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Abstract

Interactive machine reading comprehension

(iMRC) is machine comprehension tasks

where knowledge sources are partially observ-

able. An agent must interact with an environ-

ment sequentially to gather necessary knowl-

edge in order to answer a question. We hy-

pothesize that graph representations are good

inductive biases, which can serve as an agent’s

memory mechanism in iMRC tasks. We ex-

plore four different categories of graphs that

can capture text information at various levels.

We describe methods that dynamically build

and update these graphs during information

gathering, as well as neural models to encode

graph representations in RL agents. Extensive

experiments on iSQuAD suggest that graph

representations can result in significant perfor-

mance improvements for RL agents.
1

1 Introduction

Machine reading comprehension (MRC) has gath-

ered wide interest from the NLP community in

recent years. It serves as a way to benchmark a

system’s ability to understand and reason over nat-

ural language. Typically, given a knowledge source

such as a document, a model is required to read

through the knowledge source to answer a question

about some information contained therein. In the

extractive QA paradigm, in particular, answers are

typically sub-strings of the knowledge source (Ra-

jpurkar et al., 2016; Trischler et al., 2016a; Yang

et al., 2018a). Models are thus required to select a

span from the knowledge source as their prediction.

A recent line of work known as interactive ma-

chine reading comprehension (iMRC) features in-

teractive language learning and knowledge acqui-

sition (Yuan et al., 2020; Ferguson et al., 2020). It

shifts the focus of MRC research towards a more

realistic setting where the knowledge sources (en-

vironments) are partially observable. Under this

1
We release code and data at https://github.com/

xingdi-eric-yuan/imrc_graph_public

setting, agents must iteratively interact with the

environment to discover necessary information in

order to answer the questions. The sequence of

interactions between an agent and the environment

may resemble the agent’s reasoning path, rendering

a higher level of interpretability in the agent’s be-

haviour. The trajectories of interactions can also be

seen as procedural knowledge, which potentially

brings agents extra generalizability (humans do not

necessarily know the answer to a question imme-

diately, but they know the procedure to search it).

Compared to many static MRC datasets, where

the entire knowledge source (e.g., a paragraph in

SQuAD) is presented to the model immediately,

the iMRC setting may alleviate the risk of learning

shallow pattern matching (Sugawara et al., 2018;

Sen and Saffari, 2020).

On a parallel track, there have been a plethora

of studies that leverage graphs in MRC. Multiple

linguistic features have been explored to help con-

struct graphs, such as coreference (Dhingra et al.,

2018; Song et al., 2018), entities (De Cao et al.,

2019; Qiu et al., 2019; Tu et al., 2020) and se-

mantic roles (Zheng and Kordjamshidi, 2020). In

related areas such as vision- and text-based games,

prior works also attempt to build implicit and ex-

plicit graphs to encode data from various types

of modalities (Johnson, 2017; Ammanabrolu and

Riedl, 2019; Kipf et al., 2020; Adhikari et al., 2020).

All of these works, covering domains from static

MRC to sequential decision making, suggest that

graph representations can facilitate model learning.

This gives us a strong motivation to leverage graph

representations in the iMRC setting.

We hypothesize that graph representations are

good inductive biases, since they can serve natu-

rally as a memory mechanism to help RL agents

tackle partial observability in iMRC tasks. We de-

velop an agent that can dynamically update new

information into a graph representation at every

step, the agent integrates information from both

https://github.com/xingdi-eric-yuan/imrc_graph_public
https://github.com/xingdi-eric-yuan/imrc_graph_public
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text and graph modalities to make decisions. The

main contributions of this work are as follows:

1. We propose four categories of graph represen-

tations, each capturing text information from

a unique perspective; we demonstrate how to

generate and maintain the graphs dynamically

in the iMRC tasks.

2. We extend the RL agent proposed in (Yuan

et al., 2020) by adding a graph encoding mech-

anism and a recurrent memory mechanism.

3. We conduct extensive experiments and show

that the proposed graph representations can

greatly boost agent’s performance on iMRC

tasks.

2 Problem Setting

We follow the iMRC setting (Yuan et al., 2020),

where given an environment consisting of a par-

tially observable document and a question, an agent

needs to sequentially interact with the environment

to discover necessary information and then answer

the question. The iMRC paradigm reformulates

existing MRC datasets (e.g., SQuAD) into interac-

tive environments by occluding most parts of their

documents. A set of commands are defined to help

agents reveal glimpses of the hidden documents.

iMRC can be seen as a controllable simulation

to a family of complex real world environments,

where knowledge sources are partially observable

yet easily accessible by design through interactions.

One such example is the Internet, where humans

can efficiently navigate through keywords and links

to retrieve only the necessary information, rather

than reading through the entire collection of web-

sites. While iMRC shares some common properties

with multi-step retrieval (Yang et al., 2018a; Zhao

et al., 2021) and open-domain QA (Lewis et al.,

2020), the focus here is to push the boundaries of

information-seeking agents (Bachman et al., 2016)

from an RL/navigation perspective.

Formally, an iMRC data-point (game) is

a discrete-time, partially observable Markov

decision process (POMDP) defined by(S, T,A,Ω, O,R, γ). At game step t, the

environment state st ∈ S represents the semantics

and information contained in the full document,

as well as which subset of the sentences has been

revealed to the agent. The agent perceives text

information as its observation, ot ∈ Ω, which

depends on the environment state with probability

O(ot∣st). The agent issues an action at ∈ A,

resulting in a state transition st+1 with probability

T (st+1∣st, at) in the environment (i.e., a new

sentence is shown to the agent). Based on its

actions, the agent receives rewards rt = R(st, at).
The agent’s objective is to maximize the expected

discounted sum of rewards E [∑t γ
t
rt], where

γ ∈ [0, 1] is the discount factor.

Difficulty Levels Given a question, only the first

sentence of a document is initially exposed to an

agent. During information gathering phase, the

agent uses the following commands to interact with

the environment: 1) previous and 2) next will

jump to the previous or next sentence, respectively;

3) Ctrl+F QUERY: jumps to the sentence with the

next occurrence of QUERY; 4) stop terminates the

interaction. Whenever the agent issues the stop

action, or it has exhausted its interaction budget
2
,

the information gathering phase is terminated, and

the agent needs to answer the question immediately.

Thanks to the extractive nature of MRC datasets

such as SQuAD, agents can label a span from its

observation ot as prediction. Note that in order to

correctly answer the question, an agent needs to

effectively gather necessary information so that its

observation ot contains the answer as a sub-string.

Yuan et al. (2020) define easy and hard as two

difficulty levels. In the easy mode, all four com-

mands are available during information gathering

phase; whereas in the hard mode, only Ctrl+F and

stop can be used. Intuitively, in the easy mode, an

agent can rely on the next command to traverse

the entire document, which essentially reduces the

problem to learning to stop at the right sentence. In

contrast, in the hard mode, the agent is forced to

Ctrl+F in a smart manner to navigate to potentially

informative sentences.

QUERY Types Three finer-grained settings are

further defined according to the action space of

the Ctrl+F QUERY command. Specifically, ranging

from easy to hard, QUERY can be a token extracted

from the question (q), the concatenation of the ques-

tion and currently observable sentence (q + ot), or

any token selected from the dataset’s vocabulary

(vocab). From an RL perspective, the sizes of the

three settings’ action space can differ by several or-

ders of magnitude (e.g., a question with 10 tokens

in q versus a vocabulary size of 20K in vocab).

2
An agent can at most interact 20 steps.
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Figure 1: Left: an overview of our agent. We propose to use graph representations as an additional input modality

to the iMRC agent (Yuan et al., 2020). Right: a zoomed in view of our encoder module, extended from iMRC.

3 Methodology

In this work, we adopt the agent proposed in (Yuan

et al., 2020) as baseline, as shown in Figure 1. We

propose to add a novel graph updater module and a

graph encoding layer into the pipeline. Specifically,

at game step t, the graph updater takes the text

observation ot and the graph Gt−1 from previous

step as input and generates a new graph Gt. Sub-

sequently, the graph is encoded into hidden states,

which is later aggregated with text representations.

Note that distinct from fully observed Knowledge

Graphs (KGs) in static MRC works, our graphs

are dynamically generated, i.e., at every interaction

step, our agent can update information from the

new observation into its graph representations.

In this section, we will first introduce the key

methods we use to generate and update the graph

representations. Later on, we will describe a

Graph Neural Network (GNN)-based graph en-

coder which encodes the information carried by

the graphs. For the common components shared

with iMRC, we refer readers to (Yuan et al., 2020)

or Appendix A for detailed information.

Notations We denote a graph generated at game

step t as Gt = (Vt, Et), where Vt and Et represent

the set of vertices (nodes) and edges (relations).

All graphs are directed by default. For two nodes

i ∈ V and j ∈ V , we denote the connection from i

to j as ei→j ∈ E . We represent graph G as an adja-

cency tensor, with the size of R ×N ×N , where

R and N denote the number of relations and nodes,

respectively. This tensor can either be binary or

real-valued depending on graph type.

3.1 Generating and Updating Graphs

We propose four different graph representations.

The four graph types capture distinct aspects of

information in text, from lower level linguistic fea-

tures to high level semantics.

3.1.1 Word Co-occurrence (Rule-based)

G ∈ {0, 1}R×N×N
,V: words, E: sentences.

In word co-occurrence graphs, we connect to-

kens according to their co-occurrences. We assume

that words appear in the same sentence tend to be

relevant. Common words across sentences further

enable to build more complex graphs where each

word is connected with multiple related concepts.

Omitting the notation of game step t for sim-

plicity, if two tokens i ∈ V and j ∈ V co-occur

in a sentence s, the edge ei→j between i and j is

defined as s. Computationally (e.g., for GNNs),

the representations of i and j are their word embed-

dings, the representation of the relation ei→j is the

sentence encoding of s. Note in this setting, graphs

are symmetrical (i.e., ei→j = ej→i). Typically, to-

kens i and j can co-occur in multiple sentences.

We thus allow multiple connections to appear be-

tween two graph nodes, each connection represents

a particular sentence where they co-occur.

3.1.2 Relative Position (Rule-based)

G ∈ {0, 1}R×N×N
,V: words,

E: relative position between words.

In relative position graphs, we aim to capture

and embed the word ordering and distance infor-

mation. This can be seen as capturing a loose form

of the Subject-Verb-Object (SVO) structure within

sentences, without the need of parsing them. The

intuition of capturing token position information

is supported by the idea of position embeddings in

training large-scale language models such as BERT

(Devlin et al., 2018; Wang et al., 2021).

In our setting, we first define a window size l ∈

Z
+

. For any two tokens i and j within a sentence

s, their relation ei→j is defined as:

ei→j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l if posj − posi > l,

−l elif posj − posi < −l,

posj − posi otherwise;

(1)
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Figure 2: A partial view of the SRL graph correspond-

ing to the given sentence. Blue: sentence root; red:

predicates/verbs; green: arguments; yellow: modifiers.

in which, posi and posj indicate the two tokens’

position indices in s. Therefore, the total number

of relations R = 2l+1, the set of relations consists

of all integers from −l to l. We also connect tokens

with themselves via self-connections (ei→i = 0) to

facilitate message passing in GNNs.

3.1.3 Semantic Role Labeling (Parser-based)

G ∈ {0, 1}R×N×N
,V: chunks returned by SRL,

E: semantic role labels of the chunks.

Similar to recent approaches designed for static

MRC tasks (Zheng and Kordjamshidi, 2020; Zhang

et al., 2020), we investigate building knowledge

graphs via Semantic Role Labeling (SRL). An SRL

system (Shi and Lin, 2019) can detect the argu-

ments associated with each of the predicates (or

verbs) within a sentence and how they are classi-

fied into specific roles. This property is essential in

tackling MRC tasks, especially for extractive QA

datasets, where answers are typically short chunks

of text (e.g., entities), such chunks can often be

identified as arguments by an SRL parser. Via SRL,

we can easily know how arguments interact with

each other, further connecting common chunks de-

tected in multiple sentences can produce an argu-

ment flow that helps understanding the paragraph.

In our SRL graphs
3
, we use chunks that are iden-

tified as predicates, arguments, and modifiers as

nodes. We use their semantic role labels w.r.t. their

corresponding predicates as relations. For longer

sentences, an SRL system often returns multiple

predicate-centric graphs. We define a special ROOT

node for each sentence, and connect it with all

the predicates within the sentence, with a special

relation ROOT-VERB. We connect sentences by con-

3
SRL is done with AllenNLP Toolkit (https://demo.

allennlp.org/semantic-role-labeling).

necting their root nodes using a relation ROOT-ROOT.

An example of the SRL graph is shown in Figure 2.

In order to facilitate models such as GNNs (e.g.,

easier message passing, denser signals), we define

a set of reversed relations in SRL graphs. For in-

stance, in Figure 2, eperformed→services is ARG1, we

use an ARG1-rev relation as eservices→performed in

our experiments. However, we ignore the reversed

relations in Figure 2 for simplicity.

3.1.4 Continuous Belief (Trainable model)

G ∈ [−1, 1]R×N×N
,V: concepts determined by agent,

E: relations determined by agent.

In addition to rule- and parser-based graph up-

daters, we also investigate a data-driven approach.

Inspired by Adhikari et al. (2020), we use self-

supervised learning technique to pre-train a graph

updater that can maintain a continuous belief graph

for the iMRC task. Specifically, given the new

observation ot, we use a neural network to mod-

ify graph Gt−1 from previous step, to produce a

new graph Gt. Without the need of manually defin-

ing and hand-crafting specific graph structures —

which may inject unnecessary prior into the agent

— we assume that as long as a learned graph Gt can

be used to reconstruct ot, the graph should have

contained useful information of the text.

However, learning to reconstruct ot in a word-by-

word fashion requires the model to learn features

that are less useful in the iMRC task. Therefore, we

adopt a contrastive representation learning strategy

to approximate the reconstruction. Specifically, we

train a discriminator D that differentiates between

true ot (positive samples) and a “corrupted” version

of them õt (negative samples), conditioned on Gt.

This relieves the model of the burden to learn syn-

tactical features (NLG), so that it can focus more

on the semantic side instead. We use a standard

noise-contrastive objective to minimize the binary

cross-entropy (BCE) loss (Veličković et al., 2019):

L =

1

K
∑K

t=1(Eo[logD(hot , hGt
)]+

Eõ[log(1 −D(hõt , hGt
))]), (2)

where K is the number of sentences in a SQuAD

paragraph. To facilitate this pre-training, we utilize

an online Wikipedia dump (Wilson, 2013). We re-

move all articles that appear in the SQuAD dataset,

and use the rest as our negative sample collection
4
.

4
We apply the filtering to prevent the pre-trained graph

updater from “memorizing” text that may appear in SQuAD
validation set

https://demo.allennlp.org/semantic-role-labeling
https://demo.allennlp.org/semantic-role-labeling
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The graph updater is then trained to generate graphs

Gt that can be used to differentiate between 1) sen-

tences within current document and 2) sentences

sampled from another Wikipedia article.

Note that Gt is not explicitly grounded to any

ground-truth graphs. Instead, they are essentially

latent recurrent state representations, encoding in-

formation the agent has seen so far. Therefore, the

nodes and relations in these graphs are determined

by the agent itself in a data-driven manner. As a

result, the adjacency tensors in these graphs are

real-valued. We provide more details of this graph

updater in Appendix A.4.

3.2 Encoding Graph Representations

We adopt a multi-layer relational graph convolu-

tional network (R-GCN) (Schlichtkrull et al., 2018;

Adhikari et al., 2020) as our graph encoder. Specif-

ically, at the l-th layer of the R-GCN, for each node

i ∈ V , given the set of its neighbor nodes V
e
i ∈ V

under relation e ∈ E , the R-GCN computes:

h̃i = σ
⎛⎜⎝∑e∈E ∑

j∈Ve

i

W
l
e[hl

j ;Embe] +W
l
0[hl

i;Embe]⎞⎟⎠ , (3)

where W
l
e and W

l
0 are trainable parameters. When

the graph is discrete (i.e., word co-occurrence, rel-

ative position, SRL), we use ReLU as the activa-

tion function σ; when the graph is continuous (i.e.,

continuous belief), we use Tanh function as σ to

stabilize the model.

When the labels of graph nodes consist of tokens,

we integrate their word representations into graph

computation. Specifically, for a node i, we use the

concatenation of a randomly initialized node em-

bedding vector and the averaged word embeddings

of node label as the initial input h
0
i . Similarly, for

each relation e, Embe is the concatenation of a ran-

domly initialized relation embedding vector and

the averaged word embeddings of e’s label.

We utilize highway connections (Srivastava

et al., 2015) between R-GCN layers:

g = Sigmoid(Whw(h̃i)),
h
l+1
i = g ⊙ h̃i + (1 − g)⊙ h

l
i,

(4)

where ⊙ indicates element-wise multiplication,

Whw is a linear layer. We denote the final output

of the R-GCN as hGt
∈ R

N×H
, where N is the

number of nodes in the graph, H is hyperparameter.

3.3 Aggregating Multiple Modalities

Following Yuan et al. (2020), we utilize the context-

query attention mechanism (Yu et al., 2018) to ag-

gregate multiple representations. The inputs to a

context-query attention layer are typically two se-

quences of representation vectors (e.g., sequence of

tokens for text, sequence of nodes for graphs). The

attention computes element-wise similarity scores

between the two inputs, then each element in one

input can be represented by the weighted sum of

the other input, and vice versa.

As shown in Figure 1 (right), we stack another

context-query attention layer on top of the encoder

used in iMRC, to aggregate the text representation

(which encodes information in ot and q) with graph

representation. We denote the output from the sec-

ond attention layer as hog ∈ R
Lot×H , where Lot is

the length of ot, H is hyperparameter.

Although all the four graph types we investigate

are updated dynamically, they can only represent

the agent’s belief of the current state st. There are

clearly some information hard to be represented in

the graphs, such as how did an agent navigate to

the current sentence (i.e., the trajectories). We thus

leverage a recurrent neural network to incorporate

history information into encoder’s output represen-

tations. Specifically, we use a GRU (Cho et al.,

2014) as the recurrent component:

hinp = MaskedMean(hog),
Mt = GRU(hinp,Mt−1), (5)

in which, hinp ∈ R
H

. Mt−1 is the output of the

GRU cell at game step t− 1. As shown in Figure 1

(left), the output of encoder, Mt, is then used to

both generating actions during information gath-

ering phase, as well as extracting answers during

question answering phase, this procedure exactly

follows the iMRC pipeline.

4 Experiments and Results

We conduct experiments on the iSQuAD dataset

(Yuan et al., 2020) to answer three key questions:

• Q1: Do graph representations help agents

achieving better performance? In particular,

among the four graph types, which of them

provides the most performance boost?

• Q2: Do graph representations remain help-

ful in settings where multiple memory slots

(observation queues) are available?
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Easy Mode Hard Mode
#Mem Slot Agent q q + ot vocab q q + ot vocab %RI Reference

1

iMRC (Yuan et al., 2020) 0.575 0.579 0.583 0.524 0.357 0.264 –

§ 4.A1

Ours (co-occur) 0.632 0.624 0.635 0.582 0.426 0.258 9.16
Ours (rel. pos.) 0.634 0.634 0.642 0.562 0.440 0.250 9.18

Ours (SRL) 0.616 0.641 0.638 0.603 0.434 0.253 9.98
Ours (cont.) 0.617 0.628 0.616 0.597 0.436 0.257 9.14

Ours (ensemble) 0.677 0.691 0.686 0.627 0.472 0.276 18.53

3

iMRC (Yuan et al., 2020) 0.637 0.651 0.624 0.524 0.362 0.261 –

§ 4.A2

Ours (co-occur) 0.674 0.665 0.675 0.605 0.446 0.260 9.06
Ours (rel. pos.) 0.677 0.665 0.664 0.615 0.438 0.257 8.66

Ours (SRL) 0.681 0.678 0.654 0.600 0.440 0.258 8.45
Ours (cont.) 0.676 0.642 0.662 0.592 0.426 0.282 8.26

Ours (ensemble) 0.714 0.713 0.701 0.650 0.471 0.278 15.80

5

iMRC (Yuan et al., 2020) 0.666 0.656 0.661 0.551 0.364 0.218 –

§ 4.A2

Ours (co-occur) 0.680 0.670 0.665 0.628 0.444 0.258 9.84
Ours (rel. pos.) 0.686 0.677 0.665 0.622 0.446 0.253 9.76

Ours (SRL) 0.675 0.680 0.680 0.609 0.441 0.257 9.56
Ours (cont.) 0.699 0.693 0.696 0.629 0.455 0.257 12.19

Ours (ensemble) 0.736 0.733 0.725 0.665 0.484 0.277 18.79

Table 1: Testing F1 scores and the relative improvement %RI (averaged over six settings in a row). Best single

agent scores within each setting are highlighted with boldface, scores better than iMRC are shaded in yellow.

• Q3: If graph representations are great, can we

get rid of the text modality?

Experiment Setup: The iSQuAD dataset (Yuan

et al., 2020) is an interactive version of the SQuAD

dataset (Rajpurkar et al., 2016), which consists

of 82k/5k/10k environments for training, valida-

tion, and testing. As described in Section 2,

iSQuAD contains two difficulty levels and three

finer-grained QUERY type settings, all of which in-

fluence an RL agent’s action space. The environ-

ment provides an observation queue with k memory

slots depending on different configurations, where

k ∈ {1, 3, 5}. The observation queue stores the

k most recent observation sentences to alleviate

difficulties caused by partial observability. Note

in configuration where k = 1, there is no history

information stored.

Inherited from the original SQuAD dataset, an

agent is evaluated by the F1 score between its pre-

dicted answer and the ground-truth answers. We

compare our agents equipped with graph repre-

sentations against iMRC scores reported in (Yuan

et al., 2020), specially, we also report an agent m’s

relative improvement over iMRC:

%RI = (F
m
1 − F

iMRC
1 )/F

iMRC
1 × 100.0. (6)

For all experiment settings, we train the agent

with three different random seeds. We compute

an agent’s test score using the model checkpoint

that achieves the best validation score.

A1: Graph representations indeed help, and

ensemble is an useful strategy.

Intuitively, a dynamically maintained graph can

serve as an agent’s episodic memory. Therefore,

the less information is provided by the environ-

ment, the more useful the graphs can be. We first

investigate our graph aided agent’s performance on

the game configuration where only single memory

slot is available. This is arguably the most difficult

configuration in iMRC, where any valid action can

lead to a completely different observation (a new

sentence). As a result, agents needs to rely on its

own memory mechanism.

As shown in Table 1 (#Mem Slot = 1), our agent

outperforms iMRC in most of the settings by a

noticeable margin. We observe that the improve-

ment brought by graph representations is consis-

tent across the four graph types. All of the four

graph types provide over 9% of average relative

improvement over iMRC. Among the four graph

types, relative position graph and SRL graph seem

to show advantage over the other two types, but

this trend is not as significant.

Following standard strategy of model ensemble

in MRC works, we test the ensemble of the four

graphs. Specifically, taking four individual agents,

each trained with its corresponding graph types, we

mix their decisions during test. During the infor-

mation gathering phase, we sum up the four agents’

output probabilities, including the probabilities

over action words (i.e., previous, next, ctrl+f,

stop) and the probabilities over the QUERY tokens.
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Text Only (Yuan et al., 2020)
0.575

Graph Only
co-occur rel. pos. SRL cont. ensemble

0.543 0.528 0.398 0.308 0.534

Text + Graph
co-occur rel. pos. SRL cont. ensemble

0.632 0.634 0.616 0.617 0.677

Table 2: Testing F1 with different input modalities.

Reference: § 4.A3.

The four agents consequently take the action with

the max summed probabilities to keep interacting

with the environment. During the question answer-

ing phase, we also sum up the output probabilities

(over tokens in the sentence where the agents stop),

and generate answers accordingly. Surprisingly,

we find that the ensemble greatly boosts agent’s

performance. As shown in Table 1 (#Mem Slot =

1), the ensemble agent nearly doubles our agent’s

relative improvement over iMRC. It is also worth

noting that with ensembling, our agent achieved

better score than iMRC in the Hard Mode + vocab

setting, which all the individual agent fail to out-

perform the baseline. This observation aligns with

our motivation that the four types of graphs capture

different aspects of the information and thus may

be complementary to each other.

A2: Graph representations remain helpful

even with explicit memories.

As mentioned above, in some configurations, the

iSQuAD environment provides an observation

queue that caches most recent few observations

as an explicit memory mechanism. A natural thing

to explore is that if the advantages of equipping

graph representations tend to diminish when the

partial observability of the environments decreases.

We train and test our agent using iSQuAD’s con-

figurations where 3 or 5 memory slots are available

(i.e., at game step t, the input ot to the agent is the

concatenation of the most recent 3 or 5 sentences

it has seen). From Table 1, we observe that the pre-

viously observed trends are consistent across dif-

ferent memory slot number configurations. Particu-

larly, in the settings with 3 or 5 memory slots, our

single agents equipped with graph representations

can outperform iMRC in most of the settings. All

graph types provide a greater than %8 of averaged

relative improvements. Again, the ensemble agent

nearly doubles single agents’ relative improvement

over iMRC. In the setting with 5 memory slots, we

observe that the continuous belief graph is consis-

tently outperforming its counterparts, which pro-

vides a %12.19 of relative improvement.

Given the observation that graph representa-

tions seem still helpful even with explicit mem-

ories, we further compare graph as memory mech-

anism against the explicit memory slots provided

by iSQuAD environments. Comparing our best

graph aided agent (receiving single sentence as in-

put) against iMRC (receiving 3 and 5 sentences

as input), we find our agent achieves a %13.03

and %13.47 of relative improvements over iMRC.

This suggests that the design of the memory mech-

anism plays a big role in the interactive reading

comprehension tasks. Although the concatenation

of memory slots may provide as much amount of

information, the inductive bias of graph representa-

tions are stronger.

A3: Text modality is necessary.

Based on our findings in previous subsections, we

further investigate whether the dynamic graphs can

replace the text modality. We conduct a set of ab-

lation experiments on the Easy Mode + q games,

with single memory slot. Specifically, at every

game step t, given the new observation ot, we use

the graph updater (described in Section 3.1) to gen-

erate graph representations Gt. Encoded by the

graph encoder (described in Section 3.2), we di-

rectly aggregate the graph encoding with the ques-

tion representations for further computations. In

this way, the observation sentence ot is only used

to build the graph, without serving as a direct input

modality to the agent.
5

After training and testing such graph-only vari-

ants of our agent, we compare them against the

text-only version (Yuan et al., 2020) and our full

agent with both input modalities in Table 2. We

observe that the graph-only agent fails to outper-

form the text-only baseline with any of the graph

types, even with the ensemble of them. This sug-

gests that even though the text and graph modalities

may contain redundant information (because the

graphs are generated from the text), they represent

the information complementarily in some sense.

We suspect the attention mechanism integrating

text representations and graph representations (de-

scribed in Section 3.3) may have contributed to the

improvement of the full agent. For instance, the

5
Note ot is absent only during the information gathering

phase, due to the extractive design of the question answerer.
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#Mem Agent
co-
occur

rel.
pos.

SRL cont. ensemble

1
Ours 9.16 9.18 9.98 9.14 18.53

w/o RNN 4.73 4.27 5.50 5.23 12.29

3
Ours 9.06 8.66 8.45 8.26 15.80

w/o RNN 5.89 7.48 2.91 5.43 14.15

5
Ours 9.84 9.76 9.56 12.19 18.79

w/o RNN 6.51 5.97 6.29 6.02 14.99

Table 3: Averaged %RI over iMRC, comparing full

agent with variants without RNN in encoder. Refer-

ence: § 4.Additional Results.

agent may have learned to focus on certain sub-

graph conditioned on tokens in ot, and vice versa.

Additional Results and Discussion

As described in Section 3.3, our agent utilizes a

recurrent component to be aware of history infor-

mation, this component is absent in the original

iMRC architecture. Therefore, it is important to

make sure the performance improvement shown in

previous subsections are not solely caused by the

RNN. We conduct a set of experiments, with the

RNN layer disabled (i.e., the output of attention

layer becomes Mt in Figure 1 right).

We show results of these experiments in Table 3,

due to space limitation, we only show the averaged

relative improvement over iMRC, readers can find

full results in Appendix C. Overall, graph repre-

sentations contribute more to the improvement (for

single agents, more than %5 on average), this is es-

pecially clear for the ensemble agents, where even

without RNN, agents can sometimes achieve very

close performance with the full agent. However,

the effect of the RNN is non-negligible. This again

emphasizes the importance of memory mechanism

in interactive reading comprehension tasks. From

our finding, multiple distinct memory mechanisms

(i.e., memory slots, graphs, RNN cells) do not seem

redundant, rather, they work cooperatively to pro-

duce a better score than solely using any of them.

It is noticeable in Table 1 that all agents performs

poorly on Hard Mode + vocab games. This reveals

limitations of RL-based algorithm (such as deep

Q-learning we use in this work) — when the action

space is extremely large, the agent has near-zero

probability to experience a trajectory that leads to

any positive reward, and thus struggles to learn

useful strategies. This can potentially be mitigated

by pre-training the agent with an easier setting then

fine-tune in the difficult setting so that the agent has

higher probability to experience good trajectories

to start with.

A recent work (Guo et al., 2021) propose to facil-

itate RL learning in tasks with huge action spaces

(e.g., natural language generation) using Path Con-

sistency Learning (PCL). Their PCL-based train-

ing method can update Q-values of all actions (to-

kens in vocabulary) at once, as opposed to only

update the selected action (one token) in vanilla Q-

Learning. This can potentially enable iMRC agents

to perform in a more natural and generic manner,

for instance, to Ctrl+F multi-word expressions as

QUERY.

Due to space limitation, we report detailed agent

structure, more results, and implementation details

in Appendices.

5 Related Work

MRC has become an ever-growing area in the

past decade, especially since the success of deep

neural models. Like an adversarial game, re-

searchers release new datasets (Hill et al., 2015;

Chen et al., 2016; Rajpurkar et al., 2016; Trischler

et al., 2016a; Nguyen et al., 2016; Reddy et al.,

2018; Yang et al., 2018a; Choi et al., 2018; Clark

et al., 2020) and novel models (Trischler et al.,

2016b; Wang and Jiang, 2016; Seo et al., 2016;

Wang et al., 2017; Huang et al., 2018) one after

another. Since the flourishing of large scale pre-

trained language models such as BERT (Devlin

et al., 2019), RoBERTa (Liu et al., 2019) and XL-

Net (Yang et al., 2019), performance of neural mod-

els on MRC datasets have improved greatly.

While some researchers believe models have

achieved human-level performance, others argue

that there have been biases or trivial cues injected

into MRC datasets unconsciously (Agrawal et al.,

2016; Weissenborn et al., 2017; Mudrakarta et al.,

2018; Sugawara et al., 2018; Niven and Kao, 2019;

Sen and Saffari, 2020). These biases may cause

models to learn shallow pattern matching, rather

than deep understanding and reasoning skills.

iMRC (Yuan et al., 2020) is a line of research

that assumes partial observability and insufficient

information. To answer a question, models have to

actively collect necessary information by interact-

ing with the environment. The iMRC paradigm can

be described naturally within the RL framework,

and thus it shares interests with video games (Badia

et al., 2020), text-based games (Ammanabrolu and

Riedl, 2019; Adhikari et al., 2020) and navigation

(Anderson et al., 2018; Shridhar et al., 2020).
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Graph construction is also a thriving direction

lies at the intersection of multiple areas such as

information extraction (Angeli et al., 2015), knowl-

edge base (Shin et al., 2015), logical reasoning

(Sinha et al., 2019) and representation learning

(Kipf et al., 2020). Leveraging automatically con-

structed graph representations in static MRC has

been shown effective, researchers use a wide range

of linguistic features to help constructing graphs.

Dhingra et al. (2018); Song et al. (2018) build

graphs use coreference relations, De Cao et al.

(2019); Qiu et al. (2019); Tu et al. (2020) leverage

mentions of entities and Zheng and Kordjamshidi

(2020) build SRL graphs using parsers. In the con-

text of RL, prior work have also shown that con-

structing graph representations from other modali-

ties can be helpful to solve tasks in interactive envi-

ronments (Johnson, 2017; Yang et al., 2018b; Am-

manabrolu and Riedl, 2019; Adhikari et al., 2020).

6 Broader Impact

Our work is a proof-of-concept study, we use a rela-

tively simple and restricted (in terms of both obser-

vations and actions) QA dataset, iSQuAD, for both

training and evaluation. Although the current ver-

sion of our work might have limited consequences

for society, we believe that taking a broader view

of our work can be beneficial by preventing our

future research from causing potential social and

ethical concerns.

Similar to many RL-based systems, the informa-

tion gathering module of our agent is optimized

solely on its performance w.r.t. the final metric,

without much constraints on its behavior at each

game step. This can potentially make the system

vulnerable since the RL agent may develop unde-

sirable strategies that optimize the final metric.

In our current setting, the action space of the

information gathering module is restricted (see Sec-

tion 2). However, if we consider a more general

setting, e.g., to equip the agent with a larger action

space by allowing it to generate a sequence of to-

kens as the QUERY to the Ctrl+F action, we have

to be extra careful about the aforementioned side

effects caused by RL training. For instance, the

agent may develop unfavorable behaviors such as

forgetting proper syntax, abusing certain pronouns,

to optimize its final rewards.

7 Conclusion

We explore to leverage graph representations in the

challenging iMRC tasks. We investigate different

categories of graph structures that can capture text

information at various levels. We describe methods

that dynamically generate the graphs during infor-

mation gathering. Experiment results show that

graph representations provide consistent improve-

ment across settings. This evinces our hypothesis

that graph representations are proper inductive bi-

ases in iMRC.
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Contents in Appendices:

• In Appendix A, we provide detailed informa-

tion of our agent architecture.

• In Appendix B, we provide implementation

details.

• In Appendix C, we provide the full set of our

experiment results.

A Details on Agent Structure

In this section, we provide detailed information of

our agent. We will describe each of the modules

shown in Figure 1. Some information here may be

redundant with what we describe in Section 3, we

repeat them here for reader’s convenience.

Notations

We use game step t to denote one round of interac-

tion between an agent with the iSQuAD environ-

ment. We use ot to denote text observation at game

step t, and q to denote question text. We use L to

refer to a linear transformation, superscript of L

denotes the activation function applied to the linear

layer. Brackets [⋅; ⋅] denote vector concatenation.

A.1 Encoder

At a game step t, the encoder takes text observation

(a sentence) ot, the question q, and the graph Gt

generated by the graph updater (if applicable) as

input. It first converts each input into vector rep-

resentations, then aggregates them using attention

mechanism.

A.1.1 Text Encoder

We use a transformer-based encoder, which con-

sists of an embedding layer and a transformer block

(Vaswani et al., 2017). Specifically, embeddings

are initialized by vectors extracted from a BERT

model (Devlin et al., 2018) that is pre-trained on

large corpus and fine-tuned on SQuAD
6
. The em-

bedding size is 1024, they are fixed during training

in all settings.

The transformer block consists of a stack of 4

convolutional layers, a self-attention layer, and a

2-layer MLP with a ReLU non-linear activation

function in between. Within the block, each convo-

lutional layer has 96 filters, with the kernel size of

7. In the self-attention layer, we use a block hidden

6
We obtain the embeddings from HuggingFace (https:

//huggingface.co/), the BERT large model (uncased),
whole word masking, fine-tuned on SQuAD.

size H of 96, as well as a single head attention

mechanism. Layer normalization (Ba et al., 2016)

is applied after each component inside the block.

Following standard transformer training, we add

positional embeddings into each block’s input.

At every game step t, we use the same text en-

coder to process ot and q. The resulting represen-

tations are hot ∈ R
Lot×H and hq ∈ R

Lq×H , where

Lot is the number of tokens in ot, Lq denotes the

number of tokens in q, H = 96 is the hidden size.

A.1.2 Graph Encoder

We adopt the graph encoder from (Adhikari

et al., 2020), which is a model based on R-GCN

(Schlichtkrull et al., 2018). Specifically, at the l-th

layer of the R-GCN, for each node i ∈ V , given

the set of its neighbor nodes V
e
i ∈ V under relation

e ∈ E , the R-GCN computes:

h̃i = σ
⎛⎜⎝∑e∈E ∑

j∈Ve
i

W
l
e[hlj ;Embe] +W

l
0[hli;Embe]⎞⎟⎠ ,

(7)

where W
l
e and W

l
0 are trainable parameters. When

the graph is discrete (i.e., word co-occurrence, rel-

ative position, SRL), we use ReLU as the activa-

tion function σ; when the graph is continuous (i.e.,

continuous belief), we use Tanh function as σ to

stabilize the model.

As the initial input h
0

to the graph encoder, we

concatenate a node embedding vector and the aver-

aged word embeddings of node text (e.g., a word

in word co-occurrence graph, a chunk of a sen-

tence in SRL graph). Similarly, for each relation e,

Embe is the concatenation of a relation embedding

vector and the averaged word embeddings of e’s la-

bel. Both node embedding and relation embedding

vectors are randomly initialized and trainable.

We utilize highway connections (Srivastava

et al., 2015) between layers:

g = L
Sigmoid(h̃i),

h
l+1
i = g ⊙ h̃i + (1 − g)⊙ h

l
i,

(8)

where ⊙ indicates element-wise multiplication.

We use a 3-layer graph encoder, with a hidden

size H = 96 in each layer. The node embedding

size and relation embedding size are 100 and 32,

respectively. The number of bases we use is 3.

The final output of graph encoder is hGt
∈ R

N×H
,

where N is the number of nodes in the graph.

https://huggingface.co/
https://huggingface.co/
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A.1.3 Attention

Context-Query Attention To aggregate the

question q with context comes from various modal-

ity (i.e., text and graph), we adopt the context-query

attention layer from (Yu et al., 2018). We use a uni-

fied notion c to represent the context in the descrip-

tion of the context-query attention, the encoding of

c is denoted as hc ∈ R
Lc×H .

The attention layer first uses two MLPs to con-

vert both hc and hq into the same space, the re-

sulting tensors are denoted as h
′

c ∈ R
Lc×H and

h
′

q ∈ R
Lq×H , in which H = 96. Then, a tri-linear

similarity function is used to compute the similari-

ties between each pair of h
′

c and h
′

q items:

S = W [h′c;h′q;h′c ⊙ h
′

q], (9)

where W is trainable parameters with hidden size

96.

Softmax of the resulting similarity matrix S

along both dimensions are computed, this produces

S
A

and S
B

. Information in the two representations

are then aggregated by:

hcq = [h′c;P ;h
′

c ⊙ P ;h
′

c ⊙Q],
P = Sqh

′⊤

q ,

Q = SqS
⊤

c h
′⊤

c .

(10)

Next, a linear transformation projects the aggre-

gated representations to a space with size H = 96:

hcq = L(hcq). (11)

Now, hcq ∈ R
Lc×H is aggregated context-query

representation.

Context-Context Attention Given the aggre-

gated text-query representations hoq and the aggre-

gated graph-query representations hgq, the context-

context attention aims to merge them together and

generate an overall representation that encodes all

available information the agent has seen so far.

Specifically, the context-context attention is im-

plemented as a stacked layers of transformer blocks.

The structure of these transformer blocks is similar

with the text encoder blocks, except we append an

extra attention layer after its self-attention mech-

anism. This extra attention layer computes the

attention between text-query representations with

graph-query representations, followed with an extra

layer normalization. In each block, we use a stack

of 2 convolutional layers, each convolutional layer

has 94 filters with kernel size of 5. It is worth not-

ing that this additional attention layer is performed

only when graph representations are enabled, and

is skipped otherwise. We stack 7 such transformer

layers, they output hog ∈ R
Lot×H , where Lot is

the length of ot, H = 96 is hidden size.

A.1.4 Recurrent Component

As mentioned in Section 4, we have a setting where

the encoder is recurrent, so that the agent can incor-

porate history information into its representations.

In that specific setting, we use a GRU (Cho et al.,

2014) as the recurrent component:

hinp = MaskedMean(hog),
ht = GRU(hinp, ht−1), (12)

in which, the mean pooling is performed along the

dimension of number of tokens, i.e., hinp ∈ R
H

.

ht−1 is the output of the GRU cell at game step

t − 1.

A.2 Action Generator

Let M ∈ R
H

denote the output of the attention

layers described above:

M = {ht if recurrent,

MaskedMean(hog) otherwise.
(13)

The action generator takes M as input and gen-

erates rankings for all possible actions. As defined

in (Yuan et al., 2020), a Ctrl+F command is com-

posed of two tokens (the token “Ctrl+F” and the

QUERY token). Therefore, the action generator con-

sists of three multi-layer perceptrons (MLPs):

hshared = L
ReLU
shared(M),

Qaction = Laction(hshared),
hquery = L

Tanh
query(hshared),

Qquery = Emb(hquery).
(14)

In which, Qaction and Qquery are Q-values of ac-

tion token and QUERY token (when action token is

“Ctrl+F”), respectively. The hidden size of Lshared

is 150. The hidden size of Laction is either 2 (hard,

only Ctrl+F and stop commands are allowed) or

4 (easy, previous and next are also allowed) de-

pending on the game mode. We follow (Press and

Wolf, 2017), tying the input embeddings and output

embeddings. Specifically, a linear layer Lquery fol-

lowed by a Tanh activation projects hshared into the

same space as the embeddings (with dimensional-

ity of 1024), then the pre-trained BERT embedding
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matrix generates output logits Qquery (Q-values)

where the output size is same as the vocabulary

size.

Under different settings where the selection

spaces of QUERY are specified, we apply different

masks to Qquery. For instance, in the setting where

the QUERY is a word selected from q + ot, we use a

mask which has same size as the vocabulary, where

only tokens appear in either q and ot are set to 1.

A.3 Question Answerer

Whenever the action generator generates the com-

mand stop, or the agent has used up all its limit

of moves, the information gathering phase termi-

nates. At this point, the agent has to use its current

internal representations to answer the question.

The question answer is a simple MLP-based

layer. It takes hog ∈ R
Lot×H as input, and gen-

erates a head distribution and a tail distribution

over tokens in ot:

hhead = L
ReLU
0 (hog),

htail = L
ReLU
1 (hog),

phead = L
Softmax
2 (hhead),

ptail = L
Softmax
3 (htail).

(15)

A.4 Graph Updater: Continuous Belief

Among all the four proposed graph categories, only

the continuous belief graph is generated by the

agent, and the graph updater is trained with a data-

driven approach. Therefore, we describe the struc-

ture of this graph updater and the way we train it.

Because a large portion of this module is adopted

from (Adhikari et al., 2020), we provide a high

level of the method and refer readers to (Adhikari

et al., 2020) for detailed information.

We show the continuous belief graph updater

training pipeline in Figure 3, it consists of two parts:

the graph updater itself (red block on the left) and a

decoder that helps to train the graph updater (green

block on the right). As mentioned in Section 3.1.4,

the idea is to train a graph updater that can modify

and maintain a graph Gt using the text observation

ot and the graph from previous game step Gt−1.

The graph Gt should contain sufficient information

so that conditioned solely on Gt, a discriminator

can differentiate true observation ot from negative

sample õt.

In Figure 3, text encoder and graph encoder are

similar modules as described in Appendix A.1. The

f∆ function is a layer with attention mechanism

inside, it aggregates the text representations and

graph representations. The f∆ function outputs a

vector ∆gt, which represents the new information

seen in the new observation ot, compared to the

graph at previous game step Gt−1.

The ⊕ function is a graph operation function that

produces the new belief representation ht given

ht−1 and ∆gt:

ht = ht−1 ⊕∆gt. (16)

The graph operation function is implemented with

a GRU (Cho et al., 2014). The function fd is an

MLP that decodes the recurrent state ht into a real-

valued adjacency tensor (i.e., the continuous belief

graph Gt).

At the decoder side (green block on the right),

the graph representations of Gt are concatenated

with both the text representations of ot and õt, the

resulting vectors are fed into an MLP-based dis-

criminator. The discriminator is trained with the

standard binary cross-entropy (BCE) loss.

After pre-training, the graph updater (red block

on the left) is fixed and plugged into our RL agent

to produce continuous belief graphs.

B Implementation Details

In this section, we provide hyperparameters and

other implementation details.

For our full agent, we adopt the training proce-

dure of DRQN (Hausknecht and Stone, 2015; Yuan

et al., 2018) to train the agent. For the agent vari-

ants where recurrent component is absent, we use

the training procedure of DQN (Mnih et al., 2013).

For all experiments, we use Adam (Kingma and

Ba, 2015) as the optimizer. The learning rate is set

to 0.00025 with a clip gradient norm of 5.

We use a prioritized replay buffer with memory

size of 500,000, and a priority fraction of 0.5. Dur-

ing model update, we use a replay batch size of 64.

We use a discount γ = 0.9. We use noisy nets, with

a σ0 of 0.5. We update target network after every

1000 episodes. In DQN training, we sample the

multi-step return n ∼ Uniform[1, 3]. In DRQN

training, every sampled data point in the replay

batch is a sequence of 2 consecutive transitions.

We use the first transition to estimate the recurrent

states, and the second for updating the model pa-

rameters. We refer readers to Hessel et al. (2018)

for more information about different components

of DQN training.
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Figure 3: Graph updater for continuous belief graphs.

We train all agents with 3 different random seeds.

We choose the random seed which produces the

best validation performance, and report its scores

on the test set. To be comparable with iMRC, we

also train our agents with 1 million episodes, each

episode has a maximum number of steps 20.

We train all agents for 1 million episodes, this

is the same number of episodes reported in (Yuan

et al., 2020). Running speed of agents depend on

the specific configuration, e.g., the type of graph

equipped by an agent. On average, achieving best

validation score takes an agent about 3 days on a

single Nvidia P100 GPU.

C Full Results

In Table 4,5,6, we provide full results on our ex-

periments. Although the only metric to evaluate

an agent’s performance on the iMRC task is the

F1 score between the prediction with the ground-

truth answers, in (Yuan et al., 2020), the authors

also monitor agents’ sufficient information reward.

Specifically, sufficient information rewards are bi-

nary rewards representing if the final observation

(either the agent generates the stop action, or it has

used up all its moves) contains the ground-truth an-

swer as a sub-string. Intuitively, because of the

extractive nature of the question answerer mod-

ule, the agent can answer the question correctly if

and only if it achieves a 1.0 sufficient information

reward on a specific data point. We provide the

sufficient information rewards of our agents in the

full result tables, colored in blue.
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Easy Mode Hard Mode

Agent q q + ot vocab q q + ot vocab %RI

iMRC (Yuan et al., 2020) 0.575 (0.747) 0.579 (0.739) 0.583 (0.753) 0.524 (0.684) 0.357 (0.477) 0.264 (0.363) –

Ours (co-occur) 0.632 (0.779) 0.624 (0.763) 0.635 (0.770) 0.582 (0.724) 0.426 (0.533) 0.258 (0.338) 9.16 (3.40)

Ours (rel. pos.) 0.634 (0.776) 0.634 (0.774) 0.642 (0.779) 0.562 (0.696) 0.440 (0.553) 0.250 (0.338) 9.18 (3.81)

Ours (SRL) 0.616 (0.751) 0.641 (0.779) 0.638 (0.782) 0.603 (0.740) 0.434 (0.538) 0.253 (0.338) 9.98 (3.99)

Ours (cont.) 0.617 (0.757) 0.628 (0.763) 0.616 (0.758) 0.597 (0.744) 0.436 (0.542) 0.257 (0.338) 9.14 (3.46)

Ours (ensemble) 0.677 (0.789) 0.691 (0.799) 0.686 (0.795) 0.627 (0.735) 0.472 (0.555) 0.276 (0.338) 18.53 (6.04)

Ours (co-occur) w/o RNN 0.572 (0.708) 0.613 (0.753) 0.607 (0.744) 0.556 (0.689) 0.397 (0.495) 0.269 (0.359) 4.73 (-0.20)

Ours (rel. pos.) w/o RNN 0.574 (0.702) 0.621 (0.761) 0.608 (0.746) 0.540 (0.676) 0.409 (0.504) 0.255 (0.338) 4.27 (-1.05)

Ours (SRL) w/o RNN 0.559 (0.703) 0.628 (0.772) 0.631 (0.773) 0.540 (0.672) 0.411 (0.511) 0.266 (0.347) 5.50 (0.38)

Ours (cont.) w/o RNN 0.588 (0.724) 0.604 (0.739) 0.605 (0.747) 0.561 (0.693) 0.414 (0.513) 0.258 (0.338) 5.23 (-0.30)

Ours (ensemble) w/o RNN 0.598 (0.701) 0.659 (0.769) 0.664 (0.773) 0.593 (0.695) 0.441 (0.526) 0.278 (0.338) 12.29 (0.93)

Table 4: #Memory slot = 1. Testing F1 in black and sufficient information rewards in blue. %RI represents relative

improvement over iMRC on corresponding metric, across settings.

Easy Mode Hard Mode

Agent q q + ot vocab q q + ot vocab %RI

iMRC (Yuan et al., 2020) 0.637 (0.738) 0.651 (0.734) 0.624 (0.738) 0.524 (0.740) 0.362 (0.729) 0.261 (0.719) –

Ours (co-occur) 0.674 (0.863) 0.665 (0.859) 0.675 (0.872) 0.605 (0.780) 0.446 (0.585) 0.260 (0.338) 9.06 (3.52)

Ours (rel. pos.) 0.677 (0.874) 0.665 (0.850) 0.664 (0.877) 0.615 (0.789) 0.438 (0.575) 0.257 (0.338) 8.66 (3.54)

Ours (SRL) 0.681 (0.896) 0.678 (0.887) 0.654 (0.841) 0.600 (0.780) 0.440 (0.564) 0.258 (0.338) 8.45 (3.33)

Ours (cont.) 0.676 (0.870) 0.642 (0.850) 0.662 (0.864) 0.592 (0.746) 0.426 (0.544) 0.282 (0.389) 8.26 (3.49)

Ours (ensemble) 0.714 (0.864) 0.713 (0.867) 0.701 (0.851) 0.650 (0.783) 0.471 (0.567) 0.278 (0.338) 15.80 (2.75)

Ours (co-occur) w/o RNN 0.624 (0.810) 0.666 (0.870) 0.658 (0.860) 0.577 (0.732) 0.417 (0.523) 0.272 (0.362) 5.89 (0.34)

Ours (rel. pos.) w/o RNN 0.625 (0.840) 0.650 (0.838) 0.649 (0.835) 0.577 (0.741) 0.420 (0.524) 0.305 (0.386) 7.48 (1.19)

Ours (SRL) w/o RNN 0.593 (0.772) 0.639 (0.865) 0.636 (0.828) 0.568 (0.732) 0.400 (0.510) 0.275 (0.371) 2.91 (-1.18)

Ours (cont.) w/o RNN 0.641 (0.820) 0.645 (0.840) 0.667 (0.854) 0.576 (0.742) 0.420 (0.537) 0.261 (0.338) 5.43 (-0.57)

Ours (ensemble) w/o RNN 0.663 (0.803) 0.704 (0.859) 0.709 (0.858) 0.627 (0.748) 0.460 (0.538) 0.293 (0.350) 14.15 (0.31)

Table 5: #Memory slot = 3. Testing F1 in black and sufficient information rewards in blue. %RI represents relative

improvement over iMRC on corresponding metric, across settings.

Easy Mode Hard Mode

Agent q q + ot vocab q q + ot vocab %RI

iMRC (Yuan et al., 2020) 0.666 (0.716) 0.656 (0.706) 0.661 (0.731) 0.551 (0.739) 0.364 (0.733) 0.218 (0.713) –

Ours (co-occur) 0.680 (0.883) 0.670 (0.905) 0.665 (0.879) 0.628 (0.804) 0.444 (0.572) 0.258 (0.338) 9.84 (3.84)

Ours (rel. pos.) 0.686 (0.897) 0.677 (0.900) 0.665 (0.898) 0.622 (0.802) 0.446 (0.583) 0.253 (0.338) 9.76 (4.66)

Ours (SRL) 0.675 (0.884) 0.680 (0.902) 0.680 (0.920) 0.609 (0.767) 0.441 (0.563) 0.257 (0.338) 9.56 (3.43)

Ours (cont.) 0.699 (0.916) 0.693 (0.914) 0.696 (0.925) 0.629 (0.805) 0.455 (0.595) 0.257 (0.338) 12.19 (6.25)

Ours (ensemble) 0.736 (0.895) 0.733 (0.908) 0.725 (0.898) 0.665 (0.798) 0.484 (0.582) 0.277 (0.338) 18.79 (4.64)

Ours (co-occur) w/o RNN 0.631 (0.814) 0.674 (0.896) 0.682 (0.918) 0.586 (0.753) 0.412 (0.513) 0.259 (0.338) 6.51 (0.03)

Ours (rel. pos.) w/o RNN 0.636 (0.833) 0.682 (0.908) 0.669 (0.893) 0.572 (0.734) 0.412 (0.512) 0.258 (0.338) 5.97 (-0.29)

Ours (SRL) w/o RNN 0.619 (0.793) 0.683 (0.907) 0.635 (0.822) 0.571 (0.727) 0.434 (0.554) 0.265 (0.345) 6.29 (-0.72)

Ours (cont.) w/o RNN 0.638 (0.836) 0.664 (0.884) 0.653 (0.858) 0.575 (0.731) 0.427 (0.533) 0.259 (0.338) 6.02 (-0.72)

Ours (ensemble) w/o RNN 0.668 (0.803) 0.733 (0.905) 0.715 (0.879) 0.624 (0.742) 0.466 (0.546) 0.280 (0.338) 14.99 (0.16)

Table 6: #Memory slot = 5. Testing F1 in black and sufficient information rewards in blue. %RI represents relative

improvement over iMRC on corresponding metric, across settings.


