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Abstract

Previous work has shown that human evalua-
tions in NLP are notoriously under-powered.
Here, we argue that there are two common
factors which make this problem even worse:
NLP studies usually (a) treat ordinal data as in-
terval data and (b) operate under high variance
settings while the differences they are hoping
to detect are often subtle. We demonstrate
through simulation that ordinal mixed effects
models are better able to detect small differ-
ences between models, especially in high vari-
ance settings common in evaluations of gener-
ated texts. We release tools for researchers to
conduct their own power analysis and test their
assumptions. We also make recommendations
for improving statistical power.

1 Introduction

Human evaluation remains the gold standard for
many natural language generation tasks, including
machine translation, data-to-text, summarisation,
and dialogue & interactive systems. One common
way to elicit text quality ratings from study partic-
ipants is to use a rating scale, e.g. a Likert scale
which measures agreement with a statement, or
other visual or verbal analogue scales, as in Fig-
ure 1a. Unfortunately, typically chosen statistical
analyses of these scores often rely on the flawed as-
sumption that the rating scales are interval, i.e. that
the distance between any two adjacent points on
the scale is the same across the full range of values,
so that, for example, the difference between ‘very
disfluent’ & ‘disfluent’ is the same as the distance
between ‘slightly disfluent’ & ‘slightly fluent’ on a
6-point scale (see Figure 1).

The distributions in Figure 1 illustrate the differ-
ent underlying assumptions of interval and ordinal
models of rating scale data: The rating scale in (1a)
is used to collect human judgements of text quality

*Work completed while at Heriot-Watt University.

(a) A six point rating scale for fluency

0.0

0.2

0.4

Ordinal Value

P
ro

b
a
b
ili

ty

(b) Example frequency histogram for data collected with (1a).
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(c) Interval model of the data in (1b).
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(d) Ordered probit model of the data in (1b).

Figure 1: The model in (1d) yields more accurate prob-
abilities than those in (1c).

(e.g. fluency), which results in a distribution of or-
dinal data as in (1b). In (1c) we follow the interval
assumption, that each point on the six-point rating
scale corresponds directly to a real-valued integer
and that we can model the relative probability of
any pair of ratings based on a Gaussian probability
density function. In contrast, (1d) assumes that
there is a latent variable for text quality and that
the ordinal scores from our surveys correspond to
different ranges of values on this latent scale.1 Dif-
ferent model assumptions influence the choice of
statistical significance test: when the data distri-

1For example, in this figure all latent values below −1.8
are associated with the category ‘Very disfluent’, which has
a probability equal to the cumulative probability of the latent
Gaussian distribution at −1.8.
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bution is known, it is often possible to choose a
parametric test to achieve greater statistical power
at lower computational cost (Dror et al., 2018).

While the debate about whether and when ordi-
nal scales can be treated as interval has been fought
for several decades (Glass et al., 1972; Knapp,
1990; Jamieson, 2004; Carifio and Perla, 2007; Wu
and Leung, 2017; Liddell and Kruschke, 2018), we
argue that ordinal data needs to be analysed as ordi-
nal in NLP: in this paper we demonstrate that this
misinterpretation of rating scales does in fact limit
the statistical soundness of our studies by simulat-
ing the effects. Previous research has shown that
human evaluations are notoriously under-powered
(Card et al., 2020). We show that these effects will
be exaggerated if we treat ordinal data as interval.
We compare the linear mixed effects models pro-
posed by Card et al. (2020), which treats rating
scale data as interval, and compare it to a corrected
version, which uses ordered probit models and ap-
propriately treats the data as ordinal. We show that
ordinal models are more likely to detect a real ef-
fect, especially when the effect size is small, the
variance is high, or the sample size is small, all of
which are common in human evaluations.

We release all of our code so that other
researchers can adjust the assumptions of
our models to match the reality of their
evaluation settings and easily estimate appro-
priate sample sizes using the same simula-
tion methods: https://www.github.com/
dmhowcroft/ordinal-models

2 Current reporting practices

Significance testing provides an assessment of how
extreme the observed values are according to a ran-
dom noise model. For example, if an observed
difference in performance between two systems
is not distinguishable from noise centered at zero,
then we would not want to rank one system above
the other, with implications for leaderboards and
the replicability of results (van der Lee et al., 2019;
Dror et al., 2018; Card et al., 2020).2 However,
not many studies include significance tests: regard-
less of whether using automated metrics or human
evaluations, only about a third of studies reported
significance tests according to recent surveys (Dror
et al., 2018; van der Lee et al., 2019). And even

2Note that some argue against statistical significance tests
for NLP because the independence assumptions do not nec-
essarily hold (Koplenig, 2019; McShane et al., 2019; Carver,
1978; Leek et al., 2017).

when researchers do include significance tests, they
often apply the tests incorrectly (Dror et al., 2018;
Amidei et al., 2019), with Amidei et al. (2019)
reporting that the majority of recent papers incor-
rectly interpret rating and Likert scales as interval
data (up to 84% for Likert scales; Figure 1 illus-
trates why this is a problem).

3 Models of Ordinal Data

Card et al. (2020) suggest that NLP researchers
follow psycholinguists in adopting linear mixed
effects (LME) models3 for statistical modelling and
significance testing. Mixed effects models control
for random noise due to the individual items and
participants in an experiment and allow for richer
statistical comparisons than t-tests or ANOVAs,
though they have the same drawbacks in assuming
that the data is metric. The general form is given
in Equation 1:

Y = Xβ + Zu + ε, (1)

where X and Z are design matrices for fixed and
random effects, respectively, β is a vector of fixed
effects, u is a vector of random effects, and ε is the
residual noise in the model, assumed to be Gaus-
sian. Given some observed data (Y ) we estimate
the fixed (β) and random (u) effects.

In the common lme4 (Bates et al., 2015) nota-
tion, a model comparing ratings for several systems
with random effects for participants and items is:
rating ~ system +

(system|participant) +
(system|item)

This specifies a model for ratings with
a fixed effect of system and random
effects (system|participant) and
(system|item). As a ‘maximal model’
(Barr et al., 2013), it includes random intercepts to
represent the general bias of individual participants
and items (e.g. some participants give higher or
lower ratings on average) and random slopes to
represent the interactions between random and
fixed effects (e.g. some users may systematically
prefer system A or system B). These random
effects are designed to control for the fact that our
participants and items are samples from larger
populations: we are not interested in the behaviors
of these individuals, but rather in more general
assessments of text quality that should generalise
to a larger population

3Also known as hierarchical or multi-level models.

https://www.github.com/dmhowcroft/ordinal-models
https://www.github.com/dmhowcroft/ordinal-models
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Instead of using LME models, we argue that
researchers should use ordinal mixed-effects mod-
els to analyse ordinal data. Unlike LME models,
ordinal regression models do not assume that the
data is metric. Here we focus on ordered probit
models as implemented in ordinal (Christensen,
2019) for ease of explication, but researchers are
free to use alternative linking functions (e.g. logit)
or tools as needed.4 The key difference from the
LME model is that we no longer assume that our
observed ratings Y are on a continuous scale we
can model directly. Instead, we assume that there
is an underlying latent variable Yl which is con-
tinuous. We represent this latent variable with a
standard Gaussian distribution with a mean of 0
and a standard deviation of 1. The link between the
observed variables Y with k possible categories
and Yl is then based on fitting a series of k − 1
thresholds τ such that:

P (Y = i) = Φ(τi −Xβ − Zu) − (2)

Φ(τi−1 −Xβ − Zu),

where Φ is the cumulative density function for the
Gaussian distribution and other terms are as de-
fined above. This corresponds to a model where,
when participants are asked to rate an item, they
are implicitly accessing this continuous variable
and determining how best to bin it based on the
categories available to them. Figure 1 exemplifies
this for a single system (i.e. fitting τi but no fixed
or random effects).

When comparing systems, then, the goal of the
model is to fit these thresholds as well as a fixed
effect representing the differences between the sys-
tems while controlling for noise. These differences
can be thought of as shifting the thresholds along
the latent variable axis or, equivalently, as shifting
the mean of the underlying latent variable.

4 Simulation Experiments

Our experiments take the form of a power simula-
tion, i.e. an analysis of the statistical power of a
given test in typical or expected experimental con-
ditions. In a power simulation we generate a set of
data with known parameters (e.g. a known ‘effect
size’ difference between conditions) and measure
how often a statistical test correctly identifies that
effect in the simulated data. In order to limit the

4This is a cumulative link model. Alternatives include
sequential and adjacent category models. Bürkner and Vuorre
(2019) provide an overview. Appendix C lists other tools.

complexity of a power simulation, the researcher
estimates ‘typical’ values of as many model param-
eters as possible and then systematically explores
possible values for the other parameters.

In our case, we begin by fitting ordinal models
on several NLG evaluation datasets. The resulting
models then allow us to simulate NLG datasets
with different numbers of raters, different amounts
of variance, and different effect sizes in order to
understand how many participants are needed to
detect effects of different sizes.

4.1 Datasets

We use 6 datasets to estimate parameters for our
simulations: 4 datasets used by (Card et al., 2020,
HUSE1-3 & PPLM), the dataset used by (Novikova
et al., 2017, NEM1-2) and a reproduced version of
the NEM dataset with new ratings gathered using
different instructions (reNEM).

The HUSE1-3 datasets include ‘typicality’ judge-
ments from crowdworkers on a 6-point scale rang-
ing from ‘invalid’ to ‘very typical’ for 3 dif-
ferent tasks: sampling from LMs, summarisa-
tion, and chit-chat conversational turn generation
(Hashimoto et al., 2019). PPLM includes ‘fluency’
judgements from expert annotators on a 5-point
scale ranging from 1 = “not fluent at all” to 5
= “very fluent” for texts generated in a lightly-
conditioned style- or topic-transfer task (Dathathri
et al., 2020). NEM1-2 and reNEM include ‘qual-
ity’, ‘naturalness’, and ‘informativeness’ judge-
ments from crowdworkers on a 6-point scale for
data-to-text generation in the restaurant domain.
We included NEM1-2 and reNEM to compensate for
the fact that two of the datasets used by Card et al.
(2020) are not publicly available and to include
reproduced ratings for the same outputs. The more
detailed instructions provided to reNEM raters re-
sult in a higher degree of interannotator agreement.

Note that the datasets we had access to for
this study are mostly use 6-points, while (van der
Lee et al., 2019) found that the most frequently
used rating scale in NLG research is the 5-point
scale, which is also confirmed by (Howcroft et al.,
2020). Other frequently used scales are 3,4,6,7-
point. However, the methodology we propose
should generalise well to other scale sizes.

Among the datasets we use, there is wide vari-
ation in the number of ratings included (ranging
from 4k to 41k ratings, median 7.4k, mean 13k).
Further details are provided in Appendix A.
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4.2 Experiment Settings

We estimate parameter settings for our simulations
by fitting an ordered probit model for each dataset
above. The low (high) variance setting uses the
smallest (largest) observed by-participants and by-
items variances, while the ‘General’ condition is
based on the mean observed variances.5 We also
base the distance between thresholds in the latent
variable space on the estimates from these fitted
models.

We then simulate 100 experiments comparing
two systems for each combination of experimental
design factors considered: (1) 3 or 10 participants
per item; (2) 50, 100, or 500 items per system;
and (3) an effect size of 0.25, 0.5, 0.75, or 1 times
the distance between adjacent thresholds. We base
the effect sizes on the settings used by Card et al.
(2020): in their experiment, the average distance
between adjacent values was 0.2 on a 0-1 scale and
they used effect sizes of 0.05, 0.1, 0.15, and 0.2.

Unlike Card et al. (2020), we construct design
matrices to create our item lists such that each par-
ticipant sees only 25 items and never sees the same
item in multiple conditions (rather than seeing all
items in every condition). This represents a more
realistic experimental design, since designs requir-
ing every participant to rate every item are rare.

The interval assumption in (Card et al., 2020)
also influences the quality of the simulations used
for their analyses: since they do not model variance
in an ordinal regression model, their simulated data
will, in fact, be interval data, unlike the data they
seek to model. We also correct for the calculation
of p-values for LMEs by using the lmerTest
library (Kuznetsova et al., 2017), which is designed
to produce accurate p-values by approximating the
number of degrees of freedom.6

For all of our tests we used the conventional
p < 0.05 significance threshold. For the ordinal
models, the ordinal package itself provides p-
values. Our plots show the proportion of simula-
tions for a particular condition where the statistical
test identified the underlying effect as significant.

5Since these variances are in part dependent on the size
of the scale, we use only the 6-point scales in these analyses,
with ‘extra low’ and ‘extra high’ variance settings based on
the PPLM dataset included in the appendices.

6Card et al. instead directly used z-values output by the
lme4 package as though they corresponded to z-values in
other kinds of statistical tests, with a clean mapping to p-
values. The authors of lme4 advise against doing this.
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Figure 2: Power curves for the same data fit with
both linear mixed-effects models (lme_re) and ordinal
mixed-effects models (clm_re). Additional variance
settings are included in Appendix B.

4.3 Results

Figure 2 shows the results of these simulations.
Each point on the curve represents the proportion
of times the given statistical model (either an or-
dinal – represented with solid lines – or a linear
mixed-effects model – dashed lines) is able to de-
tect an effect of the size given on the x-axis (i.e. the
model’s power at that effect size). The message is
clear: the ordinal model is always more likely to de-
tect a true effect of any size than the corresponding
linear model is (all of the solid lines of a given color
are always above their dashed counterpart). How-
ever, this is especially true for settings with high
variance and for smaller effect sizes. Moreover, the
ordinal model using only 50 items is approximately
as powerful as the linear model using 100 items!
As such, we can conclude that using an ordinal
model for rating and Likert scales will always lead
to more reliable results. However, for settings with
high variance and small data samples, as typically
the case for human NLP evaluations, using ordinal
models is even more crucial.
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In the meta-analysis comparing different datasets
mentioned above, we found that the difference be-
tween models ranged from -0.6 to 1.0, with 9 out
of 12 systems for which an effect was estimated
having a difference less than 0.46 (i.e. 0.75 times
the average distance between adjacent thresholds).
The above analysis indicates that a study with 100
items and only 3 ratings per text would require
an ordinal model to detect an effect of this size
with 80% power, except in the low variance set-
ting. While van der Lee et al. (2019) found that
the median/average study did use 100 items and
4 annotators, they also found that “only 55% of
papers specified the number of participants” and
they did not report on how many items each partici-
pant rated. Since most studies are not using ordinal
analyses of their data (Amidei et al., 2019), our
simulation results suggest that most human eval-
uations are underpowered to detect typical sys-
tem differences, exaggerating the effects reported
in Card et al. (2020).

5 Discussion

In contrast to the (common) assumption followed
by Card et al. (2020) that ordinal data can be anal-
ysed as interval data, we show that treating ordinal
data as interval makes human ratings even more
under-powered. This is a problem because, in prac-
tice, NLP evaluations often aim to detect small
differences (i.e. effect sizes) in high variance set-
tings while operating under a limited budget or
with limited access to human raters.

Since our proposed framework is independent
from the concrete instantiation of the scale and
generalises well, our hope is that other researchers
can adapt our code to gain a better understanding of
what kind of scale and statistical model to use for
their next experiment. We also recommend setting
simulation parameters based on e.g. their own past
experiments if similar.

One open question is how to best choose the
best scale and model. In general, each researcher
needs to choose appropriate tools based on their
knowledge of the data. On the one hand, they may
prefer to start with 5+ points on their scale, use or-
dinal regression to measure variance, and only later
conclude that the differences seem large enough
for their task & survey instruments that they can
switch to simpler scales and/or models. On the
other hand, they may reason that ‘yes-no questions
are easy/cheap to ask, so let’s see if those are in-

formative enough for our needs’. If the differences
between systems are large enough, they may even
be able to use an even simpler model than an LME
model (for example, a simple Chi-squared test on
‘the proportion of positive responses’). However,
if the differences are not in fact large enough for
such a simple scale & analysis to capture, then they
have wasted time and resources to collect data they
cannot use. Both approaches are reasonable, but
researchers should be aware of the power problems
highlighted in our paper when they start planning
and choosing an approach.

6 Conclusion

We see three core ways to improve the power of
human evaluations: First, reduce noise in human
ratings. The reNEM dataset’s clear definitions, guid-
ance, and training reduced noise in the resulting hu-
man ratings, which reduces between-participants
variance and increases the ability of a statistical
model to distinguish between similar systems. Sim-
ilar studies have been conducted for machine trans-
lation (Freitag et al., 2021).

In addition to providing clear instructions, we
can also design experiments to include more items
and more participants, using power analyses like
the ones presented in this paper to estimate how
large a sample we need before collecting any data.

Most importantly, however, we recommend re-
searchers use ordinal models to analyse ordinal
data to have the greatest statistical power when test-
ing hypotheses. This is especially important for
setups with high variance and small data samples,
as often the case for human evaluations in NLP.
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A Datasets

HUSE1-3 The first three datasets come from
Hashimoto et al. (2019), and all measure the ‘typ-
icality’ of a text on a 6-point scale ranging from
‘invalid’ to ‘very typical’. These three datasets
represent 3 different tasks: sampling from LMs,
summarisation, and chit-chat conversational turn
generation. The authors report collecting judge-
ments on 100 human and 100 model texts from
20 human participants who each provided 25 rat-
ings. However, these numbers do not match what is
found after downloading the data, which we report
in Table 1.

PPLM Collected by Dathathri et al. (2020), this
data includes 5-point rating scale judgements as-
sessing fluency ranging from 1 = “not fluent at all”
to 5 = “very fluent” as in (Lample et al., 2019). The
task in this case is style- or topic-transfer, and the
authors report using 9 professional annotators to
rate texts for 4 different models. See further detail
in Table 1.

NEM1-2 Collected by Novikova et al. (2017) in
order to assess correlations between automated and
human evaluation metrics for data-to-text gener-
ation. Participants saw the input slot-value pairs
along with two candidate utterances which they
then rated on 6-point scales for ‘informativeness’,
‘naturalness’, and ‘quality’. Each crowdworker
evaluated a maximum of 20 utterances; each text
was scored by 3 different crowdworkers. See fur-
ther detail in Table 1.

reNEM A local re-collection of ratings for the
NEM1-2 dataset, this study provided annotators with
training in how to use the rating scales and assessed
each dimension of quality (‘informativeness’, ‘nat-
uralness’) separately. There are 3 ratings for each
text. See further detail in Table 1.

B Simulating extra low and extra high
variance

The PPLM dataset exhibited more extreme values
for the random effects structure of the fitted ordered
probit model. Since this is 1 of 6 datasets and the
other values were closer together, we omit this anal-
ysis from the main text. Note, however, that the
results support the primary findings: ordered probit
models always have more power to detect a true
effect than a linear model, though these differences
nearly disappear when variance is extremely low
and are more pronounced in extremely high vari-
ance settings, as seen in the top and bottom plots
in Figure 3.

C Resources for Ordinal Regression
Models

There are several packages available for ordinal
regression models in R, including MASS (Venables
and Ripley, 2002), VGAM (Yee, 2010), rms (Har-
rell, 2021), ordinal (Christensen, 2019), and
brms (Bürkner and Vuorre, 2019). Resources also
exist for ordinal models in SPSS, SAS & S-Plus,
and STATA; (Christensen, 2019) and (Bürkner and
Vuorre, 2019) include pointers to resources for
these tools and briefly describe the other R pack-
ages mentioned here.
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Scale
Size

Num.
Systems

Num.
Items

Num.
Texts

Num.
Part.s

Num.
Ratings

Ratings
Text

Ratings
ParticipantDataset

HUSE1 6 2 50 100 124 4000 40 25
HUSE2 6 2 99 197 96 4000 20 25
HUSE3 6 4 99 382 123 12000 20 25
PPLM 5 4 1361 1361 14 19486 9 1356*
NEM1 6 2 202 296 – 2967 3 –
NEM2 6 2 972 1954 – 40965 9* –
reNEM 6 3 1174 2250 – 7380 3 –

Table 1: Scale size is the size of the ordinal rating scale. Num. Systems is the number of systems being evaluated,
Num. Items is the number of unique inputs to the systems, Num. Texts is the number of unique outputs being evalu-
ated, Num. Raters is the number of unique participants. Num. Ratings is the total number of judgements recorded.
Ratings/Text and Ratings/Participant report how many ratings were associated with each text or participant in the
most frequent case (*except in two cases where the median is more representative of the distribution). For the
NEM1-2 and reNEM datasets, the number of unique raters is not known.

# Ratings / Text: 3 # Ratings / Text: 10

E
x
tre

m
e
 L

o
w

 V
a
ria

n
c
e

L
o
w

 V
a
ria

n
c
e

G
e
n
e
ra

l
H

ig
h
 V

a
ria

n
c
e

E
x
tre

m
e
 H

ig
h
 V

a
ria

n
c
e

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Difference in Means (in latent variable space)

P
o
w

e
r

Number of Items 50 100 500

Model clm_re lme_re

Figure 3: Power curves for the same data fit with
both linear mixed-effects models (lme_re) and ordinal
mixed-effects models (clm_re).


