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Abstract

Recent developments in machine translation

and multilingual text generation have led

researchers to adopt trained metrics such as

COMET or BLEURT, which treat evaluation

as a regression problem and use representa-

tions from multilingual pre-trained models

such as XLM-RoBERTa or mBERT. Yet stud-

ies on related tasks suggest that these models

are most efficient when they are large, which

is costly and impractical for evaluation. We in-

vestigate the trade-off between multilinguality

and model capacity with RemBERT, a state-

of-the-art multilingual language model, using

data from the WMT Metrics Shared Task. We

present a series of experiments which show

that model size is indeed a bottleneck for

cross-lingual transfer, then demonstrate how

distillation can help addressing this bottleneck,

by leveraging synthetic data generation and

transferring knowledge from one teacher to

multiple students trained on related languages.

Our method yields up to 10.5% improvement

over vanilla fine-tuning and reaches 92.6% of

RemBERT’s performance using only a third

of its parameters.

1 Introduction

Recent improvements in Machine Translation (MT)

and multilingual Natural Language Generation

(NLG) have led researchers to question the use

of n-gram overlap metrics such as BLEU and

ROUGE (Papineni et al., 2002; Lin, 2004). Since

these metrics focus solely on surface-level aspects

of the generated text, they correlate poorly with

human evaluation, especially when models are pro-

ducing high-quality text (Belz and Reiter, 2006;

Callison-Burch et al., 2006; Ma et al., 2019; Mathur

et al., 2020a). This has led to a surge of inter-

est in learned metrics that cast evaluation as a re-

gression problem and leverage pre-trained multilin-

∗Work done during an internship at Google.
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gual models to capture the semantic similarity be-

tween references and generated text (Celikyilmaz

et al., 2020). Popular examples of those metrics

include COMET (Rei et al., 2020a) and BLEURT-

EXTENDED (Sellam et al., 2020a), based on XLM-

RoBERTa (Conneau and Lample, 2019; Conneau

et al., 2020a) and mBERT (Devlin et al., 2019)

respectively. These metrics deliver superior perfor-

mance over those based on lexical overlap, outper-

forming even crowd-sourced annotations (Freitag

et al., 2021; Mathur et al., 2020b).

Large pre-trained models benefit learned metrics

in at least two ways. First, they allow for cross-task

transfer: the contextual embeddings they produce

allow researchers to address the relative scarcity

of training data that exist for the task, especially

with large models such as BERT or XLNet (Zhang*

et al., 2020; Devlin et al., 2019; Yang et al., 2019).

Second, they allow for cross-lingual transfer: MT

evaluation is often multilingual, yet few, if any,

popular datasets cover more than 20 languages. Ev-

idence suggests that training on many languages im-

proves performance on languages for which there

is little training data, including the zero-shot setup,

in which no fine-tuning data is available (Conneau

and Lample, 2019; Sellam et al., 2020b; Conneau

et al., 2018; Pires et al., 2019).

However, the accuracy gains only appear if the

model is large enough. In the case of cross-lingual

transfer, this phenomenon is known as the curse

of multilinguality: to allow for positive transfer,

the model must be scaled up with the number of

languages (Conneau and Lample, 2019). Scaling

up metric models is particularly problematic, since

they must often run alongside an already large MT

or NLG model and, therefore, must share hardware

resources (see Shu et al. (2021) for a recent use

case). This contention may lead to impractical

delays, it increases the cost of running experiments,

and it prevents researchers with limited resources

from engaging in shared tasks.
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We first present a series of experiments that vali-

date that previous findings on cross-lingual transfer

and the curse of multilinguality apply to the metrics

domain, using RemBERT (Rebalanced mBERT),

a multilingual extension of BERT (Chung et al.,

2021). We then investigate how a combination of

multilingual data generation and distillation can

help us reap the benefits of multiple languages

while keeping the models compact. Distillation

has been shown to successfully transfer knowledge

from large models to smaller ones (Hinton et al.,

2015), but it requires access to a large corpus of un-

labelled data (Sanh et al., 2019; Turc et al., 2019),

which does not exist for our task. Inspired by Sel-

lam et al. (2020a), we introduce a data generation

method based on random perturbations that allows

us to synthesize arbitrary amounts of multilingual

training data. We generate an 80M-sentence dis-

tillation corpus in 13 languages from Wikipedia,

and show that we can improve a vanilla pre-trained

distillation setup (Turc et al., 2019) by up to 12%.

A second, less explored benefit of distillation is

that it lets us partially bypass the curse of multilin-

guality. Once the teacher (i.e., larger) model has

been trained, we can generate training data for any

language, including the zero-shot ones. Thus, we

are less reliant on cross-lingual transfer. We can lift

the restriction that one model must carry all the lan-

guages, and train smaller models, targeted towards

specific language families. Doing so increases per-

formance further by up to 4%. Combining these

two methods, we match 92.6% of the the largest

RemBERT model’s performance using only a third

of its parameters.

A selection of code and models is avail-

able online at https://github.com/

google-research/bleurt.

2 Multilinguality and Model Size

To motivate our work, we quantify the trade-off

between multilinguality and model capacity using

data from the WMT Shared Task 2020, the most

recent benchmark for MT evaluation metrics. The

phenomenon has been well-studied for tasks such

as translation (Aharoni et al., 2019) and language

inference (Conneau et al., 2020b), but it is less well

understood in the context of evaluation metrics.

Task and Data In the WMT Metrics task, par-

ticipants evaluate the quality of MT systems

with automatic metrics for 18 language pairs—

10 to-English, 8 from-English. The success cri-
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Figure 1: Performance of our models. The dashed line

represents the performance of BLEURT-extended (Sel-

lam et al., 2020b). The metric is WMT Metrics

DaRR (Mathur et al., 2020b), a robust variant of

Kendall Tau, higher is better. We run each experi-

ment with 5 random seeds, report the mean result and

Normal-based 95% confidence intervals.

terion is correlation with human ratings.1 Fol-

lowing established approaches (Ma et al., 2018,

2019), we utilize the human ratings from the

previous years’ shared tasks for training. Our

training set contains 479k triplets (Reference

translation, MT output, Rating) in

12 languages, and it is heavily skewed towards

English. It covers the target languages of the bench-

mark except Polish, Tamil, Japanese and Inuktitut.2

We evaluate the first three in a zero-shot fashion

and do no report results on Inuktitut because its

alphabet is not covered by RemBERT.

Models Like COMET (Rei et al., 2020a) and

BLEURT (Sellam et al., 2020a), we treat evaluation

as a regression problem where, given a reference

translation x (typically produced by a human) and

predicted translation x̃ (produced by an MT sys-

tem), the goal is to predict a real-valued human

rating y. As is typical, we leverage pretrained rep-

resentations (Peters et al., 2018) to achieve strong

performance. Specifically, we first embed sentence

pairs into a fixed-width vector v = F(x, x̃) using

a pretrained model F and use this vector as input

to a linear layer: ŷ = Wv + b, where W and b

are the weight matrix and bias vector respectively.

For the pretrained model F, we use Rem-

BERT (Chung et al., 2021), a recently published

extension of mBERT (Devlin et al., 2019) pre-

trained on 104 languages using a combination of

Wikipedia and mC4 (Raffel et al., 2020). Be-

1The study focuses on segment-level correlation but we
also report systems-level results in the appendix.

2The target languages are: English, Czech, German,
Japanese, Polish, Russian, Tamil, Chinese, Inuktitut. We
train on English, German, Chinese, Czech, Russian, Finnish,
Estonian, Kazakh, Lithuanian, Gujarati, French, and Turkish.
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Figure 2: Impact of the number of fine-tuning lan-

guages on zero-shot performance, using RemBERT-6

and RemBERT-32 on en-ja, en-pl, and en-ta.

cause RemBERT is massive (32 layers, 579M pa-

rameters during fine-tuning) we pre-trained three

smaller variants, RemBERT-3, RemBERT-6, and

RemBERT-12, using Wikipedia data in 104 lan-

guages. The models are respectively 95%, 92%,

and 71% smaller, with only 3, 6, and 12 layers.

We refer to RemBERT as RemBERT-32 for consis-

tency. The details of architecture, pre-training and

fine-tuning are in the appendix.

Figure 1 presents the performance of the models.

RemBERT-32 is on par with BLEURT-EXTENDED,

a metric based on a similar model which performed

well at WMT Metrics 2020.3 It also corroborates

that for a fixed number of languages, larger models

perform better.

Cross-lingual transfer during fine-tuning Fig-

ure 2 displays the performance of RemBERT-6 and

RemBERT-32 on the zero-shot languages as we

increase the number of languages used for fine-

tuning. We start with English, then add the lan-

guages cumulatively, in decreasing order of fre-

quency (without adding data for any of the tar-

get languages). Cross-lingual transfer works: in

all cases, adding languages improves performance.

The effect is milder on RemBERT-6, which consis-

tently starts higher but finishes lower. The appendix

presents additional details and results.

Capacity bottleneck in pre-training To further

understand the effect of multilinguality, we pre-

trained the smaller models from scratch using 18

languages of WMT instead of 104, and fine-tuned

on the whole dataset. Figure 3 presents the results:

performance increases in all cases, especially for

3Model provided by the authors. The results diverge
from Mathur et al. (2020b) on en-zh, for which they submit-
ted a separate metric but the conclusions are similar.
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Figure 3: Improvement after removing 86 languages

from from pre-training. y-axis: relative performance

improvement over a RemBERT of equal size pretrained

on 104 languages. Additional details in the appendix.

Teacher Pre-Training 
Model: RemBERT-32 

Data: mC4, Wiki. 
Task: Lang. model

Teacher Fine-Tuning 
Model: RemBERT-32 
Data: WMT Metrics 

Task: MT eval

Teacher Inference 
Model: RemBERT-32 

Data: unlabelled 
distillation corpus

Student Pre-Training 
Models: RemBERT-3,6,12 

Data: Wikipedia 
Task: Lang. model

Student Distillation 
Models: RemBERT-3,6,12 
Data: labelled distillation 

corpus

Figure 4: Overview of the default distillation pipeline.

RemBERT-3. This suggests that the models are at

capacity and that the 100+ languages of the pre-

training corpus compete with one another.

Takeaways Learned metrics are subject to con-

flicting requirements. On one hand, the opportuni-

ties offered by pre-training and cross-lingual trans-

fer encourage researchers to use large, multilingual

models. On the other hand, the limited hardware

resources inherent to evaluation call for smaller

models, which cannot easily keep up with mas-

sively multilingual pre-training. We address this

conflict with distillation.

3 Addressing the Capacity Bottleneck

The main idea behind distillation is to train a small

model (the student) on the output of larger one (the

teacher) (Hinton et al., 2015). This technique is

believed to yield better results than training the

smaller model directly on the end task because the

teacher can provide pseudo-labels for an arbitrary

large collection of training examples. Additionally,

Turc et al. (2019) have shown that pre-training the

student on a language model task before distillation

improves its accuracy (in the monolingual setting),
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Model *-en en-* en-cs en-de en-ja en-pl en-ru en-ta en-zh

COMET (Rei et al., 2020a)† - 550M params - 52.4 66.8 46.8 62.4 46.2 34.4 67.1 43.2

PRISM (Thompson and Post, 2020)† - 745M pa. - 45.5 61.9 44.7 57.9 41.4 28.3 44.8 39.7
BLEURT-Ext. (Sellam et al., 2020b) - 425M pa. 22.0 49.8 68.8 44.7 53.3 43.0 30.6 64.3 44.2

Teacher: RemBERT-32 - 579M params 22.5 52.3 69.3 45.9 61.7 45.4 31.0 66.6 45.9

RemBERT-3 Fine-tuning 18.5 36.9 42.8 33.0 49.7 26.2 16.0 57.4 33.1
30M params Distill WMT 16.3 34.8 43.3 29.0 46.8 22.0 15.4 56.1 31.3

Distill WMT+Wiki 19.1 39.1 42.3 34.4 53.6 26.9 18.9 60.3 37.6
1-to-N distill 19.9 40.1 47.3 32.9 54.4 27.3 19.3 60.0 39.6

RemBERT-6 Fine-tuning 19.6 40.3 51.4 35.0 53.6 28.5 19.0 60.2 34.8
45M params Distill WMT 19.9 40.4 53.1 34.8 52.1 28.4 17.9 60.1 36.3

Distill WMT+Wiki 20.7 42.6 51.6 36.7 55.6 30.2 20.3 63.1 40.9
1-to-N Distill 21.0 44.4 56.1 38.3 57.1 34.6 22.2 59.9 42.9

RemBERT-12 Fine-tuning 20.6 43.8 57.4 36.7 56.1 33.0 23.4 62.2 37.5
167M params Distill WMT 21.4 44.8 59.3 39.3 56.0 34.7 22.9 63.6 38.1

Distill WMT+Wiki 21.9 47.3 59.2 40.8 57.9 37.4 26.4 65.3 44.2
1-to-N Distill 21.7 48.4 64.2 40.2 57.6 41.3 28.4 63.7 43.5

Table 1: Segment-level agreement with human ratings of our distillation setups. The metric is WMT Metrics DaRR

(Mathur et al., 2020b), a robust variant of Kendall Tau, higher is better. The dagger† indicates that the results were

obtained from the WMT report. We omit *-en for these because of inconsistencies between the benchmark

implementations. The number of parameters for COMET corresponds to XLM-RoBERTa-large (Conneau et al.,

2020a), mentioned in Rei et al. (2020b). The appendix presents additional details, baselines and systems-level

results.

a technique known as pre-trained distillation.

Since pre-trained distillation was shown to be

simple and efficient, we use it for our base setup.

Figure 4 summarizes the steps: we fine-tune

RemBERT-32 on human ratings, run it on an unla-

belled distillation corpus, and use the predictions

to supervise RemBERT-3, 6, or 12. By default, we

use the WMT corpus for distillation, i.e., we use

the same sentence pairs for teacher fine-tuning and

student distillation (but with different labels).

Improvement 1: data generation Distillation

requires access to a large multilingual dataset of

sentence pairs (reference, MT output) to

be annotated by the teacher. Yet the WMT Metrics

corpus is relatively small, and no larger corpus ex-

ists in the public domain. To address this challenge

we generate pseudo-translations by perturbing sen-

tences from Wikipedia. We experiment with three

types of perturbations: back-translation, word sub-

stitutions with mBERT, and random deletions. The

motivation is to generate surface-level noise and

paraphrases, to expose the student to the different

types of perturbations that an MT system could in-

troduce. In total, we generate 80 million sentence

pairs in 13 languages. The approach is similar

to Sellam et al. (2020a), who use perturbations to

generate pre-training data in English. We present

the details of the approach in the appendix.

Improvement 2: 1-to-N distillation Another

benefit of distillation is that it allows us to lift

the constraint that one model must carry all the

languages. In a regular fine-tuning setup, it is nec-

essary to pack as many languages as possible in

the same model because training data is sparse or

non-existent in most languages. In our distillation

setup, we can generate vast amounts of data for any

language of Wikipedia. It is thus possible to bypass

the capacity constraint by training N specialized

students, focused on a smaller number of languages.

For our experiments, we pre-train five versions of

each RemBERT, which cover between 3 and 18 lan-

guages each. We tried to form clusters of languages

that are geographically close or linguistically re-

lated (e.g., Germanic or Romance languages), such

that each cluster would cover at least one language

of WMT. We list all the languages in the appendix.

Results Table 1 presents performance results on

WMT Metrics 2020. For each student model, we

present the performance of a naive fine-tuning base-

line, followed by vanilla pre-trained distillation on

WMT data. We then introduce our synthetic data

and 1-to-N distillation. We compare to COMET,

PRISM, and BLEURT-EXTENDED, three SOTA met-

rics from WMT Metrics ’20 (Mathur et al., 2020b).

On en-*, the improvements are cumulative:

Distill WMT+Wiki outperforms Distill WMT (be-
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We ran each experiment 3 times and averaged the

results, using a Google Cloud VM with 4 In-

tel Haswell vCPUS, 15GB main memory, and an

nVidia Tesla T4 GPU. COMET uses the model

wmt-large-da-estimator-1719.

tween 5 and 12% improvement), and it is it-

self outperformed by 1-to-N (up to 4%). Com-

bining techniques improves the baselines in all

cases, up to 10.5% improvement compared to

fine-tuning. RemBERT-12 matches 92.6% of the

teacher model’s performance using only a third of

its parameters, and it is competitive with current

state-of-the-art models.

Runtime To validate the usefulness of our ap-

proach, we illustrate how to speed up RemBERT

in Figure 5. We first obtain a first 2X speedup

by applying length-based batching, a simple opti-

mization which consists in batching examples that

have similar a length and cropping the resulting ten-

sor, as done in BERT-Score (Zhang* et al., 2020).

Doing so allows us to remove the padding tokens,

which cause wasteful computations. We then ob-

tain a 35% improvement by using the distilled ver-

sion of the model, RemBERT-12. The final model

processes 4.8 tuples per second, an approximately

3X improvement over the baselines COMET and

RemBERT-32.

4 Conclusion

We experimented with cross-lingual transfer in

learned metrics, exposed the trade-off between mul-

tilinguality and model capacity, and addressed the

problem with distillation on synthetic data. Fur-

ther work includes generalizing the approach other

tasks and experimenting with complementary com-

pression methods such as pruning and quantiza-

tion (Kim et al., 2021; Sanh et al., 2020), as well as

increasing linguistic coverage (Joshi et al., 2020).
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A Training RemBERT for MT

Evaluation

A.1 RemBERT Pre-Training

RemBERT is an encoder-only architecture, similar

to BERT but with an optimized parameter allo-

cation (Chung et al., 2021). It has reduced input

embedding dimension and the saved parameters are

reinvested in the form of wider and deeper Trans-

former layers, keeping the model size constant. In

addition, the input and the output embeddings (the

weights associated with the softmax layer) are de-

coupled during pre-training.

Table 2 describes the architecture of the four

RemBERT models, along with the number of pa-

rameters (note that we remove the output embed-

ding layer during fine-tuning, which reduces the

model size). We obtained the original RemBERT

model from its authors, and we trained the smaller

models for the purpose of this study with a mod-

ified version of the public BERT codebase.4 By

default, all models are pre-trained on 104 languages

using a masked language modelling objective (De-

vlin et al., 2019). The setup for the smaller mod-

els is similar to Chung et al. (2021), except that

RemBERT uses on mC4 (Xue et al., 2020) and

Wikipedia while we use Wikipedia only. We train

the custom RemBERT models for 217 steps using

the Adam optimizer (Kingma and Ba, 2015), using

learning rate 0.0002 (with 10,000 linear warm-up

followed by inverse square root decay schedule)

and batch size 512 on 16 TPU v3 chips. To reduce

the size of the models further, we use a smaller

SentencePiece model with 120K tokens instead of

250k. Large RemBERT was fine-tuned with se-

quence size 128, while the student models were

fine-tuned with sequence size 512.

A.2 Fine-Tuning for the WMT Metrics

Shared Task

We fine-tune RemBERT on the WMT Metrics

shared task following the methology of Sellam

et al. (2020b). We combine all the sentence pairs of

WMT 2015 to 2019, and set aside 5% of the data

for continuous evaluation. The data can be down-

loaded from the WMT Website.5 The distribution

of examples per language is shown in Figure. 6. We

sample the sentences randomly, then re-adjust the

4https://github.com/google-research/

bert
5http://www.statmt.org/wmt20/

metrics-task.html
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Hyperparameter RemBERT RemBERT-3 RemBERT-6 RemBERT-12

Number of layers 32 3 6 12
Hidden size 1152 640 640 1024
Vocabulary size 250,000 120,000 120,000 120,000
Input embedding dimension 256 128 128 128
Output embedding dimension 1536 2048 2048 2048
Number of heads 18 8 8 16
Head dimension 64 80 80 64

Num. params. during pre-training 995M 276M 291M 412M
Num. params. during fine-tuning 579M 30M 45M 167M

Table 2: RemBERT architecture.
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Figure 6: Distribution of the languages in the training

set, built from WMT Metrics 2015 to 2019.

sample such that there are not reference translations

leaking between the datasets. We train the model

with Adam for 5,000 steps and a batch size of 128

while evaluating it on the eval set every 250 steps.

We keep the checkpoint that leads to the best perfor-

mance. To determine the learning rate, we ran a pa-

rameter sweep on a previous year of the benchmark

(using 2015 to 18 for train and 2019 for test) us-

ing the values [1e-6, 2e-6, 5e-6, 7e-6,

8e-6, 9e-6, 1e-5, 2e-5], and kept the

learning rate that led the best results (1e-6).

We also experimented with language rebalancing,

batch sizes, dropout, and training duration during

preliminary sets of experiments. The setup we used

for RemBERT-3, 6 and 12 is similar, except that

we used learning rate 1e-5 (obtained with a param-

eter sweep on a randomly held-out sample), 20,000

training steps, batch size 32, and we evaluate the

model every 1,000 steps. We train each model with

4 TPU v2 chips, and evaluate with a Nvidia Tesla

V100 GPU.

B Additional Ablation Experiments on

WMT Metrics Shared task 2020

We present the detail of our ablation experiments,

which expose the trade-off between model capacity

and multi-linguality in learned metrics.

In Figure 7, we iteratively expand the number of

fine-tuning languages, starting with only English

and adding languages in decreasing order of fre-

quency. We add the languages by bucket, such that

each bucket contains about the same number of

examples (Figure 6 shows the size of the training

set for each language).

We start with the five languages for which we

have training data. In all cases introducing fine-

tuning data for a particular language pair improves

the metric’s performance on this language. The

effect of subsequent additions (that is, cross-lingual

transfer) is mixed. For instance, the effect is mild

to negative on *-en, while it is mostly positive

en-cs.

Adding data has a different effect on zero-shot

languages: in almost all cases, it brings improve-

ments. The effect appears milder on the smaller

models, especially RemBERT-3 for which we

observe slight performance drops (en-ta and

en-ja), which is consistent the “curse of mul-

tilinguality” (Conneau and Lample, 2019).

Figure 8 shows the limit of our smaller models:

in 21 cases out of 24 (regardless of whether the

language is zero-shot or not), the performance of

the model improves when we remove 86 languages

from pre-training. This is further evidence that the

models are saturated.

C Details of the Distillation Pipeline

C.1 Distillation Data Generation Method

We generate synthetic (Reference

Translation, MT outputs) pairs by

perturbing sentences from Wikipedia. A similar

method has been shown to be useful when

generating pre-training data in a monolingual

context (Sellam et al., 2020a). We apply it to

13 languages: English, Japanese, Lithuanian,

Czech, Tamil, Chinese, Russian, Kazakh, Gujarati,

Finnish, French, Polish, and German. We chose
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Figure 8: Performance improvement after removing 86 languages from from pre-training (out of 104), using all

models and all test language pairs of WMT’20 except en-iu.

these languages because they are covered by the

WMT Metrics setup during training (e.g., Kazakh,

Gujarati, Finnish), testing (Japanese, Polish,

Tamil), or both. We emulate the noise introduced

by MT systems with three types of perturbations:

• Word substitution: we randomly mask up to

15 WordPiece tokens, and replace the masks

by a multilingual model. We sample the num-

ber of tokens to be masked uniformly, and we

run beam search with mBERT, using beam

size 8. We used the official mBERT model.6

• Back-translation: we translate the Wikipedia

from the source to English, then back in the

source language with translation models. We

6https://github.com/google-research/

bert
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Student 1 Student 2 Student 3 Student 4 Student 5

Afrikaans
Danish
Dutch

English
German
Icelandic

Luxembourgish
Norwegian

Swedish
West Frisian

Catalan
French

Galician
Haitian Creole

Italian
Latin

Portuguese
Romanian
Spanish

Bengali
Gujarati
Hindi

Hindi (Latin)
Marathi
Nepali
Persian
Punjabi

Tajik
Urdu
Tamil

Belarusian
Bulgarian

Bulgarian (Latin)
Czech

Macedonian
Polish

Russian
Russian (Latin)

Serbian
Slovak

Slovenian
Ukranian
Finnish
Estonian
Kazakh

Lithuanian
Latvian
Turkish

Burmese
Chinese

Chinese (Latin)
Japanese

Table 3: Languages per student used for 1-to-N distillation.

used the Tensor2Tensor framework,7 using

models trained on the corresponding WMT

datasets.

• Word dropping: we duplicate 30% of the

dataset and randomly drop words from the

perturbations.

We generate between 1.8M and 7.3M sentence

pairs for each language, for a total of 84M un-

labelled examples.

C.2 Languages Used in 1-to-N Distillation

Table 3 shows the five language clusters used for

the 1-to-N distillation experiments. The groups

were created by first joining languages based on

their linguistic proximity (e.g., Romance or Ger-

manic languages). Since that left multiple lan-

guages in their own cluster, we then combined them

based on geographic distance (e.g., Tamil is part

of the otherwise Indo-Iranian cluster and Japanese

part of a cluster of Sino-Tibetan languages).

C.3 Setup and Hyper-parameters

The hyper-parameters we use for distillation are

similar to those of fine-tuning, except that we train

the models for 500,000 batches of 128 examples,

and thus we learn from 64M sentences instead of

640K. Doing so takes about 1.5 days for RemBERT-

3 and 6, and 3.5 days for RemBERT-12. We train

the models to completion (i.e., no early-stopping).

7https://github.com/tensorflow/

tensor2tensor

D Additional Details of Metrics

Performance

We report system-level and segment-level perfor-

mance of the compact metrics on the MWT Metrics

shared task 2020, extending the performance anal-

ysis of the distilled models.

We re-implemented the WMT Metrics bench-

mark using data provided by the organizers. The

results are consistent with the published ver-

sion (Mathur et al., 2020b) except for segment-

level to-English pairs, marked with a dagger†

in the tables. We ran BLEURT, BLEURT-Tiny,

BLEURT-English WMT’20, BLEURT-EXTENDED

ourselves. The first two are available online,8

the latter two were submitted to the WMT Met-

rics shared task 2020 and were obtained from the

authors. We also report results for three state-

of-the-art metrics: COMET (Rei et al., 2020a),

PRISM (Thompson and Post, 2020), and YISI-

1 (Thompson and Post, 2020), using the WMT

Metrics report. We only report results for from-

English pairs because the benchmark implemen-

tations are consistent for these. We also add the

baseline N Fine-tuning, which describes the

performance of fine-tuning the N models presented

in Section C.2 directly on WMT data.

As observed in the past (Mathur et al., 2020a,b)

system- and segment-level correlations present very

different outcomes: the teacher RemBERT-32 is

outperformed by several other metrics on both

en-* and *-en, and the impact of the distillation

8https://github.com/google-research/

bleurt
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*-en cs-en de-en iu-en† ja-en km-en† pl-en ps-en† ru-en ta-en zh-en

BLEURT-Tiny (Sellam et al., 2020a) 17.0 5.2 42.1 22.7 18.4 26.5 2.1 16.8 3.8 21.7 10.7

BLEURT (Sellam et al., 2020a) 21.2 10.7 45.4 27.4 25.8 31.7 4.1 21.1 8.0 24.0 13.9

BLEURT English WMT’20 (Sellam et al., 2020b) 22.1 12.6 45.3 27.6 26.5 33.3 5.7 23.5 9.3 23.1 13.7

BLEURT-Ext (Sellam et al., 2020b) 22.0 12.7 44.6 27.9 27.1 33.8 4.4 20.8 10.1 24.7 13.7

RemBERT-32 22.5 13.9 46.2 29.1 28.0 31.1 4.6 22.6 9.9 25.1 14.5

rembert-3 Fine-tuning 18.5 8.0 42.7 25.0 23.3 26.9 2.6 19.1 4.9 19.7 12.8

N Fine-tuning 18.0 8.1 42.8 24.1 23.0 26.5 2.8 17.4 4.6 19.1 11.8

Distill. WMT 16.3 7.0 41.2 23.6 21.5 24.1 0.1 12.6 2.8 19.3 11.2

Distill. Wiki + WMT 19.1 7.5 43.6 24.7 25.1 25.7 2.8 19.2 7.9 21.5 13.3

1-to-N Distill 19.9 9.1 44.8 27.0 24.4 27.9 1.5 20.4 7.4 22.7 13.7

rembert-6 Fine-tuning 19.6 10.1 43.9 24.6 23.4 29.5 4.0 20.2 6.5 20.4 13.4

N Fine-tuning 18.9 9.5 44.2 22.9 21.6 28.9 1.9 20.4 6.4 21.3 12.3

Distill. WMT 19.9 9.4 43.8 26.9 24.3 30.4 4.3 19.5 5.9 21.1 13.5

Distill. Wiki + WMT 20.7 10.4 45.2 26.9 25.0 30.3 2.3 21.2 8.4 23.4 14.1

1-to-N Distill 21.0 10.8 45.7 26.1 25.4 29.5 4.0 21.5 9.2 23.8 14.0

rembert-12 Fine-tuning 20.6 10.5 45.2 25.4 25.2 30.6 4.4 20.4 8.5 21.8 14.0

N Fine-tuning 19.5 12.1 44.8 23.4 24.7 28.6 2.1 19.1 7.4 20.5 12.7

Distill. WMT 21.4 11.1 45.6 25.4 26.7 31.1 6.0 21.7 8.6 23.6 14.5

Distill. Wiki + WMT 21.9 11.9 45.8 28.8 26.0 31.6 4.6 22.6 10.1 23.5 14.1

1-to-N Distill 21.7 12.3 46.5 29.5 25.7 31.4 3.2 21.7 8.6 23.4 14.9

Table 4: Segment-level agreement with human ratings on to-English language pairs. The metric is WMT Metrics

DaRR (Mathur et al., 2020b), a robust variant of Kendall Tau, higher is better. The dagger† indicates that our

results may differ from at least 0.5 percentage point from the published WMT results on the language pair (we

used the BLEURT submissions for comparison).

en-* en-cs en-de en-ja en-pl en-ru en-ta en-zh

BLEURT-Ext. (Sellam et al., 2020b) 49.8 68.8 44.7 53.3 43.0 30.6 64.3 44.2

COMET (Rei et al., 2020a)† 52.4 66.8 46.8 62.4 46.2 34.4 67.1 43.2

PRISM (Thompson and Post, 2020)† 45.5 61.9 44.7 57.9 41.4 28.3 44.8 39.7

YiSi-1 (Thompson and Post, 2020)† 46.9 55.0 42.7 56.8 34.9 25.6 66.9 46.3

RemBERT-32 52.3 69.3 45.9 61.7 45.4 31.0 66.6 45.9

rembert-3 Fine-tuning 36.9 42.8 33.0 49.7 26.2 16.0 57.4 33.1

N Fine-tuning 32.7 42.7 30.8 43.3 21.8 13.7 44.6 31.7

Distill. WMT 34.8 43.3 29.0 46.8 22.0 15.4 56.1 31.3

Distill. Wiki + WMT 39.1 42.3 34.4 53.6 26.9 18.9 60.3 37.6

1-to-N Distill 40.1 47.3 32.9 54.4 27.3 19.3 60.0 39.6

rembert-6 Fine-tuning 40.3 51.4 35.0 53.6 28.5 19.0 60.2 34.8

N Fine-tuning 36.6 49.3 31.5 46.5 26.3 18.2 48.8 35.5

Distill. WMT 40.4 53.1 34.8 52.1 28.4 17.9 60.1 36.3

Distill. Wiki + WMT 42.6 51.6 36.7 55.6 30.2 20.3 63.1 40.9

1-to-N Distill 44.4 56.1 38.3 57.1 34.6 22.2 59.9 42.9

rembert-12 Fine-tuning 43.8 57.4 36.7 56.1 33.0 23.4 62.2 37.5

N Fine-tuning 40.6 58.1 34.1 50.6 35.0 22.7 48.4 35.4

Distill. WMT 44.8 59.3 39.3 56.0 34.7 22.9 63.6 38.1

Distill. Wiki + WMT 47.3 59.2 40.8 57.9 37.4 26.4 65.3 44.2

1-to-N Distill 48.4 64.2 40.2 57.6 41.3 28.4 63.7 43.5

Table 5: Segment-level agreement with human ratings on from-English language pairs. The metric is WMT Metrics

DaRR (Mathur et al., 2020b), a robust variant of Kendall Tau, higher is better. We average all the language pairs

to English. The dagger† indicates that the results were obtained from the WMT report.

improvements is mixed on to-English. A possible

explanation is that system-level involves small sam-

ple sizes and that the data is very noisy (Freitag

et al., 2021). Another explanation is that systems-

level quality assessment is simply another task,

which requires its own set of optimizations. In

spite of these divergences, Table 7 shows that our

contributions bring solid improvements on en-*
(up to 20.2%), which validates our approach.
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*-en cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en

BLEURT-Tiny (Sellam et al., 2020a) 76.1 81.8 65.8 49.7 86.0 96.2 32.9 95.5 89.5 79.8 84.0

BLEURT (Sellam et al., 2020a) 76.2 73.2 81.3 53.4 81.4 96.6 30.7 94.4 82.6 76.4 92.1

BLEURT-English WMT’20 (Sellam et al., 2020b) 74.9 72.5 77.0 32.0 82.0 98.4 37.1 95.5 84.4 76.8 93.1

BLEURT-Ext. (Sellam et al., 2020b) 73.1 66.8 81.8 35.9 77.2 98.5 29.8 94.2 79.7 74.3 93.1

RemBERT-32 75.7 67.1 79.0 51.2 79.6 99.6 33.4 95.9 80.7 77.4 93.5

Rembert-3 Fine-tuning 77.4 78.4 74.2 53.9 90.3 96.9 27.0 92.3 86.1 80.8 94.0

N Fine-tuning 77.9 79.8 79.4 52.6 93.5 94.5 27.0 92.6 87.3 78.6 94.2

Distill. WMT 77.5 76.5 78.8 54.1 91.4 96.2 24.4 92.0 85.6 81.5 94.3

Distill. Wiki + WMT 77.3 80.8 76.3 54.8 91.5 97.6 23.0 89.0 84.5 80.3 95.3

1-to-N Distill 78.6 78.9 77.8 59.1 92.3 98.4 25.1 92.2 85.9 80.9 95.1

Rembert-6 Fine-tuning 77.8 80.0 76.9 65.4 88.3 95.2 20.5 91.1 85.0 81.2 94.2

N Fine-tuning 75.9 77.0 76.5 56.6 89.1 95.7 20.8 91.3 80.5 78.2 93.2

Distill. WMT 77.0 75.5 78.1 60.0 86.4 96.7 24.3 93.0 82.1 80.5 93.5

Distill. Wiki + WMT 78.2 80.1 76.7 60.8 88.9 98.9 21.6 93.6 85.5 81.1 94.9

1-to-N Distill 77.0 76.9 76.7 58.0 86.9 99.1 22.2 94.3 82.6 78.7 94.5

Rembert-12 Fine-tuning 76.7 77.4 77.7 59.8 85.5 95.3 22.9 91.7 82.9 80.2 93.4

N Fine-tuning 74.4 72.5 76.2 50.4 81.3 96.6 27.4 91.5 80.2 74.7 92.6

Distill. WMT 76.9 75.2 77.2 63.2 84.0 97.5 23.2 93.1 82.7 79.4 93.4

Distill. Wiki + WMT 77.4 76.3 75.7 62.1 87.3 99.3 22.1 94.2 84.0 78.4 94.1

1-to-N Distill 76.7 74.6 77.0 54.9 82.9 99.6 25.8 95.4 83.0 79.3 94.0

Table 6: System-level agreement with human ratings on to-English language pairs excluding outliers where they

are available. The metric is Pearson correlation (Mathur et al., 2020b), higher is better.

en-* en-cs en-de en-ja en-pl en-ru en-ta en-zh

BLEURT-Ext.(Sellam et al., 2020b) 90.3 96.0 87.0 95.3 82.8 98.0 81.4 91.5

COMET (Rei et al., 2020a)† 75.5 92.6 86.3 96.9 80.0 92.5 79.8 0.7

PRISM (Thompson and Post, 2020)† 67.4 80.5 85.1 92.1 74.2 72.4 45.2 22.1

YiSi-1 (Thompson and Post, 2020)† 86.1 66.4 88.7 96.7 71.4 92.6 90.9 95.9

RemBERT-32 83.6 96.1 86.2 97.1 85.4 91.4 80.8 48.6

Rembert-3 Fine-tuning 65.8 56.7 82.3 95.2 73.2 53.1 90.6 9.7

N Fine-tuning 73.6 67.8 80.9 92.7 67.1 76.5 88.6 41.7

Distill. WMT 69.2 69.0 79.0 94.1 75.6 62.4 88.3 16.2

Distill. Wiki + WMT 76.2 63.9 85.8 94.4 73.4 91.3 90.7 34.1

1-to-N Distill 78.9 67.9 86.6 93.8 73.7 94.7 89.5 46.3

Rembert-6 Fine-tuning 68.2 64.3 82.9 94.3 74.4 74.1 86.6 0.8

N Fine-tuning 81.8 75.3 84.3 91.4 79.4 91.9 87.8 62.8

Distill. WMT 70.3 68.8 84.4 93.7 75.5 69.7 87.7 12.7

Distill. Wiki + WMT 81.5 70.6 87.6 95.8 75.1 94.8 89.5 57.1

1-to-N Distill 82.0 75.8 86.1 93.1 76.2 96.0 83.6 63.4

Rembert-12 Fine-tuning 74.2 75.2 83.3 92.4 80.2 89.2 85.6 13.2

N Fine-tuning 77.1 85.4 86.2 88.6 85.7 85.4 85.1 23.1

Distill. WMT 72.3 75.9 84.7 93.3 79.3 72.4 85.3 14.9

Distill. Wiki + WMT 85.8 79.8 88.1 96.2 81.4 97.1 84.8 72.9

1-to-N Distill 86.3 87.9 87.8 94.0 82.0 96.9 82.2 73.5

Table 7: System-level agreement with human ratings on from-English language pairs, excluding outliers where

they are available. The metric is Pearson correlation (Mathur et al., 2020b), higher is better. The dagger† indicates

that the results were obtained from the WMT report.


