
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3046–3055
August 1–6, 2021. ©2021 Association for Computational Linguistics

3046

Provably Secure Generative Linguistic Steganography

Siyu Zhang, Zhongliang Yang, Jinshuai Yang, Yongfeng Huang
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

{zhangsiy19, yjs20}@mails.tsinghua.edu.cn
yangzl15@tsinghua.org.cn

yfhuang@mail.tsinghua.edu.cn

Abstract

Generative linguistic steganography mainly
utilized language models and applied stegano-
graphic sampling (stegosampling) to gener-
ate high-security steganographic text (stego-
text). However, previous methods generally
lead to statistical differences between the con-
ditional probability distributions of stegotext
and natural text, which brings about security
risks. In this paper, to further ensure secu-
rity, we present a novel provably secure gener-
ative linguistic steganographic method ADG,
which recursively embeds secret information
by Adaptive Dynamic Grouping of tokens ac-
cording to their probability given by an off-
the-shelf language model. We not only prove
the security of ADG mathematically, but also
conduct extensive experiments on three pub-
lic corpora to further verify its imperceptibil-
ity. The experimental results reveal that the
proposed method is able to generate stegotext
with nearly perfect security.

1 Introduction

Steganography is the technology of hiding secret in-
formation within an innocent natural carrier (such
as image (Hussain et al., 2018), audio (Mishra
et al., 2018), video (Liu et al., 2019), text (Krishnan
et al., 2017), etc) in order to avoid eavesdropping.
Steganography differs from cryptography in that
cryptography only conceals the content of secret
information, whereas steganography even conceals
its very existence, which makes it more secure and
reliable in some scenarios (Anderson and Petitco-
las, 1998).

Natural language is suitable as a carrier of
steganography by virtue of its high robustness in
transmission (Ziegler et al., 2019). Unlike digi-
tal images or digital audio which is sensitive to
distortions like compression, cropping, blurring or
pixel-wise dropout, text can usually be transmitted

losslessly through different kinds of public chan-
nels. Nevertheless, text generally has low entropy
and lacks sufficient redundancy for information
hiding (Sharma et al., 2016), which often results
in low embedding capacity of linguistic steganog-
raphy. For example, in traditional modification-
based methods (such as synonym substitution (Xi-
ang et al., 2014, 2018) and spelling transformation
(Shirali-Shahreza, 2008)), where secret informa-
tion is encoded by slightly modifying an existing
covertext, the options for modification can be very
limited to keep the text fluent enough so as not to
arouse suspicions.

In recent years, powered by the advanced tech-
nology of deep learning and natural language pro-
cessing, language models based on neural networks
have made significant progress in generating flu-
ent text (Radford et al., 2019; Brown et al., 2020),
which bring new vitality to linguistic steganogra-
phy and facilitate the investigation of generation-
based methods (Fang et al., 2017; Yang et al.,
2018a; Dai and Cai, 2019; Ziegler et al., 2019;
Yang et al., 2020a; Zhou et al., 2021). The gener-
ative linguistic steganography directly transform
secret information into innocuous-looking stegano-
graphic text (stegotext) without any covertext. Us-
ing an off-the-shelf language model, secret infor-
mation can be encoded in the selection of token at
each time step autoregressively during the genera-
tion procedure, which greatly alleviates the draw-
back of low embedding capacity. However, previ-
ous methods inevitably introduce distortions during
generation. The imperceptibility of generative lin-
guistic steganography still needs further optimiza-
tion.

In this paper, we aim to further improve the im-
perceptibility of generative linguistic steganogra-
phy. The contributions of this work are the follow-
ing:

1. We present ADG (Adaptive Dynamic

3047

Grouping), a novel generative linguistic
steganographic method based on off-the-
shelf language models, which groups the
tokens adaptively in accordance with their
probability at each time step to embed secret
information dynamically in the generated
stegotext.

2. We discuss the security of ADG and give
mathematical proof, which reveals that the
proposed method is provably secure.

3. Through quantitative analysis, we derive sat-
isfactory experimental results in terms of
both imperceptibility and embedding capac-
ity, which further verifies the effectiveness of
ADG.

Our code is available at https://github.com/M
hzzzzz/ADG-steganography.

2 Formalism

2.1 Notation
We use lowercase letters in bold type (e.g. a) to
denote vectors, normal lowercase letters (e.g. a)
to denote scalars and uppercase letters (e.g. A)
to denote sets. We use the symbol |A| to denote
the size of a set. Calligraphic letters denote neural
models (e.g. A). Both English letters and Greek
letters are adopted. We use p(·) and q(·) to denote
distributions and f(·) to denote functions, which
are usually shortened to p, q and f . Subscripts
and superscripts are used to tell the different vari-
ables/distributions/functions apart.

2.2 Generative Linguistic Steganography
Language modeling is a task to estimate the joint
distribution of serialized natural language pLM (w),
wherew is a sequence of n tokens [w1, w2, ..., wn]
and each token belongs to the vocabulary Σ. For
an autoregressive language model L, the output
is usually factorized as a product of conditional
distribution of the current token

pLM (w) = pLM (w1, w2, ..., wn)

= pLM (w1) ·
n∏

t=2

pLM (wt|w1, ..., wt−1).

(1)
According to Simmons (1984), it is usually sup-

posed that Alice (sender) wants to send a secret
messagem ∼ Uniform({0, 1}l) to Bob (receiver)
through a public channel monitored by Eve (adver-
sary). In generative linguistic steganography, they
share an embedding algorithm femb which takes a

language model L and the secret messagem as in-
put and then outputs stegotext y to transmit. They
also share a corresponding extraction algorithm
fext, which is the inverse mapping of femb that is
able to recover the secret messagem according to
the language model L and the received stegotext y.

2.3 Imperceptibility

In order to avoid raising Eve’s suspicions, stegotext
y is required to be fluent enough and statistically
indistinguishable from natural innocuous text x,
which we call covertext. Cachin (1998) proposed
the information-theoretic security of steganography
to measure the statistical imperceptibility quanti-
tatively, which is defined as the Kullback-Leibler
divergence (KL divergence) between the distribu-
tions of covertext x and stegotext y. The distortion
of generative linguistic steganography is two-fold:
one is introduced by the bias of the language mod-
els, which is the gap between the true distribution
of natural text ptrue(x) and the modeled distribu-
tion pLM (x); the other is introduced by femb. In-
stead of directly sampling from the modeled dis-
tribution, the embedding algorithm femb actually
provides a special way to sample from pLM (y),
which we call steganographic sampling (stegosam-
pling). It is equivalent to sampling from a modified
distribution q(y) produced by an implicit language
model L′. In a word, the latter distortion is the
gap between pLM (y) and q(y), which can also be
regarded as the gap between the conditional dis-
tributions pLM (yt|y<t) and q(yt|y<t). We simply
use pLM and q to refer to the conditional distribu-
tions in the rest of this paper.

3 Related Work

In the early stage, some researchers investigated
rule-based approaches or using Markov Chains
to achieve generative linguistic steganography
(Wayner, 1992; Chapman and Davida, 1997; Chap-
man et al., 2001; Chapman and Davida, 2002; Dai
et al., 2010; Moraldo, 2014; Luo et al., 2016; Yang
et al., 2018b). However, these methods followed
a simplistic pattern and are hard to guarantee the
grammatical correctness and the semantic fluency
of the generated stegotext.

With the development of deep learning, language
models based on neural networks show great per-
formance on automatic text generation. The pattern
of generating stegotext with neural language mod-
els has been widely accepted. Fang et al. (2017)

https://github.com/Mhzzzzz/ADG-steganography
https://github.com/Mhzzzzz/ADG-steganography

3048

proposed a linguistic steganographic method that
randomly partitioned the vocabulary Σ into 2b bins
[B1, B2, ..., B2b] and each one contained |Σ|/2b to-
kens. At each time step, they selected the token
with the highest probability within the bin accord-
ing to the b−bit secret information to be embedded.
Yang et al. (2018a) improved the embedding algo-
rithm by building the mapping from secret informa-
tion to tokens dynamically at each time step rather
than statically in advance. Concretely, the top 2k

tokens with the highest probability were encoded
by Huffman coding algorithm. Then they took
the token which has the same code as the secret
information. Dai and Cai (2019) proposed patient-
Huffman, which was an improved version of Yang
et al. (2018a) that sacrificed embedding capacity
for imperceptibility. They first calculated the dis-
tortion (total variation distance or KL divergence)
between q and pLM and then only used Huffman
coding embedding algorithm to embed secret infor-
mation when the distortion was less than a preset
threshold δ. Otherwise they directly sampled a to-
ken to avoid high distortion occasions. Ziegler et al.
(2019) employed arithmetic coding to embed secret
information. They truncated the top h likely tokens
and left out the low-probability long-tails. Then the
tokens are encoded by arithmetic coding algorithm
and selected according to the secret information.
Compared with other coding algorithm, arithmetic
coding has higher compression rate, which results
in less damage to conditional probability distribu-
tion pLM and helps to improve imperceptibility.

4 ADG Methodology

According to the analysis in Section 2.3, the distor-
tion of generative linguistic steganography includes
the bias of the language model L and the damage
to the conditional distribution caused by the em-
bedding algorithm femb. The former is not our
research priority. With the development of auto-
matic text generation, the former distortion can be
gradually minimized. In this paper, we mainly pay
attention to the latter distortion. We aim to seek an
optimal solution theoretically and experimentally.

Given an off-the-shelf language model, how can
we embed secret information to the generated to-
kens? Unlike previous works that encoded the con-
ditional distribution by lossless coding algorithm,
we achieve this goal in a novel way by grouping.
Through mathematical analysis and proof, we pro-
pose a provably secure method ADG, which does

little damage to the conditional distribution and
is nearly equivalent to directly sampling from the
full distribution. In this section, we investigate the
security of steganography by grouping and give
detailed descriptions of the proposed method.

4.1 Steganography by Grouping
Steganography by grouping is to group all tokens
in the vocabulary into several groups, so that each
group represents a unique secret message. E.g. we
can Tokens belonging to the target group are able
to make up the stegotext. In such a way, Bob reads
each token in the sequence in turn and performs
the same grouping operation to extrapolate which
groups the current token belongs to, thereby ex-
tracting the corresponding secret information. The
key question is: how to group the tokens at each
time step to ensure an optimal imperceptibility?
We have the following assumption.

Assumption 1. For secret information in the
form of uniformly distributed bitstream, adap-
tively grouping the vocabulary into u groups (u =
2r, r ∈ N, r ≤ log2 |Σ|) with equal probability
will ensure the optimal imperceptibility.

Proof. Assuming that the discrete conditional prob-
ability distribution pLM is arbitrarily partitioned
into u groups to embed r-bit secret information.
pij denotes the probability of the j-th token in the
i-th group. ηi and ni denote the total probability
and the size of the i-th group respectively. Then
we have

ni∑
j=1

pij = ηi,

u∑
i=1

ηi = 1. (2)

Our goal is to figure out the grouping algorithm
to achieve the best imperceptibility, i.e. to min-
imize the gap between pLM and q. First of all,
starting from the modeled distribution pLM =
[..., pij , ...], we calculate the equivalent distribution
q. The probability of each token is firstly normal-
ized within its group (1/ηi) and then multiplied by
the selected probability of the group, which is 1/u
since secret information is uniformly distributed.
Therefore, q has the following form

q = [..., pij/uηi, ...]. (3)

We measured the gap between the two distributions
with KL divergence, which is

DKL(pLM ||q) =
∑

pLM log
pLM
q

3049

=

u∑
i=1

ni∑
j=1

pij log
pij

pij/uηi

=

u∑
i=1

ni∑
j=1

pij log(uηi)

=
u∑

i=1

log(uηi)

ni∑
j=1

pij

=

u∑
i=1

ηi log(uηi). (4)

Therefore, the KL divergence between the two
distributions is a function of the vector η =
[η1, η2, ..., ηu].

Next, we will prove Assumption 1 in two steps.
[1]. Considering the auxiliary function

faux(η) = η log(uη), (0 ≤ η ≤ 1), we firstly
analyse its concavity and convexity on the do-
main of definition. For every η1, η2 ∈ (0, 1) and
0 ≤ λ ≤ 1,

faux(λη1 + (1− λ)η2)

− λfaux(η1)− (1− λ)faux(η2)

= (λη1 + (1− λ)η2) log(u(λη1 + (1− λ)η2))

− λ(η1 log(uη1))− (1− λ)(η2 log(uη2))

= λη1 log
λη1 + (1− λ)η2

η1

+ (1− λ)η2 log
λη1 + (1− λ)η2

η2

≤ λ(η1(
λη1 + (1− λ)η2

η1
− 1))

+ (1− λ)η2(
λη1 + (1− λ)η2

η2
− 1)

= λ(λη1 + (1− λ)η2 − η1)
+ (1− λ)(λη1 + (1− λ)η2 − η2)
= λ(λ− 1)η1 + λ(1− λ)η2

+ (1− λ)λη1 − (1− λ)λη2

= 0.
(5)

As a result, faux(η) is convex over (0, 1).
[2]. Then, when generalizing to u variables

η1, η2, ..., ηu,
u∑

i=1

ηi = 1, according to Jensen’s

inequality (Jensen et al., 1906), there is∑u
i=1 faux(ηi)

u
=

∑u
i=1 ηi log(uηi)

u

≥ faux(

∑u
i=1 ηi
u

) =
1

u

u∑
i=1

ηi log(

u∑
i=1

ηi) = 0.

(6)

The equality sign holds if and only if

η1 = η2 = ... = ηu. (7)

It means that DKL(pLM ||q) =

u∑
i=1

faux(ηi) takes

the minimum value 0 when each component of η
is equal, in which case pLM and q are equivalent
and that achieves the optimal information-theoretic
security defined by Cachin (1998).

Therefore, we basically construct the idea of our
embedding algorithm, that is, to adaptively group
the vocabulary into multiple groups at each time
step, so that each group is assigned approximately
the same probability. In practice, since the probabil-
ity distribution is discrete, the probability of groups
may not be absolutely equal. Firstly, we determine
the number of groups u to be its maximum value
2b− log2 pmaxc, where pmax is the highest probabil-
ity in pLM . Secondly, since the time complexity of
solving the global optimal solution of equal group-
ing is unacceptable, we implement a suboptimal
solution in ADG, as demonstrated in Algorithm 1.
In line 10, we employ binary search algorithm to
select the token that has the nearest probability of
a given value. Our implementation enables us to
obtain a unique grouping result for any pLM , which
ensures that the secret information can be extracted
accurately and completely at the receiving end.

4.2 Recursion and Pruning

After obtaining the grouping results, we can select
the group according to the next log u bits of secret
information to be embedded and simply sample
a token in the group to generate stegotext. As a
matter of fact, we can also continue grouping the
obtained groups to further enlarge the embedding
capacity and recursively grouping the new groups
until it is impossible to be equally participated (the
normalized pmax of the current group is greater
than 0.5). In order to improve the efficiency of the
recursive grouping, we employ pruning strategy
to remove the redundant grouping operations. We
only need to recursively group the selected groups
every time in accordance with the secret informa-
tion to be embedded. In this manner, the amount
of secret information embedded in each token is
adjusted dynamically according to its probability
distribution.

To sum up, at each time step, the proposed
ADG embedding algorithm first conducts the equal

3050

Algorithm 1: Suboptimal solution of equal
grouping.
Data: vocabulary Σ, distribution pLM
Result: set of groups G

1 list of tokens = sorted (pLM);
2 pmax = probability of the first token;
3 u = 2b− log2 pmaxc;
4 mean = 1/u;
5 for (i = 1; i ≤ u− 1; i ++) do
6 Gi = [the first token];
7 remove the first token;

8 while
∑

probability of Gi < mean do
9 ε = mean−

∑
probability of Gi;

10 select a token with the nearest
probability of ε;

11 if probability of the token− ε < ε
then

12 append the token to Gi;
13 remove the token;
14 end
15 else
16 break;
17 end
18 end

19 mean =
probability of the rest tokens

u− i
;

20 end
21 append the rest tokens to Gu;
22 G = [G1, G2, ..., Gu];

grouping algorithm adaptively according to the con-
ditional distribution, and then recursively repeats
the operation on the selected group dynamically
according to the secret information, until it is in-
divisible. At last, we normalize the probability of
the last selected group and sample a token to gen-
erate the stegotext. We have proved the security of
equal grouping algorithm. Obviously, it can also be
extended to the recursive manner of ADG, which
means the proposed method is provably secure.

4.3 Information Extraction

The extraction algorithm is basically the inverse
process of the embedding algorithm. For an ex-
actly successful extraction, Alice and Bob have to
share the same language model, vocabulary and
grouping algorithm. At each time step, Bob is
supposed to recursively operate the same grouping
algorithm as Alice do, and then select the group

contains the current token in the stegotext. The
index of the selected groups reveal the embedded
secret information.

5 Experimental Results and Analysis

In this section, we evaluate the performance of
ADG in terms of both embedding capacity and
imperceptibility. Details of our experiments and the
analysis of the results are present in the following
subsections.

5.1 Datasets

We evaluated the performance of ADG on three
public corpora, namely “Large Movie Review
Dataset” (Movie) (Maas et al., 2011), “All the
News” (News)1 and “Sentiment140” (Tweet) (Go
et al., 2009). Large movie review dataset is origi-
nally built for binary sentiment classification, con-
taining 100,000 movie reviews in total crawled
from IMDb2. “All the news” is a collection of pub-
lications of mainstream news media. Sentiment140
is also used in sentiment analysis tasks, which con-
tains 1,600,000 tweets extracted from Twitter3.

We converted the raw text to lowercase and re-
moved HTML tags and most punctuations, then
segmented it into sentences with NLTK tools
(Loper and Bird, 2002). We filtered out sentences
with length below 5 or above 200. For the conve-
nience of training and evaluation, any token occur-
ring less than 10 times was mapped to a special
token “ UNK”. We also added “ BOS” and “ EOS”
at the beginning and end of each sentence to help
training. Sentences in a batch were padded to the
same length with a special padding token “ PAD”.
Finally, we divided the preprocessed corpora into
training set and test set according to the ratio of 9:1.
Statistics are demonstrated in Table 3.

5.2 Implementation Details

In experiments, we utilized LSTMs (Hochreiter
and Schmidhuber, 1997) for word-level generation.
We stacked 2 LSTM layers and the model was
implemented with Pytorch (Paszke et al., 2017).
The dimension of word embedding was set to be
350. Hidden states in LSTM were set to be 512-
dimensional vectors. In the training procedure,
we applied SGD algorithm together with Adam

1https://www.kaggle.com/snapcrack/all
-the-news

2https://www.imdb.com/
3https://twitter.com/

https://www.kaggle.com/snapcrack/all-the-news
https://www.kaggle.com/snapcrack/all-the-news
https://www.imdb.com/
https://twitter.com/

3051

Table 1: Results of ER, KLD1 and KLD2.

METHOD Movie News Tweet
↑ER ↓KLD1 ↓KLD2 ↑ER ↓KLD1 ↓KLD2 ↑ER ↓KLD1 ↓KLD2

Bins (b = 1) 1.000 2.497 27.595 1.000 2.742 26.331 1.000 2.431 19.519
Bins (b = 2) 2.000 2.338 33.206 2.000 2.593 35.207 2.000 2.421 17.604
Bins (b = 3) 3.000 2.319 29.778 3.000 2.592 55.781 3.000 2.429 21.286
Bins (b = 4) 4.000 2.439 54.155 4.000 2.550 87.441 4.000 2.314 27.230
Bins (b = 5) 5.000 2.503 73.075 5.000 2.500 116.857 5.000 2.482 29.171
Huffman (k = 1) 1.000 1.961 21.219 1.000 2.338 11.226 1.000 2.121 6.252
Huffman (k = 2) 1.824 1.433 13.199 1.824 1.751 8.793 1.841 1.586 5.208
Huffman (k = 3) 2.509 1.106 8.487 2.518 1.372 6.855 2.595 1.145 4.141
Huffman (k = 4) 3.145 0.819 6.334 3.224 1.084 5.419 3.266 0.880 3.197
Huffman (k = 5) 3.705 0.658 4.657 3.872 0.838 3.995 3.932 0.694 2.738
Patient-Huffman (δ = 1.0) 1.125 0.327 0.767 0.809 0.256 0.441 0.988 0.298 0.545
Patient-Huffman (δ = 1.5) 1.711 0.588 2.132 1.460 0.559 1.817 1.668 0.621 1.280
Patient-Huffman (δ = 2.0) 2.129 0.819 4.564 1.905 0.808 3.497 2.201 0.908 2.445
Arithmetic (h = 100) 4.224 0.362 2.956 4.412 0.425 2.269 4.308 0.333 1.508
Arithmetic (h = 200) 4.651 0.240 2.321 4.908 0.295 1.688 4.805 0.253 1.749
Arithmetic (h = 300) 4.903 0.205 1.903 5.127 0.245 1.426 4.942 0.206 1.242

ADG 5.147 0.033 1.946 5.650 0.027 0.866 5.411 0.048 1.189

(Kingma and Ba, 2014) to train the language model.
Learning rate was set to be 0.001. The SGD update
direction was computed using a batch of 32 training
samples. They were both trained for 30 epochs on
one GeForce GTX 1080 GPU. In the generation
procedure, we adopted the model performing best
on test sets. All generated sentences must be longer
than 5 and shorter than 200.

5.3 Baselines

We rebuilt Fang et al. (2017) (Bins), Yang et al.
(2018a) (Huffman), Dai and Cai (2019) (Patient-
Huffman) and Ziegler et al. (2019) (Arithmetic)
as baselines. For fair comparison, we rebuilt all
the baselines with the same language models. For
Bins, we set b to be 1, 2, 3, 4, 5 and the corre-
sponding number of bins was 2, 4, 8, 16, 32. For
Huffman, we built Huffman tree with the top 2,
4, 8, 16, 32 likely tokens. For Patient-Huffman,
we measured the distortion by KL divergence and
restricted the threshold δ to 1, 1.5, 2 with top 8
tokens. For Arithmetic, we truncated the condi-
tional distribution at h = 100, 200, 300. In each
case, we generated 1,000 stegotext. We randomly
chose same amount of covertext from the test sets
for further evaluation.

5.4 Metrics

The metrics we utilized to evaluate the performance
on embedding capacity and imperceptibility are
listed as follows.

Embedding Rate (ER): It is the average amount
of information that one single token can carry, and
is in unit of bits per word (bpp). Embedding rate is
a metric to indicate the embedding capacity. Higher
is better.

KL Divergence between the implicit distribution
q and the modeled distribution pLM (KLD1): It
reflects the gap introduced by the embedding algo-
rithm. Lower is better and the unit is bit.

KL Divergence between the statistical distribu-
tions of the sentence embedding of covertext and
stegotext (KLD2): It indirectly reflects the overall
information-theoretic security. We mapped all ste-
gotext and covertext to fixed length dense vectors
vx and vy by third-party sentence vectorization
tool (Le and Mikolov, 2014), and assumed that the
resulting vectors of covertext and stegotext both
obey isotropic Gaussian distribution. Then KLD2

is computed by

DKL(p(vx)||p(vy))

≈
∑

(log
σy

σx
+
σx

2 + (µx − µy)2

2σy
2

− 1

2
),

(8)
where µ and σ are the mean and standard devia-
tion of sentence vectors. We set the dimension of
sentence vectors to be 100. Lower is better and the
unit is bit.

Detection Accuracy: It reflects the anti-
steganalysis ability of steganographic methods. Ste-

3052

Table 2: Results of ER, Acc1 and Acc2.

METHOD Movie News Tweet
↑ER Acc1 Acc2 ↑ER Acc1 Acc2 ↑ER Acc1 Acc2

Bins (b = 1) 1.000 0.873 0.854 1.000 0.887 0.856 1.000 0.787 0.814
Bins (b = 2) 2.000 0.812 0.802 2.000 0.855 0.830 2.000 0.739 0.753
Bins (b = 3) 3.000 0.810 0.789 3.000 0.833 0.819 3.000 0.720 0.733
Bins (b = 4) 4.000 0.825 0.832 4.000 0.843 0.852 4.000 0.748 0.760
Bins (b = 5) 5.000 0.876 0.872 5.000 0.877 0.882 5.000 0.750 0.786
Huffman (k = 1) 1.000 0.891 0.891 1.000 0.891 0.885 1.000 0.785 0.806
Huffman (k = 2) 1.824 0.838 0.836 1.824 0.851 0.826 1.841 0.749 0.758
Huffman (k = 3) 2.509 0.796 0.760 2.518 0.816 0.785 2.595 0.684 0.702
Huffman (k = 4) 3.145 0.713 0.690 3.224 0.768 0.718 3.266 0.634 0.632
Huffman (k = 5) 3.705 0.673 0.645 3.872 0.710 0.664 3.932 0.602 0.593
Patient-Huffman (δ = 1.0) 1.125 0.588 0.578 0.809 0.559 0.542 0.988 0.528 0.552
Patient-Huffman (δ = 1.5) 1.711 0.654 0.683 1.460 0.674 0.683 1.668 0.589 0.581
Patient-Huffman (δ = 2.0) 2.129 0.722 0.714 1.905 0.725 0.726 2.201 0.650 0.661
Arithmetic (h = 100) 4.224 0.601 0.582 4.412 0.630 0.608 4.308 0.547 0.554
Arithmetic (h = 200) 4.651 0.565 0.556 4.908 0.594 0.559 4.805 0.537 0.561
Arithmetic (h = 300) 4.903 0.571 0.562 5.127 0.558 0.566 4.942 0.532 0.534

ADG 5.147 0.548 0.544 5.650 0.543 0.519 5.411 0.496 0.497

Table 3: Statistics of the preprocessed datasets.

DATASET |Σ| |TRAINING| |TEST|

Movie 37,800 1,002,609 111,402
News 50,178 1,461,567 162,397
Tweet 30,152 1,572,599 174,734

ganalysis is the technology used by Eve to de-
tect hidden information in stegocarriers, which is
the opposite direction of steganography. In our
experiment, we employed linguistic steganalysis
approaches based on Fasttext (Yang et al., 2019)
(Acc1) and TextCNN (Yang et al., 2020b) (Acc2).
We took stegotext as positive samples and cover-
text as negative samples. We conducted 10-fold
cross validation and reported the average accuracy.
Closer to 50% is better.

Effective Embedding Rate: It is a new metric
we proposed to evaluate the comprehensive perfor-
mance of steganographic algorithms. It is defined
to be calculated by

EER = 2× (1−Acc)× ER, (9)

meaning that if the stegotext has a certain prob-
ability of being detected, the average amount of
secret information actually transmitted should be
discounted accordingly. For mathematical rigor-
ousness and completeness, ifAcc < 0.5, we assign
1−Acc to Acc. In extreme cases where the stego-
carriers are completely natural, the detection accu-
racy should be 50% and EER is equal to ER. On

the contrary, stegocarriers with 100% detection ac-
curacy cannot carry a single bit. We calculated this
metric with the accuracy results obtained by the
two aforementioned steganalysis method (EER1,
EER2). Higher is better and the unit is bpp.

5.5 Results and Analysis

The results of KLD1 and KLD2 are listed in Table 1.
KLD1 measures the distortion between q and pLM ,
which is introduced by the embedding algorithm
ADG. KLD2 estimates the overall information-
theoretic security that also considers the deviation
of language models. In terms of KLD1, we found
that the proposed method ADG outperforms all
baselines and it is very close to the optimal value
0 (stochastic sampling), which means generating
stegotext by ADG is almost equivalent to normal
generation with the language models. The results
of KLD2 are also advantageous, indicating that the
generated stegotext is statistically consistent with
the covertext. We noticed that some baselines can
also perform well on KLD2 (e.g. Patient-Huffman
(δ = 1.0)). However, they have a crucial flaw in
embedding capacity.

Table 2 demonstrates the results of anti-
steganalysis, where we found the tendency co-
heres with that of KLD1 and KLD2. The proposed
method ADG outperforms all baselines on the three
corpora and it is very close to the optimal value 0.5,
which further confirms its imperceptibility. Be-
sides, we also illustrated some examples of stego-
text generated by ADG in Table 5 for qualitative

3053

Table 4: Results of ER, EER1 and EER2.

METHOD Movie News Tweet
↑ER ↑EER1 ↑EER2 ↑ER ↑EER1 ↑EER2 ↑ER ↑EER1 ↑EER2

Bins (b = 1) 1.000 0.254 0.292 1.000 0.226 0.287 1.000 0.425 0.373
Bins (b = 2) 2.000 0.752 0.794 2.000 0.582 0.680 2.000 1.044 0.988
Bins (b = 3) 3.000 1.137 1.266 3.000 0.999 1.089 3.000 1.683 1.605
Bins (b = 4) 4.000 1.396 1.344 4.000 1.252 1.180 4.000 2.020 1.924
Bins (b = 5) 5.000 1.245 1.280 5.000 1.230 1.180 5.000 2.500 2.135
Huffman (k = 1) 1.000 0.218 0.219 1.000 0.219 0.231 1.000 0.430 0.387
Huffman (k = 2) 1.824 0.593 0.600 1.824 0.546 0.635 1.841 0.924 0.893
Huffman (k = 3) 2.509 1.024 1.202 2.518 0.927 1.083 2.595 1.638 1.549
Huffman (k = 4) 3.145 1.809 1.950 3.224 1.496 1.821 3.266 2.387 2.404
Huffman (k = 5) 3.705 2.427 2.627 3.872 2.249 2.602 3.932 3.133 3.200
Patient-Huffman (δ = 1.0) 1.125 0.927 0.949 0.809 0.713 0.740 0.988 0.933 0.886
Patient-Huffman (δ = 1.5) 1.711 1.182 1.083 1.460 0.952 0.925 1.668 1.369 1.400
Patient-Huffman (δ = 2.0) 2.129 1.184 1.220 1.905 1.050 1.044 2.201 1.541 1.490
Arithmetic (h = 100) 4.224 3.371 3.527 4.412 3.269 3.459 4.308 3.908 3.843
Arithmetic (h = 200) 4.651 4.051 4.125 4.908 3.981 4.324 4.805 4.449 4.219
Arithmetic (h = 300) 4.903 4.207 4.290 5.127 4.532 4.450 4.942 4.630 4.606

ADG 5.147 4.648 4.699 5.650 5.164 5.435 5.411 5.373 5.384

Table 5: Examples of stegotext generated by ADG on the three corpora.

Movie

The supporting cast was also excellent.
But I guess you ’ve seen the many silent movies along with his other films.
And this movie was a precursor of val kilmer in the extreme.
It ’s a unique wonderful movie that deserves all the recognition it deserved.
This is the worst movie I have ever seen.

News

The FBI estimated its total wealth on Thursday.
Remember this is in part because of the actual policies of Donald Trump.
He said he did not care about any counterintelligence investigation.
Today however the process could not change even if he doesnt agree with Trumps rhetoric.
More than 100 000 people have been detained and another 30 000 civilians have been wounded early on Sunday.

Tweet

Worst headache everrrr I dunno why but it was so scary.
I had a blast today in the MTV Movie Awards.
Ahhh some brothers do n’t play sports!
Sadly you will be missing so much.
I do n’t think the peach ice cream last night was good.

study. We found that the stegotext is fluent enough,
with correct grammar and coherent semantics.

Finally, taking both embedding capacity and im-
perceptibility into account, we investigated effec-
tive embedding rate listed in Table 4. It can be
concluded that our method has excellent compre-
hensive performance, which outperforms all base-
lines. In general, the experimental results indicate
that the proposed method ADG is able to resist
both perceptual and statistical steganalysis of Eve,
meanwhile ensure a remarkable embedding rate,
which reveals its effectiveness.

6 Conclusion

Previous works of generative linguistic steganog-
raphy inevitably introduce distortions to the distri-
bution estimated by off-the-shelf language models.
In this paper, we attempted to achieve provably se-

cure generative linguistic steganography during the
procedure of stegotext generation. We proposed
ADG, which embeds secret information by adap-
tive dynamic grouping. According to the mathe-
matical proof and extensive experiments conducted
on three public corpora, we found that the pro-
posed method is provably secure and capable of
generating fluent stegotext with high embedding
capacity and high imperceptibility. We hope our in-
vestigation of provably secure generative linguistic
steganography can be leveraged as a building block
for future research.

Acknowledgments

This work is supported in part by the National
Key Research and Development Program of China
under Grant U1936216, Grant 61862002, Grant
6200197 and Grant U1705261. The authors thank

3054

anonymous reviewers for their insightful sugges-
tions.

References
Ross J Anderson and Fabien AP Petitcolas. 1998. On

the limits of steganography. IEEE Journal on se-
lected areas in communications, 16(4):474–481.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Christian Cachin. 1998. An information-theoretic
model for steganography. In International Work-
shop on Information Hiding, pages 306–318.
Springer.

Mark Chapman and George Davida. 1997. Hiding the
hidden: A software system for concealing ciphertext
as innocuous text. In International Conference on
Information and Communications Security, pages
335–345. Springer.

Mark Chapman and George Davida. 2002. Plausible
deniability using automated linguistic stegonagra-
phy. In International Conference on Infrastructure
Security, pages 276–287. Springer.

Mark Chapman, George I Davida, and Marc Rennhard.
2001. A practical and effective approach to large-
scale automated linguistic steganography. In Inter-
national Conference on Information Security, pages
156–165. Springer.

Falcon Dai and Zheng Cai. 2019. Towards near-
imperceptible steganographic text. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4303–4308.

Weihui Dai, Yue Yu, Yonghui Dai, and Bin Deng. 2010.
Text steganography system using markov chain
source model and des algorithm. JSW, 5(7):785–
792.

Tina Fang, Martin Jaggi, and Katerina Argyraki. 2017.
Generating steganographic text with lstms. In Pro-
ceedings of ACL 2017, Student Research Workshop,
pages 100–106.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Mehdi Hussain, Ainuddin Wahid Abdul Wahab, Ya-
mani Idna Bin Idris, Anthony TS Ho, and Ki-Hyun
Jung. 2018. Image steganography in spatial domain:
A survey. Signal Processing: Image Communica-
tion, 65:46–66.

Johan Ludwig William Valdemar Jensen et al. 1906.
Sur les fonctions convexes et les inégalités entre les
valeurs moyennes. Acta mathematica, 30:175–193.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

R Bala Krishnan, Prasanth Kumar Thandra, and M Sai
Baba. 2017. An overview of text steganography.
In 2017 Fourth International Conference on Signal
Processing, Communication and Networking (IC-
SCN), pages 1–6. IEEE.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196.

Yunxia Liu, Shuyang Liu, Yonghao Wang, Hongguo
Zhao, and Si Liu. 2019. Video steganography: A
review. Neurocomputing, 335:238–250.

Edward Loper and Steven Bird. 2002. Nltk: the natural
language toolkit. arXiv preprint cs/0205028.

Yubo Luo, Yongfeng Huang, Fufang Li, and Chinchen
Chang. 2016. Text steganography based on ci-
poetry generation using markov chain model. KSII
Transactions on Internet and Information Systems
(TIIS), 10(9):4568–4584.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 142–150.

Shilpi Mishra, Virendra Kumar Yadav, Munesh Chan-
dra Trivedi, and Tarun Shrimali. 2018. Audio
steganography techniques: A survey. In Advances in
Computer and Computational Sciences, pages 581–
589. Springer.

H Hernan Moraldo. 2014. An approach for text
steganography based on markov chains. arXiv
preprint arXiv:1409.0915.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Shivani Sharma, Avadhesh Gupta, Munesh Chandra
Trivedi, and Virendra Kumar Yadav. 2016. Analysis
of different text steganography techniques: a survey.
In 2016 Second International Conference on Compu-
tational Intelligence & Communication Technology
(CICT), pages 130–133. IEEE.

3055

Mohammad Shirali-Shahreza. 2008. Text steganogra-
phy by changing words spelling. In 2008 10th in-
ternational conference on advanced communication
technology, volume 3, pages 1912–1913. IEEE.

Gustavus J Simmons. 1984. The prisoners’ problem
and the subliminal channel. In Advances in Cryptol-
ogy, pages 51–67. Springer.

Peter Wayner. 1992. Mimic functions. Cryptologia,
16(3):193–214.

Lingyun Xiang, Yan Li, Wei Hao, Peng Yang, and Xi-
aobo Shen. 2018. Reversible natural language water-
marking using synonym substitution and arithmetic
coding. Comput. Mater. Continua, 55(3):541–559.

Lingyun Xiang, Xingming Sun, Gang Luo, and Bin
Xia. 2014. Linguistic steganalysis using the features
derived from synonym frequency. Multimedia tools
and applications, 71(3):1893–1911.

Zhong-Liang Yang, Xiao-Qing Guo, Zi-Ming Chen,
Yong-Feng Huang, and Yu-Jin Zhang. 2018a. Rnn-
stega: Linguistic steganography based on recurrent
neural networks. IEEE Transactions on Information
Forensics and Security, 14(5):1280–1295.

Zhong-Liang Yang, Si-Yu Zhang, Yu-Ting Hu, Zhi-
Wen Hu, and Yong-Feng Huang. 2020a. Vae-stega:
Linguistic steganography based on variational auto-
encoder. IEEE Transactions on Information Foren-
sics and Security, 16:880–895.

Zhongliang Yang, Yongfeng Huang, and Yu-Jin Zhang.
2019. A fast and efficient text steganalysis method.
IEEE Signal Processing Letters, 26(4):627–631.

Zhongliang Yang, Yongfeng Huang, and Yu-Jin Zhang.
2020b. Ts-csw: text steganalysis and hidden
capacity estimation based on convolutional slid-
ing windows. Multimedia Tools and Applications,
79(25):18293–18316.

Zhongliang Yang, Shuyu Jin, Yongfeng Huang, Yujin
Zhang, and Hui Li. 2018b. Automatically gener-
ate steganographic text based on markov model and
huffman coding. arXiv preprint arXiv:1811.04720.

Xuejing Zhou, Wanli Peng, Boya Yang, Juan Wen,
Yiming Xue, and Ping Zhong. 2021. Linguistic
steganography based on adaptive probability distri-
bution. IEEE Transactions on Dependable and Se-
cure Computing.

Zachary Ziegler, Yuntian Deng, and Alexander M Rush.
2019. Neural linguistic steganography. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1210–1215.

