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Abstract
Emotion Recognition in Conversation (ERC)
has gained much attention from the NLP com-
munity recently. Some models concentrate on
leveraging commonsense knowledge or multi-
task learning to help complicated emotional rea-
soning. However, these models neglect direct
utterance-knowledge interaction. In addition,
these models utilize emotion-indirect auxiliary
tasks, which provide limited affective informa-
tion for the ERC task. To address the above is-
sues, we propose a Knowledge-Interactive Net-
work with sentiment polarity intensity-aware
multi-task learning, namely KI-Net, which
leverages both commonsense knowledge and
sentiment lexicon to augment semantic infor-
mation. Specifically, we use a self-matching
module for internal utterance-knowledge inter-
action. Considering correlations with the ERC
task, a phrase-level Sentiment Polarity Intensity
Prediction (SPIP) task is devised as an auxil-
iary task. Experiments show that all knowledge
introduction, self-matching and SPIP modules
improve the model performance respectively
on three datasets. Moreover, our KI-Net model
shows 1.04% performance improvement over
the state-of-the-art model on the IEMOCAP
dataset.

1 Introduction

Emotion recognition in conversation aims to iden-
tify each utterance’s emotion from a conversation,
which requires machines to understand the way
of emotion expression during conversations (Po-
ria et al., 2019b). Research on ERC helps in cre-
ating empathetic dialogue systems (Ghosh et al.,
2017; Zhou et al., 2018), thus improving the over-
all human-computer interaction experience. Hence,
the ERC task has a wide range of applications such
as social media analysis (Li et al., 2019; Chatter-
jee et al., 2019) and intelligent systems like smart
homes and chatbots (Young et al., 2018).

∗ Equal contribution
† Email corresponding

Figure 1: Illustration of a conversation where both sen-
timent lexicon and commonsense knowledge aid ERC
task. Cylinders denote commonsense knowledge, and
rectangles denote sentiment lexicon knowledge.

Unlike vanilla emotion recognition of sentences,
context modeling for conversations is crucial for
ERC models. Early Recurrent Neural Network
(RNN)-based ERC works adopt memory networks
to store historical conversation context (Hazarika
et al., 2018b,a). Recent progress in Pre-trained Lan-
guage Models (PLMs) like BERT (Devlin et al.,
2019) and XLNet (Yang et al., 2019b) has bene-
fitted many downstream tasks, such as dialogue
systems (Henderson et al., 2020; Bao et al., 2020)
and reading comprehension (Yang et al., 2019a;
Shwartz et al., 2020). Nevertheless, Ilievski et al.
(2021) indicate that PLMs lack some dimensions
of knowledge, which may limit the performance
of the corresponding downstream tasks. Hence
most recent PLM-based ERC works adopt hierar-
chical structures that obtain word-level or utterance-
level representations via PLMs and then devise
other elaborate modules for knowledge comple-
ment. Some of them explicitly combine structured
commonsense knowledge to the model and form
knowledge-enriched representations (Zhong et al.,
2019; Zhang et al., 2020). For the knowledge that
is abstractive or unstructured, some other models
adopt multi-task learning to compensate for miss-
ing knowledge dimensions implicitly (Wang et al.,
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2020; Li et al., 2020).
However, the above works do not consider in-

ternal interactions between utterance and knowl-
edge representations when incorporating common-
sense knowledge but simply concatenate them,
which may negatively affect model performance as
proved in the follow-up experiment. Besides, the
auxiliary tasks of most multi-task learning meth-
ods are emotion-indirect, such as topic inference
(Wang et al., 2020) and utterance-speaker veri-
fication (Li et al., 2020), which do not involve
additional affective information directly. Ilievski
et al. (2021) also show that knowledge overlap
between different knowledge sources is little. In-
tuitively for the ERC task, the complement of
different dimensions of knowledge helps the rea-
soning process. In Figure 1, We illustrate a con-
versation where both commonsense knowledge
and sentiment lexicon aid emotion detection. For
example, considering the keyword “divorce” in
the first utterance, with “an_affair” as a possible
cause, “stop_being_married” as an action, and “di-
vide_a_family” as a result, commonsense knowl-
edge enables the model to build a semantics-
enhanced chain on “divorce”. The sentiment lexi-
con assigns extremely negative sentiment polarity
intensity “-0.83” for “divorce”, which directly in-
structs the model on determining negative emotions.
Obviously, in the process of judging this utterance
as “Frustrated”, the two sources of knowledge have
played their respective roles.

To cope with the above challenges, we propose a
Knowledge-Interactive Network with sentiment po-
larity intensity-aware multi-task learning (KI-Net).
We first adopt a context- and dependency-aware
encoder for context modeling. To further enhance
the word-level representations, we leverage a large-
scale commonsense knowledge graph and a sen-
timent lexicon. Inspired by Yang et al. (2019a),
knowledge representations are incorporated into
word-level representations using a self-matching
mechanism, allowing a full internal interaction. We
also introduce a phrase-level Sentiment Polarity
Intensity Prediction (SPIP) as the auxiliary task,
which is expected to provide more direct instruc-
tions on emotion recognition of the target utterance.

In summary, this paper makes the following con-
tributions:

• We try to make up for some of the missing
knowledge dimensions in the PLM by ap-
plying multi-source knowledge. The subse-

quent ablation study shows that the introduced
knowledge does have a positive impact on the
performance of the model.

• For the first time on the ERC task, we discuss
the necessity of explicit interactions between
utterance and knowledge, guiding future work
of knowledge integration.

• We adopt a new auxiliary task for ERC,
namely phrase-level sentiment polarity inten-
sity prediction. Experiments show that the
SPIP task provides promising improvement
for the ERC task.

2 Related Work

Emotion recognition in conversation has gained
attention from the NLP community only in the past
few years (Yeh et al., 2019; Majumder et al., 2019;
Zhou et al., 2018) since the growing availability
of public conversational data (Busso et al., 2008;
Poria et al., 2019a; Li et al., 2017).

ERC task naturally requires modeling interac-
tion between conversation participants. Consid-
ering this requirement, many works adopt RNNs
to model contextual utterances in a temporal se-
quence, such as CMN (Hazarika et al., 2018b) and
ICON (Hazarika et al., 2018a). Based on them,
Majumder et al. (2019) propose a attentive RNN-
based model DialogueRNN to model party states
and emotional dynamics. Transformer (Vaswani
et al., 2017) has also been devised to model in-
put sequences in many recent works (Zhong et al.,
2019; Zhang et al., 2020), which lead to better re-
sults. Besides, modules such as memory networks
(Wenxiang Jiao and King, 2020; Xing et al., 2020)
and graph-based networks (Ghosal et al., 2019;
Ishiwatari et al., 2020) are also introduced for rep-
resentation learning to better model contextual in-
formation and utterance dependencies.

Limited by the scale of current available high-
quality datasets, some works manage to incorpo-
rate task-related knowledge to boost model per-
formance. Hazarika et al. (2021); Chapuis et al.
(2020) propose elaborate pre-training tasks to im-
prove generalization of models. Zhong et al.
(2019); Zhang et al. (2020) explicitly extract com-
monsense knowledge from large-scale knowledge
graphs and concatenate them to word embeddings,
forming knowledge-enriched representations. In
addition, some works implicitly introduce knowl-
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Figure 2: Overall architecture of our model. Rep. denotes representation. (a) is a sub-graph extracted from the
ConceptNet with the keyword “happy” while (b) is an example provided by the SenticNet with the keyword “bless”.

edge through multi-task learning, such as label im-
balance confusion (Zhang et al., 2020), dialogue
topic information (Wang et al., 2020) and utterance-
speaker relations (Li et al., 2020).

3 Our Proposed KI-Net Model

3.1 Task Definition and Model Overview

We define ERC task as follows: Given {{Xi
j}, Y i},

where i = 1, ...N, j = 1, ...N i, as a collection of
{utterance, emotion label} pairs in one conversa-
tion. Conversation X consists of N utterances and
each utterance Xi consists of N i tokens, namely
Xi = {Xi

1, X
i
2, ..., X

i
Ni
}. Each Xi is uttered by

p(Xi) ∈ P, where P is the set of conversation
participants. The discrete value Y i ∈ S is used to
denote the emotion label, where S denotes the set
of pre-defined emotion labels, and |S| = hc. The
objective of the ERC task is to predict the emotion
label Y i of the target utterance Xi given its previ-
ous context and the mappings between X and P.
Our proposed KI-Net is illustrated in Figure 2.

To aid lacking knowledge dimensions of PLM,
we design a hierarchical model, whose key idea is
to enhance PLM with rich-interacted and strongly-
correlated knowledge. Based on this idea, KI-Net is
built, as depicted in Figure 2, with four major com-
ponents. We first use a XLNet-based encoder that
computes context- and dependency-aware represen-

tations for utterances (Sec. 3.2). Then a knowledge
introduction module is devised to retrieve common-
sense knowledge and form graph attention-based
representation (Sec. 3.3). A self-matching mod-
ule is employed for utterance-knowledge interac-
tion based on self-attention mechanisms (Sec. 3.4).
We also propose a SPIP task, which introduces
strongly-correlated knowledge to the model, and
a multi-task learning setting to combine ERC and
SPIP task (Sec. 3.5).

3.2 Context- and Dependency-Aware Encoder
Both historical conversational information and de-
pendency modeling are crucial for the ERC task.
Therefore, based on XLNet (Yang et al., 2019b),
we use a Context- and Dependency-Aware (CDA)
encoder to exploit both of the above elements by
improving the original self-attention mechanism.

For the time step i, the target utterance Xi

is prepended with the “[CLS]” token: xi =
{[CLS], Xi

1, X
i
2, ..., X

i
Ni
}. Then xi is passed

through the embedding layer:

hi
0 = embedding(xi) (1)

where hi
0 ∈ RN i×Dh , and Dh denotes input di-

mension of XLNet-base. hi
0 is regarded as input

states of the CDA encoder’s first layer. Also, hi
0

is used in concept embedding layer of knowledge
introduction, which we will discuss in Sec. 3.3.
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Besides the ordinary global self-attention, our
model devises a local self-attention which uses a
limited conversational window size to focus on the
neighboring part of the target utterance, a speaker
self-attention which retains historical context be-
longing to the target speaker and listener self-
attention which focuses on historical context ut-
tered by the other participants. These four types of
self-attention results are combined to form the out-
put of every layer in the CDA encoder. Following
DialogXL (Shen et al., 2020), the context memory
m is combined with hidden states using a utterance
recurrence mechanism. Given the input hi

0, the
CDA encoder adopts L layers of Transformer to
get word-level representation. For convenience, we
denote this process as:

hi
L = encoder(hi

0,m
i−1) (2)

where hi
L ∈ RN i×Dh , and mi−1 ∈ RL×Dm×Dh ,

Dm is a pre-defined max memory length. encoder
denotes the encoding process.

3.3 Knowledge Introduction
This section introduces the knowledge introduction
process where ConceptNet (Speer et al., 2017) is
leveraged as the commonsense knowledge base.
ConceptNet is a large multi-lingual semantic graph,
where each node denotes a phrase-level concept
and each edge denotes a relation. Each quadruple
<concept1, relation, concept2, weight> in Concept-
Net denotes an assertion, where the weight is a
confidence score assigned to the assertion.

We first introduce the knowledge retrieval pro-
cess. For a token t, we extract a graph gt, which
consists of t’s immediate neighbors from Concept-
Net. For each gt, we discard concepts that are
stopwords or not in the word vocabulary V of the
encoder mentioned in last section, and remove as-
sertions with confidence scores less than 1.0 for
denoising. gt = {(c1, w1), (c2, w2), ..., (ck, wk)},
where ci denotes the ith connected concept of t,
wi denotes its corresponding confidence score. An
example of gt is illustrated in Figure 2 (a).

We then adopt a graph attention mechanism to
form knowledge representations. For each non-
stop token Xi

j ∈ xi, we have a graph gi
j . For Xi

j

and cp ∈ gi
j , we obtain their embedding hij

0 and
h
cp
0 via embedding layer mentioned in Equation.1.

Then knowledge representation ki
j are computed

as follows:
tp = hij

0 · h
cp
0 (3)

αp =
exp(tpwp)

N ij
c∑

p=1
exp(tpwp)

(4)

ki
j =

N ij
c∑

p=1

αph
cp
0 (5)

where hij
0 ,h

cp
0 ,k

i
j ∈ RDh , · denotes dot product

operation, and N ij
c denotes the number of concepts

in gi
j . If N ij

c = 0, we set ki
j to the average of all

node vectors.
We adopt SenticNet (Cambria et al., 2020) as an-

other knowledge source. For each phrase si in Sen-
ticNet, there is a quintuple <polarity_value, polar-
ity_intense, moodtags, sentics, semantics>, where
the polarity_value belongs to positive or negative.
Polarity_intense is a floating number between -1
and +1, denoting positivity of si. For phrase si,
its mood tags m̂i ⊂ M, where M is the set of
pre-defined emotion description words. Sentics
is a quadruple and semantics êi defines a set of
semantics-related concepts of si. An example of
these tuples is illustrated in Figure 2 (b).

We add mood tags and semantics to the
commonsense knowledge base retrieved in Sec.
3.3. Specifically, for si ∈ V, we con-
struct a mood tag set with a weight value
m̂i = {(mi

1, w0), (m
i
2, w0), ..., (m

i
N i

m
, w0)},

where w0 = 2.0, N i
m is the number of mood tags

in m̂i. Similarly, we have a semantics set with
weight êi = {(ei1, ŵ0), (e

i
2, ŵ0), ..., (e

i
N i

e
, ŵ0)},

where ŵ0 = 1.0, N i
e is the number of semantics in

êi. With m̂i and êi, we construct enhanced knowl-
edge graph as follows: ĝsi = gsi ∪ m̂i ∪ êi, where
∪ denotes union operation of sets.

With enhanced knowledge graph ĝ, we make
minor changes to Equation. 3. For Xi

j and ĉp ∈ ĝi
j ,

we obtain their token embeddings hij
0 and h

ĉp
0 via

embedding layer mentioned in Equation.1. We
modify Equation. 3 as follows:

tp = hij
0 · h

ĉp
0 (6)

where hĉp
0 ∈ RDh . Then tp is used for computation

of Equation. 4, with the rest unchanged.

3.4 Self-Matching

To employ internal utterance-knowledge interac-
tion in the model, we propose a self-matching mod-
ule based on self-attention. For each token Xi

j , we
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obtain ui
j as follows:

ui
j = [hij

L ;k
i
j ] (7)

where [;] denotes concatenation operation, hij
L ∈

RDh and ui
j ∈ R2Dh . For two tokens Xi

j and Xi
m

within one utterance, we compute their similarity
via a trilinear function (Seo et al., 2017):

r̂jm = WT[ui
j ;u

i
m;ui

j � ui
m] (8)

where W ∈ R6Dh is the model parameter, and �
denotes element-wise multiplication. We obtain
the similarity matrix R̂ accordingly with r̂jm being
the jmth entry. Then we obtain the self-attention
matrix Q as follows:

qjm =
exp(r̂jm)

Ni∑
m

exp(r̂jm)

(9)

where qjm is the jmth entry of Q.
Intuitively, indirect interaction allows the model

to learn deeper semantic relations within the
knowledge-enriched representations. To further
achieve indirect interaction, we conduct a self-
multiplication of Q:

Q̂ = QQ> (10)

With indirect interaction, all token pairs can in-
teract through every other token within the utter-
ance.With Q and Q̂, we compute two attended
vectors for each token Xi

j :

vi
j =

Ni∑
m

qjmui
m (11)

v̂i
j =

Ni∑
m

q̂jmui
m (12)

where vi
j , v̂

i
j ∈ R2Dh , q̂jm is the jmth entry of

Q̂. We concatenate the two attended vectors with
different means to allow rich interactions:

cij = [ui
j ;v

i
j ;u

i
j−vi

j ;u
i
j�vi

j ; v̂
i
j ;u

i
j− v̂i

j ] (13)

where cij ∈ R12Dh , and cij denotes the jth row
of self-matching output matrix C. C is derived
by semantics and knowledge interactions between
utterance tokens, which allows knowledge to be
introduced purposefully instead of acting as noise.

3.5 Sentiment Polarity Intensity Prediction
In this section, we propose a phrase-level Sentiment
Polarity Intensity Prediction (SPIP) task. SPIP
is used as an auxiliary task to incorporate senti-
ment polarity knowledge to the model. Specifi-
cally, the model predicts sentiment intensive val-
ues for all SenticNet phrases within the utterance.
For xi, we retrieve a set Pi = {pi

k|pi
k ∈ n-grams

from xi}, n = 1, 2, ..., Ng, where Ng is a hyper-
parameter. For pi

k ∈ SenticNet ∩ V , where pi
k

denotes kth phrase of Pi, we record their start-
ing and ending positions < P ik

0 , P
ik
1 > in the

utterance, and the corresponding intensive value
Oi

k. Therefore, for each utterance xi we have
{< P ik

0 , P
ik
1 >,Oi

k}, k=1,...,N̂i, where N̂i denotes
the number of SenticNet phrases within xi.

For each utterance xi, we obtain its word-level
representation hi

L via Equation.2. For SenticNet
phrase pi

k, we obtain its representation rik using
phrase-level max pooling:

ĥi
k = hi

L[P
ik
0 : P ik

1 ] (14)

rik = maxpooling(ĥi
kW0 + b0) (15)

where ĥi
k ∈ R|P ik

1 −P ik
0 |×Dh , rik ∈ RDh , W0 ∈

RDh×h and b0 ∈ Rh are model parameters, h de-
notes a pre-defined hidden dimension, [:] denotes
matrix slice operation, and maxpooling denotes
the max pooling operation. We compute the final
prediction score:

Ôi
k = tanh(rikW1 + b1) (16)

where W1 ∈ Rh×1 and b1 ∈ R1 are model param-
eters. As training objective, we compute standard
MSE loss for SPIP task:

lossa =
1

N ∗ N̂i

N∑
i=1

N̂i∑
k=1

(Ôi
k −Oi

k)
2 (17)

For utterance xi, we have obtained its word-level
knowledge-enriched representations ci from self-
matching layer (Sec. 3.4), where ci is the ith entry
of C. We compute its utterance-level representa-
tion through max pooling:

ĉi = maxpooling(ciW2 + b2) (18)

where ci ∈ RN i×12Dh , W2 ∈ R12Dh×h and
b2 ∈ Rh are model parameters. We compute final
classification probabilities as follows:

Ŷi = softmax(ĉiW3 + b3) (19)



2884

Dataset Conv.(Train/Val/Test) Utter.(Train/Val/Test) Utter./Conv.

IEMOCAP 100/20/31 4,810/1,000/1,623 49.2
MELD 1,038/114/280 9,989/1,109/2,610 9.6

DailyDialog 11,118/1,000/1,000 87,170/8,069/7,740 7.9

Table 1: The statistics of the datasets.

where ĉi ∈ Rh, W3 ∈ Rh×hc and b3 ∈ Rhc are
model parameters. softmax denotes the softmax
operation.

We compute the loss of ERC task using standard
cross-entropy loss:

lossm = − 1
N

N∑
i=1

hc∑
k=1

(
Y ilogŶ i

k +

(1− Y i)log(1− Ŷ i
k )
) (20)

With both lossm for the main task ERC and
lossa for auxiliary task SPIP, we compute the total
loss of the task as follows:

loss =
lossm + εlossa

1 + ε
(21)

where ε ∈ [0, 1] is the pre-defined weight co-
efficient of lossa.

4 Experimental Setting

In this section we present experimental settings
such as datasets, baselines, implementation details
and evaluation metrics.

4.1 Datasets
We evaluate our model on the following three ERC
datasets. The statistics are shown in Table 1.

IEMOCAP (Busso et al., 2008): A multi-modal
conversation dataset, with emotion labels neutral,
happiness, sadness, anger, frustrated and excited.
Each conversation includes two parties.

MELD (Poria et al., 2019a): A multi-modal
dataset enriched from EmotionLines dataset, col-
lected from the scripts of TV show Friends. The
labels are neutral, happiness, surprise, sadness,
anger, disgust and fear.

DailyDialog (Li et al., 2017): From human-
written daily conversations with no speaker infor-
mation. The labels are similar to MELD.

4.2 Baselines and State of the Art
We compare our model with the following base-
lines:

BERT_BASE (Devlin et al., 2019): Initialized
with pre-trained parameters of BERT-BASE, the
model is fine-tuned for ERC task.

DialogueRNN (Majumder et al., 2019): Dialo-
gRNN uses three GRUs to model speaker states,
global contexts and emotion dynamics. The model
is expected to model inter-speaker relations on
multi-party conversations.

DialogueGCN (Ghosal et al., 2019): The model
utilizes a graph-based structure to model utterance
relations within a conversation.

KET (Zhong et al., 2019): The model uses a
graph attention mechanism to combine common-
sense knowledge into utterance representations.

AGHMN (Wenxiang Jiao and King, 2020): The
model uses a hierarchical memory network to
model and store context representations.

HiTrans (Li et al., 2020): Based on hierarchical
Transformer, the model uses multi-task learning to
be speaker-sensitive.

IEIN (Lu et al., 2020): IEIN uses predicted emo-
tion labels instead of gold labels and designs a loss
to constrain the prediction of each iteration.

RGAT (Ishiwatari et al., 2020): Based on graph
structure, the model augments relation modelling
of conversations, and adds relational position en-
codings to combine sequential information.

COSMIC (Ghosal et al., 2020): COSMIC in-
corporates different elements of commonsense and
leverages them to learn interlocutors’ interactions.

DialogXL (Shen et al., 2020): The model uses a
dialog-aware self-attention to introduce the aware-
ness of inter- and intra-speaker dependency.

4.3 Other Experimental Settings

We conducted all experiments using Xeon(R)
Silver 4110 CPU with 768GB of memory and
GeForce GTX 1080Ti GPU with 11GB of mem-
ory. We tokenize and pre-process the above three
datasets and use the XLNet tokenizer provided by
Hugging Face 1 to correspond with the vocabulary
of the pre-trained XLNet. For hyper-parameter set-
ting, Dh=768, h=300, L=12, Ng=4, hc and Dm

depends on the dataset. We set the initial learn-
ing rates of 1e-5 on IEMOCAP, 1e-6 on MELD
and DailyDialog. We employ AdamW optimizer
(Loshchilov and Hutter, 2017) the scheduled learn-
ing rate with a batch size of 6 on on IEMOCAP
and 4 on MELD and DailyDialog during training.
WE set 0.3 as the dropout rate on DailyDialog and
0 on the rest dataset. All the results are obtained
using the text modality only. The evaluation met-
rics are chosen as micro-F1 for DailyDialog and

1The website of Hugging Face: https://huggingface.co/
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Model Happy Sad Neutral Angry Excited Frustrated Avg.

BERT_BASE (Devlin et al., 2019) 37.09 59.53 51.73 54.33 54.26 55.83 53.31
DialogueRNN (Majumder et al., 2019) 33.18 78.8 59.21 65.28 71.86 58.91 62.75

DialogueGCN (Ghosal et al., 2019) 42.75 84.54 63.54 64.19 63.08 66.99 64.18
KET (Zhong et al., 2019) – – – – – – 59.56

AGHMN (Wenxiang Jiao and King, 2020) 52.10 73.30 58.40 61.90 69.70 62.30 63.50
HiTrans (Li et al., 2020) – – – – – – 64.50

IEIN (Lu et al., 2020) 53.17 77.19 61.31 61.45 69.23 60.92 64.37
RGAT (Ishiwatari et al., 2020) 51.62 77.32 65.42 63.01 67.95 61.23 65.22
COSMIC (Ghosal et al., 2020) – – – – – – 65.28
DialogXL (Shen et al., 2020) – – – – – – 65.94

KI-Net + BERT 39.10 65.24 57.35 57.81 60.17 57.61 59.93
KI-Net + XLNet 47.63 72.47 63.88 64.0 69.40 62.02 64.72
KI-Net (Ours) 49.45 73.38 65.63∗ 65.13 71.15 68.38∗ 66.98∗

Table 2: Performance comparison of ours, baselines, and state-of-the-art method for each emotion and their averages
on IEMOCAP. We highlight top-2 values on each emotion in bold. “–” means the original paper do not give
the corresponding result. The numbers with ∗ indicate that the improvement of our model over all baselines is
statistically significant with p < 0.05 under t-test.

Model MELD DailyDialog

BERT_BASE 56.21 53.12
DialogueRNN 57.03 50.65
DialogueGCN 58.10 –

KET 58.18 53.37
AGHMN 58.10 –
HiTrans 61.94 –

IEIN 60.72 54.71
RGAT 60.91 54.31

COSMIC 65.21 58.48
DialogXL 62.41 54.93

KI-Net + BERT 60.60 54.33
KI-Net + XLNet 62.12 55.07
KI-Net (Ours) 63.24 57.30

Table 3: Performance comparisons on MELD and Dai-
lyDialog. We highlight top-2 values in bold.

weighted-F1 for the other datasets. The results re-
ported in our experiments are all based on average
of 5 random runs on the test set.

5 Results and Analysis

5.1 Overall Results

Overall results of our model and the baselines
are listed in Table 2 and Table 3. According to
the results on IEMOCAP. DialogXL, COSMIC
and RGAT outperform other models with a per-
formance of over 65%. All these three models con-
sider modeling dependencies within conversations,
indicating that elaborate context modeling modules
are essential for the ERC task again. We also no-
tice that models such as KET improve transformer-

based PLM since they explicitly introduce com-
monsense knowledge. Besides, HiTrans devises an
auxiliary task to combine task-related information,
which also shows some improvement. Our KI-
Net model refreshed the current best performance
on IEMOCAP, bringing a 1.04% performance im-
provement. We attribute this result to our model
considering all the three factors mentioned above.

Similar results are also reflected on MELD and
DailyDialog. KI-Net achieves 63.24% on MELD,
which is around 5% better than KET. Consider-
ing the structure of KET, we believe that this im-
provement mainly comes from the introduction of
self-matching modules. KI-Net achieves 57.30%
on DailyDialog, which is around 2.5% better than
DialogXL. This may because external knowledge
complements the lacking knowledge dimensions of
PLMs. KI-Net is weaker than COSMIC on these
two datasets while still ranks in the top-2 positions.
Unlike our model, COSMIC leverages a different
set of PLM and knowledge source. We speculate
that the performance on short conversations (less
than ten turns) will be more dependent on the se-
lection of knowledge sources.

5.2 Emotion-Specific Results

We present emotion-specific testing results on the
IEMOCAP dataset in Table 2. KI-Net remains
top-2 for most emotions and shows a balanced
performance. Specifically, on emotions Neutral
and Frustrated, our model achieves the best re-
sults at 65.63% and 68.38%. We believe the in-
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Utterance Golden CDA. W/O SPIP KI-Net

Because I am not getting married. Sad Neutral Frustrated Sad

Phrase Golden Pred.

married 0.11 0.14

getting_married 0.44 0.37

widow wife husband man woman miss wedded single

married

Case 1

Utterance Golden CDA. W/O SPIP KI-Net

Cheap is exactly what I need. I have no money at all. Angry Frustrated Frustrated Angry

Phrase Golden Pred.

cheap -0.63 -0.59

no -0.06 -0.006

buy food obtain bribe bank earned work account

Case 2

money

Figure 3: Two cases from the IEMOCAP dataset. Golden, CDA. and w/o SPIP denote the ground-truth label, the
prediction of CDA encoder and KI-Net without SPIP. The boxes linked to w/o SPIP and KI-Net denote the attention
weights of the top-8 attended concepts of the key token and the polarity_intense prediction results respectively.

Method IEMOCAP MELD DailyDialog

sentiment intensive value 66.98 63.24 57.3
sentiment polarity 67.20 62.93 57.24
mood tags 66.63 62.87 57.0

Table 4: Results of Different Elements for SPIP.

teraction between the knowledge and the utterance
provides reasonable instructions on the final judg-
ment, which benefits fine-grained emotions’ detec-
tion such as Frustrated and Angry.

5.3 Effect of Element Selection for SPIP

As mentioned above, for each phrase si in Sentic-
Net, there is a tuple with some sentiment-related
elements. In addition to the sentiment intensive
value, we also explore some of the other elements
to provide supervision information for our auxil-
iary tasks. The results are shown in Table 4. We
tried different combinations, such as the sentiment
polarity and mood tags, but the effect is weaker
than sentiment intensity. We think this is because
sentiment intensity already includes sentiment po-
larity, and SPIP is a phrase-level auxiliary task, but
the main task needs to be judged by context, which
will shift the fine-grained emotions corresponding
to mood tags, so sentiment intensity is a more ap-
propriate choice.

5.4 Case Study

We provide two cases obtained from the actual
testing process of the IEMOCAP dataset to verify
the influence brought by the introduced knowledge
and the SPIP task. As illustrated in Figure 3, in
case 1, with commonsense concepts such as “miss”,
“husband” and “wedded” etc, the model gains more
profound insight into the semantics of “married”.
Meanwhile, the SPIP classifier gives relative strong
positivity for the phrase “getting_married”, which
establishes the emotional direction of the target
utterance with another keyword “not”. Obviously,
these two ways of knowledge introduction play
different roles in the reasoning process. The result
of the CDA encoder further shows that context
plays little role in this case.

In case 2, we can see the model does not get di-
rect emotion-related information via commonsense
knowledge concepts such as “earned”. Hence, in
this case, the knowledge introduction module plays
a relatively little role and makes the same predic-
tion as to the CDA encoder. However, with the neg-
ative intensity value that the SPIP classifier gives
to the token “cheap”, the model manages to label
the utterance “Angry”, which is also a negative
emotion but obviously more intensive than “Frus-
trated”.
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5.5 Error Analysis
We present the confusion matrix of our test results
on the IEMOCAP dataset in Figure 4. We notice
that many of the misclassifications are between
neutral and non-neutral emotions which can be
improved by adding clues from other modalities.
Despite the strong performance of our model, it
still shows that distinguish similar emotions (e.g.,
excited and happy) remains a great challenge. A
possible reason is that the sentiment lexicon assigns
close polarity intense values to words with similar
emotional expressions.

Figure 4: Confusion matrix on IEMOCAP.

5.6 Ablation Study
We perform an ablation study for our designed
modules. “-Self-Matching” denotes that the ut-
terance and knowledge representation are directly
concatenated. “-Knowledge Integration” means
both knowledge introduction and self-matching are
discarded. As shown in Table 5, the performance
drops with any of the components removed. Espe-
cially after deleting self-matching, the performance
may even lower than the CDA encoder. This result
proves that self-matching is crucial for integrating
knowledge, without which knowledge may even
bring the noise to emotional reasoning.

Performance drops more when the SPIP is re-
moved on the IEMOCAP dataset while knowledge
integration plays a relatively more important role
on the other two datasets. This may because there is
only an average of 1.9 Sentic phrases per utterance
with a 65% probability on the MELD dataset. To
some extent, this once again confirms our previous
conjecture that short conversations are more criti-
cal of knowledge sources than long conversations.

Method IEMOCAP MELD DailyDialog

KI-Net 66.98 63.24 57.3
-Knowledge Integration 66.58 (↓ 0.40) 62.72 (↓ 0.52) 56.52 (↓ 0.78)
-Self-Matching 64.89 (↓ 2.09) 62.38 (↓ 0.86) 55.35 (↓ 1.95)
-SPIP 66.39 (↓ 0.59) 62.89 (↓ 0.35) 57.07 (↓ 0.23)
CDA encoder 65.88 (↓ 1.10) 62.42 (↓ 0.82) 54.82 (↓ 2.48)

Table 5: Results of ablation study.

6 Conclusion

This paper proposes a KI-Net for emotion recog-
nition in conversations. Our model outperforms
state-of-the-art models on IEMOCAP. Extensive
experiments prove the necessity of interaction be-
tween knowledge and utterance, and the new aux-
iliary task SPIP will further improve performance.
Utterance-level interaction and confusion of similar
emotions are the focus of our following research.
Which dimensions of knowledge ERC relies more
on is also worthy of in-depth discussion.
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