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Abstract
Analyzing microblogs where we post what we
experience enables us to perform various appli-
cations such as social-trend analysis and entity
recommendation. To track emerging trends in
a variety of areas, we want to categorize in-
formation on emerging entities (e.g., Avatar
2) in microblog posts according to their types
(e.g., Film). We thus introduce a new entity
typing task that assigns a fine-grained type to
each emerging entity when a burst of posts
containing that entity is first observed in a mi-
croblog. The challenge is to perform typing
from noisy microblog posts without relying on
prior knowledge of the target entity. To tackle
this task, we build large-scale Twitter datasets
for English and Japanese using time-sensitive
distant supervision. We then propose a modu-
lar neural typing model that encodes not only
the entity and its contexts but also meta in-
formation in multiple posts. To type ‘homo-
graphic’ emerging entities (e.g., ‘Go’ means
an emerging programming language and a
classic board game), which contexts are noisy,
we devise a context selector that finds related
contexts of the target entity. Experiments on
the Twitter datasets confirm the effectiveness
of our typing model and the context selector.

1 Introduction

Microblogs enable us to instantly share a wider vari-
ety of topics than news streams (Graus et al., 2018)
and have become one of the primary sources for ac-
quiring new information. To analyze this huge vol-
ume of posts for applications such as social-trend
analysis and entity recommendation, it is neces-
sary to extract entity units from them and classify
their types using techniques such as named entity
recognition (NER) and entity linking (Weikum et al.,
2020). However, newly ‘emerging’ entities (e.g.,
Avatar 2) are difficult to handle because they do
not exist in the training data of supervised mod-
els or the knowledge bases (KBs), and valuable
information of the entities is often thrown away.
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Figure 1: Emerging entity typing: identify the type of
a given emerging entity with its first burst of posts.

Motivated by this background, Akasaki et al.
(2019) (§ 2.1) defined emerging entities as that
appear in contexts that emphasize their novelty,
and attempted to discover emerging entities from
microblogs. To extract emerging entities, they ex-
ploited the fact that entities appear in characteristic
contexts when they first emerge (e.g., new games
often appear with “trailer,” “release” and a console
name (Figure 1)) (§ 3.1), and developed a method
of discovering them from microblogs. Although
their method detected emerging entities promptly,
typing those emerging entities is still necessary for
usage in the downstream applications.

Existing studies on entity typing, however, focus
on non-emerging (or prevalent) entities (Ling and
Weld, 2012; Shimaoka et al., 2017; Xin et al., 2018;
Obeidat et al., 2019; Ali et al., 2020) (§ 2.2). Most
of them classify single mentions of entities into
their context-dependent types. To complement a
scarce context, many studies rely on language re-
sources such as KBs to narrow down the candidate
types. Unfortunately, those resources are not avail-
able for newly appearing entities. It is unrealistic to
perform accurate mention-level typing using these
methods in a short and noisy microblog post.

We thus design a task of identifying a fine-
grained entity type from a burst of posts about the
target entity (Figure 1, § 3.2), assuming that the
target mention is detected in advance. This is a
more realistic setting for typing emerging entities
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than the conventional mention-level typing.
To build training data for this task (§ 3.3), we

collect emerging entities and their contexts for En-
glish and Japanese using distant supervision (Mintz
et al., 2009; Akasaki et al., 2019). To evaluate typ-
ing methods, we manually build test data for two
types of emerging entities: homographic and non-
homographic; homographic entities share names
with other words (e.g., ‘Go’ for a board game, a pro-
gramming language, and a verb) and consequently
their contexts are contaminated.

We then propose a modular entity typing model
that performs multi-instance (MI) learning (Riedel
et al., 2010; Yaghoobzadeh et al., 2018) (§ 4.1). In
addition to contexts for the entity and its entity sur-
face, this model leverages meta-information such
as URLs and usernames, exploiting the characteris-
tics of the microblog domain. Because entities can
have homographs, it is risky to use all the posts ob-
tained using simple string matching as contexts for
typing. We thus propose to find and use emerging
contexts since two emerging entities with the same
name are unlikely to emerge in a short period of
time and such contexts are useful for typing (§ 4.2).

We finally evaluate our typing model on the
above English and Japanese Twitter datasets (§ 5).
Experimental results confirm that our model outper-
forms a baseline model that performs MI-learning
with randomly selected posts in training and testing.
We demonstrate that when typing homographic
emerging entities, it is more important to selec-
tively use emerging contexts and meta information.

Our contributions are as follows:

• We set up a task of fine-grained typing of
emerging entities in microblogs (§ 3.2).

• We built two large-scale Twitter datasets for
English and Japanese (§ 3.3). We will release
them to facilitate future studies.

• We proposed an entity typing model (§ 4.1)
and a context selection model (§ 4.2) that out-
performed a baseline with MI-learning (§ 5).

2 Related Work

In this section, we first review existing studies on
the definition and detection of the emerging entities.
We then explain the existing task settings of entity
typing and discuss their limitations.

2.1 Emerging Entity Detection
Although there are studies that find “emerging” en-
tities (Nakashole et al., 2013; Hoffart et al., 2014;

Wu et al., 2016; Derczynski et al., 2017), most of
them in fact consider out-of-KB entities, which in-
clude not only emerging entities that are not preva-
lent (newly appeared and yet not widely known)
in the world but also prevalent entities that are ab-
sent from the incomplete KBs such as Wikipedia.
Although we do not handle prevalent out-of-KB en-
tities in this study, we intend to type those entities
before they become prevalent in a microblog.

To target only truly emerging entities, Akasaki
et al. (2019) defined emerging entities as those
which appear in emerging contexts that emphasize
their novelty (§ 3.1). With this definition, they
developed a method called time-sensitive distant
supervision, which uses time-stamps of microblogs
to collect early posts (contexts) in which KB en-
tries (entities) appear. Using the datasets collected
for Japanese, they trained an emerging entity recog-
nizer, which successfully discovered various emerg-
ing entities more than one year before their regis-
trations into Wikipedia.

In this study, we adopt the definition of emerging
entities proposed by Akasaki et al. (2019) and con-
duct time-sensitive distant supervision to automat-
ically construct large-scale English and Japanese
Twitter datasets for typing emerging entities.

2.2 Entity Typing

Traditionally, named entity recognition (Sang and
De Meulder, 2003; Ritter et al., 2011; Weischedel
et al., 2013; Ma and Hovy, 2016; Akbik et al., 2019)
jointly performs recognition and typing of entity
mentions in the text. However, most of the NER
models require costly training data that fully anno-
tate all entities in the text. Indeed, many studies
adopt less than ten coarse types (e.g., person, loca-
tion, and organization) (Mai et al., 2018).

Focusing on fine-grained entity typing, recent
studies adopted distant supervision (Mintz et al.,
2009) that automatically annotates entities with
KB categories, and tackled the task of classifying
single mentions of entities with their types in a
context (Ling and Weld, 2012). This allows us to
exploit resource-hungry neural models (Shimaoka
et al., 2017) and knowledge of the target entity
derived from KBs (Obeidat et al., 2019; Xin et al.,
2018) or a large corpus (Del Corro et al., 2015).
Although these methods succeeded in mitigating
context scarcity and typing entities accurately, they
are not effective when typing emerging entities that
are absent from the KBs and the corpus.
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To enumerate all possible types for out-of-KB en-
tities, Lin et al. (2012) and Nakashole et al. (2013)
performed entity-level entity typing (as multi-label
classification). They extracted local contexts (pat-
terns) from multiple sentences (contexts) in which
entities appeared, and propagated types from in-
KB entities that exhibit similar patterns. However,
this approach needs massive contexts to obtain reli-
able patterns. Yaghoobzadeh et al. (2018) and Xu
et al. (2018) elaborate on these methods by using
embeddings of entities instead of patterns and by
encoding actual contexts with a neural network.
However, this approach cannot be directly used to
type emerging entities since it is difficult to collect
contexts for emerging entities; the entity linking
they used to collect contexts requires KBs that are
not available for emerging entities.

In this study, in order to type emerging entities
in a microblog as early as possible, we set up a
task of entity-level fine-grained typing of emerging
entities from a burst of posts (§ 3.2). We build
Twitter datasets for this task (§ 3.3) and develop an
effective typing method (§ 4).

3 Task and Datasets

This section first introduces the definition of emerg-
ing entities (Akasaki et al., 2019) and then defines
our task of typing emerging entities. Finally, we
describe our dataset for this task.

3.1 Definition of Emerging Entity

We adopt the same definition of emerging entity as
in Akasaki et al. (2019) to focus on truly emerging
entities. They defined emerging entities as follows,
inspired by the fact that microblog users mention
emerging entities that are not yet well known in
characteristic contexts (emerging contexts):

Emerging contexts. Contexts in which the writers
assumed the readers do not know the existence of
the entities.

Emerging entities. Entities in the state of being
still observed in emerging contexts.

They built a Japanese dataset of emerging en-
tities with emerging contexts by collecting early
time-stamped posts of Wikipedia entities from
Twitter by using time-sensitive distant supervision.
Since their dataset does not include type informa-
tion, we reconstruct it with types in English and
Japanese from scratch.

3.2 Task Settings

Inspired by the related studies on entity typing
(§ 2.2) and the definition of emerging entities, we
design the task of emerging entity typing. We take
the following points into consideration: 1) For ap-
plications such as social trend analysis, we want to
type emerging entities as soon as they appear. 2)
Since microblog posts are short and noisy, we prac-
tically need more than one post for typing. In fact,
the accuracy of Twitter NER is very low (29.7%)
for out-of-vocabulary entities (Fukuda et al., 2020).
3) Emerging entities show an early burst of posts
around the time of their introduction into public dis-
course (Graus et al., 2018). These considerations
lead us to the following task settings:

Fine-grained emerging entity typing. Given an
entity and a burst of posts containing the entity, the
goal of the task is to predict the single type of the
entity as multi-class classification.

We assume a single type for emerging entities
since two entities with the same name are unlikely
to simultaneously emerge in a short period of time.
As for the burst, to simplify the task, we split posts
by a day defined by the UTC-0 time zone and con-
sidered a burst to have occurred if an entity string
appeared more than 10 times in any of the bins for
the first time.

There are two challenges in this task: 1) How
to perform accurate typing in situations where we
cannot assume the existence of emerging entities in
language resources such as KBs and massive con-
texts. 2) How to deal with homographic emerging
entities where a simple string match would cause
contamination of contexts for the target entity.

3.3 Dataset Construction

We construct training, development and test data
for our task, following the above definition and the
task settings. We adopt Twitter as a microblog and
target English and Japanese, which are the top two
languages on Twitter (Alshaabi et al., 2021). We
use our archive of Twitter posts that are retrieved1

by using the official Twitter APIs2 and consists of
more than 50B posts (32% are English and 20%
are Japanese; This does not deviate much from

1Starting from 26 popular Japanese users in Mar. 2011,
their timelines (recent tweets) have been continuously col-
lected using user_timeline API, while the user set has itera-
tively expanded to those who were mentioned or whose tweets
were reposted by already targeted users.

2https://developer.twitter.com/en/docs/twitter-api
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the actual data (Alshaabi et al., 2021)). In the fol-
lowing, we explain how we automatically create
training and development data and how to manu-
ally build the test data for non-homographic and
homographic emerging entities.

3.3.1 Training Data

To create the training data, we used time-sensitive
distant supervision (Akasaki et al., 2019) to collect
the contexts of entities in Wikipedia at the time
they emerge. For both English and Japanese, we
gathered the titles of articles as candidates of emerg-
ing entities that were registered in Wikipedia from
Mar. 11th, 2012 to Dec. 31st, 2015. To remove
entities that may not be emerging, we discarded
the titles that were not reposted more than 10 times
or more. Since the entity string (e.g., ‘Go’) may
refer to multiple entities (a programming language
and a board game) and existing words (verb), we
discarded the titles that appeared 10 times in the
period of Mar. 11th, 2011 to Mar. 10th, 2012 to
avoid contamination with non-emerging contexts.3

Next, we retrieved all posts for the period from
Mar. 11th, 2012 to Dec. 31th, 2019 where each
of the collected entities appeared in our Twitter
archive. Using these data, we collected 50 posts
up to the date of the first burst of each entity as
emerging contexts. We collected another 50 posts
for each entity one year after the time of the initial
collection as prevalent contexts. We used these
contexts as negative examples of a context selection
model and for pretraining the typing model.

We mapped the collected entities to their corre-
sponding fine-grained types assigned in the DBpe-
dia (Auer et al., 2007) ontology; for example, the
entity “Spider-Man: Homecoming” is mapped to
the type “Film.” For analysis purposes, we manu-
ally classified the mapped types into coarse-grained
types for each language derived from Akasaki et al.
(2019). As a result, we obtained 597,569 emerg-
ing contexts and 859,034 prevalent contexts from
37,374,820 posts for 20,571 entities with 6 coarse-
grained and 185 fine-grained types for English. For
Japanese, we obtained 259,484 emerging contexts
and 440,751 prevalent contexts from 47,869,813
posts for 10,315 entities with 4 coarse-grained and
71 fine-grained types. The difference in the num-

3If the entities (e.g., programming language, Swift) appear
long before (here, from 2011 to 2012) their registrations into
Wikipedia (here, June 2nd, 2014), their names may not be
unique and can have non-emerging homographic entities (e.g.,
person, Taylor Swift).

TYPE #ent. #posts
DBpedia types

PERSON 9878 316123
Person (Misc.) 2514 73517
SoccerPlayer 1337 41955
(A)FootballPlayer 1157 43737
Others (70 types) 4870 156914

CREATIVEWORK 6979 192214
Film 1777 46185
Album 1272 31947
TelevisionShow 1043 26526
Others (22 types) 2887 87556

LOCATION 1588 31554
City 912 14566
Building 146 3922
Stadium 66 2260
Others (33 types) 464 10806

GROUP 1413 39260
Company 719 20148
Organisation 223 6172
Others (21 types) 471 12940

EVENT 378 9014
Award 110 2593
SpaceMission 46 910
Others (18 types) 222 5511

DEVICE 335 9404
Device 147 4053
Automobile 69 2100
Others (6 types) 119 3251

TOTAL 20571 597569

(a) English data

TYPE #ent. #posts
DBpedia types

PERSON 3995 105207
Actor 729 18506
MusicalArtist 567 16149
SoccerPlayer 419 10621
VoiceActor 383 7169
Others (24 types) 1897 52762

CREATIVEWORK 5706 140191
Single 1211 28985
TelevisionShow 1058 26488
Album 842 18436
Film 799 20075
Others (10 types) 1796 46207

LOCATION 304 6419
Building 98 2421
Museum 33 775
Station 32 694
Settlement 23 376
Others (21 types) 118 2153

GROUP 310 7667
Company 216 5373
SoccerClub 48 1075
Organisation 24 642
PoliticalParty 22 577

TOTAL 10315 259484

(b) Japanese data

Table 1: Statistics of emerging entities and a burst of
posts in the training data obtained from Twitter.

ber of types comes from the degree of DBpedia
development for each language.

Table 1 shows the statistics of obtained emerging
entities and contexts. We see that the frequency of
fine-grained types varies by language; for example,
the English PERSON type includes many athletes
entities, while the Japanese PERSON type does not.
This reflects the fact that the coverage of entities in
Wikipedia varies across languages.

3.3.2 Test Data
For non-homographic emerging entities, we built
the test data in a similar way as the training data,
and then manually cleaned the data for reliable
evaluation. Specifically, we collected the titles of
Wikipedia articles as entities that appeared more
than 100 times on our Twitter archive from Jan. 1st,
2017 to June 20th, 2018 for English and from
Jan. 1st, 2016 to June 20th, 2018 for Japanese. We
then collected posts up to the date of the first burst
for each entity. Since those entities may not ac-
tually be emerging, we removed entities whose
posts are judged to include only prevalent con-
texts by two of three annotators (the first author
and two graduate students). We obtained an inter-
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Entity: Star Wars: The Force Awakens Type: Film
1. Star Wars: The Force Awakens has completed

principal photography. HASH HASH URL
2. Wow! 3 words! Yes! RT USER: The official title for

Episode VII is ‘Star Wars: The Force Awakens.’ URL
3. Star Wars: The Force Awakens. My cynical side has

nothing for that, so I guess I’m happy with the title.

Entity: Ben Sheaf Type: SoccerPlayer
1. Arsenal have made England youth midfielder

Ben Sheaf their first signing of the summer.
2. Arsenal sign Ben Sheaf from West Ham URL
3. Who is Ben Sheaf?

Entity: Another Life Type: TelevisionShow
1. RT USER: Here are a few titles in the upcoming HASH:

In Another Life || Fall of the Planet of the Apes
|| Terms & Conditions || Are. . .

2. Another Life - Netflix Orders Space Drama Starring
Katee Sackhoff (Posted: 2018-04-26 13:40:48). . .

3. RT USER: Now playing Another Life by lightcraft!
Check it out: URL

Table 2: Examples of the emerging entities and a burst
of posts. The third example is a homographic entity.

rater agreement of 0.782 for English and 0.771
for Japanese by Fleiss’ Kappa (Fleiss and Cohen,
1973); both show substantial agreement. We finally
obtained 31,450 posts for 1200 emerging entities in
English and 16,869 posts for 800 emerging entities
in Japanese, each containing 200 entities of each
coarse-grained type (see Appendix (Table 5) for
the statistics).

For homographic emerging entities, we manu-
ally constructed the test data since it is difficult
to collect their contexts using distant supervision.
We collected the titles of Wikipedia articles, each
of which has a disambiguation page, and gather
the newest one with their posts from the same pe-
riod. Since those entities share contexts with other
entities of the same name, we asked the three an-
notators to identify the exact day when the target
entity first appears with emerging contexts for the
given type. We adopt entities with the answers
(days) agreed upon by two or more annotators. We
obtained an inter-rater agreement of 0.684 for En-
glish and 0.665 for Japanese by Fleiss’ Kappa; both
show substantial agreement. We collected the posts
of that day and the previous day and finally got a
total of 5,931 posts for 200 emerging entities in En-
glish and 13,430 posts for 200 entities in Japanese
(see Appendix (Table 6) for the statistics).

Table 2 shows some examples of collected enti-
ties and their posts (excerpts). The first example is
a non-homographic emerging entity in the training
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Figure 2: Overview of our entity typing model (N =
2): three networks process contexts, entity, and meta-
information, respectively using MI-learning.

data. The second example is a non-homographic
emerging entity in the test data. From this example,
we see that there is a useless context for guessing
the type (e.g., No. 3). The third example is a ho-
mographic emerging entity in the test data, and as
we can see, it contains a noisy context (e.g., No. 3)
that is not related to the target entity. We thus have
to properly select only the related contexts of the
target entity to predict its type.

4 Proposed Method

This section presents a method for typing emerging
entities in microblogs. Microblogs have the follow-
ing characteristics: most posts are short and noisy,
several posts about the same topic appear in close
time series, and it has meta-information such as
usernames and URLs that are useful for inferring
the type. We thus develop a neural typing model
based on diverse features and MI-learning (§ 4.1).

Considering the existence of homographic en-
tities (e.g., Go), one may want to select only the
posts that are relevant to the target entity, rather
than using all posts when performing MI-learning.
We thus develop a context selection model that
ranks emerging contexts of the target entity (§ 4.2).
In the following, we describe the details of each
model and how to train and test the models.

4.1 Entity Typing Model

To capture the characteristics of emerging en-
tities from diverse perspectives, we develop a
modular model that consists of three neural net-
works (Figure 2): Context Network and Entity
Network that encode contexts and entities, which
are based on Yaghoobzadeh et al. (2018) while
refining their classic CNN-based structure with
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GRU (Bahdanau et al., 2015) and self-attention
mechanism (Lin et al., 2017), and Meta Net-
work that encodes meta-information specific to mi-
croblogs. We rely on MI-learning (Riedel et al.,
2010), which assigns a single label to a bag of
multiple instances to increase the number of clues
and to mitigate the effects of noise induced by
distant supervision. The final prediction is made
by feeding the output of each network into the
softmax layer through a feed-forward network
as p = softmax(Wo[ocontext; oentity; ometa] + bo).
We describe the details of each network hereafter.

4.1.1 Context Network
This model captures contexts of given posts; it
differs from the Context Model (Yaghoobzadeh
et al., 2018) in that we change CNN to GRU and
introduce a self-attention mechanism to capture
longer relationships and dependencies between
words (Yin et al., 2017). Specifically, we encode
the given entity using MI-learning by inputting N
contexts where the entity appears. We convert each
word wit, t ∈ [1, S] of the i-th input context to xit
using the embedding matrix Ww, xit = Wwwit.
We input this into a bi-directional GRU as hit =
BIGRU(xit), and apply self-attention to the entire
hidden states to capture the word relations:

αijk =
exp(σ(Wuuijk + bu))∑
k exp(σ(Wuuijk + bu))

(1)

uijk = tanh(Whhij +Whhik + bh) (2)

h́ij =
∑
k

αijkhik (3)

We first obtain the similarity uijk between hij and
hik. We use additive attention that consists of a
feed-forward network to calculate those alignment
scores. We then compute the importance weight
αijk using the softmax function. After that, we
obtain h́ij as a weighted sum of the hidden layers.
These h́ij are concatenated to form the sentence
representation si = [h́i1; ...; h́iS ].

Once we have N sentence representations, we
apply self-attention to them again to get the rela-
tions between sentences:

αij =
exp(σ(Wuuij + bu))∑
j exp(σ(Wuuij + bu))

(4)

uij = tanh(Wssi +Wssj + bs) (5)

śi =
∑
j

αijsj (6)

These śi are concatenated and used as output
ocontext = [śi; ...; śN ].

4.1.2 Entity Network

This model captures a given entity surface; it dif-
fers from the Global Model (Yaghoobzadeh et al.,
2018), in that we change CNN to GRU and remove
the KB embeddings of the target entity because
they are not available for emerging entities. This
model predicts the type of the target entity from its
sequence of characters and words. We convert each
character ci, t ∈ [1, C] of the target entity to xi
using the embedding matrix Wc, xi = Wcci. Simi-
larly to the Context Network, we input this into a
bi-directional GRU and obtain the character-based
entity representation as h = BIGRU(xi).

Tokens inside the entity name are also useful
clues. We obtain a token representation v by sim-
ply taking the average of the pre-trained word em-
beddings tj divided by the number of tokens T in

the entity as v =
∑

j tj
T . These representations are

concatenated and used as output oentity = [h; v].

4.1.3 Meta Network

In addition to the contexts and the entity name,
meta-information such as URLs and user (au-
thor) information are useful for typing emerg-
ing entities in microblogs. For example, URLs
(e.g., https://blog.playstation.com/2020/12/10/
returnal-launches-on-ps5-march-19-2021/ ) often
include clues of the entity type, and users like offi-
cial accounts often post about a specific type of an
entity (e.g., @NintendoAmerica often announces
about their new game products). Moreover, we
can extract, from KBs, useful knowledge on in-KB
entities that co-occur with the target entity.

We thus extract the above meta information from
the input N posts and convert them into a feature
vector. For user information, we simply extract
the author’s user IDs. As for URLs, we extract all
URLs from the input. For each URL, we discard
the URL parameters after the ‘?’ or ‘&’, and then
separate the remaining strings with delimiters (‘-
’,‘/’,‘_’,‘+’). The resulting data are converted into
a one-hot vector z and it is fed into a one-hidden
layer feed-forward network as f = Wzz + bz .

Entities that co-occur with the target entity also
provide clues that can help to infer the type. For
example, an entity of the Actor type is likely to
co-occur with existing entities of related types such
as Film and Award. To obtain entity information,
we list entity embeddings ei, i ∈ [1, E] from the
input N posts using the method of Yamada and
Shindo (2019). To obtain the relationship between

https://blog.playstation.com/2020/12/10/returnal-launches-on-ps5-march-19-2021/
https://blog.playstation.com/2020/12/10/returnal-launches-on-ps5-march-19-2021/
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these entities, we employ self-attention as follows:

αij =
exp(σ(Wuuij + bu))∑
j exp(σ(Wuuij + bu))

(7)

uij = tanh(Weei +Weej + bx) (8)

éi =
∑
j

αijej (9)

These representations are concatenated with f and
used as the output ometa = [éi; ...; éE ; f ]

4.2 Context Selection Model
At test time, we input an entity with a burst of
posts, which are retrieved by a native string match-
ing. However, those posts can include contexts of
homographic entities (e.g., No. 3 for Another Life
in Table 2) and noisy posts that have no clue on the
entity type (e.g., No. 3 for Ben Sheaf in Table 2).

To address these issues, we take advantage of
emerging contexts of the target entity; if we collect
only emerging contexts, 1) we can utilize appropri-
ate contexts for the target entity since two emerging
entities with the same name are unlikely to emerge
in a short period of time, and 2) emerging contexts
by definition include enough information for the
readers to understand the target entity.

We thus develop a context selector that pre-
dicts whether a given context is an emerging con-
text or not. Specifically, we train a bi-directional
GRU, which performs binary classification with
the emerging and prevalent contexts collected in
§ 3.3. Using this model, we input each context
from the test data and assign a prediction score for
the emerging context. For each entity, the top-N
contexts of these scores are used as input to the
typing model (Figure 3).

4.3 Model Training
Issues in developing typing and context selection
models are how to utilize the constructed training
data and how to select the input for the typing
model during training. In this study, we simply
train each model independently using the same
data. Specifically, for the context selection model,
we feed the model with the emerging and prevalent
contexts of the constructed training data. For the
typing model, since we use N emerging contexts
(posts) during the test time, we repeatedly pick N
emerging contexts (posts) in chronological order
from the training data and input each N posts into
the model to fully exploit a burst of posts of an
entity (Figure 3).
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Figure 3: Overview of training and testing of the typ-
ing model for each entity (N = 2). During training,
each of the N posts is entered into the model. At test
time, top-N posts of the scores obtained by the context
selection model are used for prediction.

Here, we perform pretraining with the prevalent
contexts and then fine-tune the typing model to
improve its robustness. In the experiments, we
compare our model with a model that randomly
selects contexts for both training and test time.

5 Experiments

We performed emerging entity typing using the
English and Japanese Twitter datasets built in § 3.3.

5.1 Models
We describe the typing models compared in the
experiments. Since all models employ MI-learning,
we use the same parameter N for the models to
control the number of input posts.

Proposed (fine-tune) trains the proposed typing
model with prevalent contexts, and then performs
fine-tuning with emerging contexts. At test time,
we applied the context selection model to all the
contexts of each entity in the test data to form input.

Proposed (random) randomly extracts 100 con-
texts per entity from all the collected posts in § 3.3
and trains the proposed model. At test time, we
randomly selected the contexts for each entity in
the test data. This is meant to confirm the effect of
discriminating types of contexts (domains).

Yaghoobzadeh uses the model of Yaghoobzadeh
et al. (2018) modified for our task settings. This
model predicts the type of the given entity from
its name and contexts using a CNN. Compared to
ours, it randomly selects contexts and does not use
meta-information. We randomly extracted 100 con-
texts per entity from the collected contexts in § 3.3
and trained the model. At test time, we randomly
selected the contexts for each entity in the test data.



4674

ALL PERSON C. WORK LOC. GROUP EVENT DEVICE
Proposed (fine-tune) 0.646 0.780 0.672 0.526 0.600 0.790 0.833
Proposed (random) 0.602 0.746 0.629 0.482 0.546 0.780 0.862
Yaghoobzadeh 0.582 0.718 0.658 0.348 0.454 0.723 0.824
Majority N/A 0.145 0.200 0.046 0.156 0.305 0.380

(a) English non-homographic

ALL
Proposed (fine-tune) 0.691
Proposed (random) 0.579
Yaghoobzadeh 0.575
Majority N/A

(b) English homographic
ALL PERSON C. WORK LOC. GROUP

Proposed (fine-tune) 0.766 0.822 0.870 0.729 0.846
Proposed (random) 0.676 0.768 0.790 0.663 0.801
Yaghoobzadeh 0.611 0.675 0.764 0.606 0.729
Majority N/A 0.095 0.125 0.395 0.840

(c) Japanese non-homographic

ALL
Proposed (fine-tune) 0.665
Proposed (random) 0.509
Yaghoobzadeh 0.433
Majority N/A

(d) Japanese homographic

Table 3: Micro-F1 for typing emerging entities (N = 10). Majority predicts the majority label for each type. For
homographic entities, we only show the overall results since the number of entities per type is unbalanced.

5.2 Settings

We tokenized each input post using spaCy
(ver. 2.0.12)4 with en_core_web_sm model for En-
glish and using MeCab (ver. 0.996)5 with ipadic
(ver. 2.7.0) for Japanese.

We implemented all the models using Keras
(ver. 2.3.1).6 To initialize the word embedding
layers for English, we used the 200-dimensional
word embeddings pre-trained using GloVe (Pen-
nington et al., 2014) from 2B English posts.7 For
Japanese, we trained 200-dimensional word em-
beddings using GloVe from 800M Japanese posts
posted from Mar. 11th, 2011 to Mar. 11th, 2012 in
our Twitter archive. For the Meta Network, from
URLs and usernames, we extracted the top 20,000
most frequent tokens in the training data and used
as z (§ 4.1.3). We used wikipedia2vec8 with the
Wikipedia dump on Dec. 26th, 2015 to extract 100-
dimensional embeddings of the entities that cooc-
cur with the target entity.

We optimized all the models using
Adam (Kingma and Ba, 2015). We finally
chose the model at the epoch with the highest
accuracy on the development data. We show
the detailed hyperparameters of the models
in Appendix (Table 7). For the model of
Yaghoobzadeh, we adopt the same configurations
and hyperparameters of their study.

For each entity in the test data, we perform entity
typing once using the selected contexts for each
model. For each N , we trained and tested each
model 10 times, calculated the micro-F1 (Ling and
Weld, 2012), and averaged the results.

4https://spacy.io
5https://taku910.github.io/mecab
6https://keras.io
7https://nlp.stanford.edu/data/glove.twitter.27B.zip
8https://wikipedia2vec.github.io/wikipedia2vec

Figure 4: Micro-F1 for each typing model when chang-
ing N (English).

Figure 5: Micro-F1 for each typing model when chang-
ing N (Japanese).

5.3 Results and Analysis

Table 3 shows the results of all types and for each
coarse-grained type when N = 10. For most of
the types, Proposed (fine-tune) outperformed the
other methods for both English and Japanese. This
indicates the validity of our typing model and the
importance of discriminating emerging contexts
and others (vs. Proposed (random)). Especially for
homographic entities, since those entities contain
many noisy contexts of other entities, our context
selection method that identifies the emerging con-
texts worked effectively.

Impact of the number of input posts, N Fig-
ure 4 and 5 plot micro F1 as a function of the num-

https://spacy.io
https://taku910.github.io/mecab
https://keras.io
https://nlp.stanford.edu/data/glove.twitter.27B.zip
https://wikipedia2vec.github.io/wikipedia2vec
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Figure 6: Ablation test: micro-F1 for Proposed (fine-
tune) when changing N (English)

ber of input posts, N . Although the performances
of all the models improve as N is increased, its
gain almost converges at N = 8. The improve-
ment from N = 1 shows the effectiveness of using
multiple posts in this task.

Cross-language analysis Interestingly, the per-
formance of Japanese homographic entities is lower
than English, even though the number of target
types is smaller than that of English (185 vs. 71).
This is probably because in languages such as
Japanese and Chinese, where entities are not cap-
italized, their contexts are more likely to be con-
taminated by common nouns; for example, ‘香水
(kosui)’ refers to both the common noun ‘perfume’
and the name of the Japanese song released in 2020.
In fact in Japanese, the performance of the models
without context selection significantly dropped.

Ablation study To verify the contribution of
each network of the proposed model, we performed
an ablation test. Figure 6 shows the performance
change of Proposed (fine-tune) for the English data.
We can see that there are significant performance
drops when the Context Network is removed. The
Entity Network is effective for homographic enti-
ties but not for non-homographic entities. Since
homographic entities may contain entities with the
same name in the training data, it is natural that
the Entity Network trained on such data would
make biased predictions for such entities. For the
Meta Network, it is effective for non-homographic
entities with limited contexts (N < 4) and homo-
graphic entities. Such meta-information helps the
model make robust predictions even when the con-
texts are scarce or contaminated by homographic
entities.

Examples Table 4 lists examples of predictions
with proposed (fine-tune). In the first example, al-
though it is difficult to determine its type using only

Entity: Tristan Blackmon Type: BaseballPlayer
1. _USER_’s Tristan Blackmon are on the watch list!
2. With the 3rd pick in the 2018 MLS, select

Tristan Blackmon from the University of the Pacific.

Entity: Sonos One Type: Appliance
1. Sonos One available on Oct. 24 for $200, preorders

starting today. Google assistant coming in 2018 _URL_
2. Sonos One is going to combine the best bits from

the Amazon Echo and the Google Home: via _URL_

Table 4: Examples that our model predicted correctly
(above) and incorrectly (below) (English, N = 2)

the first context (N = 1), by adding another con-
text (N = 2), the proposed model utilized it (about
a baseball draft) and determined the correct type.
The second example is an entity that the proposed
model predicted incorrectly. Although we can infer
that “Sonos One” is an appliance since it appears
with entities like “Google Home” and “Amazon
Echo,” the proposed method failed to predict the
correct type due to the absence of those entities in
the period before 2016 when the training data were
collected. We thus need to update the training data
periodically to cover the latest entities (concepts)
by using a method like distant supervision.

6 Conclusions

We introduced a task of typing emerging entities in
microblogs (§ 3.2). To perform this task, on the ba-
sis of the definition of emerging entities (§ 3.1), we
constructed large-scale Twitter datasets for English
and Japanese (§ 3.3). We developed a modular
entity typing model (§ 4.1) that encodes different
aspects of an emerging entity with MI-learning. To
deal with noisy contexts of homographic entities,
we adopt a context selection model (§ 4.2) that
differentiates emerging contexts from others. Ex-
periments (§ 5) demonstrated that our method per-
formed more accurately than the baseline model for
both non-homographic and homographic emerging
entities. We confirmed the importance of selec-
tively using emerging contexts for training and test-
ing the typing model and verified the effectiveness
of each network of the proposed typing model.

For future work, we plan to perform further pro-
filing of emerging entities such as relation extrac-
tion to organize emerging and existing knowledge.
We release the dataset used in our experiments.9

9http://www.tkl.iis.u-tokyo.ac.jp/~akasaki/emnlp21.html

http://www.tkl.iis.u-tokyo.ac.jp/~akasaki/emnlp21.html
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A Appendix

A.1 Annotation Guideline
We provided the following instructions and some
examples (e.g., Table 2) for annotators. These in-
structions are translated from Japanese to promote
readability.

1. Please read the following definition of emerg-
ing entities (omitted here since it is identical
to the one given in § 3.1) carefully and see
examples of emerging entities.

2. For non-homographic entities, you will be
given entities and their tweets. Please check
these tweets and then label the entity as
“emerging” if one or more emerging contexts
for the entity appear.

3. For homographic entities, you will be given
tweets with entities on each day. Please check
these tweets in date order and “fill in the dates”
when one or more emerging contexts for the
entity appear.

A.2 Data Statistics
Table 5 and 6 show the statistics of the test data.
As for homographic entities, the data is unbalanced
because they tended to be concentrated in certain
types, such as names of people and creative works.

A.3 Hyperparameters
Table 7 shows the hyperparameters of our typing
model and context selection model.

TYPE #ent. #posts
DBpedia types

PERSON 200 6048
SoccerPlayer 51 1447
Politician 36 875
Person (Misc.) 29 839
(A)FootballPlayer 15 518
Others (23 types) 69 2369

CREATIVEWORK 200 5327
Album 50 1280
Film 40 1097
TelevisionShow 37 750
VideoGame 28 948
Others (12 types) 45 1252

LOCATION 200 5687
Stadium 38 980
Building 35 1337
Museum 19 424
Station 15 554
Others (25 types) 93 2392

GROUP 200 4907
Organisation 44 1077
PoliticalParty 36 808
Company 33 942
SoccerClub 18 407
Others (12 types) 69 1673

EVENT 200 3973
Award 61 1064
GrandPrix 21 443
WrestlingEvent 14 340
MMA Event 12 261
Others (14 types) 92 1865

DEVICE 200 5302
Device 76 2070
Automobile 45 1343
Ship 35 834
Appliance 18 537
Others (4 types) 26 518

TOTAL 1200 31244

(a) English data

TYPE #ent. #posts
DBpedia types

PERSON 200 4149
SoccerPlayer 40 765
Politician 22 310
Presenter 21 455
Actor 19 444
AdultActor 17 335
BaseballPlayer 13 210
Wrestler 12 195
Others (10 types) 56 1435

CREATIVEWORK 200 4058
Manga 36 391
TelevisionShow 33 902
VideoGame 32 948
Film 26 410
Single 25 436
Album 21 360
Anime 15 366
Others (3 types) 12 245

LOCATION 200 4203
Building 79 1978
Station 51 934
Museum 26 437
Library 9 159
School 8 169
Infrastructure 6 47
University 5 60
Others (6 types) 16 419

GROUP 200 4459
Company 168 3859
PoliticalParty 14 240
SoccerClub 12 275
Organisation 6 85

TOTAL 800 16869

(b) Japanese data

Table 5: Statistics of non-homographic emerging enti-
ties and a burst of posts in the test data obtained from
Twitter.
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TYPE #ent. #posts
DBpedia types

PERSON 65 1750
FootballPlayer 13 448
SoccerPlayer 10 255
MartialArtist 9 212
BasketballPlayer 9 221
Politician 8 195
Person (Misc.) 6 243
Wrestler 3 42
Others (4 types) 7 134

CREATIVEWORK 125 3892
TelevisionShow 27 861
Film 22 547
Single 19 800
VideoGame 15 560
Album 14 453
Book 12 256
Comic 5 183
Others (6 types) 11 232

LOCATION 2 100
Stadium 1 50
Building 1 50

GROUP 6 89
PoliticalParty 3 14
Company 3 75

EVENT 1 50
WrestlingEvent 1 50

DEVICE 1 50
Appliance 1 50

TOTAL 200 5931

(a) English data

TYPE #ent. #posts
DBpedia types

PERSON 38 1610
MusicalArtist 11 735
ComedyGroup 7 336
AdultActor 4 53
Actor 3 153
VoiceActor 2 102
SoccerPlayer 2 63
Model 2 46
Others (6 types) 7 122

CREATIVEWORK 156 11310
Single 39 3002
Album 33 2481
Film 28 1959
TelevisionShow 20 1655
Manga 15 817
VideoGame 7 463
Anime 5 339
Others (4 types) 9 594

GROUP 6 510
Company 6 510

TOTAL 200 13430

(b) Japanese data

Table 6: Statistics of homographic emerging entities
and a burst of posts in the test data obtained from Twit-
ter.

Name Value
Maximum number of words (Context and CS) 35
Word embedding size (Context, Entity and CS) 200
Dimension of Bi-GRU (Context and CS) 256
Maximum length of entity (Entity) 30
Character embedding size (Entity) 16
Dimension of Bi-GRU (Entity) 64
Maximum number of features (Meta) 20000
Dimension of Wz (Meta) 256
Maximum number of entities (Meta) 5 * N
Entity embedding size (Meta) 100
Batch size 32
Dropout 0.5
Adam β1 0.9
Adam β2 0.999
Adam ε 1e-6

Table 7: Hyperparameters of our typing and context se-
lection model. ‘Context’ means Context Network. ‘En-
tity’ means Entity Network. ‘Meta’ means Meta Net-
work. ‘CS’ means Context Selection.


