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Abstract

Short text nowadays has become a more fash-
ionable form of text data, e.g., Twitter posts,
news titles, and product reviews. Extract-
ing semantic topics from short texts plays a
significant role in a wide spectrum of NLP
applications, and neural topic modeling is
now a major tool to achieve it. Motivated
by learning more coherent and semantic top-
ics, in this paper we develop a novel neural
topic model named Dual Word Graph Topic
Model (DWGTM), which extracts topics from
simultaneous word co-occurrence and seman-
tic correlation graphs. To be specific, we
learn word features from the global word co-
occurrence graph, so as to ingest rich word
co-occurrence information; we then generate
text features with word features, and feed them
into an encoder network to get topic propor-
tions per-text; finally, we reconstruct texts and
word co-occurrence graph with topical distri-
butions and word features, respectively. Be-
sides, to capture semantics of words, we also
apply word features to reconstruct a word se-
mantic correlation graph computed by pre-
trained word embeddings. Upon those ideas,
we formulate DWGTM in an auto-encoding
paradigm and efficiently train it with the spirit
of neural variational inference. Empirical
results validate that DWGTM can generate
more semantically coherent topics than base-
line topic models.

1 Introduction

The topic modeling family targets at learning latent
topic representations from text document collec-
tions (Blei, 2012). During the past decades, it has
been extensively applied in many tasks of natural
language processing, e.g., sentiment analysis (Lin
and He, 2009), summarization (Ma et al., 2012)
and classification (Zeng et al., 2018), to name just
a few. Conventional topic models such as Latent
∗ Corresponding Author
† Contributing equally with the first author.

Dirichlet Allocation (LDA) (Blei et al., 2003) are
often inferred by approximate inference methods,
e.g., mean-field variational inference (Jordan et al.,
1999) and collapsed Gibbs sampling (Griffiths
and Steyvers, 2004), which require model-specific
derivations. The recent inference method with neu-
ral networks, such as Variational Auto-Encoder
(VAE) (Kingma and Welling, 2014), works in a
black-box manner, providing a more generic and
flexible solution to topic models beyond traditional
approximate inference methods. Broadly speak-
ing, the models inferred with neural networks are
referred to as neural topic models, and they have
been recently drawn much more attention from the
natural language processing community (Zhu et al.,
2018; Burkhardt and Kramer, 2019; Dieng et al.,
2020; Wu et al., 2020).

Unfortunately, whether for conventional or neu-
ral topic models, they tend to perform poorly on
short text, a more fashionable and significant form
of text data, e.g., Twitter posts, news titles, and
product reviews. The main reason is that short texts
lack document-level word co-occurrences, known
as the sparsity problem, which hinders models to
capture coherent word patterns. Many conven-
tional topic models have been developed to handle
short texts. For example, given very few words
per-text, Dirichlet Multinomial Mixture (DMM)
(Nigam et al., 2000; Yin and Wang, 2014) con-
strains that each text covers a signal topic. Biterm
Topic Model (BTM) (Yan et al., 2013; Cheng et al.,
2014) directly learns topics from corpus-level word
co-occurrence patterns. Recently, there are also few
attempts of neural topic models aiming to address
the sparsity problem of short texts. GraphBTM
(Zhu et al., 2018) extracts topics from word graphs
of randomly drawn mini-corpus. Negative sam-
pling and Quantization Topic Model (NQTM) (Wu
et al., 2020) applies a topic distribution quantiza-
tion method to pursue peakier topic proportions of
texts. As reported in (Wu et al., 2020), those neu-
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ral topic models can empirically induce coherent
topics from short texts.

Motivated by learning more coherent and se-
mantic topics, in this paper we develop a novel
neural topic model for short texts, namely Dual
Word Graph Topic Model (DWGTM). As the
name suggests, in DWGTM we apply two word
graphs, including the word co-occurrence graph
constructed by aggregating word co-occurrence pat-
terns of each text to alleviate the sparsity problem,
and the word semantic correlation graph gener-
ated by using the pre-trained word embeddings to
capture the semantic information of words. Specif-
ically, we formulate DWGTM in an auto-encoding
paradigm with four main components: (1) We en-
code the word co-occurrence graph as word fea-
tures by applying a Graph Convolutional Network
(GCN) module (Kipf and Welling, 2016a). (2) For
each text, we construct its feature with correspond-
ing word features, and encode it as topic proportion.
(3) Reconstruct texts with topical distributions. (4)
Reconstruct the two word graphs with word fea-
tures. With the word semantic correlation graph,
DWGTM can output topics that are associated with
the semantic information of words. Besides, we
propose a novel topic quality metric to measure
the semantic coherence of learned topics, namely
Topical Semantics Coherence (TSC). We conduct
extensive experiments to evaluate DWGTM, and
empirical results indicate that DWGTM can learn
more semantically coherent topics than existing
baseline models.

In a nutshell, the major contributions of this pa-
per are listed below:

• We propose a novel neural topic model
DWGTM for short texts, extracting topics
from simultaneous word co-occurrence and
semantic correlation graphs.

• We propose a novel topic quality metric called
TSC, which measures the semantic coherence
of learned topics.

• On three benchmark datasets of short texts,
DWGTM empirically outputs more seman-
tically coherent topics than strong baseline
models.

2 Related Work

In this section, we briefly review related works
on conventional topic modeling of short texts and
neural topic modeling.

2.1 Topic Modeling for Short Texts

Short texts lack the document-level word co-
occurrence information, making conventional topic
models such as LDA (Blei et al., 2003) much less
effective. To resolve this issue of short text, ex-
isting models mainly adopt the methodology of
word co-occurrence enrichment (Yan et al., 2013;
Yin and Wang, 2014; Quan et al., 2015; Zuo et al.,
2016a,b; Li et al., 2016, 2018; Shi et al., 2018;
Li et al., 2019a,b, 2020a). First, one straightfor-
ward way is to generate long pseudo-texts by adap-
tively aggregating short texts and then learn topics
from them by applying LDA. Several representa-
tives (Quan et al., 2015; Zuo et al., 2016a; Li et al.,
2018) jointly estimate long pseudo-texts and topics,
however, they are often time consuming as well as
sensitive to the number of long pseudo-texts. Sec-
ond, another mainstream is to extract more word
co-occurrences at the corpus level. The BTM (Yan
et al., 2013; Cheng et al., 2014) directly induces
topics from all word co-occurrence patterns of the
corpus. Semantics-assisted Non-negative Matrix
Factorization (SeaNMF) (Shi et al., 2018) regards
each word type as a pseudo-text consisting of the
words that co-occur with it in the same short text,
and learns topics with those auxiliary word type
pseudo-texts. Additionally, other attempts (Li et al.,
2016, 2019a) upgrade existing models, e.g., DMM
and BTM, by further leveraging auxiliary knowl-
edge or techniques such as word semantic corre-
lations measured by pre-trained word embeddings
(Mikolov et al., 2013; Pennington et al., 2014). In
contrast to aforementioned models, our DWGTM

is built on the framework of neural variational in-
ference with GCN (Kipf and Welling, 2016a), en-
abling to effectively extract topics with word co-
occurrence patterns.

2.2 Neural Topic Modeling

Along the new research line of integrating VAE
(Kingma and Welling, 2014), a number of neural
topic models have been proposed. Generally, the
basic idea of neural topic modeling is to apply neu-
ral networks as topic encoders to induce topic rep-
resentations of texts, and reconstruct texts with top-
ical distributions. Benefiting from the effectiveness
and flexibility of neural networks in unsupervised
representation learning, neural topic models can in-
duce more significant topics from texts. Nowadays,
the representatives include Neural Variational Doc-
ument Model (NVDM) (Miao et al., 2016), Product
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of expert LDA (ProdLDA) (Srivastava and Sutton,
2017), and Embedded Topic Model (ETM) (Di-
eng et al., 2020), etc. Besides these “naive” neural
variants of LDA, many other models have been in-
vestigated by applying (1) various neural modules
to the topic encoder, e.g., recurrent module (Rezaee
and Ferraro, 2020), attention mechanism (Li et al.,
2020b), and graphical connection (Zhu et al., 2018;
Yang et al., 2020), and (2) new learning paradigms,
e.g., adversarial training (Wang et al., 2019), rein-
forcement learning (Gui et al., 2019), and lifelong
learning (Gupta et al., 2020). However, despite
their effectiveness on normal long texts, those mod-
els suffer from the sparsity problem of short texts
(Zeng et al., 2018).

To our knowledge, there are only a few neu-
ral topic models for addressing the sparsity prob-
lem of short texts (Zeng et al., 2018; Zhu et al.,
2018; Wu et al., 2020). Inspired by BTM (Yan
et al., 2013), the GraphBTM method (Zhu et al.,
2018) directly learns topics from the aggregated
word co-occurrence patterns of randomly gener-
ated mini-corpus. The NQTM method (Wu et al.,
2020) is based on the assumption that the peakier
topic proportions of texts are more appropriate for
modeling short texts as demonstrated in DMM (Yin
and Wang, 2014), To achieve this, it applies a topic
distribution quantization method, and meanwhile it
adopts a negative sampling step to avoid repetitive
topics. Orthogonal to those models, our DWGTM

further employs the pre-trained word embeddings
to capture the semantic information of words, so as
to output more semantically coherent topics.

3 The Proposed DWGTM Model

In this section, we introduce the proposed Dual
Word Graph Topic Model (DWGTM). For conve-
nience, the important notations used in this paper
are summarized in Table 1.

3.1 Overview of DWGTM

The topic modeling family such as LDA (Blei et al.,
2003) refers to the probabilistic model that de-
scribes the generative process of documents. Basi-
cally, it posits totally k topics φ1:k, each of which
is a multinomial distribution over the vocabulary,
and each document is represented by a topic pro-
portion θ. Given a corpus D consisting of n doc-
uments x1:n, the main goal of topic modeling is
to estimate topics φ1:k and topic proportions θ1:n

from D. However, it is commonly intractable to

Table 1: Notation summary.

Notation Description
n number of texts
v vocabulary size
k number of topics
x word frequency vector of text
Gc word co-occurrence graph
Gs word semantic correlation graph
zw word feature
zt latent text feature
φ topic distribution
θ topic proportion of text

Wc learnable parameter of WCG-Encoder
Wt learnable parameter of TP-Encoder

accurately estimate {φ, θ} for short texts, due to
the lack of document-level word co-occurrences,
known as the sparsity problem.

To effectively handle short texts, we propose
a novel neural topic model named DWGTM by
not only leveraging the corpus-level word co-
occurrence information to address the sparsity prob-
lem (Yan et al., 2013), but also capturing word se-
mantic correlations measured by pre-trained word
embeddings (Mikolov et al., 2013; Pennington
et al., 2014). Specifically, as depicted in Fig.1,
DWGTM consists of the four components in the
auto-encoding manner. (1) WCG-Encoder: We
construct a global word co-occurrence graph Gc,
and then encode Gc as word features zw1:v, where
v denotes the vocabulary size. (2) TP-Encoder:
We construct latent text features zt1:n by using zw1:v,
and then encode zt1:n as topic proportions θ1:n. (3)
Text-Decoder: We reconstruct the texts x1:n with
θ1:n and topics φ1:k. (4) DualWG-Decoder: We
reconstruct Gc with zw1:v. Meanwhile, to further cap-
ture semantic information of words, we construct a
word semantic correlation graph Gs by using pre-
trained word embeddings, and reconstruct Gs with
also zw1:v. In the following part, we introduce each
component of DWGTM in more details.

3.2 WCG-Encoder
Given a corpus D, we first construct a word co-
occurrence graph Gc = (V, Ec), where V and Ec de-
note the sets of word nodes and word co-occurrence
edges, respectively. That is, the graph can be rep-
resented by the co-occurrence adjacency matrix
Ac ∈ Rv×v, where each element Ac

ij denotes the
count of words wi and wj co-occurring in the same
text. The WCG-encoder targets at encoding Ac as
word features Zw = [zw1 , · · · , zwv ]>, so that more
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Figure 1: Overall model structure of DWGTM with four components, i.e., WCG-Encoder, TP-Encoder, Text-
Decoder, and DualWG-Decoder.

frequently co-occurring words tend to have more
similar word features. This is achieved by applying
a GCN module parameterized by Wc:

Zw = fGCN(Ac; Wc) (1)

Following (Kipf and Welling, 2016a), each layer
of the GCN module is formulated below:

Zw
(l) = ψ(ÃcZw

(l−1)W
c
(l)), l = 1, · · · , lc,

(2)

where lc is the number of layers; Wc = {Wc
(l)}

lc

l=1

are the learnable parameters; Zw
(0) is initialized

by the identity matrix Iv with the shape of v;
ψ(·) denotes the Tanh activation function; Ãc =

D−
1
2 (Ac + Iv)D−

1
2 is the the symmetrically nor-

malized adjacency matrix; and D denotes the de-
gree matrix of Ac + Iv.

3.3 TP-Encoder
Naturally, the resulting word features Zw learned
from Gc are rich in global word co-occurrence in-
formation. Accordingly, we can use Zw to generate
latent text features zt1:n, enabling to alleviate the
sparsity problem of short texts. For each short text,
the latent text feature can be easily obtained by
aggregating its corresponding word features, for-
mulated below:

ztd = (Zw)>
xd

|xd|
, d = 1, · · · , n, (3)

where xd and |xd| denote the word frequency vec-
tor of the dth document and its total number of
word tokens, respectively.

The TP-Encoder aims at encoding zt1:n as topic
proportions θ1:n. Inspired by (Miao et al., 2016; Di-
eng et al., 2020), we apply the VAE-like paradigm

with logistic-normal prior distribution. Specifically,
suppose that for each short text the topic proportion
is drawn from a logistic-normal prior as follows:

δd ∼ N (µ0,Σ0); θd =softmax(δd),

d = 1, · · · , n, (4)

where δ can be regarded as the unnormalized topic
proportion; and N (µ0,Σ0) denotes a Gaussian
prior probability. We apply a fully-connected mod-
ule, a.k.a., variational inference network (Dieng
et al., 2020), which ingests each latent text feature
ztd and outputs the mean µd and covariance Σd of
the unnormalized topic proportion δd, formulated
below:

H(l) = ρ(Wt
(l)H(l−1)), l = 1, · · · , lt. (5)

µd = Wt
µ ·H(lt) (6)

Σd = Wt
Σ ·H(lt). (7)

where lt denotes the number of layers; Wt =
{{Wt

(l)}
lt

l=1,W
t
µ,W

t
Σ} are the learnable param-

eters; H(0) is initialized by ztd; and ρ(·) denotes
the Tanh activation function. We then compute the
topic proportion θd by leveraging the reparameteri-
zation trick (Kingma and Welling, 2014):

θd = softmax(µd + Σd � ε), ε ∼ N (0, Ik)
(8)

where � denotes element-wise product; and ε is a
sample drawn from the Gaussian N (0, Ik). Due
to the space limitation, we omit background de-
scriptions of this VAE-like paradigm and reparam-
eterization, and refer the readers to more details
in (Kingma and Welling, 2014; Mnih and Gregor,
2014; Rezende et al., 2014; Miao et al., 2016).
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Remark. Strictly speaking, the reparameteriza-
tion trick (i.e., Eq.8) is really meant for forming the
Monte Carlo approximation of the variational ob-
jective (Kingma and Welling, 2014), and it should
even be described in the decoding process. We
kindly emphasize that we introduce Eq.8 as a step
of encoding θ for the sake of a more intuitive ex-
pression for the TP-Encoder.

3.4 Text-Decoder
In this component, we reconstruct the texts x1:n

with topic proportions θ1:n and topics φ1;k. Fol-
lowing the spirit of VAE derivation (Kingma and
Welling, 2014), the reconstruction loss of x1:n con-
sists of a log marginal likelihood term and a KL-
divergence regularier as follows:

Lt(Wc,Wt,φ) = − log p(x) +RKL, (9)

We adhere to the generative assumption of LDA-
like models, therefore the marginal likelihood term
of texts can be formulated below:

p(x) =
n∏

d=1

∏
i∈xd

k∑
t=1

θdtφti, (10)

where θi:n are computed by Eq.8. Second, the
KL-divergence regularizer admits a closed-form
expression as follows:

RKL =

−1

2

n∑
d=1

(1 + log |Σd| − µ>d µd − Tr(Σd)), (11)

where Tr(·) denotes the trace of a matrix.

3.5 DualWG-Decoder
As its name suggests, the aim of DualWG-Decoder
is two-fold: applying the word features zw1:v to re-
construct the word co-occurrence graph Gc and also
an auxiliary word semantic correlation graph Gs.

Reconstruction of Gc. Following (Kipf and
Welling, 2016b), we apply an inner product de-
coder with word features. Accordingly, the recon-
struction loss is formulated as follows:

Lc(Wc) = −
∑
{i,j}∈Ec

Ac
ij log σ

(
(zwi )>zwj

)
,

(12)

where σ(·) denotes the Sigmoid function.

Reconstruction of Gs. Besides extracting topics
by applying the word co-occurrence statistics, We
expect to take the semantic information of words
into consideration, so as to generate more seman-
tically coherent topics (Li et al., 2016, 2019a). To
achieve this, we construct a word semantic cor-
relation graph Gs = (V, Es), where Es denotes
the set of word semantic correlation edges. Let
As ∈ Rv×v be the corresponding adjacency ma-
trix, where each element As

ij reflects the cosine
similarity between pre-trained GloVe embeddings1

of words wi and wj . To be specific, it is formulated
as follows:

As
ij =

{
γij , if γij > γ

∗

0, otherwise
, (13)

where γij = cos(gi,gj) denotes the cosine similar-
ity; the notation g specifies the pre-trained GloVe
word embedding; and γ∗ is a word semantic corre-
lation threshold.

We reconstruct Gs by encouraging the resulting
word features to capture word semantic correla-
tions. Accordingly, the reconstruction loss of Gs
can be formulated below:

Ls(Wc) =
∑
{i,j}∈Es

‖ cos(zwi , z
w
j )− γij‖22, (14)

where ‖ · ‖2 denotes the `2 norm.

3.6 Full Objective of DWGTM

We now outline the full objective of DWGTM. Ex-
cept the reconstruction losses of x1:n, Gc, and Gs,
we also incorporate the following entropy regular-
ization term to encourage peakier topic proportions:

RE = −
n∑

d=1

k∑
t=1

θdt log θdt (15)

Finally, we can reach the full objective with re-
spect to the learnable parameters {Wc,Wt,φ} as
follows:

L(Wc,Wt,φ) = Lt(Wc,Wt,φ)

+ λ1Lc(Wc) + λ2Ls(Wc) + λ3RE, (16)

where λ1, λ2, and λ3 are the scale parameters.

4 Experiment

Datasets. In the experiments, we select three
benchmark short text datasets: Trec,2 Google-
1 https://nlp.stanford.edu/projects/glov
e/

2 http://cogcomp.cs.illinois.edu/Data/QA/
QC

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
http://cogcomp.cs.illinois.edu/Data/QA/QC
http://cogcomp.cs.illinois.edu/Data/QA/QC
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Table 2: Statistics of short text datasets after prepro-
cessing. n: number of short texts. v: vocabulary size.
n̂: average document length. l: number of categories.

Dataset n v n̂ l

Trec 4,198 989 3.2 6
GoogleNews 9,284 659 3.7 152
YahooAnswer 22,937 1297 3.8 10

News,3 and YahooAnswer.4For all datasets, we re-
move digits and words with term frequencies less
than 20. Stop words and non-english words are
filtered out by NLTK.5 For clarity, the statistics of
those datasets are listed in Table 2.

Baseline Topic Models. We select 8 existing
baselines, including 4 conventional topic models
and 4 neural topic models. Following their original
papers, the important implementation details of all
baselines are described below.

• LDA6 (Blei et al., 2003): The model is in-
ferred by variational inference, and the Dirich-
let priors for topic proportions and topic dis-
tributions are set to 0.1 and 0.01, respectively.

• DMM7 (Yin and Wang, 2014): The two
Dirichlet priors are set as 50/k and 0.01, re-
spectively.

• BTM8 (Yan et al., 2013): The two Dirichlet
priors are set as 0.01 and 0.001, respetively.

• Generalized Pólya Urn DMM (GPUDMM)9

(Li et al., 2016): The two Dirichlet priors are
set as 50/k and 0.01, respectively; and the
similarity threshold is set as 0.8.

• NVDM10 (Miao et al., 2016): The model ap-
plies a 2-layer MLP encoder with 500 hidden
neurons.

• ProdLDA11 (Srivastava and Sutton, 2017):
The model applies a 3-layer MLP encoder
with 100 hidden neurons.

3 https://news.google.com/
4 https://answers.yahoo.com
5 https://nltk.org
6 https://github.com/blei-lab/lda-c
7 https://github.com/jackyin12/GSDMM
8 https://github.com/xiaohuiyan/BTM
9 https://github.com/NobodyWHU/GPUDMM
10https://github.com/ysmiao/nvdm
11https://github.com/akashgit/autoencodi
ng_vi_for_topic_models

• GraphBTM12 (Zhu et al., 2018): The model
applies a 3-layer GCN encoder with 100 hid-
den neurons and samples 3 documents as a
mini-corpus.

• NQTM13 (Wu et al., 2020): The model ap-
plies a 3-layer MLP encoder with 100 hidden
neurons and the word sample size for negative
sampling is set as 20.

For DWGTM, we apply a 2-layer GCN WCG-
Encoder and a 3-layer MLP TP-Encoder, where
the hidden neurons of both encoders are set as
100-300-400-300-k. To avoid posterior collaps-
ing, we adopt 0.4 dropout, batch normalization,
and a shallower 1-layer Text-Decoder. The thresh-
old γ∗ is set to 0.6 for Trec, and 0.8 for Google-
News and YahooAnswer. Scale parameters are set
as λ1 = 0.1, λ2 = 0.1, λ3 = 1. The number of
epochs is 900 and mini-batch size is 200. To con-
struct Gs, we employ the 300-dimensional GloVe14

embeddings trained on Wikipedia2014 and Giga-
word5. For fair comparisons, the baselines requir-
ing word embeddings use the same GloVe embed-
dings.

Evaluation Metrics. To evaluate the topic qual-
ity, we adopt two metrics: Topic Coherence (TC)
and Topical Semantics Coherence (TSC).

First, TC is the most popular topic quality metric
that measures the co-occurrence statistics between
top-m words of topics. Here, we compute the TC
scores with the public TC project of Palmetto,15

where, especially, the setting of CV is applied. Sec-
ond, we propose a novel metric named TSC to mea-
sure the semantic coherence of topics. Analogy to
TC, we suppose that higher similarities between
top-m words of topics imply better semantic coher-
ence for topics. Accordingly, TSC can be defined
as follows:

TSC =
2

km2

k∑
t=1

∑
(wi,wj)∈Ωt

cos(ewi , ewj ) + 1

2
,

(17)

where Ωt is the top-m words of the tth topic; and
ewi and ewj denote the pre-trained word embed-
dings of wi and wj , respectively.
12https://github.com/valdersoul/GraphBTM
13https://github.com/BobXWu/NQTM
14https://nlp.stanford.edu/projects/glov
e/

15https://github.com/dice-group/Palmetto

https://news.google.com/
https://answers.yahoo.com
https://nltk.org
https://github.com/blei-lab/lda-c
https://github.com/jackyin12/GSDMM
https://github.com/xiaohuiyan/BTM
https://github.com/NobodyWHU/GPUDMM
https://github.com/ysmiao/nvdm
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/valdersoul/GraphBTM
https://github.com/BobXWu/NQTM
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/dice-group/Palmetto
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Table 3: Results (mean ± std) of TC. The best scores are displayed in boldface.

Model Trec GoogleNews YahooAnswer AvgRank
k = 20 k = 50 k = 20 k = 50 k = 20 k = 50

LDA .368 ± .001 .361 ± .002 .382 ± .004 .381 ± .002 .377 ± .004 .377 ± .003 6.50
DMM .372 ± .006 .379 ± .006 .408 ± .003 .393 ± .004 .383 ± .007 .373 ± .004 4.00
BTM .365 ± .010 .370 ± .001 .395 ± .004 .385 ± .002 .367 ± .007 .367 ± .008 7.00

GPUDMM .377 ± .005 .379 ± .005 .403 ± .007 .391 ± .003 .374 ± .005 .375 ± .003 4.50
NVDM .343 ± .006 .349 ± .006 .390 ± .008 .395 ± .006 .383 ± .010 .377 ± .008 5.67

ProdLDA .372 ± .022 .376 ± .005 .369 ± .010 .372 ± .007 .396 ± .014 .391 ± .013 5.17
GraphBTM .354 ± .001 .340 ± .001 .359 ± .001 .383 ± .001 .384 ± .001 .371 ± .001 7.50

NQTM .397 ± .006 .379 ± .007 .416 ± .004 .391 ± .004 .404 ± .015 .397 ± .006 2.17
DWGTM .402 ± .006 .392 ± .007 .419 ± .008 .403 ± .002 .406 ± .001 .389 ± .015 1.33

Table 4: Results (mean ± std) of TSC. The best scores are displayed in boldface.

Model Trec GoogleNews YahooAnswer AvgRank
k = 20 k = 50 k = 20 k = 50 k = 20 k = 50

LDA .396 ± .003 .393 ± .003 .386 ± .004 .398 ± .005 .485 ± .003 .456 ± .002 6.83
DMM .442 ± .002 .421 ± .004 .406 ± .004 .413 ± .002 .509 ± .004 .491 ± .003 3.00
BTM .418 ± .004 .414 ± .005 .407 ± .006 .415 ± .004 .522 ± .008 .513 ± .004 2.83

GPUDMM .441 ± .007 .420 ± .003 .396 ± .006 .415 ± .003 .513 ± .004 .499 ± .003 3.00
NVDM .400 ± .005 .400 ± .003 .387 ± .006 .382 ± .004 .460 ± .011 .449 ± .004 6.83

ProdLDA .349 ± .004 .348 ± .003 .408 ± .010 .423 ± .005 .370 ± .015 .374 ± .017 6.17
GraphBTM .348 ± .001 .356 ± .001 .363 ± .001 .370 ± .001 .399 ± .001 .370 ± .001 8.67

NQTM .428 ± .012 .417 ± .003 .401 ± .004 .411 ± .002 .499 ± .011 .479 ± .006 4.50
DWGTM .453 ± .007 .418 ± .005 .412 ± .005 .406 ± .004 .516 ± .007 .479 ± .040 2.83

Specially, we describe several details of metrics.
(1) For both metrics, higher scores indicate better
performance. (2) We fix m to 10 in all evaluations.
(3) For fair comparisons, we employ the pre-trained
word2vec16 embeddings to compute TSC, instead
of the GloVe embeddings that have been used in
some of comparing models.

4.1 Topic Quality Results

We independently run each comparing model 5
times, then report the average scores of TC and
TSC in Tables 3 and 4. In terms of TC, it can
be clearly seen that our DWGTM can achieve
higher scores than baseline models in most cases.
First, DWGTM outperforms the neural competi-
tors GraphBTM and NQTM, which also focus on
handling short texts. Second, the TC scores of
DWGTM are higher than those conventional topic
models in all settings, where the results demon-
strate the GCN WCG-Encoder can better capture
the word co-occurrence information from the cor-
pora. In terms of TSC, our DWGTM gets competi-
tive scores, and ranks the first averagely. Compar-
ing with neural topic models, DWGTM can achieve
higher scores in most cases, where more impor-
tantly it beats the most art NQTM. Surprisingly,
conventional short text topic models, e.g., DMM,

16https://wikipedia2vec.github.io/wikipe
dia2vec/pretrained/

BTM, and GPUDMM, can achieve competitive
TSC scores with DWGTM, and even perform bet-
ter than NQTM. The possible reason is that those
shallow models capture similar semantic informa-
tion to word2vec, i.e., the word embeddings used
to compute TSC scores in the experiments. Spe-
cially, we kindly indicate that a potential problem
of DWGTM is the TSC degradation with more top-
ics compared to conventional topic models. We
will further investigate this problem.

4.2 Topic Visualization

For qualitative evaluations, we show the top-10
words of two selected topics about politics and
credit across YahooAnswer. As presented in Ta-
ble 5, we can observe that DWGTM can effec-
tively learn informative word patterns from cor-
pora, where the top topical words are exactly as-
sociated with politics and credit, being consistent
in the judgment of human-beings to some extent.
In contrast to baseline models, the topics learned
by DWGTM seem more coherent, where some of
baselines often generate several less informative
words, e.g., for the topic of credit, {“best”, “bad”,
“long”} in LDA, {“old”, “weight”, “stomach”} in
NVDM, and {“salt”, “water”, “ice”} in NQTM
for the topic of credit. Besides, we also observe
that the top-10 words of GPUDMM and DWGTM

contain semantically related words. This implies

https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
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Table 5: Visualization of the top-10 words of two example topics learned by comparing models

Model Top-10 word list

LDA
many bush people president ok war come world end times
best way take really long get credit good place bad

DMM
bush think president war people iraq us world george like
get need find school job know credit go money want

BTM
bush people president think us war states united america george
find get need credit know good money free online help

GPUDMM
bush think president war people world iraq george americans american
get credit find much money need business pay home company

NVDM
united states president bush school want high really know george
rid get old back mean weight credit yr stomach loan

ProdLDA
president marriage movie iraq every form get need remember cancer
uick money development wont wants longer sports care base treat

GraphBTM
immigration music bike republicans three operation step named income god
illegal install stand female affect true turn accept choice pay

NQTM
president united states george bush god war clinton iraq nuclear
credit card debt salt bank water ice loan green interview

DWGTM
iraq bush democrats clinton george president america war us democracy
money debt pay credit tax company taxes loan income paying

applying pre-trained word embeddings can effec-
tively capture semantics for topic modeling.

4.3 Ablative Study

We conduct an ablative study to evaluate whether
the two reconstruction losses of the DualWG-
Decoder and also the entropy regularization of θ
(i.e., Eq.15) have positive effects on topic extrac-
tion. To achieve this, we examine three simplified
versions that independently remove the loss of Gc
(λ1 = 0), the loss of Gs (λ2 = 0), and the entropy
regularization term (λ3 = 0).

We show the topic quality results of different
versions of DWGTM on Trec when k = 20. As
shown in Table 6, we can observe that the full
DWGTM method outperforms all three simplified
versions, indicating that all three components have
positive effects on topic extraction. Specifically,
DWGTM w/o the losses of Gc and Gs (i.e., λ1 = 0
and λ2 = 0) lead to TSC deficiency over 0.01, in-
dicating that the two reconstruction processes in
the DualWG-Decoder can help capturing the se-
mantic information of words. Besides, the gain
of DWGTM over the version without the entropy
regularization (i.e., λ3 = 0) shows more signifi-
cant validity. This coincides with the fact that the
entropy regularization tends to compute peakier
topic proportions, which are beneficial for extract-
ing topics from short texts with extremely limited
words.

Specially, we have evaluated different values of
{λ1, λ2, λ3} and also the threshold γ∗ from the

Table 6: Results of the ablative study.

Metric DWGTM λ1 = 0 λ2 = 0 λ3 = 0

TC 0.402 0.397 0.395 0.393
TSC 0.453 0.439 0.440 0.447

range {0.1, 0.2, · · · , 1} in the early experiments.
The results show that {λ1, λ2} and λ3 perform bet-
ter with smaller and larger values, respectively; and
γ∗ performs relatively stable with different values.
Due to the space limitation, we omit the detailed
results and will show them in the next version.

5 Conclusion

In this paper, we develop a novel neural topic model
for short texts, called DWGTM. The proposed
DWGTM model extracts topics by simultaneously
applying the word co-occurrence graph and word
semantic correlation graph. Specifically, it consists
of four main components: (1) Encode the word co-
occurrence graph as word features. (2) Generate
text features with word features, and encode them
as topic proportions. (3) Reconstruct the texts with
topical distributions. (4) Reconstruct both graphs
with word features. We also propose a novel metric
to evaluate the semantic coherence of topics, called
TSC. Empirically, the effectiveness of DWGTM

was validated on three benchmark datasets of short
texts. We show that the topics learned by DWGTM

can simultaneously capture meaningful patterns
and semantic correlations of words.
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