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Abstract

Robust sequence-to-sequence modelling is an
essential task in the real world where inputs
are often noisy. Both user-generated and ma-
chine generated inputs contain various kinds
of noises in the form of spelling mistakes,
grammatical errors, character recognition er-
rors etc, all of which impact downstream tasks
and affect interpretability of texts. In this work,
we devise a novel sequence-to-sequence archi-
tecture for detecting and correcting different
real world and artificial noises (adversarial at-
tacks) from English texts. Towards that we
propose a modified transformer-based encoder-
decoder architecture that uses a gating mech-
anism to detect types of corrections required
and accordingly corrects texts. Experimental
results show that our gated architecture with
pre-trained language models perform signifi-
cantly better that the non-gated counterparts
and other state-of-the-art error correction mod-
els in correcting spelling and grammatical er-
rors. Extrinsic evaluation of our model on Ma-
chine Translation (MT) and Summarization
tasks show the competitive performance of the
model against other generative sequence-to-
sequence models under noisy inputs.

1 Introduction

Noisy texts are very common in user-generated
texts that appear abundant in various social media
platforms like short message service (SMS), on-
line chat, email, blogs, wikis etc. These kind of
texts may contain spelling errors, abbreviations,
non-standard terminology, false starts to name a
few. Most of the NLP models assume the data
to be linguistically correct and semantically co-
herent. Thus, noisy texts pose a serious threat in
ensuring accurate predictions and practicality of
any NLP system in real-life applications. Auto-
matic noise correction from texts is thus crucial in

∗The author was employed at Optum Global Advantage,
India during the entire work.

many systems such as user provided search (Gao
et al., 2010), social media analysis (Baldwin et al.,
2013; Mapa et al., 2012), customer feedback analy-
sis etc. As described by Keselj et al. (Keselj, 2009),
each human-typed text contain 1-2% spelling and
grammatical errors and 10-15% of them are from
web searches. Other sources of noises can origi-
nate from machine extracted outputs such as optical
character recognition (OCR) (Pontes et al., 2019;
Mutuvi et al., 2018; Wang et al., 2018) and speech-
to-text generation (Guo et al., 2019; Bassil and
Alwani, 2012) which need to be corrected in order
to improve the performance on downstream tasks.

To devise a robust technique for noise re-
moval and corrected target generation, we propose
gated-Trans (g-Trans), a gated transformer
sequence-to-sequence model. Our model uses a
mask gate based on a pre-trained transformer en-
coder to detect noises within texts, and a pre-trained
transformer decoder to generate noise-free target
sequence. The decoder uses a copy gate to deter-
mine whether to copy an output token directly from
the input, a generate gate to generate new output
token for a masked (contextually incorrect) token
and a skip gate to skip tokens that are contextu-
ally irrelevant. We evaluate our model on real-life
noisy texts generated from OCR engines, as well
as artificial augmentation based noises (Ma, 2019;
Morris et al., 2020) that replicate the real-life user
generated noises. Further, our extrinsic evaluation
on the noisy machine translation (MT) and summa-
rization tasks shows the robustness of our model on
translating noisy texts into correct generated target.
Contribution: We contribute to the existing body
of noise removal task in several ways. • We in-
troduce a gating mechanism for conditional tar-
get generation from transformer; • The method
introduced is robust to different noising techniques
which makes it adaptable for real-life noise cor-
rection; • Our proposed method can also handle
noises injected during pre- and post-tokenization
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phase; • The proposed model can efficiently handle
noisy texts in extrinsic tasks like machine transla-
tion, text summarization etc, occurring in real-life
applications.
Reproducibility: Source codes and other ex-
perimental details to reproduce the results have
been made public at https://github.com/
victor7246/gated-Transformer. The
datasets are enclosed in the supplementary mate-
rial.

2 Related Work

In this work we adopt the definition of noise in
text from (Contractor et al., 2010) as any kind of
difference between the surface form of a coded
representation of the text and the correct text. As
more and more noisy text data being generated
in various social communication media, removing
noises from these texts have become an increas-
ingly important task. Existing methodologies for
noise removal from texts can be divided into two
categories - classifier based approaches and statisti-
cal machine translation (SMT) based approaches.
Traditional classifier-based approaches (Imamura
et al., 2003; Khadivi and Ney, 2005) and fine-
tuned SMT based methods (Junczys-Dowmunt and
Grundkiewicz, 2016; Hoang et al., 2016; Chollam-
patt et al., 2016) are not generalized enough to cor-
rect different types of noises from texts (Ng et al.,
2014) and require huge parallel corpora. Thus in
SMT-based approaches usage of language models
pre-trained on monolingual corpora has become
very popular. Etoori et al. (Etoori et al., 2018)
propose a Seq2Seq-based deep learning model to
perform spell correction automatically in resource-
scare languages like Hindi and Telegu. Krishna
et al. (Krishna et al., 2018b) propose a post-OCR
text correction approach based on Seq2Seq model
for digitising texts using Romanised Sanskrit, the
lack of resources has made them use OCR mod-
els trained for other languages written in Roman.
Wang et al. use Confusion-set-guided Pointer Net-
works (Wang et al., 2019), a novel Seq2Seq model
for the task of Chinese Spell Correction (CSC).

Researchers have recently tried using large pre-
trained transformer language models to capture
semantic understanding of texts accurately and
achieve extremely competitive performance across
various NLP tasks including spell correction. Hong
et al. (Hong et al., 2019) have recently proposed
BERT (Devlin et al., 2019) based Seq2Seq model

for the task of CSC. However as pointed out
by (Zhang et al., 2020), vanilla BERT is diffi-
cult to use for spelling correction, as it is primar-
ily a pre-trained masked language model (MLM).
The authors in (Lewis et al., 2020) have pro-
posed a large pre-trained transformer model, BART,
which is a denoising sequence-to-sequence lan-
guage model. (Malmi et al., 2019) propose a
BERT based encoder-decoder model to correct-
ing texts with edit operations. Similar transformer
models have been successfully used in Grammati-
cal Error Correction (GEC) systems. For exam-
ple, authors in (Omelianchuk et al., 2020) em-
ploys a transformer encoder to design a simple
and efficient GEC sequence tagger called GECToR.
In (Kaneko et al., 2020) a pre-trained masked lan-
guage model like BERT is effectively incorporated
into an encoder-decoder model in a GEC system.
People have also investigated the quality of output
produced by GEC systems, - researchers proposes a
neural approach (Chollampatt and Ng, 2018) to au-
tomatically estimate the quality of GEC-produced
sentences which do not use any hand-crafted fea-
tures.

Noises can be introduced into texts in two phases,
pre-tokenization and post-tokenization. BART
uses masking, deletion and infilling for introduc-
ing noises in pre-training. Similarly, T5 (Raffel
et al., 2020) is another pre-trained language model
that uses fill-in-the-blank-style denoising objective
for pre-training. However, in both BART and T5
the noises are added only after the tokenization of
texts. So, denoising raw noisy texts is assumed
to be more difficult than denoising noisy token se-
quence. Further, none of the existing pre-trained
language models are evaluated on noisy generation
tasks with corrupted source texts.

To overcome these limitations, in this work we
introduce a robust transformer-based model that
can detect and remove noises from texts injected
during pre-tokenization and generate correct target
texts flexibly. Further, using different gating strate-
gies, our model can understand the different kinds
of induced and natural noises and act differently
under various scenarios, which is not offered by
BART, T5 or other pre-trained denoising language
models.

3 The Proposed Model

In this section we formally describe our model
gated-Trans that consists of a transformer

https://github.com/victor7246/gated-Transformer
https://github.com/victor7246/gated-Transformer
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based gated-encoder and a gated-decoder. To show-
case the efficacy of our proposed gating mecha-
nism over the existing pre-trained language models,
in this work we use the pre-trained BERT, BART
and T5 models as our backbone to initialize the
encoder and decoder layers. In the subsequent
discussion we assume each noisy source text is
tokenized into m subword tokens represented as
a sequence of vectors X1:m = {x1,x2, . . . ,xm},
where each xi, 1 ≤ i ≤ m represents the vec-
tor representation of the ith token. Given a se-
quence of tokens X1:m the goal is to transform it
into another sequence of subword tokens Y1:n =
{y1,y2, . . . ,yn}, whereas the length of target vec-
tors n is unknown apriori and depends on the input
sequence. The denoising process in BART and
T5 is done after tokenization. So, an incorrect to-
ken (subword) is replaced with another token. On
the other hand, in our gated-transformer, we use
the raw, noisy text, tokenize them and feed them
onto the sequence-to-sequence model. This task is
assumed to be more challenging, as an incorrect
word can be tokenized into multiple incorrect to-
kens (subword) after tokenization. Hence, there
may not be a one-to-one correspondence between
the input and the output. Also, as it is difficult to
establish an one-to-one correspondence between
source and target text, contrary to Chinese spell cor-
rection task, we adhere to word-level and subword-
level text denoising. In this work we adapt byte
pair encoding (BPE) (Sennrich et al., 2016) to
convert both noisy input and the correct target into
sequences of subwords. In the following subsec-
tions we describe each of the constituent modules
of our model in greater detail (also see Figure 1
for the architecture of the proposed model).

3.1 Masked Encoder

As described in previous section, we use pre-
trained language models to initialize the weights
of our encoder. The encoder layer consists of a
fixed number L identical transformer blocks each
of which uses a fixed K number of self-attention
heads and d-dimensional feed-forward dense layers.
For example, gated-Trans with BERT back-
bone model consists of 12 encoder layers (simi-
lar to BERT-base architecture) with each having
12 self-attention heads and 768-dimensional FFN
layers. Hence, each layer l generates a hidden
representation h(l) = (h

(l)
1 ,h

(l)
2 , · · ·h

(l)
m ), which

is generated using the Multi-headed Self-attention

(MHA) and FFN at layer l. For each token xi, we
use the hidden state h

(L)
i obtained from Lth layer

to calculate the masked hidden state using:

ui = σ(Wmask · h
(L)
i ) (1)

and construct U = (u1,u2, . . .um). Further

h = embmask ·U+ (1m −U)� h(L) (2)

Above σ is the sigmoid activation function and
1m denotes an m-dimensional vector of 1’s. Also,
embmask is the embedding of the [MASK] token
from the corresponding encoder model and� is the
element-wise multiplication. The masking proba-
bility ui determines whether we need to explic-
itly replace the token xi with the [MASK] token.
This is very similar to the soft-masking proposed
in (Zhang et al., 2020). However, soft-masking
probability is calculated by a separate detection net-
work under the supervision of labels corresponding
to detection task.

3.2 Conditional Decoder

In the decoder, we intend to calculate the proba-
bility pθdec(Y1:n|X1:m). By Bayes’ rule we can
decompose this probability in an auto-regressive
manner into conditional probabilities of single tar-
get vectors being conditioned on the decoder in-
puts.

Pθdec(Y1:n|X1:m) =

n∏
i=1

Pθdec(yi|Y0:i−1,X1:m)

We initialize y0 with the [CLS] or, [START ]
token. Similar to the encoder, the decoder cal-
culates self-attention among the decoder hidden
states. However, in decoding phase we have uni-
directional self-attention among decoder tokens
and cross-attention between decoder states and en-
coder hidden states. Similar to the self-attention
operation in encoder, for decoder we project the
embeddings of a token y

′
i (yi−1 shifted right) to

query, key and value triplets. In uni-directional
self-attention we calculate dot product attention
using qi as queries, (k0, k1, · · · ki) as keys and
(v0, v1, · · · , vi) as values, all of which are pro-
jected from y

′
i. However, in cross-attention, we

use y
′
i to project to query and X1:m to project to

keys and values. For each token y
′
i, we consider

the hidden states h
′
i from the last layer of decoder
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Figure 1: gated-Trans using gated pre-trained transformer encoder-decoder model

block and calculate the copy probability, gener-
ate probability and skip probability respectively as
follows:

ci = σ(Wcopy · h
′
i) (3)

gi = σ(Wgen · h
′
i) (4)

si = σ(Wskip · h
′
i) (5)

Subsequently, we normalize the gate probabilities:

ci,gi, si := softmax([ci,gi, si]) (6)

Intuitively, for a masked token in the encoder, we
should have a high probability assigned to the gen-
erate gate in order to generate a new token instead
of the incorrect token. On the other hand, correct
tokens (where mask probability is low) need to be
copied directly. The intuition behind using this
copy gate is similar to the concept of Copy-Net
(Gulcehre et al., 2016; Wang et al., 2019; See et al.,
2017). The skip gate is introduced to tackle inser-
tion based text attacks. For contextually incorrect
word, if the model expects low probability for the
generation of a new token, and low probability for
copying the incorrect token, it can skip the token
altogether. Finally we update the hidden state with

h
′
i = ci · y

′
i + gi · σ(h

′
i) + si · embmask (7)

In the last layer of our conditional decoder we use
a softmax activation function to project the hidden
states to obtain most probable candidate for the
generation. We use

Pθdec(yi|Y0:i−1,X1:m)

= softmax(Wvocab · h
′
i + bvocab) (8)

3.3 Learning

Unlike in (Zhang et al., 2020), we train
gated-Trans end-to-end based on the genera-
tion task. Hence, for a given noisy text textnoisyi

and the target text texttargeti , we tokenize the in-
put noisy text to generate a noisy input sequence
X1:m = {x1,x2, . . . ,xm} and the target ground
truth sequence Y1:n = {y1,y2, . . . ,yn} and cal-
culate the loss as:

Li =
n∑
j=1

yj log(Pθdec(yj |Y0:j−1,X1:m)) (9)

During training we calculate the loss Li for the
entire mini-batch to learn the parameters for both
encoder as well as, the decoder.

4 Experiments and Results

In this section we describe our experimental ef-
forts on both intrinsic and extrinsic evaluations and
subsequently report the results.

4.1 Dataset

In this study we use total 5 datasets for evaluat-
ing our model against the baselines. We divide
our experimental study into two parts, - intrinsic
evaluation and extrinsic evaluation. We report the
statistics of these datasets in Table 1. Addition-
ally, we also report the average error percentage
in each text for each of these corpora in the form
of Word Recognition Rate (WRR) (Krishna et al.,
2018a). WRR denotes the percentage of correct
words present in the noisy input text.
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Dataset #Sent Source Target Noise %Length #Token Length #Token
O

C
R ALTA 6,000 471 372,025 476 326,626 19.83

ICDAR 765 326 41,411 314 38,629 13.11

In
fu

se
d IMDb 50,000 329 449,582 231 438,729 29.17

WMT14 10,000 22 42,619 21 37,398 40.72
CNN/DM 10,000 220 120,101 35 46,354 39.50

Table 1: Dataset statistics. Noise is defined as 1 −
WRR (Krishna et al., 2018a).

Intrinsic Evaluation Datasets: In this work, we
showcase the robustness of our model on machine-
generated noises (e.g. OCR) and real-life noises
such as - random insertion, deletion, swapping. We
use 3 different datasets, containing original and
noisy text pairs, for intrinsic evaluation described
as below.
• ALTA: We use the dataset collected by (Molla
and Cassidy, 2017) for ALTA 2017 shared task 1
which consists of original output of OCR system
for each of the documents, along with their cor-
rected versions.
• ICDAR: We use the post-OCR correction dataset
introduced in ICDAR 2017 and 2019 competitions
(Chiron et al., 2017; Rigaud et al., 2019), which
have been curated mostly from English newspaper
and monographs.
• IMDb: Additionally we use a corpus of movie
reviews from IMDb which is collected by (Maas
et al., 2011) and primarily used for sentiment clas-
sification. The primary reason to use the IMDb
dataset is to use a standard real-life text dataset for
injecting real-life artificial noises and reconstruct
the original text to showcase the robustness of our
model for real-life applications. We use character
level and contextual text augmentation techniques
(described in A.2) externally using nlpaug1 for
noise injections.

Extrinsic Evaluation Datasets: We perform our
extrinsic evaluation on two tasks - (1) Machine
Translation (MT) and (2) Summarization, and in-
ject artificial noises in the source text of the follow-
ing datasets.
• WMT14: We utilize a subset of WMT14
English-French dataset (Bojar et al., 2014) for ma-
chine translation task and inject artificial noises to
the English source text to understand the capability
of our model to translate a noisy English text to the
coherently translated French text.
• CNN/DM: We use a subset of the dataset used
in CNN/DailyMail news summarization (Hermann

1https://github.com/makcedward/nlpaug

Augmentation
Type

Augmented Text

Random T3he quick brown fEox jumps over th6e
la1y d*og

Keyboard The quick brown Gox juJps ocer the lazy
dog

Swap Hte quikc borwn fox jumps ovre teh lazy
dgo

Delete Te quic brown fx jumps ver he laz og

Table 2: Examples of Injected Noise Augmentations.
The original text is “The quick brown fox jumps over
the lazy fox". Out of all these techniques, only Random
augmenter does insertion based noise injection.

et al., 2015). Similar to MT, noises were injected
to the source text and evaluate against the predicted
summary.

4.1.1 Noises in Datasets
• Noises in Intrinsic Evaluation Datasets: The
intrinsic experimental datasets contain OCR ex-
tracted errors which comprise of variations of
spelling errors. These errors can be categorized
into - multi-token errors, first-position errors and
run-on errors. We describe each of these types of
errors in greater details in the appendix.
• Infused Noises: We explore different adversar-
ial attack based noises to infuse noises artificially to
the source texts of IMDb, MT and summarization
datasets. We use Random Character, Keyboard,
Character Swap and Character Deletion based aug-
mentation techniques. Random noise, is a combina-
tion of all three noises where we observe character
insertion, deletion, and swapping together within a
single sentence. A list of examples of augmented
noises are shown in Table 2. We provide the fur-
ther details on these augmentation techniques in
the appendix.

4.2 Baseline Methods
In this work we adopt several state-of-the-art mod-
els for spelling, grammatical and noise correction.
� Symspell: As explored by (Stahlberg et al.,
2019), we use Symspell2, a simple spell checker
based on confusion sets as the simplest baseline.
It uses a handcrafted confusion set (Bryant and
Briscoe, 2018) as a lookup dictionary to correct
incorrect words.
� GECToR (Omelianchuk et al., 2020) : This
model uses a transformer encoder based efficient
GEC sequence tagging framework, which has been
pre-trained on 9M parallel sentences with syntheti-

2https://github.com/wolfgarbe/symspell

https://github.com/makcedward/nlpaug
https://github.com/wolfgarbe/symspell
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cally generated grammatical errors (Awasthi et al.,
2019). We use the ensembled predictor that uses
Sequence tagging, token-level transformations
and two-stage fine-tuning with BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) and
XLNet (Yang et al., 2019) pre-trained language
models. This model is the current state-of-the-art
on CoNLL-2014 Shared Task dataset (Ng et al.,
2014) and BEA-2019 shared task dataset (Bryant
et al., 2019).
� NQE (Chollampatt and Ng, 2018) : We use a
Neural Quality Estimator with a Convolutional
Neural Network (CNN) backbone. NQE provides
a quality vector associated with the GEC’s output
which are fed in as a feedback feature to improve
the GEC’s performance.
� BERT (Devlin et al., 2019): We adapt the
pre-trained BERT language model for the gen-
erative tasks. For the experiments we use the
BERT-based model trained on BooksCorpus (Zhu
et al., 2015) and English Wikipedia data. We
use a tied Seq2Seq model with BERT as both
encoder and decoder, followed by a dense layer for
generation.
� BART (Lewis et al., 2020) : We use the
denoising autoencoding pre-trained Seq2Seq
language model BART as one of our baselines. We
use the BART-base architecture (number of layers
L = 6) in this study.
� T5 (Raffel et al., 2020) : We fine-tune T5-base
model, a transformer based text-to-text model
pre-trained in a multi-task transfer learning setting.
Similar to BART, T5 is also pre-trained with
fill-in-the-blank-style of denoising objective.

We obtain the pre-trained model weights for
BERT, BART and T5 from Huggingface’s trans-
former library.3. Owing to space constraints,
we report the different hyperparameters and the
system settings in the appendix.

4.3 Results

4.3.1 Intrinsic Evaluation Results
We compute WRR and BLEU scores for evaluat-
ing models on intrinsic denoising experiment and
report the results in Table 3. For OCR generated
noises, we observe that pre-trained transformer-
based Seq2Seq models attain better scores than
other baselines, with T5-base performing the best
with an average lift of 1.7% WRR and 4.8% BLEU

3https://huggingface.co/models

on ALTA and an average lift of 4.0% WRR and
BLEU on ICDAR, against the best performing
spelling and GEC baseline (i.e., GECToR). Fur-
ther, it worth noting that the gated versions (for
each gate) of all said transformer sequence models
outperform their non-gated counterparts by 0.5%
WRR and 2.5% BLEU.

However, the results for synthetically infused
noises are far more significant. Here we observe
a wider margin between transformer based correc-
tion models and the non-transformer models, NQE
and Symspell. This shows the shortcomings of the
confusion set-based spell correction methods on
adversarial attacks. On the other hand, pre-trained
language models are extremely accurate in correct-
ing infused noises with 93.6% WRR and 94.4%
BLEU, albeit having more noisy inputs (Table 1).
Among all the models, T5 performs the best even
on the infused noises. This is the case with the OCR
datasets, that is, gated versions (each gate) of all
said transformer sequence models outperform their
non-gated counterparts by over 3.5% in terms of
both WRR and BLEU scores. The margin is much
wider between gated-BERT and BERT, which
shows the weakness of the inbuilt denoising capa-
bility of BERT model, as compared to BART and
T5. The superior performance of gated-Trans
is indicative of the effectiveness of our model while
dealing with noises generated by OCR systems as
well as, adversarial attacks and man-made errors.

gated-Trans allows the flexibility to select
the gates in the Seq2Seq model during encod-
ing and generation. As part of ablation study
we also report the results for different combina-
tions of gates with the transformer models, namely
(i) mask+generate (MG), (ii) copy+generate
(CG), and (iii) mask+copy+generate (MCG).
gated-Trans with MG loosely resembles the
Soft-Masked BERT model (Zhang et al., 2020).
We observe that across different intrinsic datasets,
gated-Trans with just CG or, MCG gates con-
sistently outperform the all-gated version with a
margin of over 0.5%. This points favorably to our
hypothesis that, since denoising is a one-to-one se-
quential task, the skip gate is of lesser importance
than the other three gates. Hence, exclusion of the
skip gate boosts the performance of our models
significantly. Additionally, we observe that under
Random noise, gated-Trans with all gates per-
forms significantly better than the other variants.
In these cases, we observe a pivotal role by the skip

https://huggingface.co/models
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Models

Datasets
OCR Noise Infused Noises (IMDb dataset)

ALTA ICDAR Random Keyboard Swap Delete
WRR BLEU WRR BLEU WRR BLEU WRR BLEU WRR BLEU WRR BLEU

Symspell 0.637 0.593 0.677 0.677 0.788 0.675 0.784 0.767 0.774 0.781 0.787 0.787
GECToR 0.823 0.778 0.769 0.774 0.899 0.864 0.971 0.970 0.955 0.963 0.950 0.953

NQE 0.753 0.729 0.756 0.714 0.809 0.786 0.872 0.855 0.842 0.829 0.850 0.808
BERT 0.818 0.754 0.765 0.765 0.872 0.872 0.964 0.982 0.842 0.926 0.831 0.899

g-BERT (all gates) 0.809 0.787 0.785 0.795 0.974 0.984 0.970 0.980 0.970 0.975 0.959 0.970
mask+generate 0.769 0.717 0.767 0.739 0.931 0.955 0.967 0.972 0.964 0.959 0.948 0.957
copy+generate 0.831 0.825 0.786 0.804 0.958 0.981 0.967 0.984 0.971 0.979 0.955 0.964

mask+copy+generate 0.825 0.819 0.798 0.805 0.969 0.975 0.973 0.986 0.977 0.977 0.971 0.975
BART 0.838 0.788 0.785 0.773 0.957 0.942 0.940 0.923 0.951 0.942 0.947 0.935

g-BART (all gates) 0.840 0.833 0.815 0.824 0.975 0.983 0.979 0.988 0.977 0.982 0.964 0.978
mask+generate 0.822 0.817 0.796 0.802 0.954 0.973 0.972 0.984 0.962 0.969 0.940 0.963
copy+generate 0.842 0.831 0.804 0.811 0.971 0.981 0.979 0.987 0.983 0.985 0.971 0.975

mask+copy+generate 0.844 0.835 0.814 0.820 0.972 0.983 0.980 0.984 0.973 0.978 0.976 0.988
T5 0.840 0.826 0.809 0.814 0.971 0.983 0.988 0.991 0.974 0.986 0.964 0.977

g-T5 (all gates) 0.825 0.808 0.814 0.823 0.981 0.983 0.991 0.995 0.978 0.987 0.978 0.991
mask+generate 0.827 0.807 0.793 0.799 0.955 0.976 0.974 0.983 0.977 0.977 0.937 0.955
copy+generate 0.841 0.826 0.812 0.823 0.974 0.982 0.988 0.990 0.980 0.978 0.978 0.989

mask+copy+generate 0.849 0.831 0.823 0.831 0.975 0.980 0.992 0.994 0.980 0.982 0.984 0.989

Table 3: Intrinsic Evaluations Across Baselines for Word Recognition Task. We highlight the best scores in bold.

gate, which detects insertion based noises and skips
contextually irrelevant tokens to generate the clean
target text.

4.3.2 Extrinsic Evaluation Results

For extrinsic evaluations we report BLEU and
ROUGE scores for all the models for MT and sum-
marization tasks with Random, Keyboard, Swap
and Delete noises infused in the source text. We
evaluate the performances of gated-Trans for
both these tasks to determine the impact of effec-
tively dealing with synthetic noises on the perfor-
mances of downstream tasks.
Machine Translation: At an overall level, we ob-
serve in Table 4 that gated-Trans performs
better than its non-gated counterparts w.r.t both
BLEU and ROGUE scores, irrespective of type of
infused noise. Similar to intrinsic evaluation, T5
outperforms the other transformer models for all
noises. For Random noise, we observe that the
gated-BART supersedes all other baselines, with
a lift of 0.4% BLEU and 0.8% ROUGE over the
most competitive benchmark of T5. Similarly, for
Swap and Delete noises, gated-T5 performs sig-
nificantly better than all other models by a margin
of 1.5% BLEU and 0.9% ROUGE. On the other
hand, for Keyboard noise gated-BART with just
MCG gates shows the best results with an improve-
ment of 0.3% BLEU and 1.0% ROUGE over the
T5-base model.
Summarization: For Random, Keyboard and
Delete noises, gated-T5 outperforms all other

models with a significant margin of more than 0.5%.
Also, for Swap noise, the gated-T5 with MCG
gates reports the best result across all variants.
An interesting conclusion from the extrinsic evalu-
ation results is the effectiveness of all the gates in
gated-Trans for generative tasks. This can be
attributed to the fact that using copy and generate
gates along with skip gate and these tasks being gen-
erative in nature often require tokens to be skipped
in order to translate or summarize. Hence, while
each gated version performs better than the base
model, the skip gate provides an added advantage
for generative tasks.

5 Result Analysis

In this section we analyze the performance of
gated-Trans both quantitatively and qualita-
tively. We perform a statistical test of significance
to statistically validate the effectiveness of gating
mechanism in transformer based Seq2Seq models.
We conduct one-tailed Welch’s t−test (WELCH,
1947) on the intrinsic and extrinsic results of each
pre-trained transformer model and the gated ver-
sions and reject the null hypothesis with a p−value
of 0.01. This indicates that the improvement by our
gated model is not random and is attributed by the
architectural novelty. Next we establish the rela-
tionships between gated-conditional probabilities
and the volume of noise and overall length of the
text. In Figure 2a, we present the linear relationship
between the WRR score and the gating probability
values. One can notice that the masking probability
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Models
Infused Noises (WMT14) Infused Noises (CNN/DM)

Random Keyboard Swap Delete Random Keyboard Swap Delete
BLEU ROGUE BLEU ROGUE BLEU ROGUE BLEU ROGUE BLEU ROGUE BLEU ROGUE BLEU ROGUE BLEU ROGUE

BERT 0.449 0.101 0.458 0.096 0.449 0.102 0.450 0.098 0.263 0.565 0.262 0.563 0.261 0.565 0.261 0.561
g-BERT (all gates) 0.454 0.096 0.465 0.096 0.459 0.093 0.466 0.094 0.265 0.568 0.268 0.569 0.262 0.568 0.264 0.564

mask+generate 0.452 0.099 0.461 0.095 0.451 0.091 0.455 0.091 0.262 0.566 0.263 0.565 0.260 0.561 0.263 0.562
copy+generate 0.453 0.099 0.460 0.089 0.453 0.094 0.459 0.101 0.261 0.567 0.264 0.566 0.262 0.567 0.260 0.559

mask+copy+generate 0.454 0.104 0.463 0.095 0.455 0.093 0.462 0.100 0.264 0.566 0.264 0.566 0.262 0.567 0.261 0.562
BART 0.472 0.142 0.469 0.121 0.470 0.115 0.474 0.109 0.300 0.589 0.309 0.595 0.298 0.576 0.289 0.569

g-BART (all gates) 0.481 0.153 0.471 0.114 0.474 0.118 0.479 0.119 0.302 0.589 0.321 0.619 0.308 0.594 0.302 0.614
mask+generate 0.477 0.146 0.470 0.116 0.470 0.117 0.475 0.111 0.303 0.590 0.312 0.611 0.314 0.597 0.298 0.586
copy+generate 0.477 0.146 0.471 0.114 0.472 0.116 0.477 0.110 0.301 0.589 0.312 0.606 0.302 0.585 0.296 0.581

mask+copy+generate 0.479 0.149 0.477 0.130 0.473 0.117 0.478 0.110 0.304 0.590 0.315 0.615 0.308 0.594 0.298 0.585
T5 0.477 0.145 0.474 0.120 0.483 0.128 0.490 0.119 0.324 0.640 0.329 0.655 0.313 0.638 0.323 0.637

g-T5 (all gates) 0.477 0.146 0.475 0.123 0.494 0.134 0.508 0.131 0.329 0.649 0.334 0.661 0.319 0.643 0.325 0.640
mask+generate 0.474 0.145 0.472 0.121 0.484 0.128 0.492 0.124 0.319 0.641 0.324 0.649 0.301 0.596 0.315 0.609
copy+generate 0.475 0.145 0.472 0.121 0.487 0.129 0.496 0.127 0.326 0.645 0.328 0.659 0.317 0.640 0.324 0.640

mask+copy+generate 0.479 0.150 0.476 0.127 0.491 0.132 0.503 0.129 0.326 0.646 0.329 0.661 0.321 0.651 0.323 0.638

Table 4: Extrinsic Evaluation on WMT14 English-French translation and CNN/DM summarization tasks

Input Sys Prediction
Source: Girl Cricketer Recovers Having recovered from a head
in- <*> jury, caused by a cricket ball during an interstate
women’s match in Ade- <*> laide on Saturday, Nesta Moon,
17, wicketkeeper of the Victorian team, was discharged from the
Adelaide &>?pltal after detention for observation. ’

A girl cricketer recovers having recovered from a head injury,
caused by a cricket ball during an interstate women’s match in
adelaide on saturday, nesta moon, 17, wicketkeeperkeeper of
the victorian team, was discharged from the adelaide hospital
after detention for observation.

Target: Girl Cricketer Recovers Having recovered from a head
injury, caused by a cricket ball during an interstate women’s
match in Adelaide on Saturday, Nesta Moon, 17, wicket-keeper
of the Victorian team, was discharged from the Adelaide Hospi-
tal after detention for observation.

B girl girl recovers having recovered from a head in jury caused
by a cricket ball during an interstate womens match in adelaide
on saturday night snow 17 wicketkeeper of the victorian team
was discharged from the adelaide police after detention for
observation

Table 5: Error Analysis on a sample instance on denoising task. System A denotes gated-T5 and B denotes
T5-base. Tokens denoted by <*> indicate noises in the source text.

has a positive correlation with the noise amount
(+0.08 correlation w.r.t. WRR). This is highly in-
tuitive, since the masking gate should ideally mask
the noisy tokens only. Also, in Figure 2b, it can
be seen that only generate probability has a neg-
ative correlation (-0.66) with the length of text,
while masking, copy and skip probabilities show
positive trend with the text length. This might be
owing to the fact that for shorter text, there is lack
of context. To overcome this, the generate gate
in gated-Trans will come in play to add more
characters/words to the text to create a more con-
textually coherent text, that will naturally be devoid
of noises. From 2c we can further strengthen the
hypotheses on relative importances of each of the
gates. For one-to-one translation task like denois-
ing, we can observe a higher masking and copy
probability. On the other hand, in generative tasks
like MT and summarization tasks, generate and
skip gates play more vital roles with higher proba-
bility to generate more meaningful target.

Lastly, we take a look at few examples to inter-
pret the superior performance of gated-Trans .
In Table 6b, we showcase an example from denois-
ing task and compare gated-T5 with T5-base.
We provide few more instances in the appendix.

We also report the copy and masking probability
heatmaps in Figure 3. In the provided example, the
source text contains three noises occurring at in-
jury, Adelaide and Hospital. While gated-T5 is
able to rectify all the three noises, T5 base model is
able to correct only one (Adelaide). We can also ob-
serve in the heatmaps in Figure 3a and 3b, that all
the noisy characters and tokens have high masking
probabilities, which is consistent with the expected
behavior of the masking gate in gated-Trans .

6 Conclusion

In this work, we propose gated-Trans - a novel
end-to-end Seq2Seq Transformer model with con-
ditional gates for robust generation. The gated-
unit in our sequential model is efficient for effec-
tively removing noises from texts which has been
demonstrated by its superior performance over
other competitive baselines. We also observe the
performance improvement that gated-Trans is
achieved in downstream tasks like machine transla-
tion and summarization. Further, we showcase the
noise-invariant nature of gated-Trans , which
is capable of removing not only OCR induced
noises but also synthetically infused noises, high-
lighting its potential efficacy towards dealing with
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Figure 2: Average masking, copy, generate and, skip probabilities for different (a) Noise levels; (b) Text lengths
(c) Tasks

(a) Masking probability on noisy source

(b) Copy probability on a sample target

Figure 3: We highlight high masking and copy proba-
bility for different word tokens for a denoise instance

a range of adversarial attacks on texts. Further, our
model allows more flexible text generation suitable
for different purposes just by opting different gates
out. Looking forward, we would like to explore and
handle noises which specifically occur in OCR and
speech-to-text conversion processes by leveraging
information from multiple modalities.
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A Dataset

A.1 Noises in Texts for Intrinsic Evaluation

The intrinsic experimental datasets contain OCR
extracted errors which comprise of variations of
spelling errors. These errors can be categorized on
different ways which are as follows: -
• Depending on edit distance, there are single-error
tokens with edit distance of 1 (e.g. ‘school’ vs.
‘schopl’) and multi-error tokens with higher edit
distances (e.g. ‘school’ vs. ‘schopi’).
•Misspellings can occur at the first character (e.g.
‘world’ vs. ‘uorld’) or at other characters (e.g.
‘world’ vs. ‘workd’, ‘world’ vs. ‘worlh’). The
average rate of first-position errors can then be con-
sidered to be around 11% of misspellings. Further,
a non-word error is when a token is not a lexicon en-
try and real-word error is when a valid word occurs
in a wrong context. For example, in two phrases
‘glow-worm candles’ and ‘glow-wonn candies’, a
non-word error is ‘glow-wonn’ while ‘candies’ is a
real-word error.
• In case of problems with word boundaries,
wrongly deleting/inserting white spaces results in
run-on errors (e.g. ‘is said’ vs. ‘issaid’).

A.2 Infused Noises

Below we describe the different types of noise in-
jection techniques we explore in this work. We
infuse these set of noises artificially to the source
texts of IMDb, MT and summarization datasets.
� Random augmentation: This type of augmen-
tation occurs when one of the characters from a
token is randomly inserted, deleted or substituted.
� Keyboard augmentation: This type of aug-
mentation is the result of keyboard error of a to-
ken where one of the character is replaced by its
neighbouring character in the keyboard position.
example could be ‘jumps’ vs ‘juJps’.
� Swap augmentation: This sort of augmenta-
tion occurs at both character level as well as word
level. In Character level augmentation, characters
of a particular word are swapped within the same
word. However at word level augmentation, two
or more words within a sentence are swapped. In

other words, the positions of words in a sentence
are changed. This type of augmentation method
changes the linguistic meaning of a sentence.
� Delete augmentation : As the name suggests,
under this augmentation method, one of the char-
acters across every token or word of the sentences
is deleted. Missing or deleted character could be
anywhere from the token of a sentence. Example
of Delete Augmentation is: Original Text: “The
quick brown jumps over.” Augmented Text: “Te
quic rown fx jump ver.”

B Experiment Setup and
Hyperparameters

For all the models across each of the datasets we
use 300 as the maximum token length of a source
text as well as the target text. We resort to padding
technique to maintain fixed source length. However
for MT, we use the maximum length as 100. For
all the models we use categorical cross entropy to
calculate the loss. Transformer models are trained
with Adam (η = 5e − 5, β1 = 0.9, β2 = 0.999)
optimizer (Kingma and Ba, 2015) with a weight
decay rate of 0.001. For GECToR and NQE we
use Adam optimizer with η = 1e− 3 without any
weight decay. We train our models for 30 epochs
with an early-stopping criteria (patience = 10)
based on the validation loss. All models are trained
with batch-size of 32. As none of the datasets con-
tain separate train-dev split, we split each datasets
into 80-10-10 for training-validation and testing.
We conduct all our experiments on a single Tesla
T4 GPU. Average runtime to train and validate a
single batch of size 32 is 4.2 seconds and 1.5 sec-
onds respectively. We primarily use BERT, BART
and T5 pre-trained language models as the backend
for both encoder and decoder in this work. Due to
this transfer learning setup, our model requires a
minimal task-specific dataset to work with. Further,
we train our model with different learning rates in
different layers (smaller learning rate in language
model backend and larger in task-specific layers),
making it pretty effective even on smaller datasets.
Size-wise gated-transformers are comparable with
their non-gated counterparts. e.g. BART model
has 139M parameters. Compared to that, a gated-
transformer with a BART backend has only 3076
additional parameters.
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Input Sys Prediction
Source: The FBI hase rescued 168 children and arristed 281
pimps in a countrywide crackdown on child sex trafficking. The
operation, which took place over the last week in more than
100 cities, involved nearly 400 law enforcement agencies, au-
thorities said Monday. The message, said FBI Director James
Comey, should be clear: ‘ ‘ Our children are not for sale. .. .
We will respond and crush these pimps who would crush these
children. ’ ’

A fbi fbi took place over the last week in more than 100 cities.
authorities director. the involved nearly 400 law enforcement
agencies. the director james ‘ ‘ our children are not for sale.’

Target: The operation took place over the last week in more
than 100 cities , FBI says.It involved nearly 400 law enforcement
agencies.FBI director : “ Our children are not for sale ”

B the fbi involved place over the last week in more than 100 cities.
authorities director. 168 involved 281 400 law enforcement
agencies. the director : ‘ ‘ our children are not for sale.

(a) Summarization

Input Sys Prediction
Source: Atomic Chief Sir William Penney, JJrilain’s chief
atomic scientist, on his arrival at i’tiraneld yesterday.

A atomic chief sir william penney, chief’s chief atomic scientist,
on his arrival at ti graph yesterday, sir

Target: Atomic Chief Sir William Penney, Britain’s chief atomic
scientist, on his arrival at Parafield yesterday.

B atomic atomic scientist sir william penney july 1 sir william
penney john william penney jjrilains chief atomic scientist on
his arrival at itiraneld yesterday

(b) Denoise

Table 6: Error Analysis on sample instances. System A denotes gated-T5 and B denotes T5-base model.

(a) Generate probability on a sample target

(b) Copy probability on a sample target

Figure 4: Heatmap of token-wise probability values for sample source and targets.

C Error Analysis

Looking to the summarization example in Table 6a,
we observe once again gated-T5 yields a much
cleaner text compared to T5-base model. T5 ends
up keeping random numbers in the predicted text,
whereas the gated model is able to meticulously
clear out the contextually insignificant tokens from
the text before summarization. This is indicative
of the contextual semantic understanding that our
gating mechanism showcases in our model. Also,
we observe that in the beginning of the predicted
summarized text, gated-Trans ends up predict-
ing two fbi’s. This can be attributed to the fact
that the first token has no context to depend on,
hence the copy probability in Figure 4 can be seen
as low for the first predicted token and high for
the second token, while the generate probabilities
follow the inverse trend. Further, in the denoising
example in Table 6b, it can be observed that both
gated-T5 and T5 base model fail to effectively
denoise the source text. However it is worth noting
that gated-T5 outputs are much cleaner (albeit
imperfect) text compared to T5, which ends up

injecting more noise into the text.


