one way to write more creative examples. In 

premise 5, we see that the LitL crowdworker has 
written a challenging contradiction example, one 
which requires knowledge that if help is needed on 
a project, that means it must not be complete. 

F Validation Task Interfaces 

Figure 12 provides an example of the validation 
interface used by the Baseline protocol throughout 
the study, and by LitL and LitL Chat in rounds 
1 before constraints were introduced. Each HIT 
contained six such examples. 

Figure 13 provides an example of the validation 
interface used by LitL and LitL Chat in rounds 2 
through 5. Each HIT contained six such examples. 
The only difference between this and Figure 12 is 
that, in these HITs, workers are also prompted to 
validate whether the constraint was followed for 
that example. 
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Figure 11: Performance of RoBERTaLg (top) and RoBERTaLg+MNLI (bottom) fine-tuned on data collected through 
different protocols on HANS entailment examples. The black line indicates performance of a RoBERTaLg trained 
on MNLI alone. Error bars represent bootstrapped confidence intervals. 

Text: Trump, who said he would decide by March whether to run for 
president, would likely spend 100millionto200 million of his own 
money on a campaign. 

Statement: Trump was considering a presidential campaign. 

The statement about the text is: 

Definitely correct Maybe correct Definitely incorrect 
◦ ◦ ◦ 

Figure 12: Example question from a validation HIT 
used for Baseline throughout the study, and for LitL 
and LitL Chat in round 1 before the introduction of 
challenge options. 

Text: The story also made the front page of the New York Times and 
the Financial Times of London, which said that more than 10,000 mem-
bers of a mystic cult called Fa Lun Gong caused acute embarrassment 
to security forces by virtually surrounding the compound where China’s 
leaders work. 

Statement: Security forces were embarrassed by a cult in China. 

The statement about the text is: 

Definitely correct Maybe correct Definitely incorrect 
◦ ◦ ◦ 

For the statement above, does the following constraint apply the state-
ment relies on something that is not explicitly stated, but is part of com-
mon knowledge 

Yes No 
◦ ◦ 

Figure 13: Example question from a validation HIT 
that includes validation of the challenge options. This 
task was used with LitL and LitL Chat after round 1, 
once we had introduced challenge options into the task. 
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2 

4 

Premise Label Hypothesis 
Baseline LitL LitL Chat 

1 (The Ramseys E Some people were skeptical The Ramseys came up with Some speculate that the 
buried their of the Ramseys’ reasons for a story to tell the media they Ramseys worked out a story 
daughter in Atlanta, going on vacation. didn’t do it. while on vacation. 
then vacationed in N The Ramsey’s held a pri- The Ramseys had nothing The Ramseys worked in At-
Sea Island, Ga.) vate funeral service for their to hide. lanta. 
This absence, some daughter. 
speculate, gave the C The Ramsey’s daughter The Ramseys went into The Ramseys buried their 
Ramseys time to joined them on their trip to mourning after burying daughter in Sea Island, Ga. 
work out a story to Sea Island. their daughter. 
explain their 
innocence. 

Mr. Clinton rewards 
Mr. Knight for his 
fund raising, Mr. 
Gore lays the 
groundwork for his 
anticipated 
presidential bid four 
years from now, and 
the companies, by 
hiring Mr. Knight, 
get the 
administration’s ear. 

E 

N 

C 

Al Gore planned to run for 
president. 

Companies were hopeful 
they could get Clinton to 
further reduce corporate tax 
rates. 
Bill Clinton punished Mr. 
Knight because of his fund 
raising efforts. 

Mr. Gore lays the ground-
work for his anticipated 
presidential bid four years 
from now. 
Mr. Knight get the adminis-
tration’s ear for companies 
that contribute to his fund 
raising. 
Mr. Clinton admonishes 
Mr. Knight for his fund rais-
ing. 

By hiring Mr. Knight, com-
panies were listened to by 
the administration. 

The administration had 
been ignoring the compa-
nies up to this point. 

Companies were ignored 
by the adminstration be-
cause of the hiring of Mr. 
Knight. 

3 And these are tough E Reviewers are going Reviewers are having a Reviewers have seen better 
times for reviewers through difficult times. challenging time. days. 
in general. N The recession is to blame Times will only get tougher Reviewers are still able to 

for these tough times. for reviewers. get by. 
C This is a great time to be a Reviewers have rarely had This have to be the best 

reviewer. it so easy. time to get into the review 
game. 

To some critics, the 
mystery isn’t, as 
Harris suggests, 
how women 
throughout history 
have exploited their 
sexual power over 
men, but how pimps 
like him have come 
away with the profit. 

E 

N 

C 

The author argues that 
some critics are incapable 
of understanding the role 
pimps have played in the ex-
ploitation of women. 
If women are going to at-
tempt to exploit their sex-
ual power over men, then 
it is only natural for pimps 
to emerge to oversee sexual 
transactions. 
Harris does not understand 
the means by which women 
have using sexual power in 
order to exploit men. 

pimps like him have prof-
ited. 

Pimps have exploited 
women who have more 
power than they think. 

Pimps control every 
woman. 

An unsolved question in-
volves the money making 
of a hustler. 

Reviewers are mainly con-
cerned with hustlers. 

An unsolved question in-
volves the money wasting 
of a hustler. 

5 We need your help E Next week, a new feature There have been other new We are starting a new fea-
with another new will be introduced. features. ture next week. 
feature that starts N This new feature focuses on Help has been needed with We are starting a new fea-
next week. cloud technology. previous features. ture next week that uses 

maps. 
C The new feature will start The project is complete and We have more help than we 

six months from now. currently unsupported. need for the new feature 
next week. 

Table 2: Randomly selected examples from validation data showing typical writing from each protocol. 




