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Abstract

We develop a system for the FEVEROUS fact
extraction and verification task that ranks an
initial set of potential evidence and then pur-
sues missing evidence in subsequent hops by
trying to generate it, with a “next hop predic-
tion module” whose output is matched against
page elements in a predicted article. Seeking
evidence with the next hop prediction mod-
ule continues to improve FEVEROUS score
for up to seven hops. Label classification is
trained on possibly incomplete extracted evi-
dence chains, utilizing hints that facilitate nu-
merical comparison. The system achieves .281
FEVEROUS score and .658 label accuracy on
the development set, and finishes in second
place with .259 FEVEROUS score and .576 la-
bel accuracy on the test set.

1 Introduction

The 2021 FEVEROUS (Fact Extraction and VERi-
fication Over Unstructured and Structured Informa-
tion) task (Aly et al., 2021) introduces several chal-
lenges not seen in the 2018 FEVER task (Thorne
et al., 2018). Tabular information, lists, and cap-
tions now appear as evidence, in addition to natural
text sentences. Most claims now require multiple
pieces of supporting evidence to support or refute
them. Even claims that cannot be fully verified now
require the submission of supporting evidence for
aspects of the claim that can be verified. Counting
and numerical reasoning skills are needed to verify
many claims.

Annotators for FEVEROUS differed in their in-
terpretation of what constituted necessary evidence,
and often added duplicate evidence that should be
in an alternative reasoning chain to a main reason-
ing chain. For this reason it is dangerous to target a
precise, minimal set of evidence as in FEVER for
high evidence F1 (Malon, 2018), and we instead
fill the full set of five sentences and 25 table cells
permitted for submission.

Thus we focus on solving the evidence retrieval
problem and first assemble a set of preliminary set
of relevant facts. Several of these facts may be
combined to determine the veracity of the claim.
Yang et al. (2018) define multi-hop reasoning as
reasoning with information taken from more than
one document to arrive at an answer, so using the
preliminary evidence set could already be multi-
hop reasoning, but from the perspective of retrieval
we consider retrieving the initial evidence set to
be a first “hop.” Where multi-hop reasoning is re-
quired, it may be necessary to retrieve additional
documents after reading the preliminary evidence,
which could not be searched for using the claim
alone. We support this functionality by predicting
whether evidence chains are complete and generat-
ing additional search queries based on the prelim-
inary evidence. This next hop prediction module
can be applied as many as seven times to update the
evidence chains, each time improving the FEVER-
OUS score.

On the final evidence chains, the label (“sup-
ports”, “refutes”, or “not enough information”) is
predicted by a module trained on extracted evi-
dence chains. Because “not enough information”
(NEI) labels are scarce, we alternatively can decide
whether to give an NEI label based on whether the
next hop prediction module is still seeking more
evidence for the claim. Inputs are carefully repre-
sented to facilitate numerical comparisons for the
final label decision and to allow the use of other
contextual information by every module. The de-
scribed system attains a FEVEROUS score of .281
on the development set with label accuracy of .658.

2 Context and structured information

Downstream classifiers usually classify page ele-
ments in isolation, but the meaning of these ele-
ments sometimes is not clear without contextual
information. In the FEVER task, attaching a pre-
fix to each sentence consisting of the page title
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Type Example
Sentence [ Mississippi River ] When measured from its traditional source at Lake Itasca, the

Mississippi has a length of 2,320 miles (3,730 km).
List item [ Temple Tower ] LIST CONTEXT Cast VALUE Marceline Day as Patricia Verney
Table cell [ Temple Tower ] VALUE Release date {{ KEY Temple Tower VALUE April 13,

1930 }}
Table cell [ L-arabinose operon ] CAPTION Catabolism of arabinose in E. coli {{ KEY

Substrate VALUE L-arabinose }} KEY Enzyme(s) VALUE AraA KEY Function
VALUE Isomerase KEY Reversible VALUE Yes KEY Product VALUE L-ribulose

Table 1: Example representations of various page elements.

in brackets improved performance (Malon, 2018),
for example by providing hints about what pro-
nouns might refer to. We continue this practice for
FEVEROUS.

For list elements, we take the page element im-
mediately preceding the list as context. This often
is a sentence indicating what is in the list. Then
the list element is represented by “[ title ] CON-
TEXT context VALUE list item”, so that the list
element and what the list is about may be seen
simultaneously.

For table cells, we represent the entire row con-
taining the cell. If a cell in a row above has an
is_header attribute, the cells are prefixed with
“KEY header”. This is followed by the actual value
from the current row, in the form “VALUE header”.
Thus each cell in a row looks like a combination
of key/value pairs (or simply values if there is no
header). This representation is similar to the one
used by Schlichtkrull et al. (2020). All the cells
in a row would look alike if we simply followed
this procedure, so we distinguish the key/value pair
corresponding to the current cell by enclosing it in
double braces. Finally, the title is prepended, and
if there is a caption, it is prepended as “CAPTION
caption”. Examples of the table cell, list element,
and sentence formats are shown in Table 1.

3 Preliminary evidence retrieval

We follow the baseline system (Aly et al., 2021) to
select an initial set of documents for downstream
analysis. This module retrieves documents whose
titles match named entities that appear in the claim,
plus documents with a high TF-IDF score against
the claim, up to five total documents.

Following Thorne and Vlachos (2021), we also
considered the use of GENRE (Cao et al., 2021) to
identify more Wikipedia page titles from entities
that were not quite exact matches. (We preferred

an exact match if present.) The use of these entities
actually drove FEVEROUS score down, perhaps
by crowding out the TF-IDF documents, so we
reverted to the baseline approach.

Given a set of documents, we rank page elements
using models trained to predict the set of evidence
elements. One model is trained on sentences, list el-
ements, and table captions, and the other is trained
on table cells. We use a RoBERTa base model (Liu
et al., 2019) and follow a training approach similar
to the Dense Passage Retriever (Karpukhin et al.,
2020). Given a positive training pair consisting of
a claim c and a piece of evidence e, we collect six
negative pairs (c, xi). For four of the negatives we
take xi to be the highest TF-IDF matches returned
by the baseline system that are not part of the gold
evidence. For the other two negatives we take xi to
be part of the gold evidence for a different claim,
randomly chosen. The multiple choice classifica-
tion head of RoBERTa outputs a scalar f(c, x) for
each pair, and the batch of seven pairs is trained as
one example with the cross-entropy loss

− log
ef(c,e)

ef(c,e) +
∑6

i=1 e
f(c,xi)

(1)

just as in the Dense Passage Retriever. At test
time, we run the model on examples of a sin-
gle claim/evidence pair and collect the scalar
f(c, x). These outputs are ranked across all poten-
tial evidence to collect five sentences and 25 table
cells. Every sentence in the retrieved documents
is ranked, but only the top three tables retrieved
by the baseline TF-IDF ranker are considered for
extracting table cells.

The baseline system extracts sentences and other
non-cell elements by TF-IDF similarity to the
claim, and table cells with a RoBERTa base sized
model that performs sequence tagging on linearized
tables. Table 2 compares the recall of our system
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Figure 1: Applying the next hop prediction module to update evidence.

System Recall
Baseline sentences .5265
Ranking sentences .3875
Baseline cells .2741
Random cells .2808
Ranking cells .5028

Table 2: Page element recall.

(top 25 cells and five non-cell page elements) to
these modules. This is computed by taking the
union of all page elements (cells or non-cells) in
all evidence chains in all claims, and considering
the fraction that belong to one of our predicted evi-
dence sets for the corresponding claims. We recall
more relevant table cells, but surprisingly, fewer
relevant sentences. In development, we mistakenly
benchmarked the ranking models on a set which
made gold evidence available for ranking even if
it was not in a retrieved document, and on this
basis, it appeared that ranking the sentences was
advantageous. Therefore we used not only the table
cell ranking module but also the sentence ranking
module in our submitted system.

4 Next hop prediction

The use of the evidence ranking model is not suffi-
cient to solve problems that require more difficult
kinds of multi-hop reasoning. Though evidence
chains are typically rooted in entities and concepts
that appear in the claim, as one progresses down

the chain it may be necessary to retrieve informa-
tion about an entity mentioned in a previous piece
of evidence. Such information would be difficult
to query based on the claim alone.

To support this scenario, we introduce a next hop
prediction module, as shown in Figure 1. Hop 1
consists of the evidence retrieved by the evidence
ranking module. Given an evidence set produced
in hop n, the next hop prediction module attempts
to imagine information that is still needed but not
retrieved yet. It generates a string consisting of
the title of the needed article and the sentence or
table cell (in the same format as before) that it
wants to retrieve from that article. If available,
the article with that title is retrieved; otherwise,
sentences from previously retrieved articles will be
searched. Then we choose one sentence and two
table cells with the best word overlap against the
imagined evidence. The bottom ranked elements
of the evidence set for hop n are pushed out, and
these chosen elements are pushed to the top of the
evidence set for hop n+ 1. The evidence ranking
module was found not to be helpful in ranking
newly retrieved evidence, often because it strayed
too far from the original claim.1

The next hop prediction module is implemented
by a T5 base sized model (Raffel et al., 2020).
T5 consists of a text-to-text encoder-decoder trans-
former architecture, and its pre-training mixes mul-

1We also tried running the evidence ranking model after
locating a bridge sentence based on overlap and prepending it
to the candidates.
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tiple unsupervised objectives on the Colossal Clean
Crawled Corpus with supervised NLU tasks includ-
ing abstractive summarization, question answering,
GLUE text classification, and translation, cast into
a text to text format. We train the model for three
epochs on maximum sequence length 512, using
Huggingface default parameters (Wolf et al., 2020).
In our task, each input begins with the task iden-
tifier “missing: ” and a list of the pages retrieved
already, followed by the string [HYP] and then the
claim being classified. Then the elements of the
current evidence set (each beginning with a page
title in brackets) are concatenated.

Training is based on the gold evidence chains
in the training set, and the set of documents re-
trieved by the baseline model. Every example with
evidence from a missing document is used as an
example, with the current evidence set being the
gold evidence in the retrieved documents and the
target evidence being the first piece of evidence
from a missing document. For half of the remain-
ing examples (those with no missing documents)
including all NEI examples with multiple pieces of
evidence, a piece of evidence is randomly left out
from the current evidence set, and that evidence is
to be predicted as the target. In the other examples,
the word “none” is to be predicted, indicating that
the evidence chain is complete.

The target output strings are the word “supports”
or “refutes,” followed by the target evidence in
the usual format or “none.” For NEI examples,
“supports” is to be predicted, indicating a partial
evidence chain with no contradictions yet. Thus the
log likelihood objective on the target output string
amounts to a multi-task objective, combining a pre-
diction of missing evidence with a prediction of the
label based on partial information. Because miss-
ing evidence should be helpful for label prediction,
we hope that co-training on the task of label pre-
diction improves the features used to generate the
missing evidence.

The existence of distracting evidence distin-
guishes the training setting from the testing set-
ting. At test time, the module is always queried
with a full set of five sentences and 25 cells, some
of which may be irrelevant. For comparison, we
trained a model with extracted evidence instead of
gold evidence, but the model trained on gold chains
achieved more complete chains in fewer hops.

Table 3 describes the performance of the next
hop predictor on the development set. “Improved,”

“Same,” and “Worse” count the number of exam-
ples where the number of pieces of gold evidence
successfully predicted increased, stayed the same,
or decreased compared to the previous hop. “Com-
plete” indicates the number of examples for which
a complete evidence set is predicted. “FEVEROUS
score” is the downstream result of the label clas-
sification module (see next section) based on the
evidence predicted. Each subsequent hop (up to
five) improves the fraction of evidence retrieved,
and the FEVEROUS score is monotonically im-
proving up to at least seven hops. This implies that
the module knows when to stop and output “none,”
or else its predictions would eventually overwrite
needed evidence from the initial retrieval.

An example of next hop prediction is given in
the appendix.

5 Label classification

After the next hop predictor has been run for seven
hops, our system uses a label classification module
to predict the final label. Another T5 base model is
used for this problem, but here we train on the ex-
tracted evidence sets (including irrelevant evidence,
and missing some gold evidence) that are collected
for the training set. Input strings are the same as for
the next hop predictor module. The target strings
are just “supports,” “refutes,” or “neutral.” As NEI
instances only make up 3% of the training set, this
label is never learned and the outputs are either
“supports” or “refutes.”2

The label accuracy of this approach on the devel-
opment set is compared to other approaches that are
trained with gold evidence or a RoBERTa model in
Table 4. We see that a RoBERTa model has trouble
learning in the presence of irrelevant evidence, but
is confused by the distractions if only trained on
gold evidence chains. In contrast, a T5 model can
train and perform successfully on real extracted
evidence chains. Consistent with our observations,
Jiang et al. (2021) recently established a new state
of the art on FEVER using T5 trained on lists of
real extracted evidence.

Math hints. As numbers are represented as (pos-
sibly several) strings of digits, each with its own
pre-trained embedding, it is difficult for the model
to answer numerical comparison questions. Also,
the model may not precisely know the relationship
between a number as a word (“fourteen”) and its

2In the training set we assign “supports” labels to NEI
instances. See below.
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Hops Changes Improved Same Worse Complete FEVEROUS
Evidence Score

1 — — — — 2661 .271
2 1245 249 7581 60 2722 .276
3 572 77 7768 45 2737 .280
4 391 44 7811 35 2745 .280
5 271 19 7835 36 2748 .281
6 202 13 7846 31 2744 .281
7 166 11 7861 18 2745 .281

Table 3: Performance of the next hop prediction module. FEVEROUS score is based on applying the downstream
label classification module after the given hop.

Model Train/Dev Label accuracy
RoBERTa Gold on Gold .829
RoBERTa Gold on Extracted .550
RoBERTa Extracted on Extracted .495
T5 Gold on Gold .848
T5 Gold on Extracted .572
T5 Extracted on Extracted .661
T5 Extracted+Math on Extracted+Math .658

Table 4: Label classification models.

Truth Supports NEI Refutes
Supports .3403 .5179 .1418
NEI .0918 .7146 .1936
Refutes .0822 .4559 .4619
Supports .6471 .0000 .3529
NEI .4431 .0000 .5569
Refutes .2341 .0000 .7659

Table 5: Confusion (development set) when training
with (top) and without (bottom) extracted NEI labels.

numerical form (“14”).
We attach hints to the beginning of each premise

(list of concatenated evidence) as follows. Num-
bers in the claim or premise appearing in word
form (up to twenty, and multiples of ten, one hun-
dred, and one thousand) are converted to their nu-
merical form, and we attach strings such as “four
equals 4” for each conversion. Then we collect
all numbers (including decimals and integers with
commas) with a regular expression, and sort them
(along with the number words) from least to great-
est, forming a string such as “LEAST 0 less than
1 less than 30 less than 2017 GREATEST”. After
these prefixes, the original premise begins. It can
be clearly recognized because it begins with a title
inside brackets.

The NEI class. The NEI class did not have
enough examples to be learned reliably in the stan-
dard training procedure, but represents 19% of ex-
amples in the final test set. To address this, the
baseline system upsampled the NEI class by leav-
ing out sentences or entire tables from gold evi-
dence chains to create more NEI examples. For
our system, our training data consists of extracted
evidence chains rather than gold evidence chains.
In addition to the natural NEI examples, we labeled
any extracted chain that was still missing informa-
tion as NEI, gave other extracted chains that were
complete their original “supports” or “refutes” la-
bel, and trained a T5 base model with the resulting
labels. In the resulting training set, 58% of exam-
ples were NEI, 20% were refutes, and 23% were
supports.

As seen in the confusion matrix of Table 5, the
T5 model could not learn the NEI class well and
was biased towards NEI even on supporting or re-
futing examples. Even if 19% of true labels were
NEI, as in the test set, the decrease in accuracy
on supporting and refuting classes is too great to
justify trying to predict this label. Therefore our
submitted system is trained to predict only “sup-
ports” or “refutes” and never NEI.

An interesting alternative would be to use the ex-
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istence of an evidence prediction from the next hop
predictor after the final hop to indicate whether an
example should be NEI. Following this approach,
only 4.4% of NEI examples would be predicted
as NEI, compared to 2.8% of supporting and 2.9%
or refuting examples, so again including the NEI
predictions would yield a net loss.

6 Conclusion

Team Papelo’s system for FEVEROUS achieves
.281 FEVEROUS score on the development set,
with .658 label accuracy and .348 evidence recall.
The largest increase in performance over the base-
line comes from the label classifier, which uses
a different model architecture and is trained on
extracted evidence chains including irrelevant ev-
idence. We also achieve better evidence recall
through our table cell ranking module, which was
trained with a multiple choice cross entropy loss
similar to DPR. Additional gains are achieved by
our multi-hop evidence retrieval. These modules
can only be effective when given good represen-
tations of the context of sentences, list items and
table cells, which we have carefully constructed.

On the test set we achieve a slightly lower .259
FEVEROUS score. This is largely due to the de-
crease of label accuracy to .576, reflecting an in-
troduction of an additional 13% of NEI examples
compared to the development set (Aly et al., 2021),
which our system will always misclassify. The
evidence recall of .346 is comparable to the devel-
opment set.

Already the next hop predictor establishes a ben-
eficial enhancement to the original evidence and
can be safely run for many hops. The use of word
overlap to match the imagined evidence to actual
page elements was a compromise for faster and eas-
ier development. We believe the same basic method
could be made stronger if a new ranking module,
with a similar architecture and training procedure
to the preliminary evidence retriever, were trained
to match imagined evidence to actually missing
evidence. The potential for improvement here is
suggested by the number of attempted changes in
Table 3, which is always several times the number
of evidence sets that were improved.

Additional work is needed to improve perfor-
mance on particular kinds of examples. Many
claims require a system to count certain pieces of
retrieved evidence. This skill is taught by datasets
such as DROP (Dua et al., 2019) and until recently,

neural module networks have needed a stronger
form of supervision to learn it (Gupta et al., 2020).
A recent alternative (Saha et al., 2021) learns a
neural module network with weaker supervision,
but instead relies on dependency parsing of the
query. To address discrete reasoning examples in
FEVEROUS, it may be necessary to integrate mod-
els trained on external datasets.
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A Example of next hop prediction

Table 6 shows an example where a complete ev-
idence chain is retrieved after 7 hops. The large
number of hops is needed because the top-ranked
supplementary evidence does not contain the miss-
ing information. The imagined needed evidence
stays the same until satisfactory evidence is re-
trieved (after exhausting the higher-ranked evi-
dence) in hop 6. Then the next imagined evidence
addresses another part of the reasoning chain. With
that, contradictory supplementary evidence is re-
trieved successfully (northwest versus southwest)
and the label for the whole claim is fully supported.
Although all five initially retrieved sentences have
been replaced before this hop, they are not needed.

Once an example has a complete reasoning
chain, its retrieval usually stops long before the
seventh hop, by predicting no imagined evidence.

B Example of math hints

Table 7 gives an example of a claim correctly clas-
sified with math hints but not without. Although
math hints improved some examples, overall label
accuracy decreased slightly, perhaps because the
length of the hints could push necessary evidence
beyond the 512 tokens read by the label classifier.
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Claim Cann River, a river that descends 1,080 metres (3,540 ft) over its 102
kilometres (63 mi) course rises northwest of Granite Mountain and is tra-
versed by the Monaro Highway (which also parallels the former Bombala
railway line in several locations) in its upper reaches.

Label REFUTES
Ground Truth Evi-
dence

[ Cann River ] The Cann River rises southwest of Granite Mountain
in remote country on the eastern boundary of the Errinundra National
Park and flows generally east, then south, then east, then south through
the western edge of the Coopracambra National Park and through the
Croajingolong National Park, joined by seventeen minor tributaries before
reaching its mouth with Bass Strait, at the Tamboon Inlet in the Shire of
East Gippsland.

Hop 2 Imagined [ Monaro Highway ] The Monaro Highway parallels the former Bombala
railway line in several locations.

Hop 2 Retrieved [ Monaro Highway ] In 1958, it was named the Monaro Highway in both
NSW and the ACT, though the same name had been in use by the Snowy
Mountains Highway until 1955.
(also two cell retrievals)

Hop 3 Imagined [ Monaro Highway ] The Monaro Highway parallels the former Bombala
railway line in several locations.

Hop 4 Imagined [ Monaro Highway ] The Monaro Highway parallels the former Bombala
railway line in several locations.

Hop 5 Imagined [ Monaro Highway ] The Monaro Highway parallels the former Bombala
railway line in several locations.

Hop 6 Imagined [ Monaro Highway ] The Monaro Highway parallels the former Bombala
railway line in several locations.

Hop 6 Retrieved [ Monaro Highway ] The road also parallels the former Bombala railway
line in several locations.
(also two cell retrievals)

Hop 7 Imagined [ Cann River ] The Cann River rises northwest of Granite Mountain and is
traversed by the Monaro Highway in its upper reaches.

Hop 7 Retrieved [ Cann River ] The Cann River rises southwest of Granite Mountain
in remote country on the eastern boundary of the Errinundra National
Park and flows generally east, then south, then east, then south through
the western edge of the Coopracambra National Park and through the
Croajingolong National Park, joined by seventeen minor tributaries before
reaching its mouth with Bass Strait, at the Tamboon Inlet in the Shire of
East Gippsland.
(also two cell retrievals)

Table 6: An example where full evidence is retrieved in seven hops.
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Claim Lamba Kheda recorded a total population of less than 3,000 with 1,100 scheduled
castes in the 2011 census.

Label REFUTES
Premise LEAST 0.4 less than 2.6 less than 2.7 less than 6 less than 6.25 less than 7.4 less

than 8.5 less than 8.7 less than 19.7 less than 28.8 less than 43.1 less than 61 less
than 62 less than 82.5 less than 89.5 less than 123 less than 235 less than 289 less
than 524 less than 540 less than 560 less than 1100 less than 1850 less than 1977
less than 1981 less than 2011 less than 2058 less than 3000 less than 3166 less than
3908 less than 482365 GREATEST
[ List of Scheduled Tribes in India ] This list has been updated by the Ministry of
Tribal Affairs, Government of India, to add the following three.
. . .
[ Lamba Kheda ] CAPTION Demographics (2011 Census) KEY VALUE Scheduled
caste {{ KEY Total VALUE 1100 }}
. . .
[ Lamba Kheda ] VALUE Total {{ KEY Population (2011) VALUE 3,908 }}
. . .

Table 7: An example correctly classified using math hints that was misclassified without them.


