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Abstract

Curriculum learning, a machine training strat-
egy that feeds training instances to the model
from easy to hard, has been proven to facili-
tate the dialogue generation task. Meanwhile,
knowledge distillation, a knowledge transfor-
mation methodology among teachers and stu-
dents networks can yield significant perfor-
mance boost for student models. Hence, in this
paper, we introduce a combination of curricu-
lum learning and knowledge distillation for ef-
ficient dialogue generation models, where cur-
riculum learning can help knowledge distilla-
tion from data and model aspects. To start
with, from the data aspect, we cluster the train-
ing cases according to their complexity, which
is calculated by various types of features such
as sentence length and coherence between di-
alog pairs. Furthermore, we employ an adver-
sarial training strategy to identify the complex-
ity of cases from model level. The intuition
is that, if a discriminator can tell the gener-
ated response is from the teacher or the student,
then the case is difficult that the student model
has not adapted to yet. Finally, we use self-
paced learning, which is an extension to cur-
riculum learning to assign weights for distilla-
tion. In conclusion, we arrange a hierarchical
curriculum based on the above two aspects for
the student model under the guidance from the
teacher model. Experimental results demon-
strate that our methods achieve improvements
compared with competitive baselines.

1 Introduction
Along with the enormous prosperity of social

media on the Internet, there is a resurgent inter-
est in developing open domain dialogue systems.
However, the complexity of conversations crawled
from the Internet may vary significantly. Sachan
and Xing (2016); Cai et al. (2020); Lison and
Bibauw (2017). To adapt to this phenomenon,
some prior works (Cai et al., 2020; Sachan and
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Xing, 2016; Feng et al., 2019) employ curriculum
learning (Bengio et al., 2009), in which a model is
taught by using easy samples firstly and gradually
adding more difficult ones. For example, (Cai et al.,
2020) proposes an adaptive multi-curricula learn-
ing framework to train the dialogue model with
easy-to-complex dataset based on various concepts
of difficulty including the specificity and repeti-
tiveness of the response, the relevance between
the query and the response, etc. Also, Wan et al.
(2020) resolves this problem by introducing self-
paced learning (Kumar et al., 2010), which is a
special kind of curriculum learning (Eppe et al.,
2019). Wan et al. (2020) measures the level of
confidence on each training example, where an
easy sample is actually one of high confidence by
the current trained model. Both curriculum learn-
ing and self-paced learning suggest that samples
should be selected in a meaningful order for train-
ing. The difference is that curriculum learning
uses pre-training or human intuitions while the em-
phasis of self-paced learning can be dynamically
determined by model itself.

On the other hand, knowledge distillation (Hin-
ton et al., 2015) is one of the most popular tech-
niques to train efficient models, which aims to trans-
fer the knowledge encoded in a pretrained teacher
network into a student model. (Ba and Caruana,
2014) points that the teacher’s probability predic-
tions can capture the logarithm relationships be-
tween labels that are not obvious in the one-hot
ground-truth label. Moreover, the teacher model
can spread uncertainty over multiple outputs when
it is not confident of its prediction. As a conse-
quence, student models can yield significant perfor-
mance boost under the guidance of a teacher. Since
the knowledge from the teacher to student also has
different difficulty degrees, it is intuitive to apply
curriculum learning during this distillation process.

To our best knowledge, very little is known about
how curriculum learning and knowledge distilla-
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Figure 1: Architecture of our model.

tion work together. Hence, in this work, we propose
a dialogue generation model that combines curricu-
lum learning and knowledge distillation. Firstly,
from the data level, we employ different types of
features such as sentence length, word and utter-
ance entropy, and coherence between dialog pairs
to estimate the complexity of data for each training
example. We preliminary cluster the training cases
according to their data level complexity. Then
based on these difficulty scores, we construct a
learning curriculum for the student model. Sec-
ondly, from the model level, we employ an adver-
sarial training strategy to evaluate the model-aware
complexity. Concretely, the student model is ad-
versarially trained to fool a discriminator, while
the discriminator aims to distinguish the outputs
from student and teacher networks. We measure
the hardness of each sample by taking both the
value and history of the discriminator into account,
based on the following two intuitions. (1) The
discriminator defines an objective of progressive
difficulty (Doan et al., 2019), if the discriminator
can successfully distinguish the output, then it is a
hard case, and vice versa (Doan et al., 2019). (2)
The model evolves during training and therefore
additional evaluation pass to measure the change
in a performance is needed (Matiisen et al., 2020).
In this paper we consider the change in the dis-
criminator. If the change is negative, this must
mean that the sample is difficult to train. Then
based on these model-level difficulty scores, we
further transfer the knowledge from teacher to stu-
dent network gradually by incorporating self-paced
learning methodology.

Our contributions are summarized as follows: (1)
We make an empirical study on the combination of
curriculum learning methods and knowledge distil-
lation for efficient dialogue generation models. (2)

We arrange a hierarchical curriculum based on the
above two aspects (data and model) for the distilla-
tion model. (3) We apply the proposed framework
on two real-life open-domain conversation datasets,
automatic and manual evaluation shows that our
approach can be used to enhance the performance
of dialogue models.

2 Related Work
Our work is at the intersection of curriculum

learning (Bengio et al., 2009) and knowledge dis-
tillation (Hinton et al., 2015) for training dialogue
generation models.

2.1 Neural Dialogue Generation

Since (Ritter et al., 2011) propose a data-driven
approach that adopt phrase-based statistical ma-
chine translation for dialog system. more and more
researchers have focused on generation-based con-
versation system. A popular framework for dia-
logue generation is using extra information such as
conversation topics(Xing et al., 2017) , persona pro-
file (Song et al., 2019), user emotions (Zhou et al.,
2018), or out-sourcing knowledge (Liu et al., 2019)
is introduced to benefit the dialogue model with
more diverse response generation (Serban et al.,
2017; Zhao et al., 2017; Gu et al., 2019). Latent
variables also benefit the model with more diverse
response generations (Zhao et al., 2017). This pa-
per improve the dialogue model from a different
angle that we make an empirical study on the com-
bination of curriculum learning methods and knowl-
edge distillation.

´

2.2 Knowledge Distillation
Our study is also related to the knowledge distil-

lation method (Hinton et al., 2015), which employs
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a teacher model and tries to minimize the KL di-
vergence between teacher distribution and student
distribution. In (Romero et al., 2015), the student
network is trained not only using the soft targets,
but also using hints from the intermediate layers.
Knowledge distillation was first introduced for clas-
sification tasks as a way to compress large networks
into smaller models. Kim and Rush (2016) extend
this to neural machine translation, and then (Zhang
et al., 2020) has proposed further applications of
dialogue generation task. However, these papers
do not consider the order of the learning schedule.
In a sense, our method is different from theirs be-
cause we borrow the idea of curriculum learning
for knowledge distillation.

2.3 Curriculum Learning in NLP
Inspired by the human learning process, curricu-

lum learning (Bengio et al., 2009) is proposed as
a machine learning strategy by feeding training
instances to the model from easy to hard. It has
been applied to many NLP tasks. To name a few,
(Sachan and Xing, 2016) propose and study other
heuristics that define a measure of easiness and
learn the curriculum by selecting samples using
this measure. More recently, (Wang et al., 2019)
learns a multi-Domain curriculum for neural ma-
chine translation. Xu et al. (2020) uses curriculum
Learning to distinguish easy examples from dif-
ficult ones for natural language understanding by
reviewing the trainset in a crossed way. Our paper
is quite different from theirs because we arrange
a hierarchical curriculum based on the above two
aspects (data and model) for the distillation model.

3 Problem Formulation

The overall network architecture is shown in
figure 1. The teacher and student model use the
same basic architecture that is related to an encoder-
decoder (Cho et al., 2014) generative dialogue
model based on Variational Autoencoders (VAEs)
(Kingma and Welling, 2014).

In our model, there are three elements: dialogue
context X = x1, x2...xi, response Y = y1, y2...yi
and a latent variable z. The dialogue context X
is composed of several history utterances. The
response Y is the responses towards the given con-
text. The latent variable z is used to capture the
latent distribution over the replies with a standard
Gaussian prior, which is defined as follows:

P (z) ∼ N (0, I) . (1)

Our task is to model the true probability of a re-
sponse Y given an inputX , which can be estimated
as:

P (Y | X) =
∫
z P (Y | z,X)P (z)dz. (2)

The hierarchical curriculum strategy for distil-
lation model consists of two parts: one is for the
data-level and the other is for the model-level. In
the data-level, easier context-response pairs are pre-
sented to the student model before harder ones. As
for the model level, we design curriculum sched-
ules to gradually transfer knowledge from the the
teacher to student, which controls the difficulty of
soften labels that are distilled from teacher to stu-
dents. The samples that discriminator cannot differ-
entiate between the output provided by the student
and the teacher are assumed to be easier ones. Start-
ing from easier samples, the model progressively
strengthens its relation between the teacher and
student models. In the rest of this paper, we give
detailed descriptions of the proposed approach.

4 Model

4.1 Data-Level Curriculum

Following existing studies (Platanios et al., 2019;
Kocmi and Bojar, 2017) that the model should be
trained from easy samples to hard ones, we sched-
ule the curriculum based on three intuitive notions
of difficulty: response length (Serban et al., 2017;
S. et al., 2017; Baheti et al., 2018), word and utter-
ance entropy (Serban et al., 2017), coherence (Xu
et al., 2018). These features compensate each other
by capturing the information in a sentence pairs
from different aspects. All these features are from
previous research and here we integrate them to-
gether: we first use the method from these papers to
compute the scores for individual sentences; then
normalize the scores; finally add all these scores
together as a total score. We rank all sentence pairs
according to their scores, and we break down the
dataset Do into N subsets, in which those exam-
ples with similar complexity are categorized into
the same subset.

4.2 Output Knowledge Distillation

Knowledge distillation describes a class of meth-
ods for the knowledge transfer from teacher net-
work to student network. In our model, the student
network Sθ is trained over the same architecture
but different parameters as teacher model Tθ. The
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teacher has previously been trained, and we freeze
its parameters when training the student network.

We transfer the knowledge from teacher to stu-
dent by minimizing the similarity distance between
the output of student network and the soft label
generated by the teacher network. We use cross-
entropy loss to measure the two logits as (Romero
et al., 2015). To further improve the sequence-to-
sequence student model, hard-assigned labels are
also utilized. The final student network is trained
to optimize the following compound objective:

LKD (Sθ) = H (Sθ(X), Y )+

VH (Tθ(X), Sθ(X)) ,
(3)

where H refers to the cross-entropy and V is a
parameter to indicate the temperature of distilla-
tion. Later, we will use the method of the model
level curriculum learning to process λ in section
2.5. Note that the first term in Equation (3) cor-
responds to the traditional cross-entropy between
the softmax layer’s output of a (student) network
and word distribution in response Y , whereas the
second term is to learn from the softened output of
the teacher network to strengthen its supervision
for the student.

In the teacher model, we train it by using all
the dataset with original order, while in the student
model, the training starts from the step that consists
of examples with the lowest difficulty. After that,
data in the next step is aggregated to the current
training dataset.

4.3 Latent Space Knowledge Distillation
In order to guide the student’s learning process

of the output layer, we introduce hints (Romero
et al., 2015), which are representations in the in-
termediate layer from the teacher network. Instead
of adopting the classic student-teacher strategy of
forcing the output of a student network to exactly
mimic the soft targets produced by a teacher net-
work, we introduce adversarial networks to transfer
the knowledge from teacher to student. Due to the
discrete nature of natural language tokens (Shen
et al., 2017; Xu et al., 2017), it is difficult to pass
the gradient update from the discriminator to the
generator (Yu et al., 2017). So we choose to dis-
criminate variable z in high level latent space rather
than direct tokens (Gu et al., 2019).

During the process of latent space knowledge
distill, we generate student’ latent variable repre-
sentation by training the student network Sθ and

freezing the teacher parts adversarially against dis-
criminators D. A discriminator D attempts to clas-
sify its input as teacher or student by maximizing
the following discriminator loss (Goodfellow et al.,
2014):

LGAN =W (qφ(zt, xt)‖pθ(zs, xs)) , (4)

where W (·‖·) represents the Wasserstein distance
between these two distributions (Arjovsky et al.,
2017). We choose the Wasserstein distance as the
divergence since the WGAN has been shown to
produce good results in text generation (Zhao et al.,
2018). zt and xt denote the latent variable and
query representation in Tθ. zs and xs denote the
latent variable and query representation in Sθ. Stu-
dent network attempts to generate similar outputs
which fools the discriminator D. D is implemented
as a feed-forward neural network which takes as
input the concatenation of z and x and outputs a
real value.

4.4 Model-Level Curriculum
4.4.1 Model-Level Difficulty Evaluation

In the first step, we have selected data based
on the definition of data difficulty. While in this
step, we select the teachers’ knowledge by using
curriculum learning based on the performance of
GAN. GAN can be said to share aspects with cur-
riculum learning: the discriminator defines an ob-
jective of progressive difficulty (Doan et al., 2019).
We consider two different metrics as scores for
measuring generator progress in our curriculum ap-
proach, which is defined as follows: (1) Discrim-
inator evaluation: Scorei = Di. (2) Discrimina-
tor change: Scorei = Di −Di−1, where Scorei
is the difficulty score of the i th sample.

For comparison, we also use the loss value of
distance between the output of teacher and student
network to measure the sample difficulty, which
is defined as follows: (1) Loss value: Scorei =
H (Tθ(xi), Sθ(xi)) . (2) Loss change: Scorei =
H (Tθ(xi), Sθ(xi))−H (Tθ(xi−1), Sθ(xi−1)) .

4.4.2 Self-paced Learning
In this section, we aim to decide the order of

output distillation. Not that all samples are distilled
from teacher to student equally, but to start training
from simple samples and gradually select complex
samples to join the training process of the model.
That is to say, we need to determine the value of V
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Algorithm 1 Hierarchical Curriculum Learning Al-
gorithm
Input: Dataset Do ;
Output: Student Model Sθ;

Build and Pre-train the Teacher Model Tθ and
then freeze its parameters;

1: for train step t = 1,...n do
2: Uniformly sample one subset of context-

response pairs Bt from Do based on the
data-level curriculum to train Sθ;

3: for (xi, yi) in Bt do
4: Use a GAN to distill the latent

variable by using Equation (4)
5: Calculate the difficultly score;
6: Acquire the self-paced learning

arrangement and distill the output
by using Equation (8);

7: end for
8: end for

in Equation (3). The conventional self-paced learn-
ing selects the samples based on the loss value.
While we replace it with our difficulty score de-
scribed in the last section. Then we use self-paced
learning to estimate V by the optimization as:

min
V

n∑
i=1

viScorei + f(λ,V), (5)

where f(λ,V) determines the way to compute the
value of vi, λ is the self-paced adjustment parame-
ter. lets V ∈ {0, 1}n and defines f(λ,V) as:

f(λ,V) = −λ
n∑
i=1

vi. (6)

The optimal V can be calculated by

vi =

{
1, if Scorei < λ
0, if Scorei ≥ λ,

(7)

where λ is used to control the learning pace of if
self-paced learning.

In our paper, suppose T is the total number of
training steps and t is the current training step. Dur-
ing training, to select the training instances with
desired difficulty, we resort to a pre-defined pacing
function λ = f(t) to control how fast the out-
put will be distilled from teacher to student. We
define three different pacing functions named as
linear-scheduler, log-scheduler and exp-scheduler
to make a smooth transformation from teacher to

student models and verify the effectiveness of the
proposed model. Linear-scheduler is increased con-
stantly in the training process. Log-scheduler indi-
cates that the increased speed is from fast to slow,
while exp-scheduler is opposite to it. We will com-
pare the effects of these three methods in the next
section.

In order to incorporate self-paced learning into
the distillation process, we reformulate our objec-
tive function 3 as follows:

LKD (Sθ) =
n∑
i=1

(H (Sθ(xi), yi)+

viH (Tθ(xi), Sθ(xi))).

(8)

In conclusion, our hierarchical curriculum learn-
ing algorithm framework is described in Algorithm
1.

5 Experiment
5.1 Datasets

We conduct experiments on two English conver-
sation datasets, which have been widely used in
open-domain dialogue generation. (1) DailyDialog
(Li et al., 2017): it is a collection of real-world
daily conversations for an English learner in daily
life. It is a multi-turn dataset, and we treat each
turn as a single-turn training pair in this work. (2)
PersonaChat (Zhang et al., 2018): it is collected by
two crowdsourced workers chit-chatting with each
other, conditioned on the assigned personas. In our
experiments, we only use the conversation text and
process it as DailyDialog.

5.2 Evaluation Methods
Automatic Evaluation Method It is challeng-
ing to assess the quality of the generated responses.
In this paper, we adopt several evaluation methods
to measure different aspects of our results: BLEU
(Papineni et al., 2002): it is used as a reward to
evaluate dialog systems by measuring word over-
lap between the generated reply and the ground
truth for the final evaluation. We compute BLEU
scores for n <= 4 using smoothing techniques
1. Entropy-based metrics : it includes word and
sentence entropy as (Serban et al., 2017), which
suggests the diversity of responses. Length: as
proposed by (Mou et al., 2016), the length of an ut-
terance is an objective, surface metric that reflects
the substance of a generated reply.

1https://www.nltk.org/_modules/nltk/
translate/bleu_score.html

https://www.nltk.org/_modules/nltk/ translate/bleu_score.html
https://www.nltk.org/_modules/nltk/ translate/bleu_score.html
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Dataset Method BLEU Sentence Entropy Word Entropy Length1 2 3 1 2 3

DailyDialog

S2S 0.306 64.924 73.771 73.249 6.709 10.466 11.948 10.079
CVAE 0.321 61.344 83.954 83.654 6.814 10.688 11.978 8.899

KD 0.324 65.577 90.873 91.557 6.807 10.653 11.942 9.578
Curriculum 0.326 65.057 89.625 90.263 6.817 10.686 12.004 9.450

Ours 0.357 96.189 134.722 145.972 6.779 11.568 12.904 14.336

PersonaChat

S2S 0.319 65.012 81.221 90.021 6.505 9.959 10.262 9.151
CVAE 0.329 76.401 81.588 99.398 6.581 10.049 10.207 9.921

KD 0.334 79.722 84.633 100.79 6.824 10.242 12.197 11.153
Curriculum 0.333 67.502 90.879 102.092 6.623 10.076 12.381 10.117

Ours 0.345 88.839 108.539 96.217 8.321 11.672 11.724 11.231

Table 1: Results of the automatic evaluation on two datasets.
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Figure 2: The comparison of BLEU score on two datasets.

Model 0 1 2 Kappa
S2S 42.7% 40.1% 17.2% 0.6354
CVAE 26.6% 43.9% 29.5% 0.5982
KD 23.8% 42.5% 33.7% 0.6302
Curriculum 26.7% 43.1% 30.2% 0.6750
Ours 24.1% 36.2% 39.7% 0.6632

Table 2: Results of the human evaluation on DailyDia-
log dataset.

Human Evaluation Method Considering the
limitations of the existing automatic evaluation met-
rics, we also adopt human judgments. We use Dai-
lyDialog as the evaluation corpus since it is more
similar to our daily conversations and easier for
annotators to make the judgement. We randomly
sample 100 cases and three well educated volun-
teers are recruited to do manual evaluation. For
each query-reply pair, volunteers are asked to rate
it with three levels: 0, 1, 2. 0 indicates that the
selected sentences are either irrelevant or disfluent
with grammatical errors; 1 is for the reply that is
relevant but not informative enough; 2 means that
the queries and replies are extremely related and
the replies are natural. We calculate the ratio of
each score (0, 1 and 2) for each model. To examine
the agreements among all the volunteers, we also
calculate the Fleiss kappa (Fleiss and Cohen, 2016)

of the human annotations on all models.

5.3 Comparison Models
To ascertain the effectiveness and applicability

of our approach, we re-implement experiments
on these methods: (1) S2S: it is a sequence-to-
sequence model with attention mechanism as in
(Shang et al., 2015). (2) CVAE: it is a latent
variable model using conditional variational auto-
encoder trained with KL annealing and a BoW loss
as in (Zhao et al., 2017). (3) Curriculum (Cai et al.,
2020): it employs an adaptive multi-curricula to
schedule a committee of organized curricula for
dialogue learning. (4) KD (Tahami et al., 2020):
it uses two dialogue models as the student and the
teacher. The framework uses a teacher-student set-
ting where the student learns from both the ground-
truth labels and the soft-labels provided by the
teacher.

5.4 Training and Evaluation Details
For the teacher and student model, we use gated

recurrent units (GRU) (Cho et al., 2014) for the
RNN encoders and decoders. The encoder and de-
coder are both GRUs with 256 hidden units. The
prior and the recognition networks are both 2-layer
feed-forward networks of size 200 with tanh non-
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DC OD MD MC BLEU Sentence Entropy Word Entropy Length1 2 3 1 2 3
- - - - 0.315 60.892 77.883 85.351 6.231 9.381 10.711 9.011
- + - - 0.329 77.485 74.433 74.922 6.741 10.232 11.822 10.915
+ + - - 0.327 75.873 91.031 99.744 6.509 9.961 12.257 11.043
+ + + - 0.339 86.40 91.58 99.398 6.581 10.049 12.207 12.309
+ + + + 0.357 96.18 134.72 145.972 6.779 11.568 12.904 14.336

Table 3: Results of the ablation study on the DailyDialog dataset.

DC OD MD MC BLEU Sentence Entropy Word Entropy Length1 2 3 1 2 3
- - - - 0.320 67.991 81.887 87.132 6.225 9.251 9.820 9.011
- + - - 0.326 74.924 83.774 90.253 6.709 10.466 11.948 10.079
+ + - - 0.334 75.749 90.474 99.642 6.562 10.016 12.363 11.043
+ + + - 0.337 80.539 92.191 81.999 6.755 10.238 11.615 11.109
+ + + + 0.345 88.839 108.539 96.217 8.321 11.672 11.724 11.231

Table 4: Results of the ablation study on the PersonChat dataset.

linearity. The dimension of a latent variable z is set
to 64. The initial weights for all fully connected lay-
ers are sampled from a uniform distribution [-0.02,
0.02]. The generators as well as the discriminator
D are 3-layer feed-forward networks with ReLU
non-linearity and hidden sizes of 200, 200 and 400,
respectively. The gradient penalty is used when
training D (Nair and Hinton, 2010) and its hyper-
parameter λ is set to 10. We set the vocabulary
size to 20,000 and define all the out-of-vocabulary
words to a special token < unk >. The word
embedding size is 200. The longest utterance is
set to 40. The baselines are implemented with the
same set of hyper-parameters. All the models are
implemented with Pytorch 2.

5.5 Evaluation Results
Automatic Evaluation Results The automatic
evaluation results of our proposed method and base-
lines on the two datasets are shown in Table 1.
We can see the following observations. (1) Our
model outperforms the baselines regarding almost
all the evaluation metrics on the two datasets. The
overall performance of our model further supports
our hypothesis that our model achieves a better
trade-off on the whole. (2) Specially, in terms
of BLEU scores, compared to the S2S, CVAE,
KD and Curriculum, our model obtains impres-
sive 16.7%, 11.2%, 10.2% and 9.5% performance
gains on the DailyDialog. As for PersonaChat, our
model outperforms the baseline with absolute im-
provements of about 8.2%, 4.9%, 3.3% and 3.6%.
This indicates that our model generates more rel-
evant responses with the highest BLEU scores on

2https://pytorch.org/

both datasets. (3) To show that our model is on
average more diverse than other model responses,
we compute the average sentence entropy and word
entropy, and our model produces responses with
higher entropy on both dataset compared to the
other baseline models. In particular, we can see
that the entropy of the sentences has been consid-
erably enhanced. (4) We also report the average
length of responses outputted by each model. Since
long responses contain rich content, the results pro-
vided quantitative evidence to our claim that we
can improve the responses with richer content than
other models.
Human Evaluation Results The results of hu-
man evaluation against all baseline methods are
listed in Table 2. The Kappa scores on all models
are larger than 0.5, which indicates the correlation
of the human evaluation. From the results we can
again observe that, similar to the automatic evalu-
ation results, our model consistently achieves the
best performance, which further demonstrates the
effectiveness of our proposed method.

6 Further Analysis

6.1 Ablation Study
There are four important parts in the proposed

framework: Data Level Curriculum (DC), Output
Distillation (OD), Middle Layer Distillation (MD),
Model Level Curriculum (MC) and we remove
them one at a time. Table 3 and 4 present the
results of model variants by ablating specific parts
of our model. Overall, we observe that all parts
of our method lead to improvements, which fur-
ther demonstrates the neural dialogue generation
model not only benefits from curriculum learning

https://pytorch.org/
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Dataset Method BLEU Sentence Entropy Word Entropy Length1 2 3 1 2 3

DailyDialog
Ours-Lin 0.333 78.598 79.209 79.039 6.9018 10.72 12.153 9.58
Ours-Log 0.343 85.555 84.701 83.275 6.9076 10.756 12.114 11.28
Ours-Exp 0.357 96.189 134.722 145.972 6.779 11.568 12.904 14.336

PersonaChat
Ours-Lin 0.332 78.346 72.852 81.039 7.238 10.72 10.023 10.92
Ours-Log 0.342 75.358 79.391 86.385 8.502 10.756 10.381 10.32
Ours-Exp 0.345 88.839 118.539 96.217 8.321 11.672 11.724 11.231

Table 5: Results of different scheduler on the on two datasets.

Method BLEU Sentence-Entropy Word-Entropy Length1 2 3 1 2 3
None 0.339 86.40 91.58 99.398 6.5809 10.049 12.207 12.309

Loss Value 0.341 61.344 83.954 83.654, 6.814 10.688 11.978 8.899
Loss Change 0.324 65.577 90.873 91.557 6.807 10.653, 11.942 9.578

D 0.326 65.057 89.625 90.263 6.817 10.686 12.004 9.450
D change 0.357 96.189 134.722 145.972 6.779 11.568 12.904 14.336

Table 6: Performance comparison on the DailyDialog dataset.

but also knowledge distillation. Specially, we find
that the MC is slightly more important in over-
all performance. Meanwhile, without other parts
also decreases the performance on most evaluation
metrics, which further proves the effectiveness of
combining these two techniques together.

6.2 The Effect of Different settings of subsets
in Data Level Curriculum

We further explore the effects of different num-
ber of subsets for our data-level curriculum strate-
gies, which also decides the granularity of sam-
ple selection in one epoch. Experiments are con-
ducted on the proposed two datasets and we report
BLEU scores in Figure 2. We select a wide range of
choices: from 2 to 20. In general, its performance
significantly outperforms the baseline system on
the test set with different settings of subsets, which
indicates that our approach is robust and effective.
We also evaluate extreme situations. For example,
when we divide our data set into 100 groups, the
result is 0.295 on BLEU score (0.011 below our
baseline with the worst effect), which is as expected
because an over-small subset leads to the problem
of overfitting.

6.3 The Effect of Different Schedular
Functions

Since we design three pacing functions in model-
level curriculum arrangement, we compare and an-
alyze the proposed functions in experiments. We
conduct experiments on the two datasets and the
performance of different pacing functions can be
found in Table 5. We have the following two obser-
vations. (1) The exp-scheduler method consistently

outperforms others on two datasets. We suspect
that is because in the case of the exp-scheduler
function, the student network starts learning less
from the teacher model and therefore has more time
to learn a better discriminator. (2) Compared with
other pacing functions, the linear-scheduler pacing
function results in the worst performance, which
indicates the effectiveness of changing learning
speed.

6.4 The Effect of Different Model-Level
Curriculum Strategy

To further glean the insights regarding the dif-
ferent model-level curriculum strategy, we present
the results in Table 6. We can see that D change
achieves the best results when compared to the
baseline and other methods, which indicates that
D does reflect the complexity of students’ models
compared to teachers’. The loss-based complexity
performed worse than D and D change. We sus-
pect that because the loss function is not a good
signal to judge the model complexity compared to
discriminator.

6.5 Case Studies

To empirically analyze the quality of generated
responses, we present examples generated from our
model and baselines in Table 7 . For each query,
we show the best samples of generated responses
from each model. On the table, we see that our
model generates both long and informative replies
compared with others.
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Query that is good . are you married ? yes and have two animals what kind of animals ? i love taking my dog for
runs to stay in shape .

groud-truth they are cats . they do not like being outside
S2S that is cool . i am not sure . are you ?
CVAE oh . do you have any pets ?
KD i have a dog and i am not into it .
Curriculum i am going to have a dog , what happened to your dogs ?
Ours yeah dogs are cool, what kind of dog do you have ?
Query i am fluent in three different languages . do you speak more than one language ? i do speak multiple

languages . which ones do you speak ? i speak , english , spanish and french .
groud-truth those happen to all be languages i speak . i want to visit france sometime .
S2S I am not sure .
CVAE I am not good for it
KD yes, i am a teacher and you ?
Curriculum i have a lot of time to speak .
Ours that is awesome . where are you from ?

Table 7: Case studies of generated replies.

6.6 Error analysis

To enhance the performance of our model in the
future, we take the worse cases in human judgment
as an example to analyze our errors. We find that
although our model improves the response diversity
significantly, the model still has a “safe response"
problem. Compared with the response generated by
the teacher model, we find that the “safe response"
generated by the teacher model can greatly affect
students. 80.1% of the “safe response" is from
the teacher model. That is, soft labels that are
generated by a teacher model largely determine the
performance of its student model. Therefore, in the
future, we will study methods that can learn the
good parts of the teacher model, and filter the bad
parts of the teacher model.

7 Conclusion
In this work, we consider open-domain dialogue

systems. To induce model learning from effec-
tive teachers, we propose a learnable distillation
model to dynamically distill knowledge by hierar-
chical curriculum learning. Experiments conducted
on two public conversation datasets show that our
proposed framework is able to boost the perfor-
mance of existing dialogue systems. Besides, our
framework is not limited to the neural dialogue
generation task. In the future, we would extend
our method to deal with other text generation tasks
(e.g., abstract summarization) and examine this ap-
proach’s adaptability to these tasks.
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