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Abstract

The semantic matching capabilities of neural

information retrieval can ameliorate synonymy

and polysemy problems of symbolic ap-

proaches. However, neural models’ dense rep-

resentations are more suitable for re-ranking,

due to their inefficiency. Sparse representa-

tions, either in symbolic or latent form, are

more efficient with an inverted index. Taking

the merits of the sparse and dense representa-

tions, we propose an ultra-high dimensional

(UHD) representation scheme equipped with

directly controllable sparsity. UHD’s large

capacity and minimal noise and interference

among the dimensions allow for binarized rep-

resentations, which are highly efficient for stor-

age and search. Also proposed is a bucketing

method, where the embeddings from multiple

layers of BERT are selected/merged to repre-

sent diverse linguistic aspects. We test our

models with MS MARCO and TREC CAR,

showing that our models outperforms other

sparse models.

1 Introduction

Using neural models for representing and process-

ing textual data has become a de-facto standard.

Recent approaches to information retrieval (IR)

and natural language processing (NLP) tasks adopt

contextual language models (e.g., BERT (Devlin

et al., 2019)), ameliorating both synonymy and pol-

ysemy problems associated with words (Zhan et al.,

2020; Khattab and Zaharia, 2020; Qu et al., 2021).

In these approaches, queries and documents are

first encoded into contextual embeddings, either

independently (Zhan et al., 2020) or with interac-

tions (Qu et al., 2021), resulting in low-dimensional

dense representations. Then the documents are re-

trieved based on a similarity metric, such as cosine

similarity, defined for two vectors.

∗These authors contributed equally.
†The corresponding author

Despite the impressive results, the inherent prop-

erties of dense representations — low dimensional

and dense — can pose a severe efficiency chal-

lenge for first-stage or full ranking. Since each

dimension in a dense embedding is overloaded and

entangled (i.e., polysemous) with the limited num-

ber of dimensions available, it is susceptible to

false matches with large index sizes (Reimers and

Gurevych, 2020). Also, all the dimensions must

participate in representing words, queries, and doc-

uments regardless of the amount of information

content as well as in matching (Zamani et al., 2018),

which is inefficient. As a result, it is meaningless

to build an inverted index for the dimensions, with-

out which it is difficult to build an efficient and

effective first-stage or full ranker.

Other drawbacks of the dense embedding ap-

proaches to IR include: 1) The retrieval results are

hardly interpretable like other neural approaches,

making it difficult to improve the design through

failure analyses or implement conditional/selective

processing (Belinkov and Glass, 2019); and 2) It is

not straightforward to adopt the well studied term-

based symbolic IR techniques, such as pseudo-

relevance feedback, for further improvements.

Our focus is to propose a full-blown neural first-

stage ranker that alleviates the shortcomings of

dense neural IR and yet achieves competitive ef-

fectiveness. The main thrust of our method is to

utilize ultra-high dimensional (UHD) embeddings1

with high sparsity, possessing superior expressive

and discriminating power to the extent that they

are binarized. In addition, our proposed approach

has the potential to make individual dimensions

of the document/query embeddings interpretable

(Faruqui et al., 2015; Sun et al., 2016) and support

mutually non-interfering aggregation of multiple

embeddings (Ahmad and Hawkins, 2015).

In order to obtain UHD embeddings, we train

the Winner-Take-All (WTA) model (Ahmad and

1The dimension size is close to half a million.
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Hawkins, 2015; Makhzani and Frey, 2015) on top

of BERT with a new learning objective for IR. WTA

model is fundamentally a linear layer that only pre-

serves top-k activation and sets the others to zero.

WTA is chosen because we can precisely control

the outputs’ sparsity by explicitly setting the pa-

rameter k. In contrast, the method relying on regu-

larization for sparsity (e.g., minimizing L1-norm)

(Faruqui et al., 2015; Sun et al., 2016; Zamani et al.,

2018) is neither straightforward nor precise in con-

trolling the degree of sparsity.

With the large capacity and robustness against

noise and interference, UHD allows for binarized

representations so that matching can be further sim-

plified with little degradation in effectiveness. This

capability of UHD achieves extreme efficiency in

terms of storage and speed, making it possible to

build a stand-alone neural IR model for an industry.

Besides the efficiency goal, we also attempt to

represent different aspects of linguistic properties

of documents and queries. Instead of the common

approach of using only the final layer of BERT,

we make use of multiple layers, each of which

emits token representations for different linguistic

properties (Jo and Myaeng, 2020), by devising a

bucketing mechanism.

We evaluate our model on MS MARCO pas-

sage retrieval (Bajaj et al., 2018) and TREC CAR

(Dietz et al., 2017), showing that it outperforms

previous sparse models and is competitive with

dense models for effectiveness. Even though it is

a neural model, our UHD-based IR method with

binarization is highly efficient, on par with BM25,

surpassing all the sparse models.

2 Related Work

State-of-the-art neural retrieval models (Nogueira

and Cho, 2019; Qu et al., 2021) adopt a cross-

encoder that shows high effectiveness while known

to be impractical for large-scale retrieval (Luan

et al., 2021). The cross-encoder requires that a

query and documents must be encoded together,

limiting models to a re-ranker. Dense neural mod-

els have been proposed for first-stage retrieval. Rep-

BERT (Zhan et al., 2020) encodes queries and doc-

uments separately and ranks using an inner product.

It achieves efficiency by relying heavily on GPUs.

ColBERT (Khattab and Zaharia, 2020) positions

itself between the cross-encoder and inner product

by proposing a late interaction for scoring. Despite

its promising performance, it remains questionable

whether first-stage retrieval is computationally fea-

sible at a large scale (Bai et al., 2020), even with

an external library Faiss (Johnson et al., 2019).

Sparse models are attractive for first-stage re-

trieval (Dai and Callan, 2020b,a; Nogueira et al.,

2019; Nogueira, 2019; Bai et al., 2020). Their

retrieval speed comes from the sparsity that en-

ables to leverage an efficient inverted index. On the

other hand, they usually lack the ability to use non-

symbolic latent semantics that can be captured by

neural models. SOLAR (Medini et al., 2020) pro-

poses randomly initialized high-dimensional and

ultra-sparse embeddings for book classification but

ignores their content, making it unsuitable for IR

tasks. SNRM (Zamani et al., 2018) creates a sparse

latent representation using a fully connected layer

similar to an autoencoder. It is limited with a sim-

ple word embedding, lower dimensionality (20K),

uncontrollable sparsity.

3 Sparsified and Bucketized Embeddings

3.1 Design Objectives

Our goal is to build an efficient neural ranker with-

out relying on external efficiency-enhancing mea-

sures like Approximate Nearest Neighbor (ANN)

(Johnson et al., 2019; Jegou et al., 2010). We posit

that it is crucial to represent the distinct textual sig-

nals in the embeddings for enhanced discriminative

power, thereby achieving the effect of symbol-like

characteristics with neural approaches.

Despite the contextualized language modeling

capabilities of the recent transformer architectures,

we note the shortcomings of the low-dimensional

dense representations for IR: 1) All the dimensions

must always be accessed during document-query

matching; 2) Dimensions are highly overloaded

and polysemous that they hardly serve as useful

discriminators (e.g., Arora et al., 2018; Reimers

and Gurevych, 2020); 3) Various linguistic proper-

ties are entangled or under-represented.

As a result, we attempt to enforce the following:

• The embeddings need to be sufficiently high

dimensional and sparse, so that they can be

processed efficiently for matching while en-

joying the high expressive power.

• Each dimension represents a specific concept,

making it suitable for precise semantic com-

putation and more interpretable.

• Different aspects of queries and documents

should be captured for versatile representa-
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Figure 1: Overall architecture with the training scheme for building UHD sparse representations.

tions as IR queries are notoriously ambiguous

with diverse intents (Azad and Deepak, 2019).

Aside from representation perspectives, we ad-

here to the following requirements for efficiency:

• The ranker must support offline encoding of

documents to build an inverted index.

• The matching function should ignore a signal

if it is not strong enough and avoid unneces-

sary computation.

• Binarization should be possible for efficiency

without unacceptable degradation of effective-

ness (Ahmad and Hawkins, 2015; Zhou et al.,

2020).

3.2 Overall Architecture

Figure 1 depicts the overall architecture of our

Ultra-High Dimensional (UHD) model. Like most

sparse models (e.g., Zamani et al., 2018; Bai et al.,

2020), it comprises a query encoder, a document en-

coder, and a scoring function. While the query and

document encoders are run separately, unlike inter-

action models (e.g., Qu et al., 2021), the weights

are shared for the query and document encoders.

After the final query and document representations

are formed with sparsification and bucketization

to be explained below, they are matched with dot

product as the scoring function.

The encoder is composed of three modules: 1)

the BERT module to convert text into dense to-

ken embeddings, 2) the Winner-Take-All (WTA)

module that sparsifies the BERT module’s out-

puts, and 3) the Max-pool module that performs

non-interfering aggregation of sparse token embed-

dings. We define the final output from the WTA

module as a bucket (Figure 2), implying that the fi-

nal representation to be used for matching contains

multiple buckets. The BERT and WTA modules are

trained jointly with an objective to maximize the

similarity between a query bucket and individual

relevant document buckets.

Our UHD representations can be seen as buck-

eted with or segmented into multiple parts that

represent different aspects of a query or document.

From the procedural point of view, multiple buckets

are produced for a query or document by different

versions of WTA and concatenated to build the final

UHD representation.

3.3 Query/Document Encoder
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Figure 2: The Encoder structure.

Let q = {q1, q2, ..., q|q|} be a query and d =
{d1, d2, ..., d|d|} be a document. We obtain con-

textualized dense representations from BERT for

the tokens in q and d. Aside from the bucketed

representations to be explained in Section 3.5, we

here assume a common option of using only the

last layer for a query or document representation.
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An embedding for q or d is obtained as follows:

Eq = BERT (q) ∈ R
|q|×h

Ed = BERT (d) ∈ R
|d|×h

(1)

where h is the hidden size of BERT. Queries and

documents are encoded separately with the same

encoder.

To sparsify each dense token embedding, we

adopt a WTA layer (Makhzani and Frey, 2015),

which is an n-dimensional linear layer in which

only top-k activations (k ≪ n) are preserved while

the others are set to zero. Let ti be the ith token

of a query or a document and Eti be its dense

embedding. Then a high-dimensional sparse repre-

sentation Sti is built as follows:

zti = Eti ·W + b, W ∈ R
h×n

, b ∈ R
n

(2)

Sti [dim] =

{

zti [dim], if zti [dim] ∈ top-k(zti)

0, otherwise
(3)

where dim ∈ [1, n] is dimension of zti and Sti .

In order to drive the learning flow to winning sig-

nals, the WTA module considers only the gradients

flowing back through the winning dimensions. In

addition, we impose weight sparsity constraint pro-

posed in Ahmad and Scheinkman (2019), which

is like applying dropout (Srivastava et al., 2014)

individually to output layer’s nodes. The benefits

of adopting WTA are: 1) We can control sparsity of

a resulting embedding precisely and conveniently

by adjusting k, an ability considered important for

generating sparse representations reliably, and 2) k
can be modified at inference time so that the out-

put’s sparsity can be altered for an application’s

need without re-training the model.

Sparse token embeddings generated by the en-

coder are aggregated with token-wise max-pool

followed by L2-normalization to produce a single

sparse embedding Bt, a bucket:

Bt = max-pool(St1 , St2 , ..., St|t|) ∈ R
n

(4)

Note that our sparse embeddings can be merged

with minimal information interference because non-

zero dimensions in high-dimensional space are not

likely to overlap among the token embeddings, re-

sulting in non-interfering max-pooling. This effect

is contrasted with dense representations that are

prone to lose much information with aggregation.

The ability of preserving token-level information,

which is critical for IR (Khattab and Zaharia, 2020),

makes our method storage efficient.

3.4 Support for Binary Matching and Search

With ultra-high dimensionality, it becomes possi-

ble to just count how many winning signals of

two representations overlap for similarity (binary

matching); the probability they accidentally share

the same winning signal becomes exponentially

smaller with large dimension size (Ahmad and

Hawkins, 2015; Ahmad and Scheinkman, 2019).

With proper optimization (e.g., (Zhou et al., 2020;

Tissier et al., 2019)), it becomes possible to per-

form highly efficient search while achieving com-

parable performance. In the experiment section,

we empirically show that our model can support

the binary matching with negligible impact on the

effectiveness.

3.5 Representations with Multiple Buckets

We use multiple buckets to encode information

with different levels of abstraction coming from dif-

ferent layers of BERT, as shown in (Jo and Myaeng,

2020). We expect UHD representations extracted

from multiple layers contain richer information

than from a single layer (e.g., the last layer often

used for a downstream task).

We first extract V representations corresponding

to the number of the BERT layers for all tokens t.

E
j
t = BERT

j(t) ∈ R
|t|×h

(5)

where j is a BERT layer ∈ [1, V ]. WTA layers

are then independently applied to all BERT layers

as in Section 3.3 to obtain V buckets.

B
j
t = WTA

j(Ej
t ) ∈ R

n
(6)

After applying the bucketing mechanism, we

obtain Bj
q and Bj

d for q and d so that a relevance

score for the query and document is computed by

a bucket-wise dot product as follows.

Rel(q, d) =
∑

j

B
j
q ·B

j

d (7)

3.6 Training

The entire model is trained to make a query similar

to the relevant documents and dissimilar to the

irrelevant ones. Given a query q, a set of relevant

(positive) documents Dp, and a set of irrelevant

(negative) documents Dn, we calculate the loss:

L =
∑

dp∈Dp

dn∈Dn

max(0, 1−Rel(q, dp) +Rel(q, dn)) (8)

Given a query, we regard the positives of other

queries within a mini-batch as negative samples
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(i.e., in-batch negatives), following Zhan et al.

(2020).

3.7 Ranking

Our model allows for exploiting an inverted index.

We regard each dimension in our bucketed sparse

representations, which is indexable, as a signal or

a latent term. For instance, if n (dimensionality)

is 81,920, a document is represented with a com-

bination of a few latent terms out of 81,920. Only

the non-zero dimensions of a document enter the

inverted index with their weights. The level of effi-

ciency in symbolic IR can be achieved since only a

small fraction of the dimension in our UHD repre-

sentation contains a non-zero value. Even higher

efficiency can be gained by using the binarized out-

put for indexing and ranking. For binarization, we

convert non-zero values to 1, leaving others as 0.

We first encode all documents in a collection

using the trained encoder to construct an inverted

index. Each bucket conceptually has its own inde-

pendent inverted index, resulting in |B| (e.g. the

number of BERT layers) inverted indices. Note

that this process is needed only once offline. At

inference (retrieval) time, we encode a given query

to make |B| representations for bucket-wise dot

products and sum up the scores for the final rele-

vance score as in Eq. 7. This bucket-wise index

construction and scoring can be easily distributed

for added efficiency.

4 Experiments

We conduct a series of experiments for validity of

the proposed retrieval model and the associated

methods against recently proposed sparse methods.

We also juxtapose our results with those of the most

recent dense models although they are not geared

toward full ranking, without resorting to additional

computational resources. We defer a qualitative

analysis that shows UHD’s interpretability to Ap-

pendix A.4 due to the lack of space.

While SNRM (Zamani et al., 2018) would be

a suitable baseline as a sparse model, we were

unable to reproduce the model following the hy-

perparameter settings presented in the paper. This

reproducibility issue is also reported in Medini et al.

(2020) and Paria et al. (2020).

Implementation details and hyperparameters are

available in Appendix A.1 for reproducibility.

4.1 Settings

Dataset Following previous work, we evaluate

on MS MARCO (Bajaj et al., 2018) Passage

Retrieval and TREC Complex Answer Retrieval

(CAR) (Dietz et al., 2017).

MS MARCO2 consists of 8.84M passages col-

lected from the Web and 1M queries generated

from real-world users of Bing. For training, we use

25% of provided triples, (query, positive passage,

negative passage), in all our experiments unless

otherwise specified. For evaluation, we use the dev

set containing 6,980 queries. We mainly evaluate

our model for full ranking, but in order to compare

a large number of variants without an excessive

computational burden, we also take advantage of

the re-ranking setting (marked with †). For evalua-

tion metrics, we use MRR@10 and Recall@K.

TREC CAR3 is a synthetic dataset, consisting

of approximately 29M Wikipedia passages and 3M

queries. Following related work (Nogueira et al.,

2019; Nogueira and Cho, 2019; Khattab and Za-

haria, 2020), we use the first four of five pre-defined

folds as a training set, which consists of 5M query-

passage pairs. For evaluation, we use the test set

(2,254 queries) designated for an official run for

TREC-CAR 2017. Our results are in MRR@10

and Mean Average Precision (MAP).

Baselines We include both sparse methods for di-

rect comparisons and dense methods as a reference,

which require additional computational resources

(e.g., GPU) for ranking.

BM25 (Robertson and Walker, 1994) is a BoW-

based sparse method with term weighting based on

the query/document frequency signals.

Doc2query (Nogueira et al., 2019) &

DocTTTTTquery (Nogueira, 2019) is a sparse

model that expands documents in the vocabulary

space by predicting queries using BERT and T5

(Raffel et al., 2020), respectively.

DeepCT (Dai and Callan, 2020b) is a contextual-

ized term weighting framework, which maps BERT

representations to context-aware term weights.

SparTerm (Bai et al., 2020) is a sparse model

that generates term-weighted & term-expanded

sparse vectors belonging to the vocabulary space.

RepBERT (Zhan et al., 2020) is a dense model

that encodes queries and documents separately,

2Official dataset and evaluation scripts can be found in
https://github.com/microsoft/MSMARCO-Passage-Ranking.

3We used pre-processed dataset and evaluation scripts
available here: https://github.com/nyu-dl/dl4marco-bert
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MS MARCO TREC CAR

Model MRR@10 R@50 R@200 R@1000 MRR@10 MAP

Dense Embedding Approaches

RepBERT 30.4 - - 94 - -

ColBERT 36.0 82.9 92.3 96.8 44.3† 31.3†

BERT Base♠ 34.7† - - - - 31.0†

BERT Large♠ 36.5† - - - - 33.5†

Sparse Representation Approaches

BM25 18.7 59.2 73.8 85.7 - 15.3

Doc2query 21.5 64.4 77.9 89.1 - 18.1

DeepCT 24.3 69 82 91 33.2 24.6

DocTTTTTquery 27.7 75.6 86.9 94.7 - -

SparTerm 27.94 72.48 84.05 92.45 - -

UHD-BERT 30.04 77.77 88.81 96.01 37.32† 25.73†

Table 1: Comparisons on MS MARCO and TREC CAR. The dense approaches suffering from longer latency are

shown as a reference. ♠ refers to full-interaction models used for re-ranking. † denotes re-ranking results after

BM25 retrieval. Our model under TREC CAR employs re-ranking for comparability with the dense models. The

baseline results are from the ColBERT paper, except for RepBERT and SparTerm which are from their own.

with mean-pooling on BERT token embeddings.

ColBERT (Khattab and Zaharia, 2020) is a

dense model with token-level late interactions be-

tween queries and passages, which are encoded

separately.

BERT Base & Large (Nogueira and Cho, 2019)

are dense models that fully leverage the interaction

between a query and passage. They are often used

to re-rank fast BM25 results.

4.2 Overall Effectiveness

Table 1 shows the full-ranking (except for †4) per-

formance of the proposed model (UHD-BERT)

against the baselines on the two datasets. Among

the sparse approaches, UHD-BERT outperforms all

the baseline models, from traditional term-based

methods to recent neural approaches. Unlike the

previous sparse approaches that mainly focus on

efficiency at the expense of losing information, our

approach achieves richer embeddings using buck-

eted UHD sparse representations while maintaining

the necessary sparsity for efficiency. For this result,

we train UHD-BERT with buckets on the layers

{2, 4, 6, 8, 10, 12}, with the dimensionality n being

81,920 and non-zero dimensions k being 80.

The performance of the dense models is also pro-

vided in Table 1. Since they are not suitable for full-

4Re-ranking scores tend to be worse than full-ranking as
shown in Khattab and Zaharia (2020)

ranking without additional efficiency-enhancing

measures, the result is only a reference. As ex-

pected, they show higher effectiveness than UHD-

BERT, due to their heavy interactions between the

query and document representations, requiring an

inference time overhead. While ColBERT (Khattab

and Zaharia, 2020) is most promising with the later

interaction idea, it still requires relatively heavy

computation, which might be impractical for indus-

trial applications. RepBERT (Zhan et al., 2020)

needs to employ external resources (i.e., GPUs) for

comparable efficiency. UHD-BERT is on par with

RepBERT without such overheads, highlighting

the advantage of our model being as efficient as

the conventional symbolic IR models and yet ap-

proaching to the effectiveness of the dense models

requiring heavy interactions.

4.3 Efficiency and Binarized UHD

Since UHD-BERT is designed for full ranking, ef-

ficiency is as important as its effectiveness. Due

to its sparse nature, efficiency of UHD depends on

two factors, n (dimensionality) and k (the number

of non-zero dimensions). For retrieval, only the

non-zero dimensions of a query are used to search

the inverted index. Therefore, the time complexity

of the retrieval process is:

O(kq ∗ dactive) = O(kq ∗ kd/n) (9)

where kq and kd are k for queries and documents,
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Model Complexity

RepBERT O(|C| ∗ h)
ColBERT O(|C| ∗ |q| ∗ |d| ∗ h)

UHD-BERT O(|C| ∗ kq ∗ kd/n)

Table 2: Complexity comparison between UHD-BERT

and two dense baselines. h denotes BERT dimension

size. n(≫ h) and k denote the total and non-zero UHD-

BERT dimension sizes, respectively. |C| denotes the

collection size. Increasing the dimension size enhances

efficiency in UHD-BERT unlike dense models.

respectively. The value of dactive, the average num-

ber of linked documents per dimension, is approxi-

mated by the probability that a dimension becomes

non-zero, kd/n.

Table 2 shows that UHD-BERT has a much

lower time complexity than the two dense mod-

els, ColBERT and RepBERT, as the actual ratio

between the product of kq and kd and n is less than

h. In fact, the complexity decreases as the dimen-

sion size n increases when k is fixed to a constant

for limited computing resources. Note, however,

that n is also resource-dependent and can account

for a trade-off between efficiency and effectiveness

together with k as in Section 4.4.

For further improvement in efficiency, we exper-

iment with a binarized UHD-BERT, feasibility of

which is justified with the distribution of embed-

ding values. It turns out that the embedding values

are clustered into the range between 0.1 and 0.2

as in Figure 3 with the mean and standard devia-

tion being 0.11169 and 0.00182, respectively. This

unique pattern assures that binarization can be done

without having to coerce the embedding values to

either 0 or 1 unnaturally. With binarized UHD em-

beddings, the retrieval effectiveness remains almost

identical (30.03) to the original (30.04) (Table 1).
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Figure 3: Distribution of embedding values on UHD.

Model Latency(ms)

RepBERT 80†

ColBERT 458†

BERT Base -

BERT Large 3,400†

BM25 62

Doc2query 85

DeepCT 62 (est.)

DocTTTTTquery 87

SparTerm -

UHD Binarized Inverted Index 63

Table 3: Comparison of latency (ms/query) between

our UHD binarized inverted index and the baseline

models on the MS MARCO dev set. Baseline results

are from the ColBERT paper, except for the RepBERT

value from its own paper. † denotes GPU-accelerated

document ranking.

As a result, our experiment on latency is based

on an inverted index with a binarized version of

UHD-BERT5. Table 3 shows comparisons against

the baselines for latency, which in our case includes

query preprocessing and encoding, and document

scoring and sorting. The result clearly shows the

efficiency advantage of using the inverted index

with UHD-BERT over the baselines; it is almost

identical to BM25, known to be extremely efficient.

4.4 Analysis on Dimensionality and Sparsity

n = 81,920 k = 400

Figure 4: Impact of n (dimensionality) and k (non-zero

dimensions).

To understand the roles of n (dimensionality)

and k (non-zero dimensions), we test our model

with two different settings. Figure 4 shows the

performance trends: the impact of varying k with

{4, 8, 16, 20, 40, 80, 200, 400} on the left using

the fixed n = 81, 920 and the impact of varying n

5The single bucket option was used but multiple buckets
can be easily introduced with server-level parallelism.
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with {8,192, 24,576, 49,152, 81,920} on the right

using the fixed k = 400.

Given the fixed n, it is evident that the higher k,

the better the score. This is because the absolute

amount of information for representing a query and

a document increases. The graph shows, however,

that the score rises rapidly to a point and almost

stays. It is not desirable to set an exorbitant k (e.g.,

8,192) as it would yield high computational costs

for a very small gain. We see the score is reasonable

even with k being 16 (4%). This suggests that is

is important to find an optimal k that satisfies the

trade-off between effectiveness and efficiency.

Next, we observe that the score improves as the

n increases even with the fixed k. This is because

the number of available activation patterns (i.e., ex-

pressive power) increases exponentially with larger

n. Also, note that larger n with the same k means

the increased sparsity (i.e., efficiency). This obser-

vation supports the motivation of UHD represen-

tations that endow the discrimination power while

increasing the efficiency.

Query k MS

MARCO

TREC CAR

50 29.50 34.10

100 30.04 35.43

200 29.86 36.31

300 29.64 37.32

400 29.29 37.22

Original≈1,200 28.99 37.12

Table 4: MRR@10 with different query k (# of non-

zero dimensions of query after max-pool).

Finally, in order to analyze how query’s sparsity

affects the performance, we constrain each query’s

final k (query k) after the max-pool operation and

measure MRR@10, expecting a removal of trivial

information that can cause query-drift. Table 4

shows how MRR@10 changes as we change the

query k. The highest performance is achieved with

k being much lower than the original (≈1,200).

This means removing trivial information indeed

helps improve matching quality. Another huge

benefit is that it reduces the amount of required

computation for matching.

4.5 Analysis on Multiple Buckets

In order to verify the effectiveness of our bucketing

strategy, we compare the performance of single

and multi-bucket strategies in Table 5. For a fair

Strategy MRR@10

Single-Bucket

(b = 1, n = 49, 152, k = 480) 26.18

Multi-Bucket

(b = 6, n = 8, 192, k = 80) 27.08

+ bucket weight tuning 27.41

Table 5: Comparison of bucketing strategies on the MS

MARCO dev set re-ranking task. The total dimension-

ality (n) and non-zero dimension size (k) are the same

for both strategies. b stands for the number of buckets.

comparison, we set the total dimensionality (n) and

the number of non-zero dimensions (k) to be the

same for both of them. For the mutliple bucket

setting, we create each bucket with the 2nd, 4th,

6th, 8th, 10th, and 12th layers of BERT, whereas

the 12th layer of BERT is used for the single-bucket

setting. For training, we only use 3% of the MS

MARCO Train Triples Small set.

Our multi-bucket strategy is shown to give

a good improvement, and the bucket weighting

scheme improves it further. This result validates

the idea explained in Section 3.5 that it is crucial

for IR tasks to exploit low- and mid-level lexical

and syntactic information, as well as the last layer

containing well-refined semantics. We provide ad-

ditional analyses on other settings in Appendix A.3.

5 Conclusion

We present UHD-BERT, a novel retrieval method

empowered by extremely high dimensionality and

sparsity that is easily controllable. To fully uti-

lize the capacity of our representation scheme, we

propose a bucketing mechanism that incorporates

different linguistic aspects extracted from BERT

and achieves the goal of building a neural retrieval

model that ameliorates the synonymy and poly-

semy problems of symbolic text retrieval methods.

With binarization of the learned UHD representa-

tions and resulting inverted indices, we attain the

desired efficiency that is comparable with BM25

and hence suitable for industrial applications. The

benefits of the UHD representations and the result-

ing retrieval model were demonstrated with two

different IR datasets, in comparison with the recent

approaches to sparse representation methods. We

also show that our method has a significant advan-

tage in efficiency over the state-of-art dense models,

with a slightly lower but competitive effectiveness.
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We plan to investigate how the query-document

interactions and symbolic IR techniques can be

incorporated for further improvements.
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A Appendix

A.1 Experimental Setting Details

Implementation For most of our experiments,

the language model used in our architecture is the

official pre-trained BERT (bert-base-uncased) (De-

vlin et al., 2019) by Hugging Face (Wolf et al.,

2020). Only for the TREC CAR experiment, we

used a different pre-trained model as in Khattab

and Zaharia (2020), which is the pre-trained Large

model released by Nogueira and Cho (2019) who

ensures that the test set of TREC CAR is not

exposed for pre-training. Since TREC CAR is

based on Wikipedia, Nogueira and Cho (2019) pre-

trained BERT on the subset of Wikipedia so that the

model is not exposed to the test set of TREC CAR

during the pre-training step. They released their

pre-trained Large model and we fine-tune it for

TREC CAR experiment. Fine-tuning this model is

remarkably slower than BERT Base, we leverage

the single layer (23) of BERT Large to report the

result of TREC CAR. For the buckets on top of the

LM, we modified Winner-Take-All (WTA) layer

(Makhzani and Frey, 2015) by adding a weight spar-

sity proposed by Ahmad and Scheinkman (2019).

Our UHD model has about 172M parameters per

bucket with n = 81, 920 for MS MARCO and

398M for TREC CAR. For the binarized inverted

index, we use a bit packing compression for mem-

ory efficiency. Since compression is not necessary

in an environment with sufficient memory, we ex-

cluded the time consuming due to compression in

the latency measurement.

Training We use 25% of MS MARCO train

triples, (query, positive passage, negative passage),

containing a total of 39,782,779 triples, in all our

experiments unless otherwise specified. Note that

we use only queries and positive passages with in-

batch negatives for training, ignoring the negative

passages. We sample 7,000 queries that are not in

the above 25% to construct a re-ranking train sub-

set with the corresponding top 1000 passages, pro-

vided by MS MARCO. This train subset is used for

the bucket weight tuning in Section 4.5. For TREC

CAR, we use the first four of five pre-defined folds

as a training set which consists of query-passage

pairs (approximately 5M pairs), following related

works (Nogueira et al., 2019; Nogueira and Cho,

2019; Khattab and Zaharia, 2020). We utilized

dataset pre-processed and provided by Nogueira

and Cho (2019). Training a single-bucket model

from the last layer of BERT with n = 81,920 (di-

mensionality) and k = 80 (non-zero dimensions)

takes 15.5 hours on two GeForce RTX 3090 de-

vices for MS MARCO and 40.86 hours on a same

single device for TREC CAR.

Evaluation MS MARCO provides two settings:

re-ranking and full ranking. In the re-ranking set-

ting, given a query and 1000 passages (top-1000)

retrieved by BM25, the model should re-rank the

passages. In full ranking, on the other hand, the

model should retrieve relevant passages from the

entire collection for a given query. While our main

goal is to validate our model in the full ranking

setting, we utilize the re-ranking setting when a

large number of model variants are compared, as a

way to save computational cost. In both settings we

use the MS MARCO dev set, which contains 6,980

queries. MRR@10 (mean reciprocal rank) is used

as the evaluation metric as in the official evaluation.

We use recall at various levels as additional metric.

For TREC CAR, we use the same test set (2,254

queries) used to submit to TREC-CAR 2017. Fol-

lowing Nogueira et al. (2019); Khattab and Zaharia

(2020), we report re-ranking results after BM25

retrieval for fair comparison, using MRR@10 as

well as the official metric, MAP (Mean Average

Precision). Single RTX 3090 was used for encod-

ing queries and documents, and re-ranking. For

full ranking using a binarized inverted index, we

use a Threadripper 3960X (CPU) with 24 cores.

Hyperparameters We use the Adam optimizer

with the learning rate of 5e-6, β1 = 0.9, β2 = 0.999

and epsilon = 1e-8, and L2 weight decay of 0.01.

The learning rate is linearly warmed up over the

first 2,000 steps, and then linearly decayed. The

batch size is 32, and the epochs are 0.25 for MS

MARCO (25% of MS MARCO Train Triples Small

set) and 1.0 for TREC CAR (all query-passage

pairs in the four folds of TREC CAR). For the

BERT LM, we use GELU (Hendrycks and Gimpel,

2017) as an activation and set the maximum length

to 32 for queries and 180 for passages (truncated

if exceeded). For the WTA layer, we select dimen-

sionality n from {8,192, 24,576, 49,152, 81,920}

and the number of non-zero dimensions k from

{4, 8, 16, 20, 40, 80, 200, 400}. For the anal-

ysis of n and k, we once trained with the k of

400 and changed it to above settings at test time.

There was no significant difference between the

setting where k matches and the setting that does
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Figure 5: Density of the generated sparse representa-

tion of queries and passages. Queries and passages are

sorted according to their token lengths (x-axis).

not match at training and test times. After having

3 times of trials for each setting, our final setting

is n = 81, 920, k = 80, matching the balance be-

tween the performance (MRR@10) and efficiency.

We set weight sparsity to 0.7 from {0.3, 0.5, 0.7},

meaning that 70% of the weights connecting each

WTA node to input is set to zero.

A.2 Analysis on UHD Embeddings

To better understand the characteristics of our pro-

posed model, we conducted an in-depth analysis

of the generated embeddings. In this experiment,

we use a model with a single bucket on the 12th

layer of BERT LM, where dimensionality n and

the number of non-zero dimensions k are 81,920

and 80, respectively.

In order to check whether the generated embed-

ding properly contains the information of queries

and passages, in Figure 5, we measured the den-

sity (ratio of non-zero dimension) of the queries

(left-hand side) and passages (right-hand side) with

respect to their length. Intuitively, we can assume

that the more words (or tokens) the text contains,

the more information it contains. Because each

dimension of sparse embedding is activated only

when the corresponding feature exists, the density

of the generated embeddings must correlate with

the amount of information (the number of tokens)

in the query/passage, as shown in Figure 5. How-

ever, interestingly, the density continues to increase

according to the number of tokens in the query,

while it converges in the passage. Our interpreta-

tion is that since the query reflects the intention

of the user, it is highly likely that each query term

represents a unique feature that narrows down the

search space, which does not overlap with other

query terms. For the example ’how much do psy-

chologists earn uk’, a user has put ’uk’ to reduce the

search space. As such, increasing the length of the

query has a high probability of adding new features,

which increases the density. Unlike queries, pas-

sages usually deal with limited topics, which makes

density converges even if the length increases.
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Figure 6: Active (non-zero) dimension frequency in

queries and passages.

Besides the above query/passage-level embed-

ding analysis, dimension-level analysis is also cru-

cial to understand the characteristics of our pro-

posed model. In Figure 6, we measured how many

times each dimension was activated (non-zero) in

the query and passage, similar to traditional word

frequency analysis. The analysis suggests that the

embeddings generated by our model work in a sim-

ilar fashion to words in natural languages (Zipf’s

law). It is also worth noting that similar to stop

words in natural language words, there are dimen-

sions that appear in many passages (8.84M in total)

and queries (7K in total). Dealing with these "stop-

dimensions" can also be expected to have a big

impact on performance, but we leave it as future

work.

A.3 Additional Analysis on Multiple Buckets

In addition to the method and analysis on multiple

buckets (Section 3.5, 4.5), here we address further

various settings and their analysis.

For the multiple bucket setting, we evaluate two

types of implementation (Joint/Separate). The joint

setting means that we train all WTA layers in an

end-to-end manner, while the separate setting de-

notes that we separately train the model for each

WTA layer and combine the results later. We notice
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Strategy MRR@10

Single-Bucket

(b = 1, n = 49, 152, k = 480) 26.18

Multi-Bucket

(b = 6, n = 8, 192, k = 80)

Multiple bucket (Joint) 25.58

Multiple bucket (Separate) 27.08

+ bucket weight tuning 27.41

Ideal query-layer predictor 39.62

Table 6: Comparison of various multi-bucket strate-

gies on the MS MARCO Passage Retrieval dev set re-

ranking task. The total dimensionality (n) and non-zero

dimension size (k) are the same across the strategies. b
stands for the number of buckets.

that the joint setting of the multi-bucket unexpect-

edly underperforms the single-bucket. We specu-

late that the WTA layers in the joint setting easily

interfere with each other during training, implying

the need for a special mechanism to handle the in-

terference for future work. On the other hand, the

separate setting, which is free from the interference,

outperforms the single bucket setting, despite the

disadvantages of the multi-bucket strategy (small n
for each bucket). This is also evident in the result

of the bucket weight tuning. By controlling the

weight of each bucket, we can further increase the

performance of the multiple bucket setting.

For the bucket weight tuning, we conducted a

grid search on the top-1000 re-ranking dataset we

built from the MS MARCO dataset (See Section

A.1), which yields the searched weights (0.66 :
0.0 : 0.33 : 1.00 : 0.33 : 1.00).

Going further from this analysis, one can imag-

ine that each query may have a more suitable set

of layer weights. For example, certain queries may

require syntactic contents while others may require

topical (semantic) contents. From this perspective,

we measured the performance when a layer with the

highest MRR was ideally selected for each query

(Ideal query-layer predictor in Table 6). The result

clearly suggests that selecting different layers or

bucket weight distributions for each query has the

potential to improve performance. This implies the

necessity of a bucket weight predictor which takes

a query as an input, but we leave it as future work.

A.4 Qualitative Analysis on Interpretability

One of the advantages of the sparse representation

is its interpretability, which is possible in our case

due to the disentangled feature of the UHD embed-

ding. To prove this, we conduct an analysis about

the meaning of each dimension of the generated

UHD embedding. In this analysis, we use the UHD-

BERT model with reduced k(= 40), to reduce the

active dimension for making the analysis easier.

Table 7 shows interpretation results on a few

sampled dimensions of the UHD embedding. We

use a simple method that validates the interpreta-

tion, which is to inspect terms of queries that have

non-zero values (activated) on a specific dimension.

For example of the dimension index "61,183" in

Table 7, the terms that activated queries frequently

have were child, kids and disney, implying that the

dimension is specialized for the "child" informa-

tion. For clarity, query terms that have appeared at

least five times are listed, along with dimensions

that are relatively easy to interpret. We observe that

there are dimensions representing abstract latent

terms such as "Unit" or "Period". To summarize

the analysis, our UHD embedding is not only in-

terpretable (advantage of sparse representations),

but also has the power of the latent representation

(advantage of dense representations).
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Dim Appeared Query Terms
Inter-

pretation

68,604 costs, paid, fee, prices, fees Price

29,938 tall, paid, square, feet, miles, words Unit

8,797 soon, longest, heal, wait, been, length, weeks, Period

66,589 growth, movement, development, degree, theory Advancement

3,740 treatment, heal, surgery, doctors, doctor Treatment

24,673 medication, normal, constipation, doctor, medicine Medical

37,089 problems, diseases, signs, syndrome, fever Disease

476 die, killed Death

47,873 technology, science, chemical, scientific, union Science

374 science, technology, fastest, java, language, software Programming

68,111 lower, low, clear, deductible, irs, depression Tax

21,822 party, beach, amendment, tissue, constitution Politic & Law

22,627 founded, invented, begin, established, started, released Founding

3,266 numbers, customer, telephone, zip, contact, union, npi E-commerce

46,843 washington, il, ma, mn, indiana, south Location

61,183 child, kids, children, disney, paint, parents Child

48,698 education, student, training, degree, workout Education

26,433 synonym, description, synonyms, defined, english Definition

1,377 sang, played, sings, requirements, cats, plays Play (theatre)

Table 7: Interpretation of the each dimension in the UHD embedding by analyzing terms of queries that activates

a specific dimension. The query terms that support the interpretation are indicated in italic.


