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Abstract

Numeracy plays a key role in natural language
understanding. However, existing NLP ap-
proaches, either traditional word2vec approach
or contextualized transformer-based language
models, fail to learn numeracy. As the result,
the performance of these models is limited
when they are applied to number-intensive ap-
plications in clinical and financial domains. In
this work, we propose a simple number embed-
ding approach based on knowledge graph. We
construct a knowledge graph consisting of num-
ber entities and magnitude relations. Knowl-
edge graph embedding method is then applied
to obtain number vectors. Our approach is easy
to implement, and experiment results on vari-
ous numeracy-related NLP tasks demonstrate
the effectiveness and efficiency of our method.

1 Introduction

Numeracy is the ability to reason and to apply nu-
merical concepts, and numbers play a key role in
natural language understanding. For example, in-
vestors will probably react differently to the news
“AAPL earnings increase by 2%” vs. “AAPL earn-
ings increase by 20%”. Similarly, in clinical set-
ting, “heart rate is 140 beats per minute” vs. “heart
rate is 60 beats per minute” will likely result in
different decisions from physicians. In particular,
healthcare providers often use the textual triage
notes in emergency room to predict which patient
to be discharged or admitted. Take a triage note for
example, “pt had unwitnessed GLF. was initially
confused as per co-workers. GCS now 14. nause-
ated.” This note is labelled as Discharge as a GCS
(i.e., Glasgow Coma Scale) of 14 indicates that the
patient can response well (GCS ranges from 3 to
15, 3 being completely unresponsive and 15 being
responsive). The number 14 plays a key role in the
discharge decision. Using our proposed number
embedding approach, the number is encoded into
the same dimensional space as words while keeping

the numeracy, so that we can use deep NLP model,
say LSTM, to better represent the triage note. The
model will explicitly learn that a GCS following a
large number embedding may indicate Discharge
while a GCS following a small number embedding
may indicate Admitted. While numeracy is critical
in such domains where numbers are prevalent, most
existing NLP models are not designed explicitly to
handle numbers. Numbers are either directly dis-
carded in pre-processing, or treated as a UNK token
(Thawani et al., 2021). Prior literature also shows
that neither traditional word embeddings such as
word2vec nor the contextualized transformer-based
language model such as BERT can handle numbers
and process numeracy tasks effectively (Naik et al.,
2019; Wallace et al., 2019).

One straightforward way to encode numbers in
NLP tasks is to map a number’s value directly
to its embedding (e.g., “twenty-four” embeds to
[24]). Still, this strategy performs poorly while
the NLP task involves a large amount of numbers
with a wide range (Wallace et al., 2019). There-
fore, encoding numbers into high-dimensional vec-
tor space may potentially overcome the difficulties
and preserve numeric semantics. Along this line,
Sundararaman et al. (2020) proposes a number em-
bedding method DICE, where number vectors are
obtained via mathematical operations. However,
this method has a high computational cost due to
the math operation which limits its use in encoding
a large number of numbers.

In this work, we propose NEKG (Number
Embeddings from Knowledge Graph), a simple yet
effective number embedding method that produces
numeracy-preserving embeddings via a knowledge
graph structure. NEKG is independent of corpus
and creates deterministic number embeddings. To
explicitly preserve numeracy, we first construct a
knowledge graph consisting of only number en-
tities and magnitude relationships. We then ap-
ply TransE, a knowledge graph embedding method
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Algorithm 1: Number Embeddings from Knowledge Graph
Input Number Embedding range [min,max], embedding dimension dim, and the target number n.
Output The embedding vector embd of the target number n.

//Constructing numerical knowledge graph.
01: loop
02: triple← (h, ”isLessThan”, t) for each neighboring pair (h, t) within [min,max]
03: append triple→ Triples
04: end loop
05: model← TransE (k = dim) // TransE is the graph embedding function obtained from AmpliGraph 1.
06: model.fit (Triples)
// Inferring embedding for a target number.
07: if n ∈ OOV :
08: embd = Interpolation (n)
09: else :
10: embd = model.get_embeddings (n)

(Bordes et al., 2013), to embed the number enti-
ties into a vector space. In this way, numeracy-
preserved embeddings can be obtained directly
without using sophisticated mathematical opera-
tions. To obtain the embedding of an Out-of-
Vocabulary (OOV) number, we propose an inter-
polation method that uses the weighted average
of its two neighbors’ embeddings based on co-
sine similarity. We experiment our method on sev-
eral numeracy-related tasks, including evaluating
embeddings on their ability to capture magnitude
(Naik et al., 2019), and solving numeracy tasks (list
maximum, decoding, and addition) (Wallace et al.,
2019). We also apply our method in a downstream
financial NLP task that predicts the magnitude of
numbers in market comments (Chen et al., 2019).
Experiments show that our approach is efficient,
achieving comparable, and even better performance
than existing numeracy-preserving methods.

2 Related Work

Numbers are ubiquitous and numeracy plays an im-
portant role in NLP applications and domains such
as financial and clinical documents (Spithourakis
et al., 2016; Rajkomar et al., 2018; Qin and Yang,
2019). However, most of existing work simply
ignores the numbers in the pre-processing step
(Kogan et al., 2009) and thus leads to suboptimal
performance. See (Thawani et al., 2021) for an
overview. Spithourakis and Riedel (2018) studies
different strategies to model numerals, and Jiang
et al. (2019) proposes a joint learning model for
handling numbers in text. Still, a recent work (Naik
et al., 2019) shows that common word embedding
models cannot deal with numbers precisely. Ac-
cording to Wallace et al. (2019), most models fail

to interpolate or extrapolate to OOV numerals. The
main reason that causes such poor performance
with number-intensive tasks is that the existing
word embedding methods are not specifically de-
signed to capture numerical relationships.

To handle number embeddings specifically,
some new NLP models are proposed. One closely
related work to ours is DICE (Sundararaman et al.,
2020) which devises an independent-of-corpus and
deterministic approach to assign embeddings for
numbers. However, DICE derives numerical em-
bedding based on engineered mathematical op-
erations, which could be computationally costly
for encoding a large number of numbers. Our
work differs from DICE in that we infer numeracy-
preserving embeddings automatically from a spe-
cially designed knowledge graph. Compared to
DICE, our approach is simple and efficient yet
achieves comparable or even better performance.

3 Methods

The high-level idea of our approach NEKG is to
preserve numeracy and numeric semantics (e.g.,
magnitude, addition) via knowledge graph. Knowl-
edge graph is a network of entities, their seman-
tic types, properties, and relationships, built based
on entity-relation triples (Popping, 2003). In our
method, we make use of a simply structured knowl-
edge graph consisting of only numbers and their
magnitude relationships. We embed the knowl-
edge graph in a vector space using a graph em-
bedding method for obtaining embeddings of the
number entities. Numbers that are not in the
original knowledge graph, i.e., out-of-vocabulary
(OOV) numbers, can be inferred by an interpola-
tion method. See Algorithm 1 for the full descrip-
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tion of our algorithm. The code is available at
https://github.com/hduanac/NEKG.

3.1 Knowledge Graph Construction
The first step of our method is to construct a nu-
merical knowledge graph. The reason we consider
making use of a knowledge graph is based on the
fact that knowledge graph can represent numbers
and their magnitude relations properly and intu-
itively. We build the graph with a linear structure
where entities are a sequence of ordered numbers.
The minimal number and the maximal number in
the graph are customized by the specific tasks. For
example, suppose we are dealing with blood pres-
sure numbers, we can set the minimum 0 and max-
imum 500 because blood pressures (in the units
of mmHg) fall within this range. The entities of
the graph are linked by a single relationship type
called “isLessThan”, which ensures the transitive
property of numbers can be captured. In other
words, if a “isLessThan” b, and b “isLessThan” c,
one can infer a “isLessThan” c from the knowl-
edge graph. In Figure 1, we provide an illustration
of the numerical knowledge graph with 11 numbers
evenly sampled between 0 and 100. The range of
the graph, i.e., the number of numeric entities, and
minimal and maximal numbers, is determined by
the downstream applications but it should have a
linear structure and a single relationship type "is-
LessThan" for obtaining embeddings properly.
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Figure 1: An illustration of numerical knowledge graph
with 11 number entities [0, 10, ..., 100].

3.2 Knowledge Graph Embedding
After constructing the knowledge graph, we em-
bed the graph in a vector space using a standard
graph embedding method TransE (Bordes et al.,
2013). Other graph embedding methods can also
be adopted, and we choose TransE for its simplic-
ity and scalability. In TransE, if a fact "subject,
relationship, object" holds, the embedding of the
object entity should be close to the embedding of
the subject entity plus the embedding that repre-

sents the relationship between them, i.e., h+ r ≈ t,
and h, r, t stands for the embedding vectors of the
triple (h, r, t), denoting a relationship r between
entity h and t. In other words, our target is to
get the embeddings of all the triples that satisfy
h + r ≈ t. In our context, h and t represent the em-
beddings of number entities, and r denotes the em-
bedding of the relationship “isLessThan”. There-
fore, we have h(0) + r(”isLessThan”) ≈ t(10),
h(10) + r(”isLessThan”) ≈ t(20), h(20) +
r(”isLessThan”) ≈ t(30), etc. Then, intuitively,
numbers with similar magnitude will have similar
embeddings in the vector space. To validate it, we
build a numerical knowledge graph with 200 in-
tegers ([0, 199]) and employ TransE to embed the
graph in a 100-dimensional vector space. We visu-
alize the embedding vectors of these 200 integers
in Figure 2 using t-SNE (Van der Maaten and Hin-
ton, 2008). The visualization shows that numbers
with similar magnitude are close while numbers
with different magnitude are further apart, in the
learned embedding space.

Figure 2: 2-D t-SNE visualization of 200 integers’ em-
bedding vectors. Darker dots indicate smaller numbers.
Numbers with similar magnitude have similar number
embeddings.

3.3 Interpolation Method for OOV Number

How can we obtain the embedding of a number
that is not in the knowledge graph? We solve this
OOV problem by an interpolation method based on
the weighted average, where the embedding of a
number is obtained by a weighted average of proto-
type embeddings (Jiang et al., 2019). In our work,
we choose to use only two neighboring numbers as
the prototype embeddings for simplicity. Suppose
we have an OOV number n0, we first locate two
numbers n1 and n2 who are the two closest ones
to n0. Moreover, they satisfy n1 < n0 < n2. We

https://github.com/hduanac/NEKG
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then calculate their similarities as s1 = n2−n0
n2−n1

and
s2 =

n0−n1
n2−n1

, where s1 is the similarity between n0

and n1, and s2 is the similarity between n0 and n2.
Finally, the embedding of number n0 is determined
as e0 = s1 · e1 + s2 · e2 where e1 and e2 are the
embeddings of n1 and n2, respectively. According
to this interpolation method, we can easily obtain
the embedding of any number, integer or decimals.

4 Experiments

We evaluate NEKG on two tasks: Task 1 evaluates
NEKG on the ability to capture magnitude (Naik
et al., 2019); Task 2 examines the numeracy of
NEKG on list maximum, decoding, and addition
tasks (Wallace et al., 2019).

4.1 Task 1: Magnitude Contrastive Tests

In this task, we follow the analysis framework
(Naik et al., 2019) to evaluate the ability of
NEKG in capturing magnitudes by constructing
contrastive tests (Zhu et al., 2018). The contrastive
tests are based on triples (n, n+, n∗). If the number
embeddings can capture the magnitude, n will be
closer to n+ than n∗ in the vector space, which
means the embedding approach passes the test, and
vice versa. As the previous work, there are three
categories of the test (OVA, SC, and BC) that differ
in the choice of n∗. The descriptions are as follows.

• OVA (One-vs-All): The similarity between the
embeddings of n and its nearest neighbor n+

should be larger than that of the embeddings
of n and n∗, where n∗ stands for any other
number in the dataset excluding n+.

• SC (Strict Contrastive): The similarity between
the embeddings of n and its nearest neighbor
n+ should be larger than that of the embed-
dings of n and n∗, where n∗ represents the
second nearest neighbor of n.

• BC (Broad Contrastive): The similarity be-
tween the embeddings of n and its nearest
neighbor n+ should be larger than that of the
embeddings of n and n∗, where n∗ is the fur-
thest neighbor of n.

Training Details and Results. All the num-
bers are in the range of [0, 9999] for both of the

1https://docs.ampligraph.org/en/1.3.
0/generated/ampligraph.latent_features.
TransE.html

Model OVA SC BC
Random 0.73 49.29 50.63

DICE 99.46 99.68 99.78
NEKG (Ours) 99.50 99.78 99.96

Table 1: Performance (%) on magnitude contrastive
tests.

two tasks. We populate the triples of numbers ran-
domly by following the rules of OVA, SC, and BC.
Cosine similarity is used to measure the distance be-
tween two embedding vectors. We compare NEKG
with a set of baseline methods, including Ran-
dom: each number is represented by a random
embedding; and DICE which is the state-of-the-
art method that produces corpus-independent and
deterministic number embeddings (Sundararaman
et al., 2020). We implement embedding dimension
D = 100 for NEKG. All the tests are performed on
10, 000 triples of numbers. The size of the knowl-
edge graph is set as 100 (i.e., the number of enti-
ties). The performance is evaluated by accuracy,
i.e., the percent of passed tests. The results in Table
1 show substantial improvement of our method over
the baselines. Our model, which relies on simple
knowledge graph embedding, achieves comparable
performance with DICE. Besides, we compare the
computational time cost of obtaining embeddings
of numbers for NEKG and DICE in Figure 3. The
result shows our method NEKG is 100-times faster
(2-order of magnitude) than DICE method approxi-
mately. The high computational cost of DICE may
be due to its sophisticated mathematical operations
such as QR-decomposition and polar-to-Cartesian
coordinate transformation. Therefore, NEKG will
have more advantages while dealing with a large
amount of data in NLP tasks.
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Figure 3: Time cost of DICE and NEKG in terms of
obtaining embeddings of OOV numbers. For better
comparison, we visualize it under a logarithmic scale.
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List Maximum (accuracy) Decoding (RMSE) Addition (RMSE)
Integer range [0, 99] [0, 999] [0, 9999] [0, 99] [0, 999] [0, 9999] [0, 99] [0, 999] [0, 9999]

Random vectors 0.92 0.69 0.68 24.79 290.32 2883.49 11.59 395.78 4136.60
DICE 0.97 0.97 0.96 0.42 0.81 2.98 0.63 3.72 28.50
NEKG (Ours) 0.98 0.96 0.97 0.07 0.09 0.79 0.02 0.12 5.37

Table 2: Experiment results on List Maximum, Decoding, and Addition.

4.2 Task 2: List Maximum, Decoding, and
Addition

In task 2, we evaluate our method on several
numeracy-tasks including List Maximum, Decod-
ing, and Addition of numbers (Wallace et al., 2019).
In particular, List Maximum is to predict the index
of the maximal number in a list of the embeddings
of five numbers. In Decoding, a number’s embed-
ding is given, we concern whether the model can
regress the embedding of the number to its value.
For Addition, given the embeddings of two num-
bers, the goal is to predict the sum of them.

Training Details and Results. Similar to Task
1, we compare our method NEKG with Random
and DICE. For List Maximum, we feed the embed-
dings of five numbers through a Bi-LSTM network
and use accuracy as the evaluation metric. For De-
coding, we use a five-layer fully-connected neural
network with ReLU activations to build a linear
regression model trained by mean squared error
(MSE) to regress the embedding of a number to its
value. Root mean squared error (RMSE) is used
for evaluation. For Addition, we concatenate the
embeddings of two numbers and feed them through
a five-layer fully-connected neural network with
ReLU activations. Similar to Decoding, the model
is trained by using MSE loss and evaluated by
RMSE. The results in Table 2 show NEKG signifi-
cantly outperforms other baselines in most cases,
indicating a great understanding of numeracy.

5 Application of NEKG on
Numeracy-600K

Numbers play an important role in financial doc-
uments. In this section, we evaluate NEKG in a
real-world financial prediction dataset: Numeracy-
600K (Chen et al., 2019). The Numeracy-600K
task is a standard numeracy task studied in prior
NLP research. The goal of the prediction task is
to classify number magnitude in market comments.
Specifically, given a sentence from market com-
ments (e.g, AAPL price is up 2% to $142), the task
aims to predict the magnitude of the target num-

ber, say 2%, using the surrounding texts and other
numbers in the sentence.

Training Details and Results. The total num-
ber of magnitude classes in our experiment is 5.
For example, the task defines the magnitude of
numbers 0 ≤ n < 1 as 0, magnitude of numbers
1 ≤ n < 10 as 1, and so on. Following (Sundarara-
man et al., 2020), we implement a Bi-LSTM neural
network to make predictions for target numbers
that are masked by a certain random vector. The
word embeddings are initialized with GloVe, and
the numbers other than the target number in the
sentence are initialized with NEKG or DICE. We
include several baseline models where numbers are
completely ignored, simulating a common practice
of dealing with numbers in text. The prediction
results are presented in Table 3, showing substan-
tial improvement of our method in the F1 score,
which validates the utility and effectiveness of our
method in a downstream task. Comparing against
baselines where numbers are ignored, the results
highlight that incorporating numbers and number
embeddings into NLP models can boost the predic-
tion performance in financial applications.

Model Micro-F1 Macro-F1
LR 41.55 35.32
CNN 43.27 47.25
BiLSTM 48.40 43.87
BiLSTM with DICE 59.55 60.86
BiLSTM with NEKG (Ours) 60.66 59.80

Table 3: Performance (%) on magnitude classification.

6 Conclusion

In this paper, we propose a simple yet effective
number embedding method NEKG derived from
knowledge graph. We evaluate our method on sev-
eral numeracy-related tasks. The results show that
NEKG can achieve better performance than the ex-
isting number embedding methods and run signifi-
cantly faster. With the release of NEKG, we hope
researchers and practitioners can utilize NEKG to
handle numbers effectively in their work.
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Impact Statement

Numeracy plays an important role in natural lan-
guage understanding. Given the prevalence of num-
bers in real-world NLP applications in finance and
healthcare domains, we hope the proposed num-
ber embedding method can be used as a plug-and-
play tool in researchers and practitioners’ NLP
pipelines.
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