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Abstract
Neural Machine Translation (NMT) is known
to suffer from a beam-search problem: after
a certain point, increasing beam size causes
an overall drop in translation quality. This
effect is especially pronounced for long sen-
tences. While much work was done analyzing
this phenomenon, primarily for autoregressive
NMT models, there is still no consensus on its
underlying cause. In this work, we analyze er-
rors that cause major quality degradation with
large beams in NMT and Automatic Speech
Recognition (ASR). We show that a factor that
strongly contributes to the quality degradation
with large beams is dataset length-bias - NMT
datasets are strongly biased towards short sen-
tences. To mitigate this issue, we propose
a new data augmentation technique – Multi-
Sentence Resampling (MSR). This technique
extends the training examples by concatenat-
ing several sentences from the original dataset
to make a long training example. We demon-
strate that MSR significantly reduces degrada-
tion with growing beam size and improves fi-
nal translation quality on the IWSTL15 En-Vi,
IWSTL17 En-Fr, and WMT14 En-De datasets.

1 Introduction

In this work, we address the beam-search prob-
lem in Neural Machine Translation (Koehn and
Knowles, 2017). Beam Search is the standard hy-
pothesis search method for autoregressive sequence
generation. Large beams provide more probable
hypotheses than small beams; however, the overall
translation quality drops with growing beam size
after a certain point. This effect is especially strong
for long sentences, connecting with the fact that
NMT models are biased to giving high probabil-
ities to short hypotheses. Stahlberg and Byrne
(2019) showed that exact search by likelihood for
neural machine translation finds empty string as
the optimal hypothesis in more than 50% of cases.

One of the most famous methods to mitigate
quality degradation with growing beam size is

length normalization (Bahdanau et al., 2016; Wu
et al., 2016). This technique normalizes log-
likelihoods of a hypothesis in beam search by its
length, thus promoting long hypotheses. Other
methods examine adding a reward for each token’s
score during the decoding process (Yang et al.,
2018; Murray and Chiang, 2018).

While the beam-search problem has been ex-
tensively studied (Sountsov and Sarawagi, 2016;
Murray and Chiang, 2018; Kumar and Sarawagi,
2019; Meister et al., 2020; Eikema and Aziz, 2020;
Yang et al., 2020; Wang and Sennrich, 2020) there
is still no consensus on the underlying reason for
such model behavior. Furthermore, prior work has
investigated this problem primarily for NMT mod-
els, giving little attention to other domains that
are also known to suffer from it, such as Auto-
matic Speech Recognition (ASR) (Chorowski and
Jaitly, 2017; Zhou et al., 2020). Murray and Chi-
ang (2018) noticed that since in each step of beam-
search generation, negative log-probability is added
to the hypothesis’ score, if a model overestimates
the probability of an already generated sequence
of tokens, there is no way to downgrade this proba-
bility afterward. Consequently, models are biased
towards finalizing a short hypothesis by generating
an end-of-sequence token (EOS) rather than gener-
ating a long continuation. Their experiments show
a connection between quality degradation and de-
creasing length of hypotheses with growing beam
size. Our work is in agreement with their expla-
nation. Moreover, we show that the main quality
degradation with large beams in NMT and ASR
comes from short translations obtained by early
termination of long hypotheses from small beams.

Our work examines how the distribution of sen-
tence lengths in a dataset affects the beam-search
problem. We demonstrate that the beam-search
problem is strongly connected with the distribution
of sentence lengths in training datasets. Specifi-
cally, we show that common NMT datasets, such as
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IWSLT and WMT, exhibit a strongly skewed distri-
bution of sentence lengths, with the mode focused
on short sentences. NMT models learn biased prob-
ability distributions and fail on long sentences dur-
ing inference. In contrast, for ASR models trained
on Librispeech (Panayotov et al., 2015), where the
distribution of sentence lengths is more symmetri-
cal and biased towards longer sentences, the beam-
search degradation occurs at much larger lengths.
Based on our findings, we propose a simple and ef-
fective dataset augmentation technique that makes
training examples longer – Multi-Sentence Resam-
pling. It creates a new dataset where each train-
ing sample can be a concatenation of multiple sen-
tences. Our method alleviates quality degradation
with growing beam size and increases the final qual-
ity of the model.

The key contributions of our work are as follows:

• We show that quality degradation with grow-
ing beam size comes mostly from short trans-
lations, which are early finalized prefixes of
long hypotheses;

• We show that training datasets that are biased
towards short sentences strongly contribute to
the beam-search problem;

• We introduce Multi-Sentence Resampling –
a simple and effective dataset augmentation
technique that alleviates beam search problem
and increases the final translation quality1.

2 Quality degradation analysis

This section analyzes quality degradation with the
growing beam size of two systems: Neural Ma-
chine Translation (NMT) and Automatic Speech
Recognition (ASR). ASR is also known to suffer
from the beam-search problem (Zhou et al., 2020;
Chorowski and Jaitly, 2017). The models, training,
and evaluation processes of NMT and ASR mod-
els in our work are almost identical. However, the
ASR dataset (Librispeech) has some properties that
are differ from the Machine Translation setting: the
average length of target sentences in the training
dataset is much larger than in the test, which is why
we chose this task for comparison.

2.1 Experimental setup
In order to make an informative comparative anal-
ysis of beam-search quality degradation between

1Our code is available at https://github.com/
yandex-research/msr

NMT and ASR, we aimed to make the model and
experimental setup for both tasks as similar as pos-
sible to minimize mismatch. Specifically, the vo-
cabulary, pre-processing, and models (except the
first two layers of the ASR encoder) are identical
between the two tasks.

Datasets and preprocessing
We use IWSLT2017 Fr-En, IWSLT2015 En-Vi,

WMT2014 En-De, and Librispeech (Panayotov
et al., 2015) datasets. The information about them
is summarized in Table 1. We use standard val-
idation and test splits for WMT, for the IWSLT
En-Vi pair we used test 2012 for validation and
test 2013 as a test set, for the IWSLT En-Fr pair
we used development set 2010 for validation and
test 2015 as a test set. The bulk of the analy-
sis is done on IWSLT17 Fr-En and LibriSpeech-
clean, as they are similar in the number of target-
side tokens. As there is no information about the
case in Librispeech, we converted Librispeech and
IWSLT2017 Fr-En to lowercase to have similar
conditions for these datasets. For all other datasets
the casing is unchanged. We preprocess all datasets
with the Moses toolkit3, and use BPE (Sennrich
et al., 2016) with vocabulary size 32k for WMT
and 5k for other datasets, as small vocabularies are
beneficial for small datasets (Ding et al., 2019).

Model and Optimization
For NMT, we use Transformer base (Vaswani

et al., 2017) model from fairseq (Ott et al., 2019).
For IWSLT, we use the batch size of 8k tokens
and dropout coefficient 0.2; all other parameters
are kept as in (Vaswani et al., 2017). Models are
trained until convergence on a validation dataset.

For ASR, we used Transformer-base with two
additional convolutional layers in the encoder, as
suggested in (Wang et al., 2020a), all parameters
for ASR are kept as in the original paper.

Inference and Evaluation
To produce length-normalized hypotheses, we

use standard beam-search from fairseq (Ott et al.,
2019). For evaluation, we averaged the last 5 check-
points and use BLEU (Papineni et al., 2002) com-
puted via Sacrebleu (Post, 2018).

For evaluating the ASR system, we used word-
error-rate (WER) (Marzal and Vidal, 1993) – a
standard metric that shows edit distance from gen-
erated sequence to reference.

3https://github.com/moses-smt/
mosesdecoder

https://github.com/yandex-research/msr
https://github.com/yandex-research/msr
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
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Number of sentences Number of tokens Avg. sentence length
(train/dev/test) in train (en) in tokens

Librispeech clean 133k / 2703 / 2620 4.6M 34.9

IWSLT17 En Ø Fr 232k / 890 / 1210 4.8M 20.5

IWSLT15 En Ø Vi 133k / 1553 / 1268 2.7M 20.3

WMT14 En Ø De 4.5M / 3000 / 3003 11.4M 25.2

Table 1: Overview of the datasets. The number of tokens is calculated after Moses preprocessing2.

2.2 Degradation analysis

(a) IWSLT17 Fr-En

(b) Librispeech

Figure 1: Comparison of BLEU and WER scores of
hypotheses normalized and not normalized by length
for different beam sizes. The Librispeech model was
trained and tested on the ’clean’ subset.

In this section, we analyse which errors con-
tribute to quality degradation with growing beam
size in ASR and NMT and provide additional evi-
dence to connect the beam-search quality degrada-
tion with the hypotheses shortening on large beams.

Here, and later in this work, we abbreviate mod-
els with length-normalized beam search as normal-
ized, while models without length-normalization as
unnormalized. Figure 1 shows quality of IWSLT Fr-
En and Librispeech models with beam size growing
from 1 to 800 on test sets. Normalized models do
not show quality degradation with growing beam
size. However, without length normalization, qual-
ity drops significantly with increasing beam-size.

To show which test samples cause a drop in qual-
ity, we divide the test sets into several categories,

based on hypotheses from beam size 5 and beam
size 400. These categories are following:

• b400 ě b5 – sentences on which sentence-
level BLEU of a top hypothesis from beam
size 400 is greater or equal than sentence-level
BLEU of a correspondent hypothesis from
beam size 5. In other words, all cases where
quality improved or didn’t change with the
large beam size.

• b400 À b5 – sentences where best hypothesis
from beam 400 is a prefix of a corresponding
best hypothesis from beam 5 (except EOS
token and "." before EOS). An example of this
category is a pair of hypotheses: "I can" from
beam size 400, and "I can do this tomorrow
if you wait." from beam size 5, the first is a
prefix of the second;

• b400 ă b5 – all other cases that are not in the
first 2 categories. In other words, examples
where quality drops, however top hypothesis
from beam 400 is not a prefix of a correspon-
dent top hypothesis from beam 5.

Dataset IWSLT17 Librispeech

Subset unnorm. norm. unnorm. norm.

b400 ě b5 90 95.6 97.6 98.7
b400 À b5 3 0 0.9 0
b400 ă b5 7 4.4 1.5 1.3

Table 2: Distribution of cases (%) according to de-
fined categories between beam 5 and beam 400. Norm.
means length-normalized versions of translations.

Table 2 shows how hypotheses are distributed
among categories. The smallest is the category
with prefixes – "b400 À b5". Such examples are
only 3% of cases in IWSLT and nearly 1% in Lib-
rispeech in unnormalized versions. This is signif-
icantly less than the category "b400 ă b5" which
represents all other cases where quality drops.
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Subset beam 5 beam 400 Contribution to
degradation

IWSLT Fr Ñ En, BLEU
b400 ě b5 38.83 39.29 +0.41
b400 À b5 38.71 0.13 -1.16
b400 ă b5 36.70 30.75 -0.42

Librispeech, WER
b400 ě b5 5.5 5.4 -0.1
b400 À b5 22.9 86.5 +0.57
b400 ă b5 17.6 26.6 +0.13

Table 3: BLEU scores for IWSLT17 and WER scores
for Librispeech corresponding to the different cate-
gories. Column "Contribution to degradation" repre-
sents the difference between beam 400 and beam 5
scores, weighted by the percentage of the dataset in the
corresponding category from Table 2.

Although examples where the EOS token ap-
peared too early during the generation of a rea-
sonable, long hypothesis, are smallest category,
they have the greatest contribution to the over-
all quality degradation with growing beam size.
Consider Table 3, which shows quality in terms
of BLEU/WER for different categories and beam
sizes. The biggest drop in quality is in the prefixes
category. It drops from 38.71 BLEU to almost 0
for IWSLT. For Librispeech, WER increases from
22.9 to 86.5 in the same category. Performance
within the category "b400 ă b5" degrades more
modestly, losing 5 BLEU and gaining 3.52 WER,
respectively. Weighed by the fraction of each cate-
gory within the datasets, the prefixes category con-
tributes nearly 3 times more than the non-prefix
category to the overall BLEU on IWSLT (1.16 vs.
0.42), and nearly 4 times more to the overall WER
on Librispeech (0.57 vs. 0.13)4.

Table 4 shows that the prefix category (early
EOS) is also the most significant in terms of length
reduction with growing beam size. Length for
beam 400 in this category is nearly 84% lower com-
pared to beam 5. Interestingly, early EOS occurs
mainly in examples where the top hypothesis from
beam 5 is long, on average 53.8 tokens in IWSLT
and 67.17 in Librispeech, which is much longer
than average lengths over the whole test datasets,
24.53 and 26.73 respectively. This observation
adds further evidence to the connection between
hypotheses shortening and the quality degradation
with growing beam size.

4This is an approximate analysis, as BLEU is a non-linear
corpus-level statistic.

Subset beam 5 beam 400 Contribution to
shortening

IWSLT Fr Ñ En
b400 ě b5 22.02 21.69 -0.3
b400 À b5 53.8 8.72 -1.35
b400 ă b5 44.2 39.3 -0.34
whole test 24.53 22.54 -1.99

Librispeech
b400 ě b5 26.12 26.11 -0.01
b400 À b5 67.17 10.65 -0.51
b400 ă b5 42.67 39.15 -0.05
whole test 26.73 26.17 -0.56

Table 4: Average token lengths of best hypotheses from
different beam sizes and categories. Column "Contribu-
tion to shortening" represents the difference between
columns "beam 400" and "beam 5" weighted by the
fraction of the corresponding category in the dataset.

Our findings relate to work studying calibration5

problems of NMT, which show that NMT archi-
tectures are poorly calibrated, especially the EOS
token (Kumar and Sarawagi, 2019; Wang et al.,
2020b).

2.3 Dataset length-bias
Having found further evidence to link length bias
with the beam search problem, we examine and
compare the distribution of sentence lengths in typ-
ical NMT and ASR datasets.

Consider Figure 2, which shows the distribution
of sentence lengths in IWSLT17 Fr-En, IWSLT15
En-Vi, WMT14 De-En, and Librispeech datasets.
The NMT datasets have an average sentence length
between 20 and 25 tokens and exhibit a strong,
asymmetric skew towards short sentences. In con-
trast, the Librispeech training dataset exhibits a
more symmetric distribution of sentence length,
with an average length of more than 40. At the
same time, the distribution of lengths in the test
and validation sets is similar to NMT. As a result,
during training on Librispeech, the model sees a
far larger and diverse set of long sentences than is
encountered in evaluation.

Let’s investigate how quality relates to the
length of the target sentences. Figure 3 shows
BLEU/WER scores on the test sets for buckets
based on the reference length. If we compare
Figure 2 with Figure 3 we will note an interest-
ing feature: quality degradation on unnormalized
beam 400 in machine translation tasks starts af-
ter length around 30 and mostly monotonically in-

5Calibration measures how well the model’s probability
distribution matches the actual data distribution.
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(a) IWSLT Fr-En (b) IWSLT En-Vi (c) WMT De-En (d) Librispeech

Figure 2: Distribution of target side sentence lengths after Moses and BPE for different datasets. Vertical lines
represent mean of the corresponding distribution.

(a) IWSLT Fr-En BLEU (b) IWSLT En-Vi BLEU (c) WMT De-En BLEU (d) Librispeech-clean WER

Figure 3: BLEU scores for buckets with growing sentence length. Each point represents quality calculated on
sentences with lengths from the previous point to the current position, starting from 0.

creases as we go to longer sentences. In contrast,
on Librispeech, the quality starts to drop only after
the length 60, which correlates with the distribu-
tion of lengths of train examples. Specifically, in
IWSLT17 Fr-En dataset, only 30% of training sen-
tences have lengths greater than 30 and less than
10% are longer than 50 tokens. In contrast, Lib-
rispeech has many training sentences with a length
of 60 tokens or less, and their amount drops rapidly
only after this value, with about 5% of sentences
having a length greater than 65 tokens.

Thus, we can clearly see that beam search quality
degrades when operating on sentences, which are
underrepresented in the training datasets in terms of
reference length. This brings us to one of the main
ideas of our work: training datasets biased towards
short sentences strongly contribute to the quality
degradation with growing beam size. In typical
training datasets in Machine Translation (IWSLT
and WMT) long sentences are significantly under-
represented, causing models to overfit to shorter
sentences and overestimate probabilities of short
prefixes. In the next section, we propose a data-
augmentation strategy to alleviate this issue.

Algorithm 1: Multi-Sentence
Resampling
D Ð old train dataset with pairs of
sentences;
N Ð maximum number of sentences in one
example in a new train dataset;
S “ |D| ¨M Ð number of examples in the
new train dataset;
RÐH – new dataset;
for i in 1..S do

nÐ random integer from 1 to N
new_source “ ""
new_target “ ""
for k in 1..n do

(cur_source, cur_target) “ sample
random example from D

new_source `“ cur_source
new_target `“ cur_target

end
R.appendppnew_source, new_targetqq

end
return R;
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Figure 4: Example of Multi-Sentence Resampling with N=3. In the new train dataset with equal probability there
are examples with 1,2 and 3 sentences from the original dataset.

3 Multi-Sentence Resampling

In this section, we introduce Multi-Sentence Resam-
pling (MSR) – a simple data augmentation method
that alleviates the beam search problem by address-
ing dataset length bias and which increases the
overall quality of translation models. Specifically,
MSR augments a dataset such that instead of one
sentence, each training example consists of 1 to N
sentences, randomly chosen from a dataset and con-
catenated one after another. It preserves the order
of sentences: the source side is concatenated to the
source side, and the target side is concatenated to
the target side of a new train example. For each new
training example, MSR randomly chooses from 1
to N sentences, so that the model does not overfit
to the particular number of sentences.

Figure 4 illustrates the algorithm. The original
training dataset, with 3 examples, is on the left, and
the dataset created by Multi-Sentence Resampling
is shown on the right. The new dataset contains 6
train examples: 2 examples with one sentence, 2
examples with a concatenation of two original sen-
tences, and 2 examples with a concatenation of 3
original sentences. The full procedure is described
in Algorithm 1. The algorithm takes an original
train dataset, desired number of examples in the
augmented dataset S, and the maximum number
of sentences in an example N . Multi-Sentence Re-
sampling increases the average length of the dataset
and provides a diverse set of long training exam-
ples. In contrast to other methods that use rescoring
of hypotheses and per-token rewards (Yang et al.,
2018) or predict target length separately (Yang
et al., 2020), our method does not change the search
procedure.

Figure 5 illustrates how train examples length
distribution changes in IWSLT17 Fr-En dataset for
N from 2 to 5. With growing N distributions be-

Figure 5: Distribution of sentence lengths for different
N in MSR for IWSLT17 Fr-En dataset (en part). Verti-
cal lines represent mean of the corresponding distribu-
tion.

come more flatten for lengths presented in the test
set. The average length of examples in a new train
dataset can be approximately calculated as

new_length »
N
ÿ

n“1

L ¨ n

N
“ L ¨

N ` 1

2
,

where L is the average length of the original
dataset.

4 Experiments

In this section we provide an empirical evaluation
of the Multi-Sentence Resampling on the IWSLT
and WMT datasets.

4.1 Experimental setup
To compare with the original Transformer pa-
per (Vaswani et al., 2017), where authors used
another beam-search parameters and BLEU com-
putation, we added additional part to Table 5. For
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this part we changed length penalty to 0.6 in beam-
search and compute BLEU as in (Vaswani et al.,
2017)6. As baselines we use standard models
trained without data augmentation.

In our experiments, for IWSLT datasets M “ 10
– the new train dataset is 10 times larger than the
original one, for WMT2014 En-De M “ 5, as this
dataset is much bigger.

4.2 Quality with growing beam size

(a) IWSLT17 Fr-En

(b) WMT14 En-De

Figure 6: Quality with growing beam size of the base-
line, MSR N “ 4 and simple resampling.

Figure 6 compares quality degradation with
growing beam size for the baseline and MSR with
N “ 4 for IWSLT17 Fr-En datasets and WMT14
En-De. As an additional baseline, we compare
MSR with a simpler strategy on IWSLT – resam-
pling the dataset multiple times so that the prob-
ability of a sentence is proportional to its length.
This way, long sentences occur more frequently
during training. There are several interesting points

6https://github.com/pytorch/fairseq/
blob/master/scripts/compound_split_bleu.
sh

in this comparison. Firstly, Multi-Sentence Resam-
pling achieves significantly better quality than the
baseline on both datasets. Secondly, while the base-
line’s quality rapidly drops with the growing beam
size, the quality of the Multi-Sentence Resampling
drops much more slowly. In particular, MSR with
N “ 4 with beam size 800 has quality better than
the baseline with any beam size on IWSLT. On
WMT, improvements for large beam sizes are more
modest, which is expected, as data augmentation
has less effect on larger datasets. However, MSR
works on par with the length-normalized baseline
up to the beam size 400. Third, simple resampling
in IWSLT works slightly better than the baseline in
the unnormalized setting; however, it drops qual-
ity in the normalized case. The benefits of simple
resampling are limited because, unlike with MSR,
the set of long sentences severely lacks diversity,
and the model overfits to it during training.

We analyze how the value of the hyperparameter
N in MSR affects beam search quality in Figure 8,
which shows the quality of trained models for dif-
ferent values of N across a range of beam sizes.
On small beams, all N behave without significant
difference. On large beams, quality grows with N
up to 4 and decreases for larger N .

An additional analysis of how effects of the
Multi-Sentence Resampling vary with reference
length and number of concatenated sentences is
provided in Figure 7. Baseline unnormalized beam-
search with beam-width 400 works badly on long
sentences: quality degradation increases starting
from length 30. On the other hand, MSR with
N “ 4 has almost no degradation for long sen-
tences. Additionally, experiments with N “ 2 and
N “ 3 show that quality degradation on long sen-
tences decreases as we increase N , likely because
we start fitting the model to far longer sequence
lengths than encountered in the test set.

Table 5 examines the effects of MSR on a
range of translation tasks. All scores are com-
puted with Sacrebleu and default beam search from
fairseq (Ott et al., 2019), except "WMT14, eval as
in (Vaswani et al., 2017)". In this table, all MSR
experiments are conducted with N“4, which is a
simple baseline to choose N . We can make the
following observations. Firstly, on all datasets and
translation directions, models trained with Multi-
Sentence Resampling statistically significantly out-
perform baselines: from 0.42 to 0.76 BLEU on Fr-
En, En-Fr, Vi-En and En-Vi, and nearly 0.3 BLEU

https://github.com/pytorch/fairseq/blob/master/scripts/compound_split_bleu.sh
https://github.com/pytorch/fairseq/blob/master/scripts/compound_split_bleu.sh
https://github.com/pytorch/fairseq/blob/master/scripts/compound_split_bleu.sh
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(a) Original (b) MSR N=2 (c) MSR N=3 (d) MSR N=4

Figure 7: Changes of quality with growing sentence length for IWSLT17 Fr-En. Each point represents quality
calculated on sentences with lengths from previous point to the current position, starting from 0.

(a) IWSLT unnormalized

Figure 8: BLEU with growing beam size for Multi-
Sentence resampling with different N on IWSLT2017
Fr-En dataset. Each point is an average between 3 mod-
els trained with different random seeds.

original MSR
norm. unn. norm. unn.

IWSLT17
Fr-En 38.74 38.37 39.4 39.23
En-Fr 40.06 40.53 40.64 40.95

IWSLT15
Vi-En 29.57 29.56 30.01 30.08
En-Vi 31.78 30.99 32.54 31.17

WMT14, sacrebleu
En-De 26.61 27.01 26.92 27.29
De-En 30.96 30.15 31.25 30.59

WMT14, eval as in (Vaswani et al., 2017)
En-De 27.37 27.48 27.71 27.67

Table 5: BLEU scores. Bold indicates the best score
and all scores whose difference from the best is not sta-
tistically significant (with p-value of 0.05). (Statistical
significance is computed via bootstrap (Koehn, 2004).)

for En-De and De-En. Secondly, length-normalized
models work significantly better than models with-
out length-normalization only in 2 directions out
of 6. We did not tune length-normalization hy-
perparameters in our experiments; however, our
results suggest that length-normalization may be
unnecessary in some cases.

4.3 Training time

As with any regularization, Multi-Sentence Resam-
pling increases the training time of models. Al-
though we expanded the dataset by 10x and 5x
times for IWSLT and WMT, respectively, the train-
ing time in both cases did not increase with the
size of the dataset. Table 5 shows that MSR with
N “ 4 increases training time before convergence
on average 80% among used datasets, compared to
the default training. This suggests that it is possi-
ble to make a more memory efficient MSR imple-
mentation as part of the data processing pipeline
which does MSR on-the-fly, without the need to
pre-process a training dataset which is 5-10x larger
than the original. However, we leave this to future
work.

original MSR

IWSLT17
Fr-En 60 118
En-Fr 77 195

IWSLT15
Vi-En 55 75
En-Vi 53 85

WMT14
En-De 150 320
De-En 174 250

Table 6: Number of thousands of training steps before
convergence for experiments from Table 5.
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5 Conclusions

In this work, we analyzed errors that cause qual-
ity degradation with growing beam size in NMT
and ASR. We demonstrated that the major contribu-
tion to quality degradation on large beams comes
from short translations, which are early terminated
prefixes of hypotheses which are long when de-
coding with a small beams. In contrast to ASR,
we showed that the reference length on which
beam search degradation begins to grow is con-
nected with the low number of sentences longer
than this length during training. Thus, usual NMT
datasets, that are biased towards short sentences,
strongly contribute to the degradation with large
beams. Based on this finding, we introduced Multi-
Sentence Resampling – a simple data augmentation
technique. It concatenates several sentences from
a dataset, increasing the length of training exam-
ples. Models trained with Multi-Sentence Resam-
pling were shown to consistently outperform base-
line models on IWSLT15 En-Vi, IWSLT17 En-Fr,
and WMT14 En-De datasets. Thus, we demon-
strate that it is possible to mitigate beam search
degradation with data augmentation. Future re-
search directions include adapting Multi-Sentence
Resampling to other domains like ASR and study-
ing beam search problems for document-level Ma-
chine Translation, where adjacent sentences are
naturally connected.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2016. Neural machine translation by jointly
learning to align and translate.

Jan Chorowski and Navdeep Jaitly. 2017. Towards bet-
ter decoding and language model integration in se-
quence to sequence models.

Shuoyang Ding, Adithya Renduchintala, and Kevin
Duh. 2019. A call for prudent choice of subword
merge operations in neural machine translation. In
Proceedings of Machine Translation Summit XVII
Volume 1: Research Track, pages 204–213, Dublin,
Ireland. European Association for Machine Transla-
tion.

Bryan Eikema and Wilker Aziz. 2020. Is map decoding
all you need? the inadequacy of the mode in neural
machine translation.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Natu-
ral Language Processing.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Aviral Kumar and Sunita Sarawagi. 2019. Calibration
of encoder decoder models for neural machine trans-
lation. CoRR, abs/1903.00802.

A. Marzal and E. Vidal. 1993. Computation of normal-
ized edit distance and applications. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
15(9):926–932.

Clara Meister, Tim Vieira, and Ryan Cotterell. 2020. If
beam search is the answer, what was the question?

Kenton Murray and David Chiang. 2018. Correct-
ing length bias in neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 212–223, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An asr
corpus based on public domain audio books. In
2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
5206–5210.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Pavel Sountsov and Sunita Sarawagi. 2016. Length
bias in encoder decoder models and a case for global
conditioning. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1516–1525, Austin, Texas. Asso-
ciation for Computational Linguistics.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1612.02695
https://arxiv.org/abs/1612.02695
https://arxiv.org/abs/1612.02695
https://www.aclweb.org/anthology/W19-6620
https://www.aclweb.org/anthology/W19-6620
http://arxiv.org/abs/2005.10283
http://arxiv.org/abs/2005.10283
http://arxiv.org/abs/2005.10283
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
http://arxiv.org/abs/1903.00802
http://arxiv.org/abs/1903.00802
http://arxiv.org/abs/1903.00802
https://doi.org/10.1109/34.232078
https://doi.org/10.1109/34.232078
http://arxiv.org/abs/2010.02650
http://arxiv.org/abs/2010.02650
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D16-1158
https://doi.org/10.18653/v1/D16-1158
https://doi.org/10.18653/v1/D16-1158


8621

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3356–
3362, Hong Kong, China. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020a. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing: System Demon-
strations, pages 33–39, Suzhou, China. Association
for Computational Linguistics.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544–3552, Online. Association for
Computational Linguistics.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.
2020b. On the inference calibration of neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3070–3079, Online. Association for
Computational Linguistics.

Y. Wu, Mike Schuster, Z. Chen, Quoc V. Le, Mo-
hammad Norouzi, Wolfgang Macherey, M. Krikun,
Yuan Cao, Q. Gao, Klaus Macherey, Jeff Klingner,
Apurva Shah, M. Johnson, X. Liu, L. Kaiser,
S. Gouws, Y. Kato, Taku Kudo, H. Kazawa,
K. Stevens, G. Kurian, Nishant Patil, W. Wang,
C. Young, J. Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, G. S. Corrado, Macduff Hughes, and
J. Dean. 2016. Google’s neural machine translation
system: Bridging the gap between human and ma-
chine translation. ArXiv, abs/1609.08144.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018.
Breaking the beam search curse: A study of (re-
)scoring methods and stopping criteria for neural
machine translation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3054–3059, Brussels, Bel-
gium. Association for Computational Linguistics.

Zijian Yang, Yingbo Gao, Weiyue Wang, and Hermann
Ney. 2020. Predicting and using target length in neu-
ral machine translation. In Proceedings of the 1st

Conference of the Asia-Pacific Chapter of the Associ-
ation for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing, pages 389–395, Suzhou, China. Associ-
ation for Computational Linguistics.

Wei Zhou, Ralf Schlüter, and Hermann Ney. 2020.
Robust beam search for encoder-decoder attention
based speech recognition without length bias. In In-
terspeech, pages 1768–1772, Shanghai, China.

https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.aclweb.org/anthology/2020.aacl-demo.6
https://www.aclweb.org/anthology/2020.aacl-demo.6
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/D18-1342
https://doi.org/10.18653/v1/D18-1342
https://doi.org/10.18653/v1/D18-1342
https://www.aclweb.org/anthology/2020.aacl-main.41
https://www.aclweb.org/anthology/2020.aacl-main.41

