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Abstract
Many existing works have demonstrated that
language is a helpful guider for image under-
standing by neural networks. We focus on a
language-shaped learning problem in a few-
shot setting, i.e., using language to improve
few-shot image classification when language
descriptions are only available during training.
We propose a data-efficient method that can
make the best usage of the few-shot images
and the language available only in training. Ex-
perimental results on dataset ShapeWorld and
Birds show that our method outperforms other
state-of-the-art baselines in language-shaped
few-shot learning area, especially when train-
ing data is more severely limited. Therefore,
we call our approach data-efficient language-
shaped learning (DF-LSL).

1 Introduction

Few-shot image classification is well aligned with
the practical application scenarios where labeled
images are costly to acquire. Building effective
few-shot image classifiers is challenged by the
difficulty to improve the classifier generalizabil-
ity given few labeled images in each class. Re-
cent efforts have been dedicated to design metric-
based approaches (Snell et al., 2017; Sung et al.,
2018), augmentation-based methods, (Mehrotra
and Dukkipati, 2017; Wang et al., 2018; Xian et al.,
2019), and meta-learning methods (Finn et al.,
2017, 2018; Sun et al., 2019).

Another stream of work introduces language in-
formation to guide the image classification (An-
dreas et al., 2018; Mu et al., 2020), because nature
languages are a kind of reflection of the world and
convey rich information and knowledge for under-
standing the visual patterns. In this paper, we target
on addressing the few-shot image classification by
efficiently using the language description as a guide
during the training of image classification model.
Different from (Elhoseiny et al., 2013) and (An-
dreas et al., 2018), we aim to deal with a more

challenging scenario where we have no language
information during testing period. All language
descriptions are only available during training. Our
study shares the same setting with only one recent
work in (Mu et al., 2020). We design a different
model that can make the best usage of the few
images available for each class and the language
information in the training process. The key dif-
ference is two-fold. First, all few-shot images are
asked to participate in the language-shaping stage
to enhance the guidance on image understanding.
Second, extra supervision tasks are introduced to
enlarge the communication channel between lan-
guage description and images.

Our proposed approach, named data-efficient
language shaped learning (DF-LSL), is shown in
extensive evaluation to perform better than state-
of-the-art baselines. Comparing to the strongest
baseline LSL in (Mu et al., 2020), our proposed
method DF-LSL has 1.8% higher accuracy on the
CUB benchmark dataset, and 0.5%-1.8% higher
accuracy on the ShapeWorld benchmark dataset.

2 Related Work

Image Few-Shot Learning. Due to the difficulty
to acquire a large number of labeled images, few-
shot classification draws increasing attention in ma-
chine learning, which can be roughly categorized
into three different approaches. The first one is
metric-based approaches, which learn a model to
represent images with latent features, such as (Snell
et al., 2017; Sung et al., 2018). Secondly, some ap-
proaches (Mehrotra and Dukkipati, 2017; Wang
et al., 2018; Xian et al., 2019) use augmentation-
based method to generate more useful samples
of features, feeding the model with more knowl-
edge. The last kind of approaches is called meta-
based methods (Finn et al., 2017, 2018; Sun et al.,
2019), which is motivated by meta-learning, us-
ing an inner-loop and outer-loop to achieve fast
adaption on new tasks.
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Learning from Other Domains: Zero-shot
Learning. Zero-shot learning is a kind of prob-
lem setup where a model needs to predict the class
of samples, without giving samples in those classes
in training phase. Usually, a zero-shot model has to
utilize some side information from other domains,
to learn about those zero-shot classes. There are
approaches using attribute information to give de-
scriptions about the unseen classes (Lampert et al.,
2009; Atzmon and Chechik, 2018). There are also
approaches (Elhoseiny et al., 2013; Srivastava et al.,
2018) try to transfer language information into zero-
shot image classification and achieved good results.

Language Related Learning. Nature language
shapes the way we know about the world, and thus
has been introduced to assistant various tasks. For
example, language descriptions are generated to ex-
plain the decisions of neural network (Belle, 2017)
for improving the explainability of deep learning
methods. Language can also provide guidance dur-
ing learning. This idea is applied on many different
learners such as monte-carlo framework (Branavan
et al., 2012) and reinforcement learning (Harrison
et al., 2018). Moreover, (Andreas et al., 2018; Mu
et al., 2020) try to use language information to
guide the image classification, which is also our
study purpose.

3 Problem Statement and Preliminaries

3.1 Problem Statement

In the problem of few-shot image classification
shaped with language description, a model is ex-
pected to learn to classify images based on small
training sets, which is also called the support set
of labels. Following the common few-shot learn-
ing setting, the model is trained through a set of
N -way K-shot tasks. In each task, we have a
support set with N classes, and each class con-
tains K support samples {xsn,1, ..., xsn,K}, where s
denotes the support set and n denotes the class
index. The trained model is applied to predict
the label of a test set (called query set), which
has M query images with the ground-truth labels
{(xq1, y

q
1), ...(x

q
M , y

q
M )}, where q denotes the query

image and y is the ground truth label represented by
a one-hot vector in N dimensions. When running
on each task, the prediction loss on the query set is
often defined by comparing the predicted label ŷq

with the ground-truth label yq.
Besides the image data, we have also D lan-

guage descriptions for every class n, which can
be denoted as Wn = {wn1 , ..., wnD}. Language in-
formation is only available during training. The
learning target is to make the model be able to pre-
dict correctly the label of query set by using only
K-shot images in the support set, with the guidance
of available language descriptions in training.

3.2 Language-Shaped Learning
Language-shaped learning (LSL) method proposed
in (Mu et al., 2020) share the same problem setting
with our approach. LSL borrows the idea from a
metric-based method (Snell et al., 2017), using a
backbone network to extract class prototypes from
support images, then making prediction by running
similarity function S between prototypes and query
images. Let fθ be the feature extraction network
with parameters θ. The prototype for class n is:

zn =
1

K

K∑
k=1

fθ(x
s
n,k). (1)

Following (Snell et al., 2017), zn is used to classify
the query image by p(ŷq = n|xq) ∝ S(zn, fθ(xq)).
In addition, zn is used to generate the language de-
scription of class n as an auxiliary task. During the
training of LSL, a classification loss is minimized
jointly with a language loss.

Llan(θ, φ) = −
N∑
n=1

D∑
d=1

log gφ(w
n
d | zn) (2)

Limage(θ) = −
M∑
m=1

log p(ŷqm = n | xqm) (3)

where gφ is a language model to generate language
descriptions.

4 The Proposed Method

Our proposed DF-LSL method has two key differ-
ences from LSL, as shown in Figure 1. The details
are discussed next.

4.1 Multiple Prototypes
In LSL, language descriptions are generated by the
averaged prototypes zn. However, the conversa-
tion between the language descriptions and images
should be open to all support images, rather than
only the “averaged” image. Same for the classifi-
cation of query images, all support images should
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Figure 1: The overall framework of our proposed DF-LSL and the LSL framework in (Mu et al., 2020). The key
differences are: 1) we let every support image in one class contribute to the image classification and language
generation, rather than using the averaged prototype of the class; and 2) we introduce additional supervising tasks,
using language descriptions to classify support and query images (the green and blue arrows pointing from the
language description to the classification space).

be allowed to participate the classifier hyperplane
construction. Therefore, we create a “prototype”
for each image in the support set. Mathematically,
Eq. (1) will be redefined as:

zkn = fθ(x
s
n,k) (4)

where zkn is the k-th prototype of class n. Then
the language loss and classification loss of our ap-
proach become:

Llan(θ, φ) = −
N∑
n=1

K∑
k=1

D∑
d=1

log gφ(w
n
d | zkn) (5)

Limage1 (θ) = −
M∑
m=1

K∑
k=1

log p(ŷqm = n | xqm) (6)

where the prediction p(ŷq = n|xq) ∝
S(zkn, fθ(x

q)).

4.2 Extra Supervision Tasks
To enlarge the communication channel between lan-
guage description and images, we introduce extra
supervision tasks to further take advantages of the
language information. Suppose that the language
description can be mapped to a representation vec-
tor hγ(wnd ), e.g., by GRU. We use hγ(wnd ) to clas-
sify the support and query images. In this way, the
visual patterns and the language information are
aligned in double directions, rather than the single
direction in LSL. The corresponding introduced
loss functions are:

Limage2 (θ, γ) = −
M∑
m=1

log p(ŷqm = n | xqm, wnd )

(7)

where p(ŷqm = n | xqm, wnd ) ∝ S(hγ(wnd ), fθ(x
q
m)).

Limage3 (θ, γ) = −
K∑
k=1

log p(ŷsk = n | xsk, wnd )

(8)
where p(ŷsk = n | xsk, wnd ) ∝ S(hγ(wnd ), fθ(xsk)).

4.3 Training Criteria
To sum up, our proposed DF-LSL has three dif-
ferent kinds of image classification loss and one
language loss, defined in Eq. (5-8). The overall
loss function used in training is the summation of
all these four loss functions:

Lfinal = Limage1 +Limage2 +Limage3 +λLlan (9)

where λ controls the weight of language loss.

5 Experiments

In general, we implement by the same settings as
LSL (Mu et al., 2020) for the sake of fair compari-
son. For predictions, we average the probabilities
across k prototypes. We use ShapeWorld (Kuhnle
and Copestake, 2017) and CUB (Wah et al., 2011)
dataset to evaluate our method. The details of ex-
perimental settings and model descriptions can be
found in our source code1.

5.1 Datasets
ShapeWorld. ShapeWorld (Kuhnle and Copes-
take, 2017) dataset is firstly proposed in visual
question answering field. Each image has several

1https://github.com/derderking/DF-LSL

https://github.com/derderking/DF-LSL
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Dataset ShapeWorld CUB
Backbone VGG16 Conv4 ResNet-18 Conv4

Meta 60.59± 1.07 50.91± 1.10 58.73± 1.08 73.05± 0.72

L3 66.60± 1.18 62.28± 1.09 67.90± 1.07 66.98± 0.82

LSL 67.29± 1.03 63.25± 1.06 68.76± 1.02 73.52± 0.79

DF-LSL (Ours) 69.06± 1.07 64.55± 1.04 69.25± 1.01 75.37± 0.76

Table 1: Test accuracy (%) with 95% confidence interval of different visual backbones on ShapeWorld dataset, and
Conv4 on CUB dataset.

non-overlapping shapes, and the language descrip-
tions are related to the special information between
two shapes. Following the same setting in LSL,
we set K, the number of image samples per class
to 4, and a language description is associated with
that class (a universal description for those four im-
ages). Query set has positive and negative samples,
where positive samples can match that language
description while the negative ones cannot. Our
entire dataset contains 9000 training tasks, 1000
validation tasks and 4000 tasks. No augmentation
method was employed on this dataset, because the
images in ShapeWorld dataset are classified accrod-
ing to their colors, shapes and positions. Cropping,
flipping and color jittering will be harmful to those
properties. Due to the special case of binary classi-
fication, we simply apply dot-product operation to
be our similarity metric S, then use a sigmoid func-
tion to scale the similarity value from 0 to 1, which
will be a suitable representation for probability.

Caltech-UCSD Birds. Images in ShapeWorld
dataset are synthetic by computers and only contain
several basic shapes and a black background. In
real world scenarios, we have more complicated
shapes and more noisy background information.
Moreover, we only have one language description
per class in ShapeWorld, which is not enough for
us to analysis the influence of the amount of lan-
guage information. Therefore, we perform our ex-
periments on another challenging dataset Caltech-
UCSD Birds (CUB) (Wah et al., 2011), which con-
tains 200 bird species and their images. All lan-
guage descriptions are from (Reed et al., 2016),
and describe each bird image with ten different
sentences. For the purpose of pre-processing and
augmentation, we apply pixel normalization, color
jittering, horizontal flipping and random cropping.
We use a matrix W as the similarity function, which
means S(a, b) can be calculated by aTWb.

5.2 Network Architecture
Image Prototype Model. Image prototype
model extracts prototypes from images. The first
model is frozen ImageNet-pretrained VGG-16
(Simonyan and Zisserman, 2015) with two
fully-connected layers and one ReLU activation.
The second model has a simple structure with
4 convolutional blocks (Conv4) (Chen et al.,
2019). Another image prototype model is a deeper
approach called ResNet-18 (He et al., 2016).

Language Prototype Model. Model hγ maps
language descriptions into prototype space. In our
approach, we take the last hidden states of a gated
recurrent unit (GRU) (Cho et al., 2014) as language
descriptions’ prototypes. Empirically, we set the
dimension of hidden state to 512.

Language Generation Model. To generate lan-
guage descriptions by an image prototype, we
need a model gφ, which is also a 512-dimensional
GRU. Teacher forcing was employed during train-
ing, making the model coverage faster.

5.3 Experiment Results
The evaluation metric used in our experiments is ac-
curacy among all test tasks, with a 95% confidence
interval and K = 4. Baselines contain Meta, L3 and
LSL. Meta (Snell et al., 2017) is the prototypical
network without the usage of language informa-
tion. L3 (Andreas et al., 2018) is the abbreviation
of learning with latent language, which applies
a decoder to generate language description, then
uses generated language description to help image
classification. However, the generated language
description could have mistakes and be harmful
to the classification result. LSL (Mu et al., 2020)
is the state-of-the-art language shaped few-shot
learning model, which was introduced in Section 3.
Table 1 shows that our proposed DF-LSL outper-
forms all the baselines among three different visual
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K-shot LSL DF-LSL (Ours)

K = 2 67.05± 0.83 69.34± 0.86

K = 4 73.52± 0.79 75.37± 0.76

K = 8 78.14± 0.69 79.30± 0.63

K = 16 79.60± 0.65 80.18± 0.64

Table 2: Test accuracy (%) with 95% confidence inter-
val of LSL and DF-LSL at different K on CUB dataset.
The smaller K is (the fewer images are available in
training), the larger gain DF-LSL has over LSL.

backbones fθ on ShapeWorld dataset and Conv4
backbone on CUB dataset.

To demonstrate our proposed DF-LSL is able to
use information more efficiently, we conduct ex-
periments with different K-shot settings on CUB
dataset. As Table 2 shows, DF-LSL surpasses LSL
among all pairs. Furthermore, it is worth noting
that asK increases from 2, the performance gap be-
tween LSL and DF-LSL decreases, which indicates
that data-efficient training method is more effective
when training data is more severely limited.

5.4 Ablation Study
Our ablation study experimental results are shown
in Table 3. All ablated models are trained and
evaluated in the same way and we compare them
between LSL and DF-LSL. A1 is the model which
does not apply multiple prototypes for image clas-
sification task, while A2 does not have multiple
prototypes for language generation task. The com-
parison between the results of A1 and A2 shows
that both multiple prototypes based classification
and generation can contribute to the performance
improvement.

B1 and B2 are designed for examining the con-
tribution of two new supervising tasks with loss in
Eq. (7) and (8). Specifically, B1 is trained without
the loss of Eq. (7), which is the task of classify-
ing query images by using language descriptions.
Similarly, B2 does not use language descriptions
to predict the label of support images (without Eq.
(8)). As shown in Table 3, DF-LSL outperforms
both B1 and B2. It is interesting that B1 is better
than B2 on ShapeWorld dataset, but worse on CUB
dataset. This is because the number of support im-
ages is more than that of query images on CUB
dataset, while tasks of ShapeWorld dataset contain
more query images.

For encouraging the future research, we also re-
port two failed attempts, which are model C1 and

Model ShapeWorld CUB

LSL 67.29± 1.07 73.05± 0.72

A1 68.39± 1.02 73.80± 0.69

A2 68.20± 1.02 73.89± 0.69

B1 68.86± 1.01 74.38± 0.71

B2 68.63± 1.02 74.57± 0.72

C1 67.01± 1.03 71.08± 0.70

C2 67.25± 1.06 −
DF-LSL 69.06± 1.07 75.37± 0.76

Table 3: Test accuracy of different ablated models.
We use VGG16 backbone on ShapeWorld dataset and
Conv4 backbone on CUB dataset.

C2 in Table 3. Similar to language generation task,
which uses image prototypes generate language
descriptions, we create a new task of using image
prototypes to generate the original images in C1.
This idea is inspired by back-translation technique
that is commonly used in Neural Machine Trans-
lation. The potential reason of C1’s failure is that
retrieving images from prototypes is not helpful for
classification. C2 contains a new binary classifier
that uses image prototypes to classify text descrip-
tions, where the negative descriptions are sampled
from other classes. Since we cannot determine if
descriptions for another class are true or false for
current class on ShapeWorld dataset, we skip this
evaluation. On ShapeWorld, the accuracy of C2
is not as good as DF-LSL, because C2 provides a
wrong way of using image prototypes, which are in
fact specially designed for image classification task.
To sum up, adding new tasks during training always
takes risks. We have to carefully plug them into
our model, and fine-tune many parameters such as
the weights of new loss. Therefore, although we
fail to use C1 and C2, we will keep exploring in
our future work to find other useful addition tasks.

6 Conclusion

This paper proposes a data-efficient language
shaped learning (DF-LSL) model, which aims to
improve the few-shot image classification model
by language information. Experiment results
show that the overall performance of our approach
surpasses all other baselines on two benchmark
datasets. This verifies the effectiveness of the pro-
posed two key innovations in DF-LSL.
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A Appendix

ShapeWorld. ShapeWorld dataset is firstly pro-
posed in visual question answering field. Each
image has several non-overlapping shapes, and the
language descriptions are related to the special in-
formation between two shapes. Following the same
setting in LSL, we set K, the number of image
samples per class to 4, and a language description
is associated with that class (a universal descrip-
tion for those four images). Query set has positive
and negative samples, where positive samples can
match that language description while the negative
ones cannot. Our entire dataset contains 9000 train-
ing tasks, 1000 validation tasks and 4000 tasks.
No augmentation method was employed on this
dataset, because the images in ShapeWorld dataset
are classified accroding to their colors, shapes and
positions. Cropping, flipping and color jittering
will be harmful to those properties.

Due to the special case of binary classification,
we simply apply dot-product operation to be our
similarity metric S, then use a sigmoid function to
scale the similarity value from 0 to 1. We train for
80 epochs with Adam optimizer and the learning
rate is set to 0.001. The batch size during training
is 64, and the weight of language generation loss is
set to 20.

Caltech-UCSD Birds. Images in ShapeWorld
dataset are synthetic by computers and only contain
several basic shapes and a black background. In
real world scenarios, we have more complicated
shapes and more noisy background information.
Moreover, we only have one language descrip-
tion per class in ShapeWorld, which is not enough
for us to analysis the influence of the amount
of language information. Therefore, we perform
our experiments on another challenging dataset
Caltech-UCSD Birds (CUB), which contains 200
bird species and their images. Each bird image
is described with ten different sentences. For the
purpose of pre-processing and augmentation, we
apply pixel normalization, color jittering, horizon-
tal flipping and random cropping.

Without loss of fairness during comparison, we
follow the same settings described in LSL. We have
5 classes in each task (5-way), 16 images in query
set. The visual backbone of all the experiments
on CUB dataset is set to Conv4, which has 3 ×
3 convolution kernels, batch normalization layer,
ReLU activation and max-pooling operation. In the

end, Conv4 will transform an 84× 84 image into a
feature map with 1600 hidden dimensions. We use
a 1600× 1600 matrix W as the similarity function,
which means S(a, b) can be calculated by aTWb.
We train the model with Adam optimizer and a
learning rate of 0.001. The weight of language
generation loss λ in Lfinal is set to 5. The number
of language descriptions per class is set to 20, and
the number of query images per task is 16. The only
different parameter in this paper is the number of
support images per class, where LSL set it to 1 (1-
shot). However, our proposed multiple prototypes
setting requires a larger K than 1 where K stands
for K-shot classification. Therefore, we apply 5-
way 4-shot classification setting and re-produce the
accuracy measurements for all baselines.


