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Abstract

We propose a novel task of jointly repairing
program codes and generating commit mes-
sages. Code repair and commit message gen-
eration are two essential and related tasks
for software development. However, exist-
ing work usually performs the two tasks in-
dependently. We construct a multilingual
triple dataset including buggy code, fixed
code, and commit messages for this novel
task. We provide the cascaded models as base-
line, which are enhanced with different train-
ing approaches, including the teacher-student
method, the multi-task method, and the back-
translation method. To deal with the error
propagation problem of the cascaded method,
the joint model is proposed that can both re-
pair the code and generate the commit message
in a unified framework. Experimental results
show that the enhanced cascaded model with
teacher-student method and multitask-learning
method achieves the best score on different
metrics of automated code repair, and the joint
model behaves better than the cascaded model
on commit message generation.

1 Introduction

Deep learning has been demonstrated remarkably
adept at numerous natural language processing
(NLP) tasks, such as machine translation (Bah-
danau et al., 2014), relation extraction (Zhang et al.,
2017), grammar error correction (Ge et al., 2018),
and so on. The success of deep learning in NLP
also promotes the development of which in pro-
gramming languages (Clement et al., 2020; Lu
et al., 2021). Recently, researchers have exploited
deep learning to programming-language related
tasks, such as code completion (Svyatkovskiy et al.,
2020), automated code repair (Tufano et al., 2018),
commit messages generation (Xu et al., 2019), code
search (Gu et al., 2018), and so on. Among these
tasks, automated code repair and commit message
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public int multiplication (int a, float b) { 
        return a * b
}

Buggy CodeBuggy Codepublic int multiplication (int a, float b) { 
        return a * b
}

Buggy Code

public float multiplication (int a, float b) { 
        return a * b
}

Repaired CodeRepaired Codepublic float multiplication (int a, float b) { 
        return a * b
}

Repaired Code

Fix syntax error by replacing int with float 
for the return type of the function.

Commit MessageCommit MessageCommit MessageCommit Message

Figure 1: An illustrative example for our proposed task.
Given a buggy code, the task is to generate its corre-
sponding repaired version, as well as the commit mes-
sage that describes their changes.

generation are the two most active and closely re-
lated tasks. The former is to repair software bugs
automatically without the intervention of a human
programmer. The latter aims to generate natural
language descriptions of code changes, which act
as a record of feature additions and bug repairs.

Because these two tasks can potentially reduce
debugging costs in software development and helps
programmers to understand the high-level rationale
of changes, a lot of great work has been proposed to
deal with automated program repair (Tufano et al.,
2018; Chen et al., 2019; Dinella et al., 2020; Ya-
sunaga and Liang, 2020; Tang et al., 2021) and
commit message generation (Loyola et al., 2017;
Liu et al., 2020; Nie et al., 2020), respectively.
However, existing work tackles the two tasks in-
dependently, ignoring the underlying relationship
between these two closely related tasks, e.g., af-
ter fixing the bug, commit message can record the
process of code repair. Therefore it is crucial to
explore how to bridge these two tasks and achieve
the code repair and commit messages generation
simultaneously.

In this paper, we formulate a novel task to jointly
repair program code and generate commit message,
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given the buggy code. To facilitate the study of
this task, we create a dataset with multiple pro-
gramming languages. The dataset is collected from
commit and buggy-fixed histories of open-source
software projects, where each example consists
of buggy code, fixed code, and the corresponding
commit message. We first introduce the cascaded
methods as baseline. The cascaded model employs
one model to repair code and the other to gener-
ate commit message successively. We enhance
this cascaded model with three training approaches
inspired by the low-resource machine translation,
including the teacher-student method (Chen et al.,
2017), the multi-task learning method (Domhan
and Hieber, 2017), and the back-translation method
(Sennrich et al., 2016a). To deal with the error
propagation problem of the cascaded method, we
propose a joint model which can achieve both code
repair and commit message generation in a single
model. We train and evaluate our model using the
created triple (buggy-fixed-commit) dataset. The
results demonstrate the validity of our proposed
methods, which achieve a significant improvement
over baseline in both qualities of code and com-
mit messages. Particularly, the enhanced cascaded
method obtains the best performance on code repair
task, and the joint method behaves better than the
cascaded method on commit message generation
task.

Our main contributions are as follows:

• We propose the novel task of jointly repairing
code and generating commit message. More-
over, we collect and release a multilingual
buggy-fixed-commit dataset for the task.

• We perform an empirical study of different
machine learning-based methods for code re-
pair and commit message generation.

• To the best of our knowledge, this is the first
work to investigate the effectiveness of joint
modeling with the code repair process and
commit message generation.

2 Task Definition

We aim to generate the repaired code and the com-
mit message based on the given buggy code. For
the example in Figure 1, our goal is to replace syn-
tax bug “int” with “float” for the return type of the
“multiplication” method, then generate a piece of
commit message to describe the change.

Formally, given a triple (buggy-fixed-commit)
datasetD = {(Bi, Fi, Ci)}Ki=1, where the i-th sam-
ple consists of a buggy code snippet Bi, its fixed
version Fi, and a commit message Ci that is used
to describe the changes from Bi to Fi, our goal is
to learn probability distribution P (C,F |B). In
practice, the commit message C is hard to esti-
mate without the full consideration of both B and
F . Therefore, it is a reasonable way to firstly pre-
dict the fixed code F based on B. Then learn how
to generate an appropriate message C according
to B and F . The probability P (C,F |B) can be
decomposed as:

P (C,F |B) =
∑
F

P (F |B)P (C|B,F ) (1)

Thus, given a new buggy code B, we can generate
its fixed version F , and the commit message C
following the conditional probability P (F |B) and
P (C|B,F ), respectively.

3 Approach

In this section, we firstly introduce the cascaded
models enhanced by the teacher-student method,
the multi-task learning method, and the back-
translation method (Section 3.1), which generate
repaired code and commit message in a two-stage
manner. Then, we propose a joint model (Section
3.2), which is capable of jointly optimizing the gen-
eration of repaired code and commit message in
an end-to-end manner. The models described in
this section are all build on the Transformer model
(Vaswani et al., 2017), where we devise the model
to take in some representation of input and then
yield a distribution over output vocabulary.

3.1 Cascaded Model
Cascaded model is one of the most straight-forward
methods to tackle this problem, where F is used
as a hinge to build bridges between B and C. For-
mally, given the buggy code B, the generation of
commit message C can be conducted in two steps.
The first step aims to generate F conditioned on B,
which can be defined by minimizing the following
negative log-likelihood loss:

LF (θ) = −
∑

(B,F )∈D

logP (F |B) (2)

The second step is to generate commit message
C based on B and previous generated F , and it can
be formally expressed as:

LC (θ) = −
∑

(B,F,C)∈D

logP (C| g(B,F )) (3)
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where g(B,F ) is a function to combine B and
F as model input, which could be concatenating
them, or using their changing information1. In
the following section, the training loss of commit
message generation is optimized by Equation (3),
unless explicitly specified.

To further enhance the modeling capabilities of
the cascaded model, we introduce three alterna-
tive methods by incorporating the teacher-student
framework, multi-task learning method, and back-
translation method, respectively.

Teacher-student Method We attempt to im-
prove the performance of code repair with the help
of commit message. Different from the previous
works that directly used comments (Guo et al.,
2020) or compiler error messages (Yasunaga and
Liang, 2020) as the prior information, we utilize
the commit message as the posterior information,
to supervise the generation of F in code repair.
Specifically, the teacher-student framework (Hin-
ton et al., 2015) is employed to distill knowledge
from teacher model to student model, which first
learns a teacher model P (F |B,C) with the use of
C, whereC is the truth commit message . Then, the
teacher model teaches the student model P (F |B)
by minimizing the KL divergence (Kullback and
Leibler, 2006), which is defined by

LKL (θ) =
∑

(B,F,C)∈D

Q (F |B,C) · log Q(F |B,C)
P (F |B) (4)

where Q (F |B,C) represents the teacher’s se-
quence distribution over the sample space of all
possible sequences. When optimizing LKL, the
posterior distribution Q (F |B,C) can be regarded
as labels, so that our model is instructed to use prior
distribution P (F |B) to approximate Q (F |B,C)
accurately. During the training stage of code repair,
the student model not only learns from the output
probabilities of teacher model, but also learns from
the correct context, which is formulated by

LTF (θ) = LF (θ) + LKL (θ) (5)

Multi-task Learning Inspired by previous work
which shows that given the buggy lines can sig-
nificantly improve the performance of code repair
(Chen et al., 2019; Wen et al., 2018; Saha et al.,

1We use difflib to represent code changes. The
tool can be found in https://docs.python.org/3/
library/difflib.html. In this paper, we use the code
changes to build the model input, instead of their concatena-
tion, since the latter will result in overlong sequence length,
which drops the performance of model by a significant margin.

2017), we use an alternative way to improve code
repair, which is the multi-task learning method.
Specifically, we introduce a line-level binary se-
quence classification task as an auxiliary learning
task to assist code repair, which reduces the dif-
ficulties for the model to locate the buggy lines2.
To help the model distinguish from the line-level
information and the token-level information, we
add the “[CLS]” token at the beginning of each line
of buggy code B, which is used to align with the
tagging label T , where T ∈ {0, 1}, in which tag 0
means the line is error-free, and tag 1 means the
line is buggy. To identify the buggy lines, we build
a sequence classifier based on encoder output to
implement the line-level binary sequence tagging
task. The line-level sequence classification loss can
be defined as:

LT (θ) = −
∑

B∈D;T∈{0,1}

logP (T |B) (6)

At the stage of code repair, we jointly optimize
the objective of sequence classification task and
sequence generation task, i.e.,

LMF (θ) = LF (θ) + LT (θ) (7)

Back-translation Method Back translation has
been demonstrated as an effective way on data aug-
mentation (Sennrich et al., 2016a; Lachaux et al.,
2020), and it leverages monolingual data to expand
as pseudo-parallel data in a weakly-supervised
manner. More precisely, we first train a back-
directional model, that is a repaired code to buggy
code model parameterized by P (B|F, θF→B).
Then, the pseudo-parallel data is created by the
back-directional model, in which the repaired code
is regarded as the model input, and the goal is to
predict its corresponding buggy version, which is
formulated by

B̂ = argmax
B

P (B|F, θF→B) (8)

where θF→B is the parameter learned by maximum
likelihood estimation onM. M is a non-parallel
corpus of fixed code, which is used to build the
pseudo-parallel data. After obtaining B̂, the pseudo
parallel data P = {(B̂, F )} is created to merge
with the parallel data D to obtain the augmented
parallel data D′, which is used to train the code
repair model according to Equation 2.

2To obtain the buggy lines, we employ the difflib to
extract the line-level changes from buggy code to its fixed
version. We maintain the lines only exist in the buggy version
(i.e., remove the lines started with “+” and “?”).

https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
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3.2 Joint Model
Although the above three methods can boost the
performance of cascaded method, they still suf-
fer from three challenges: (1) the generated fixed
code may contain errors, and those errors will be
propagated to the next step of commit generation,
(2) they lose the inter-dependencies among global
features to represent the changing details of code
repair during commit message generation, and (3)
the two-stage method results in low decoding ef-
ficiency. These problems may lead to the poor
performance of commit generation. To this end,
we propose a joint method that incorporates with a
novel changes-aware dynamic attention mechanism
to jointly decode fixed code and commit message.

Model Architecture The overview of our model
is shown in Figure 2. Our model consists of three
components: a buggy encoder, a fixed decoder, a
message decoder with a changes-aware dynamic
attention module. At first, the buggy encoder is
deployed to encode the buggy code B, and map it
into a sequence of output zb, where zb ∈ Rn×H ,
n and H are the length of B and the hidden size
of model, respectively. zb is used for line-level
binary sequence tagging (optimized as Equation
6) and as an indispensable component to produce
changes information. Then, the fixed decoder gen-
erates a high-level representation zf , zf ∈ Rm×H
is used to generate a repaired code F̂ , and produce
changes information with zb. After that, the com-
mit decoder that combines with the changes-aware
dynamic attention mechanism generates an output
representation zc, zc ∈ Rl×H is used to attend
over each representation of zb and zf , then get a
final output distribution to generate messages. In
the following part, we will introduce our proposed
changes-aware dynamic attention mechanism, as
well as the method to jointly train our model.

Changes-aware Dynamic Attention During de-
coding the message, the output zc generated by the
message decoder respectively attends over zb and
zf to obtain the context representation cb and cf
by dot-product attention. which is formulated by

cφ = softmax

(
zcz

T
φ√
H

)
zφ (9)

where φ ∈ {b, f}. Similar as Vaswani et al. (2017),
we use the scaling factor

√
H to make gradient

more stable during optimization. Intuitively, the
context vector could provide much information to

Feed-Forward

Self Attn.

Buggy Code Emb.

Feed-Forward

Self Attn.

Cross Attn.

Self Attn.

Cross Attn.

Changes-aware 
Dynamic Attn.

Feed-Forward

Position 
Encoding

Linear + Softmax

Fixed Code Emb.

Position 
Encoding

Message Emb.

Position 
Encoding

Linear + Softmax

Linear + Softmax

Binary Sequence Tagging

Repaired Code Generation

Commit Message Generation

Figure 2: The architecture of the proposed joint model,
where residual connection and layer normalization are
omitted for simplification.

dynamically indicate the alignments of changes
over the attended features during decoding the com-
mit messages.

We subtract cb from cf in order to represent
the semantic changes that took place from buggy
code to its fixed version, and plus cb with cf to
denote the semantic summarization of them, which
is defined by

δ = cb − cf
ζ = cb + cf

(10)

here, the δ and ζ are Rl×H matrices, which repre-
sent the changes context and summarization con-
text, respectively. Intuitively, the δ is necessary
to generate informative commit messages since it
describes the changes from buggy code to its fixed
version. Nevertheless, the summarization ζ is also
indispensable during decoding, since it always con-
tain vital information to generate the meaningful
tokens (e.g., function name or class name), which
may not be included in δ.

We develop the control gates to balance the con-
tribution between δ and ζ during decoding the mes-
sage. The control gates control the degree that
attending over each feature of δ and ζ, which is
defined as [

gδ
gζ

]
= σ

(
Wg [δ; ζ]T + bg

)
(11)

where [a; b] denotes the concatenation between a
and b. Wg ∈ R2H×2H and bg ∈ R2H×l are
learnable parameters. The gates gδ ∈ RH×l and
gζ ∈ RH×l are used to control δ and ζ, respec-
tively.

The final output of changes-aware dynamic at-
tention module is the linear combination between
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the output state of commit message decoder and
the gated fusion of context representations, which
can be calculated as:

oc = zc + Wo

(
gδ � δT + gζ � ζT

)
(12)

where Wo ∈ RH×H is the learnable weights. �
denotes the element-wise product.

Joint Training We jointly train our model in an
end-to-end manner, the overall loss is defined as

LJ (θ) = LR (θ) + LC (θ) + LT (θ) (13)

where LR (θ), LC (θ)and LT (θ) are used to opti-
mize the repaired code generation, commit mes-
sage generation, and binary sequence classification,
respectively. When training multilingual model of
fixing code and predicting commit message, follow-
ing multilingual neural machine translation (John-
son et al., 2017), we mix the training corpus and
add a special token (e.g., <java>) at the begin-
ning of each input sequence to distinguish from
different programming languages.

4 Data

In this section, we describe the creation of the
dataset in detail. We first describe how we col-
lect the data in the wild. Then, we introduce the
preparation process of the data to make it suitable
for our tasks.

Data Collection We collected data from GitHub
Archive3 using the GH Archive API. We first down-
load the event data in each public event from 2018
to 2020, and then filter them using the Github API4

to obtain meta information of each commit. Specifi-
cally, we maintain the commits that consist of edits
to the files with multiple programming languages.
(i.e., Java, Javascript, Python, C sharp, Cpp). More-
over, to ensure that the prior file and post file are
repairing code, we follow (Fischer et al., 2003),
where the commits without the specific patterns
(i.e., “fix” or “solve”) in its commit messages are
filter out. After we obtain the meta information
of the filtered commit, we begin downloading the
buggy file (i.e., the file prior to the commit) and
fixed file (i.e., the file following the commit) in pair.
Apart from the above multilingual dataset, we also
build a Java-only monolingual triple dataset from

3https://www.githubarchive.org
4https://docs.github.com/en/

free-pro-team@latest/rest

Languages Train Valid Test Total

Multi.

Python 36682 4585 4586 45853
Java 11129 1391 1392 13912

Javascript 21446 2680 2681 26807
C-sharp 5424 678 678 6780

Cpp 8510 1063 1064 10637

Mono. Java 47775 3000 3000 53775

Table 1: Data statistic of the multilingual and the mono-
lingual dataset.

the corpus (buggy-fixed pair) released by Tufano
et al. (2018)5.

Data Preparation The commit messages are fil-
tered by (i) removing the messages whose length
shorter than 3 words or longer than 100 words; (ii)
filtering the url in commit messages; (iii) remov-
ing the messages that appear more than 3 times in
the dataset. The rationale behind the latter decision
was to remove the data with meaningless commit
messages (e.g., “fix bug.”, “fix an error.”, etc.). For
the processing of file-level buggy code and fixed
code, we follow (Tufano et al., 2018), where both
the buggy code and fixed code are separated into
method-level fragments since the file-level granu-
larity is too large to learn patterns of transforma-
tion. After preparation, we obtain the clean triples
consist of buggy code, fixed code, and commit mes-
sage. The statistics of the dataset used in this paper
are summarized in Table 1. More processing de-
tails and statistics can be found in Appendix A and
Appendix B. We release the datasets at https:
//github.com/jqbemnlp/BFCsData.

5 Experiments

5.1 Experimental Settings

Evaluation Metrics We conduct evaluations on
both code repair and commit message generation.
For the code repair, we use exact match accuracy
(Chen et al., 2018) to measure the percentage of the
predicted fixed code that are exactly matching the
truth fixed code. In addition, we also introduce the
BLEU-4 score (Papineni et al., 2002) as a supple-
mentary metric to evaluate their partial match. For
the commit message generation, we use BLEU-4
and Rouge-L (Lin, 2004) to evaluate our model.

5https://sites.google.com/view/
learning-fixes/data

https://www.githubarchive.org
https://docs.github.com/en/free-pro-team@latest/rest
https://docs.github.com/en/free-pro-team@latest/rest
https://github.com/jqbemnlp/BFCsData
https://github.com/jqbemnlp/BFCsData
https://sites.google.com/view/learning-fixes/data
https://sites.google.com/view/learning-fixes/data
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Models
Automated Code Repair Commit Message Generation
BLEU-4 xMatch BLEU-4 ROUGE-L

Naive Method 87.45 0.00 8.40 7.98
Oracle Method - - 12.64 11.59
Cascaded Model 85.07 3.21 9.69 9.41

+ Teacher-student 88.23 6.16 10.58 10.19
+ Multitask 87.94 8.33 10.36 10.1
+ Back-translation 87.73 5.26 10.19 9.84

Joint Model 87.61 8.01 11.48* 10.62*

Table 2: Results of the cascaded model and the proposed joint model on the monolingual dataset for code repair
and commit message generation tasks. The bold face indicates the best result under the corresponding metric.
Significant improvements over the best baseline results are marked with * (t-test, p<0.05).

Implementation Details All models are imple-
mented using Pytorch framework6, trained on four
GPUs of NVIDIA Tesla V100. We use Byte Pair
Encoding (BPE)7 (Sennrich et al., 2016b) to encode
input using a shared vocabulary with 50K symbols.
The Transformer structure and the hyperparameters
are following the default setting in the open-source
implementation of XLM8 (Lample and Conneau,
2019), apart from the embedding dimension and
maximum sequence length, which are set as 256
and 512, respectively. More training details can be
found in Appendix C.

5.2 Results on Monolingual Dataset

We first compare the performance of our proposed
cascaded model and joint model for code repair
and commit message generation tasks on the mono-
lingual dataset, as listed in Table 2.

Automated Code Repair The teacher-student
model achieves the highest score on the metric
BLEU-4, which indicates that the commit message
could provide effective guidance for the model
to repair code. Moreover, it also indicates that
the teacher-student method successfully distills the
knowledge from the teacher model to the student
model, without much loss of accuracy9. The multi-
task learning model outperforms other experimen-
tal models on metric exact match, and get the com-
parable performance of the teacher-student model
on BLEU-4. The intuition behind that is the model

6An open-source deep learning platform (https://
pytorch.org/)

7The BPE codes are learned by fastBPE (https://
github.com/glample/fastBPE).

8https://github.com/facebookresearch/
XLM

9We have evaluated the performance of both the teacher
model and student model, the results show that the stu-
dent model obtains the comparable performance with teacher
model.

has learned the location information of buggy line
from the supervision of line-level binary sequence
classification task, which could provide potential
guidance for the model to correctly repair code.
It is worth noting that the Naive method, which
directly uses the buggy code to compare with its
repaired version, also gets the distinct score on met-
ric BLEU-4, which indicates the high overlap ratio
between the buggy-fixed pairs.

Commit Message Generation Both the joint
model and cascaded model are superior to gen-
erate meaningful commit message than the naive
method, which directly uses buggy code to realize
message generation. The joint model outperforms
cascaded models over all evaluation metrics of com-
mit message generation. Specifically, it achieves
about 10.8% and 5.1% improvements respectively
on BLEU-4 and ROUGE-L compared to the mul-
titask learning model, which is one of the most
competitive models on code repair. It is highly
likely that the joint model effectively captures the
inter-dependencies among global features to rep-
resent the changing details of code repair during
commit message generation, thereof mitigates the
error propagation of the two-stage model.

5.3 Results on Multilingual Dataset

We further analyze the results of the joint model
on the multilingual dataset for both code repair and
commit message generation. Table 3 shows the
results on five program languages.

With regard to code repair, the result shows
that the multilingual model achieves significant im-
provements compared to the monolingual model in
terms of java, cpp and c-sharp dataset, and obtains
comparable performance on python and javascript
dataset, whether using BLEU-4 or exact match
as evaluation metric. The intuition behind that is

https://pytorch.org/
https://pytorch.org/
https://github.com/glample/fastBPE
https://github.com/glample/fastBPE
https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
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Langs.

Automated Code Repair Commit Message Generation
BLEU-4 xMatch BLEU-4 ROUGE-L

mono. multi. ∆ mono. multi. ∆ mono. multi. ∆ mono. multi. ∆

python 95.21 94.99 -0.22 8.32 8.01 -0.31 13.29 14.01 0.72 12.83 13.46 0.63
javascript 94.89 95.21 0.32 6.78 7.42 0.64 11.03 11.63 0.60 10.79 11.30 0.51
java 95.72 96.74 1.02 6.33 7.82 1.49 12.26 13.79 1.53 11.72 12.73 1.01
cpp 94.10 95.45 1.35 5.63 7.34 1.71 9.71 11.04 1.33 8.63 9.84 1.21
c-sharp 93.26 95.34 2.08 3.98 6.92 2.94 8.13 10.98 2.85 7.19 9.93 2.74

Table 3: Results on the multilingual dataset for both code repair and commit message generation.

the corpus mixed with the multiple programming
languages is helpful to make up for the lack of
monolingual data during repairing code. In other
words, the model could learn the potential bug-
fixing patterns from multiple languages, and apply
them to the limited monolingual data to handle the
deficiency of data-limitation problem. A similar
observation can also be found during generating
commit messages. As shown in Table 3, for commit
message generation task, the multilingual model
outperforms monolingual model over all evalua-
tion metrics and languages. We believe that the
alignment of embedding spaces across multiple
programming languages, shares either the same al-
phabet or anchor tokens such as variable, digits,
string, method name, etc., which allows the model
to learn these alignments simultaneously during
generating commit messages.

5.4 Discussion

Ablation Study To further study the effects
brought by different techniques, we show in Ta-
ble 4 the result of different joint model variants on
the monolingual dataset. First, we remove the line-
level sequence classification task from our joint
model. Therefore, the model is optimized with-
out the loss function LT (θ) that is mentioned in
Equation 13. We observe that the results of both
code repair and commit message generation de-
crease distinctly, which shows that locating the
buggy lines is important for repairing code and
generating commit messages. Then, we remove the
proposed changes-aware dynamic attention mod-
ule. It can be seen that this modification doesn’t
impact too much for the code repair, but affect the
performance of commit message generation by a
large margin. The main reason is that the changes-
aware dynamic attention module could effectively
model the changes from buggy code to its fixed ver-
sion, thereby improves the performance of commit
message generation.

Models
Code Repair Message Generation

BLEU-4 xMatch BLEU-4 ROUGE-L
Joint Model 87.61 8.01 11.48 10.62

- Binary Tagging 85.64 3.98 10.10 9.25
- Changes-aware Attn 87.88 7.94 9.03 8.67

Table 4: Ablation Study for joint model on monolin-
gual dataset. “-” means remove the corresponding part
separately.

(a) Code Repair (b) Message Generation

Figure 3: Length studies for both code repair and com-
mit message generation.

Lengths Analysis We further analyze the model
performance on different sequence length, and con-
duct a comprehensive study for both code repair
and commit message generation on the monolin-
gual dataset. Figure 3(a) and 3(b) present the re-
sults of code repair and commit message gener-
ation, respectively. Figure 3(a) demonstrates the
challenge of this task, especially when the repaired
code with a long sequence length. It can be seen
that even the exact match score of the two mod-
els declined with the growing length of repaired
code, the joint model still outperforms the cascaded
model over all length ranges, which demonstrates
the stronger capability of the joint model on mod-
eling the code repair. Figure 3(b) presents the com-
parative results of the cascaded model and joint
model on generating commit message. We ob-
serve that the joint model outperforms the cascaded
model when the sequence length exceeds 20, which
demonstrates the superiority of the joint model to
excavate the underlying semantic relationships be-
tween code changes and their corresponding com-
mit message during handling with the long message
generation.
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Figure 4: Examples on the monolingual dataset. The re-
paired lines are highlighted with different colors, where
yellow means the buggy code is wrongly repaired,
while green means it was correctly repaired.

Case Study We conduct case study on both
monolingual and multilingual dataset. Figure 4
presents the results on monolingual datasets. With
regard to the code repair part, the cascaded model
wrongly modify the code by replacing public
with private in the first line of buggy code,
which indicates that it is hard for the model to
locate and repair the buggy code without giving
any prior information. It is worth noting that the
joint model correctly repairs code, we believe that
the line-level binary sequence classification task as-
sists the model in locating the buggy lines, thereby
improving the model’s performance during repair
the code. As for commit message generation, the
joint model successfully captures the changes from
buggy code to its fixed version and generates an ap-
propriate message, while the cascaded model fails
may due to the error propagation. More examples
on multilingual dataset are shown in Appendix D.

6 Related Work

Our work is enlightened from two research lines of
studies, which are automated code repair and com-
mit message generation. We discuss these topics in
the following.

Automated Code Repair Conventional ap-
proaches mainly focused on a relatively limited
and manually-craft set of fixing patterns, which can
only fix bugs in a given language or a specific ap-
plication domain (Saha et al., 2017; Jin et al., 2011;
Nguyen et al., 2013). Very recently, deep learning
based approaches are proposed to automatically
repair code by learning from massive open-source

projects with numerous buggy-fixes pairs (Tufano
et al., 2018; Chen et al., 2019; Vasic et al., 2019; Ya-
sunaga and Liang, 2020). Tufano et al. (2018) first
proposed using end-to-end neural machine transla-
tion model for learning bug-fixing patches. Besides,
Guo et al. (2020) demonstrated that appropriately
incorporating the natural language descriptions into
the pre-train model could further improve the per-
formance of code repair.

Commit Message Generation Early work on
automatic commit message generation translates
source code changes (such as feature additions and
bug repairs) into natural language based on pre-
defined rules and templates (Buse and Weimer,
2010; Cortés-Coy et al., 2014). To overcome
the limitation of high complexity and difficult ex-
tensibility, some researchers employ information
retrieval methods to generate commit messages,
which attempts to re-use the commit messages of
similar code changes (Huang et al., 2017). Recent
work has focused on adopting machine learning
based techniques for the commit message gener-
ation problem, which usually train a sequence-to-
sequence model to translate the source changes into
commit messages (Jiang et al., 2017; Loyola et al.,
2017; Xu et al., 2019).

Although automated code repair and commit
message generation have achieved rapid develop-
ment in recent years, existing work usually regards
them as two separate tasks and ignores the potential
relationship between them. Different from previ-
ous work, we attempt to bridge the two tasks since
commit message can be used to record the process
of code repair. Specifically, we propose a novel
task to repair code and generate commit message
simultaneously with the proposed cascaded and
joint methods, based on our collected buggy-fixed-
commit dataset.

7 Conclusion

In this paper, we propose a novel task to jointly
repair code and generate commit message. We pro-
vide several competitive architectures, including
cascaded model and joint model. To train and eval-
uate our models, we collect a multilingual buggy-
fixed-commit dataset from Github. The empirical
study is conducted to demonstrate the effectiveness
of our proposed methods. For future work, we
plan to incorporate the tree structure of code into
the task and employ more indicative metrics (Ren
et al., 2020) to evaluate the model performance.
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A Data Processing Details

To ensure the commit message describes the
changes information that took place from buggy
method to its fixed version, we only consider the
changes that are inside of a single method in the
file. Changes that involve multiple methods are
not considered in our work, since it is implicit to
indicate which method does the commit message
describe to. Besides, we also develop a heuristics
method in which the lexical overlap is employed to
filter the commits that the commit message doesn’t
describe the changes from the buggy method to
its fixed version. Specifically, we first tokenize
the commit message and the code by nltk10 and
pygments11, respectively. Then, we only main-
tain the commit in which at least one of the tokens
in the commit message matches a code token be-
longing to the buggy code or repaired code12. In
order to check whether the message describes the
changes from buggy code to its fixed version, we
randomly selected 100 samples and employ two
well-educated annotators for independently analyz-
ing the identified commits. After solving 4 cases
of disagreement, they concluded that 97% of the
identified commits were true positive.

B Data Statistics

Data Statistics
Multi.

Mono.
py js java cpp c-sharp

avg. # tokens per buggy 144.7 149.8 135.0 153.5 140.7 166.9
avg. # LOC per buggy 16.9 19.7 15.7 17.8 18.5 12.6
avg. # tokens per commit 12.0 9.5 12.6 15.6 10.6 13.8

Table 5: Overview of the multilingual and monolingual
datasets. “LOC” denotes the physical lines of code.

We take the further analysis for the monolingual
and multilingual datasets. Table 5 summarizes the
average number of tokens per buggy, the average
line of code per buggy, and the average number of
tokens per commit. We observe that the average
number of lines and tokens for buggy code are
considerable, which indicates the difficulty of this
task. Figure 5 and Figure 6 present the distribution
of the amount of token for buggy code and commit
message, respectively. We observe that the density

10https://www.nltk.org/
11https://pygments.org/
12During filtering commits, we have removed meaningless

tokens in a commit message, such as punctuation, stop words,
url, changes ID, etc., which avoids meaningless tokens affect
the quality of filtered results

Figure 5: The smoothed distribution of buggy code in
terms of their size. The x-axis denotes the number of
tokens for the buggy code. The y-axis indicates the den-
sity of the buggy code with the corresponding amount
of tokens.

Figure 6: The distribution of commit message based on
their size.

for the buggy code has a long tail that extends
over 300 tokens, while the density for the commit
message has a peak before 10 tokens. Figure 7
shows the distribution of the line number for the
first appeared buggy line. It can be seen that the
density for the line number also has a peak before
the fifth line of buggy code.

C Hyperparameter Settings

We train our models13 using Adam optimizer, the
initial learning rate is 3×10−4. The mini-batch size
and the dropout rate are 16 and 0.1, respectively.
We train our models for a maximum of 50 epochs14.
To avoid overfitting, we implement the early stop
if the validation performance does not increase for
10 consecutive iterations.

13The base Transformer model has about 40M parameters
and the joint model introduce about 0.8M parameters over it.

14It takes about 30 minutes to train an epoch.

https://www.nltk.org/
https://pygments.org/
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Figure 7: The distribution of the line of code that is first
appeared in the buggy.
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Figure 8: Examples on our crawled Cpp dataset. † and
‡mean the model is running under the monolingual set-
ting and multilingual settings, respectively.

D Case Study

To further analyze our model under a low-resource
setting, we present an example collected from the
Cpp dataset. As shown in Figure 8, both the
pipeline-based model and joint model, which are
under the monolingual setting, fail to correctly re-
pair code and appropriately generate commit mes-
sages, the most likely reason is that the lacking
amount of data doesn’t allow the model to success-
fully capture the useful patterns which are adapted
to the specific task. Expectantly, The joint model
under a multilingual setting successfully solves the
returned value bug. Besides, it captures the key
words “HitRecord” in generated commit message,
which makes the message more relative to the code

context. The example demonstrates that the model
performs better under a multilingual setting com-
pared to which under the monolingual setting, es-
pecially on the condition that the amount of mono-
lingual data is limited.


