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Abstract

We propose a generative framework for si-

multaneous machine translation. Conventional

approaches use a fixed number of source

words to translate or learn dynamic policies

for the number of source words by reinforce-

ment learning. Here we formulate simulta-

neous translation as a structural sequence-to-

sequence learning problem. A latent variable

is introduced to model read or translate ac-

tions at every time step, which is then inte-

grated out to consider all the possible trans-

lation policies. A re-parameterised Poisson

prior is used to regularise the policies which

allows the model to explicitly balance trans-

lation quality and latency. The experiments

demonstrate the effectiveness and robustness

of the generative framework, which achieves

the best BLEU scores given different average

translation latencies on benchmark datasets.

1 Introduction

The fundamental challenge of simultaneous ma-

chine translation (SiMT) is the balance between the

translation quality and the latency. It is non-trivial

to find an optimal translation strategy, as there is

generally a rivalry between the two objectives, i.e.

reading more source words before translating leads

to better translation quality, but it in turn results in

higher latency due to the longer time for reading.

Conventional Wait-k policies (Ma et al., 2019)

put a hard limitation over the buffer size k1, which

guarantees low latency but weakens flexibility and

scalability when handling long and complicated

language pairs. Alternatively, reinforcement learn-

ing (RL) approaches (Gu et al., 2017; Satija and

Pineau, 2016; Arthur et al., 2021) learn a dynamic

policy using a combined reward of a quality metric

like the BLEU score and AL (average lagging)2.

1The number of read source words minus the number of
translated target words.

2A metric for evaluating translation latency by how many
words have been read on average before translating a word.
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Figure 1: Example of translation paths of different si-

multaneous translation models.

However, the poor sample efficiency make it very

difficult to learn a robust SiMT model with RL.

In this paper we propose a generative framework

with a latent variable that dynamically decides be-

tween the actions of read or translate at every time

step, enabling the formulation of SiMT as a struc-

tural sequence-to-sequence learning task. Figure 1

depicts the examples of possible translation paths

of different models. Wait-k only explores one hy-

pothesis, while adaptive wait-k ensembles the other

hypothesises with lower k. However, the hypoth-

esises of reading more than k words before trans-

lating are not considered (e.g. inversion and re-

ordering in long sequence translations). The RL

models apply dynamic policies which can explore

all the possible hypothesises, but the gradient es-

timator conditioned on discrete samples has large

variance and the variance issue gets worse for long

sequences. Instead, Our proposed generative si-

multaneous machine translation model (GSiMT)
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integrates out all the hypothesises by a dynamic

programming algorithm (Algorithm 1) with the

help of the introduced latent variable. It does not

suffer from such large variance issue, and can be

easily and efficiently learned by gradient back-

propagation on GPU hardware.

The generative model can be modelled as a neu-

ral transducer (Graves, 2012; Yu et al., 2016). How-

ever the vanilla neural transducer is not designed

for SiMT. Because it is optimised by the cross-

entropy of target words, it naturally prefers read

actions over translate actions in order to see more

contexts before translation, which intuitively can

result in better translation quality but high latency.

Here, we propose to extend the neural transducer

framework to modern Transformer-based transla-

tion models (Vaswani et al., 2017), and introduce a

re-parameterised Poisson distribution to regularise

the latency (i.e. how many source words are read

before translating a target word). Inspired by the

fast-alignment work by Dyer et al. (2013), the trans-

lation model generally favors word alignments dis-

tributed close to the diagonal. We hypothesise that

the optimal sequence of translate actions in SiMT

is also located close to the diagonal. Thus the Pois-

son prior acts as context-independent regularisation

on the buffer size proportional to the distance be-

tween the current position and the diagonal. This

ensures that the number of read source words will

not grow indefinitely without translating any target

words, while the soft boundary, due to the regular-

isation, still allows the model to consider compli-

cated/long simultaneous translation cases.

To demonstrate the effectiveness of the proposed

framework, we evaluate our generative models on

two benchmark datasets: WMT15 (Bojar et al.,

2015) for text-only SiMT and Multi30K (Elliott

et al., 2016) for multimodal SiMT. Compared to a

number of strong baseline models, Wait-k, Adap-

tive Wait-k and an RL-trained policy, our pro-

posed model achieves the best performance on both

BLEU scores and average lagging (AL). Our con-

tributions can be summarised:

• A Transformer-based neural transducer model

for simultaneous machine translation.

• Poisson prior for effectively balancing the

translation quality and latency.

• State-of-the-art SiMT results (BLEU & AL)

on benchmark datasets, and the BLEU scores

are on-par-with consecutive MT models.

2 Related Work

Conventional SiMT methods are based on heuristic

waiting criteria (Cho and Esipova, 2016) or fixed

buffering strategy (Ma et al., 2019) to trade off

the translation quality for lower latency. Although

the heuristic approaches are simple and straightfor-

ward, they lack of scalability and cannot generalise

well on longer sequences. There is also a bulk of

work attempting to improve the attention mecha-

nism (Arivazhagan et al., 2019) and re-translation

strategies (Niehues et al., 2018) for better transla-

tion quality. Recently, Zheng et al. (2020) extends

the fixed Wait-k policies into adaptive version and

ensembles multiple models with lower latency to

improve the performance, but one still needs to

choose a hard boundary on the maximum value of

k. By contrast, our GSiMT model considers all the

possible paths with a soft boundary modelled by

Poisson distribution, which leads to a more flexible

balance between quality and latency.

RL has been explored (Gu et al., 2017) to learn

an agent that dynamically decides to read or trans-

late conditioned on different translation contexts.

Arthur et al. (2021) further applies extra knowledge

on word alignments as the oracle to improve the

learning. However, the high variance of the estima-

tor is still a bottleneck that hinders the applicability

of RL in structural sequence-to-sequence learning.

The proposed GSiMT model combines the merits

of both the Wait-k policies and RL.

Deep learning with structures has been explored

in many NLP tasks, especially for sequence-to-

sequence learning. Kim et al. (2017) imple-

ments structural dependencies on attention net-

works, which gives the ability to attend to partial

segmentations or subtrees without changing the

sequence-to-sequence structure. Tran et al. (2016)

parameterises the transition and emission probabil-

ities of an HMM with explicit neural components,

and Jiang et al. (2016) applies deep structural latent

variables to implement the dependency model with

valence (Klein and Manning, 2004) and integrates

out all the structures in end-to-end learning. Our

GSiMT model is based on neural transducer model.

Previously, Graves (2012) presents an RNN-based

neural transducer for phoneme recognition, and Yu

et al. (2016) explores an LSTM-based neural trans-

ducer for MT. The uni-directional variant model of

Yu et al. (2016) is similar to our proposed GSiMT

model, however it is implemented as a vanilla neu-

ral transducer, which is not optimised for low la-
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Figure 2: During training, all the contextualised representations Si,j will be used to compute the translation distri-

bution p(yj |X:i, Y:j−1) and action distribution p(ai,j |X:i, Y:j−1) , while in testing the model takes the inputs X in

real-time and dynamically produces yj and ai,j until all the inputs have been read.

tency and hence performs poorly on SiMT. There-

fore, the Poisson prior for regularising the latency

is the key component to enable neural transducer

models work on SiMT.

3 Model

3.1 Generative Model

We use X:m and Y:n to represent the source lan-

guage sequence and target language sequence with

lengths m and n. X:i represents the sub-sequence

{x1, x2, ..., xi}. The structural latent variable ai,j
(0 or 1) represents the action (read or translate).

Specifically ai,j = 0 means reading an extra source

word and ai,j = 1 means translating the target

word yj . The translation position Z is introduced

as an auxiliary variable to simplify the equations,

where zj = i denotes that there i source words have

been read when decoding the jth word yj . Similar

to neural transducer (Graves, 2012; Yu et al., 2016),

the generative model can be formulated as3:

p(Y:j |X)=

|X|
∑

i=1

p(yj |X:i,Y:j−1)p(zj=i, Y:j−1|X:i)

Translation distribution. Given the contextu-

alised representation Si,j , the translation distribu-

tion of yj :

p(yj |X:i, Y:j−1) = softmax(Si,j · WT
y ) (1)

Specifically, WT
y is the projection matrix for word

prediction and we leave out the bias terms for

simplicity. Si,j is the state output conditioned on

3Slightly different from Yu et al. (2016), where the distri-
bution is modelled by alignment probability and word prob-
ability. Here we apply Translation distribution and Position
distribution instead.

source words X:i and target words Y:j−1:

Si,j = g(Enc(X:i),Dec(Y:j−1)) (2)

where Enc and Dec are uni-directional Transform-

ers based encoder and decoder. Different from

conventional consecutive NMT model e.g. T5 (Raf-

fel et al., 2020) where encoder is a bi-directional

Transformer, the model has no access to the full

input stream when translating. Figure 2 shows the

training process where Si,j is computed for all the

sub-sequences at positions i,j.

Position distribution. The position distribution

jointly models the translation position zj , and the

subsequence Y:j−1:

p(zj = i, Y:j−1|X:i) (3)

=

i
∑

i′=1

p(zj=i|zj−1=i′, X:i, Y:j−1) ·p(Y:j−1|X:i′)

Here, we can recurrently decompose the position

distribution into a sum of products for all the possi-

ble sub-sequence Y:j−1 given read source sequence

X:i′ and the transitions from zj−1 = i′ to zj = i,

i.e. there are i−i′ source words newly read before

translating yj .

Switch distribution. To model all the possible

transitions from zj−1= i′ to zj= i, we employ the

switch distribution:

p(zj = i|zj−1 = i′, X:i, Y:j−1) (4)

=











0 if i < i′

αi,j if i = i′

αi,j ·
∏i−1

k=i′(1− αk,j) if i > i′

and

αi,j=p(ai,j=1|X:i, Y:j−1)=sigmoid(Si,j · WT
a )
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Figure 3: An example of decomposing a position distribution into a sum of products of switch distributions and

subsequence generation probabilities.

where WT
a is the linear projection to the action

space, and Z is a monotonic sequence (zj ≥ zj−1),

hence for the transitions i<i′, the switch probabil-

ity is zero.

Figure 3 shows a simple example for decom-

posing p(Y:4|X:3) into switch distributions and

sub-sequence translations. For the transitions

i > i′, it accumulates i− i′ read actions plus

one translate action, so the switch probability is

αi,j ·
∏i−1

k=i′(1 − αk,j). Here, the read or trans-

late actions are conditionally independent given

the translation history.

Objective. In SiMT, we explicitly assume the

last target word yn is translated after reading all

source words, hence the final objective can be sim-

plified as:

p(Y |X)=p(yn|X:m, Y:n−1) ·p(zn=m,Y:n−1|X:m)

= p(yn|X:m, Y:n−1)·
m
∑

i=1

p(zn=m|zn−1=i,X:m, Y:n−1)·p(Y:n−1|X:i)

One caveat is that this objective does not en-

courage low latency translations when optimised

by maximum log-likelihood, since the model can

read as many source words as possible in order to

have the best translation quality. Ideally, the lowest

latency means that for all the target words yj , the

model reads one source word at every time step

after translating a target word (i.e. the translation

positions zj = i are close to the diagonal of a m∗n
matrix as much as possible). Therefore, we need an

extra regularisation to focus the probability mass

of the translation positions along the diagonal.

3.2 Poisson Prior

Dyer et al. (2013) proposes a log-linear diagonal

reparameterisation for fast word alignments, which

helps the IBM 2 model by encouraging the proba-

bility mass to be around the diagonal. This in turn

also notably improves efficiency over the vanilla

IBM 2 model. Although SiMT is more complex

than word alignment, the diagonal reparameterisa-

tion can act as a strong regularisation to favor the

translate actions happening around the diagonal,

which can yield balanced actions resulting in high

quality and low latency.

Therefore, we introduce a prior distribution to

regularise the maximum number of source words

that can be stored (bj) when decoding the jth word

(yj). To that end, we apply Poisson distribution as

it is generally used for modelling the number of

events in other specified intervals such as distance,

area or volume. The distance between the absolute

positions (i and j) and the diagonal can be easily

modelled as discrete values to be regularised by

Poisson, where the probability decreases when the

distance grows. Here we re-parameterise a Poisson

distribution:

p(bj = i;m,n) =

{

0 if d(i, j) < 0
e−λλd(i,j)

d(i,j)! if d(i, j) ≥ 0

and

d(i, j) = ⌊i− j ·
m

n
− ζ⌉ (5)

where d(i, j) is the distance of current position to

the diagonal, which is rounded for simplicity. The

free parameter λ is the mean of Poisson distribution,

and ζ is the free parameter denoting the default off-

set of the current position to the diagonal. Different

from translate positions zj = i which depend on

the inputs X:i and Y:j−1, bj = i is independent to

the translation context, and is only conditioned on

the absolute positions i, j. Therefore, we modify

the position distribution:

p(zj = i, Y:j−1|X:i) (6)

=
m
∑

i′′=1

p(zj = i, Y:j−1|X:i, bj= i′′)·p(bj= i′′;m,n)
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Figure 4: Visualisations of the distributions in a generative SiMT model example. The depth of color represents

the probability mass in each slot. In the sub-figures (c) (g) (h) and (i), the red rectangles highlight the argmax

along the 1-st dimension. In the first row, (a), (b) and (c) show the translation distribution, the translate action

probability and the position distribution respectively. The indices of each slot correspond to the actual positions

of i and j. Specifically, the position distribution (c) is generated by the vanilla GSiMT without Poisson prior

distribution. In the second row, (d), (e) and (f) are the re-parameterised Poisson distribution under different λ and

ζ. In the third row, (g), (h) and (i) are the position distribution after integrating out the Poisson prior (d), (e) and

(f). Compared to the original position distribution (c), the generative models notably put more emphasis on the

positions along the diagonal, which acts as a flexible regularisation to balance translation quality and latency.

Here, we make the assumption that the number of

source words that have been read i cannot exceed

the maximum size bj . Hence, for all the cases

bj < i, the probability p(zj = i, Y:j−1|X:i, bj<i)
equals to 0. Then, the position distribution can

be further simplified as:

p(zj = i, Y:j−1|X:i) (7)

= p(zj = i, Y:j−1|X:i, bj ≥ i) · p(bj ≥ i;m,n)

Having the Poisson prior, we can directly replace

the Eq. 3 with Eq. 7 for computing the position

distributions at different positions i and j. Fig-

ure 4 shows examples of how different values of

λ and ζ affect the position distribution with the

help of Poisson. For example, (i) has the lowest

values of λ and ζ, so the Poisson prior distribution

puts the strongest regularisation on the diagonal.

Different from the wait-k models that apply hard

limitations or the vanilla neural transducer model

without regularisation, GSiMT with Poisson prior

combines both advantages, which in turn yields a

robust generative SiMT model.

3.3 Training

The training of the proposed GSiMT model fol-

lows the standard maximum log-likelihood opti-

misation. As the generalisation probability of the

target sentence Y depends on the sum of the prob-

abilities of its sub-sequence, we employ dynamic

programming to construct the computation graph

as illustrated in Algorithm 1. With the help of

autograd computation of deep learning platforms,

gradients can be automatically computed and effi-

ciently back-propagated for optimisation.

Compared to the vanilla consecutive NMT, the

overhead of the dynamic programming is actually

very small, since most of the computations are sum

and product in the low dimensional space. Gener-
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Algorithm 1 Generative Simultaneous MT

0: Input: source sequence X, target sequence Y
Initialisation: model parameters Θ

1: repeat
2: for batch ∈ minibatches do
3: for j ∈ [1, n] do
4: for i ∈ [1,m] do
5: Compute Subsequence State: Si,j

6: Compute Translation Prob: p(yj |X:i;Y:j−1)
7: Compute Action Prob: p(ai,j |X:i;Y:j−1)
8: Compute Buffersize Prob: p(bj = i;m,n)
9: end for

10: end for
11: for j ∈ [1, n] do
12: for i ∈ [1,m] do
13: for i′ ∈ [1, i] do
14: Compute Switch Probability:

p(zj = i|zj−1= i′, X:i, Y:j−1)
15: end for
16: Compute Position Probability:

p(zj = i, Y:j−1|X:i)
17: Compute Subsequence Probability:

p(Y:j |X:i)
18: end for
19: end for
20: Compute log-likelihood log p(Y:n|X:m)
21: Compute gradients and update
22: end for
23: until Convergence

ally, the computations of the sub-sequence states

(Si,j) consume most of the resources (O(mn)),
which generally higher than the Adaptive Wait-k

approach (O(k∗(m+n))) (Zheng et al., 2020) and

conventional Wait-k (O(m+ n)) (Ma et al., 2019).

However, as shown in Figure 2, in the testing pro-

cess the computation cost is reduced to the same

as Wait-k policies which is O(m + n). Overall,

it is a fair compromise in training time to achieve

high quality SiMT decoding. More importantly, the

dynamic policy grants the ability to process long

and complicated translation pairs.

It is worth mentioning that the Poisson prior

distribution is only employed for regularising the

training, but it is not required at testing time, as

the translate action distributions have implicitly

learned to translate the target words with low la-

tency. Hence, the lengths of the sequences m and

n are known during training, but they are not used

at test time. During test, we simply use the average

length ratio of the whole dataset.

4 Experiments

4.1 Datasets & Settings

We experiment with the proposed models on two

commonly used datasets: WMT15 DE→EN (text-

only SiMT), and Multi30K (multimodal SiMT).

For WMT15 DE→EN, we follow the exactly

the same preprocessing procedure as in (Ma et al.,

2019; Zheng et al., 2020). BPE (Sennrich et al.,

2016) is applied to achieve 35K vocabulary and

we process 4.5M parallel corpus for training, 3K

sentences of newstest-2013 for validation and 2,169

sentences of newstest-2015 for testing.

Following (Ma et al., 2019; Zheng et al., 2020),

we apply the base version of Transformers with the

same parameters in Vaswani et al. (2017) as the

backbone. Instead of updating all the parameters

from scratch, we pretrain the encoder and decoder

(both are uni-directional Transformers) as consecu-

tive NMT model for 10 epochs. Then we freeze the

Transformers parameters, and apply 256 batch size

and 1e-4 learning rate for training the generative

models. On PyTorch (Paszke et al., 2019) platform,

each epoch takes around 40 minutes with Adam

(Kingma and Ba, 2014) on single V100 GPU4.

The checkpoints with best performance in 5 runs

on development datasets are chosen for testing

BLEU (Papineni et al., 2002) and AL (average

lagging) (Ma et al., 2019). For GSiMT models, we

empirically fix λ = 3 for all the experiments, and

use ζ as the free parameter to achieve different AL.

For Multi30K (Elliott et al., 2016), we use

all three language pairs EN→FR, EN→DE and

EN→CZ with the image data from Flickr30k as

extra modality and flickr2016 as test dataset. We

build multimodal models with the goal of testing

the generalisation ability of the generative models

with extra modalities. To that end, we concatenate

the object detection features applied in Caglayan

et al. (2020) into the state representation Si,j and

maintain the rest of the neural network the same as

the unimodal SiMT. The other models (RL, Wait-k

and Adpative Wait-k) incorporate the same features

as well. Here, as the size of data is small, we apply

a smaller Transformers with 4 layers, 4 heads, 512

model dimension and 1024 for linear connection.

4.2 Translation Quality & Latency

Table 1 shows the SiMT performance for the bench-

mark models and our proposed generative models

on the WMT15 DE→EN dataset. RL is our imple-

mentation of Gu et al. (2017) with policy gradient

method. All the numbers for Wait-k and Adaptive-

Wait-k are quoted from Zheng et al. (2020).

4If the full parameters are trained, 1 epoch takes around 3
hours with 512 batch size on 8 V100 GPUs. However only
marginal improvement is observed compared to the pretraining
strategy.
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Model
German-English (WMT15)

BLEU ↑ AL ↓ BLEU ↑ AL ↓ BLEU ↑ AL ↓ BLEU ↑ AL ↓

RL (Gu et al., 2017) 22.12 3.16 23.81 4.66 24.31 5.52 25.22 6.71

Wait-k (Ma et al., 2019) 25.22 3.76 26.29 4.70 27.42 5.77 27.73 6.66

Adaptive-Wait-k (Zheng et al., 2020) 26.73 3.63 27.84 4.79 28.41 5.33 29.20 6.60

GSiMT-Possion-T5 28.31 3.79 29.18 4.61 29.59 5.41 29.30 6.25

GSiMT-Poisson 28.82 3.64 29.50 4.45 29.78 5.13 29.63 6.24

GSiMT-NT 29.79 9.75 - - - - - -

Consecutive NMT 30.24 28.58 - - - - - -

Table 1: SiMT performance on WMT15 DE→EN. The models in the first group are the benchmark models for

simultaneous machine translation. The second group is the variants of our proposed GSiMT. The third group

is the consecutive NMT model, which provides the upper bound on BLEU score as it has access to the entire

source stream. To fairly compare the BLEU under different AL, we apply 4 columns to limit the AL in the similar

range but compare the BLEU score. The numbers of Wait-k and Adaptive-Wait-k models are achieved by training

different models with k from 1 to 10 and kmin = 1, kmax = 10 (Zheng et al., 2020). For both GSiMT-Possion-T5

and GSiMT-Poisson, we apply ζ = 4, 5, 6, 7 respectively to achieve the corresponding AL scores in each block.

We highlight the best performance by BLEU score with bold numbers in each block. The underlined results are

from the models that are not optimised for translation latency, which are used for reference only.

Model
En-Fr (Multi30k) En-Cz (Multi30k) En-Ge (Multi30k)

BLEU ↑ AL ↓ BLEU ↑ AL ↓ BLEU ↑ AL ↓

RL (Gu et al., 2017) 54.39 4.01 23.30 2.24 31.23 3.08

Wait-k (Ma et al., 2019) 56.20 3.38 23.31 3.54 33.75 3.47

Adaptive-Wait-k (Zheng et al., 2020) 57.16 3.32 26.9 3.11 33.68 2.99

DEC-OD (Caglayan et al., 2020) 57.90 3.65 28.13 2.83 34.40 2.37

GSiMT-Possion-T5 58.45 3.28 28.92 3.06 36.23 2.58

GSiMT-Poisson 58.89 3.17 29.93 2.71 36.11 2.65

GSiMT-NT 58.81 7.32 29.22 5.21 35.78 6.55

Consecutive NMT 59.29 13.10 30.65 13.10 36.84 13.10

Table 2: SiMT performance on Multi30K dataset. The models in the first group are the benchmark models for

multimodal simultaneous machine translation. In addition to the models in Table 1, DEC-OD (Caglayan et al.,

2020) is an RNN based model with an extra attention layer to attend to object detection features while carrying

out translation. The numbers of other models in the first group are from our implementations, of which the state

outputs are concatenated with the same visual features from Caglayan et al. (2020) for multimodal SiMT. For

better comparison, we only report the BLEU scores with AL around 3. Similarly, the underlined results are from

the models that are not optimised for translation latency, which are used for reference only. For both GSiMT-

Possion-T5 and GSiMT-Poisson, we apply ζ = 3 for all of the language pairs.
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Figure 5: Overview of the performance of different

models: BLEU scores versus average lagging (AL).

GSiMT-Possion is our proposed generative

model with Possion prior. GSiMT-Possion-T55

is a variant of GSiMT-Poisson which takes the top

5More details can be found in Appendix A

5 history paths during dynamic programming when

decoding a new target word. It it similar to having a

sparse ‘attention’ over the previous histories, which

in turn highlights the simultaneous translation paths

with higher confidence. GSiMT-NT is the vanilla

neural transducer model without Poisson prior.

According to the experimental results in Table

1, the GSiMT-Poisson obtains a good balance be-

tween the translation quality and latency. More im-

portantly, it achieves the best BLEU given different

AL scores in the same range. Especially when the

AL is very low, the GSiMT-Poisson model main-

tains its high performance on BLEU scores. Inter-

estingly, the performance of GSiMT-Possion-T5

is very similar to the GSiMT-Poisson model that

updates all the possible translation paths instead of

the top 5. It shows that the model can be further
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Model BLEU ↑ AL ↓ BLEU ↑ AL ↓ BLEU ↑ AL ↓ BLEU ↑ AL ↓

k = 2 k = 3 k = 4 k = 5
Wait-k (Ma et al., 2019) 22.64 3.95 22.96 4.73 23.60 5.56 24.48 6.41

ζ = 0 ζ = 1 ζ = 2 ζ = 3
GSiMT-Possion-T5 27.14 3.88 27.88 4.36 28.00 5.43 27.83 6.15

GSiMT-Poisson 27.20 4.01 27.75 4.69 28.05 5.51 28.20 6.37

Table 3: Test-only performance on the SiMT. For both GSiMT-Possion-T5 and GSiMT-Poisson models, we apply

different offset ζ to parameterise the prior distribution.

neuer

Vorsitzender A

soll new

Mitte president

September

in should be

einer

Mitgli@@

eder@@ appointed in Mid-@@ September

versammlung

genfunden

werden

. at a general meeting .

(a) A translation example of GSiMT with ζ = 0
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genfunden found at a general meeting 

werden

. in Mid-@@ September .

(b) A translation example of GSiMT with prior ζ = 3

Figure 6: Visualisation of decoded sentences with different Poisson parameters. ↓ represents the state was sampled

with the read action, while → represents the translate action. The decoding is carried out by the pretrained GSiMT-

Poisson (ζ = 8) and apply ζ = 0, ζ = 3 to generate the decoded sentences in the Test-only setup.

optimised in terms of efficiency without much loss

on the performance. As expected, GSiMT-NT is

able to achieve high performance on BLEU scores

(close to the upper bound BLEU score obtained by

the consecutive NMT) but suboptimal AL, because

it is able to read as many source words as possible.

Figure 5 further compares the overall performance

on BLEU and AL on the test dataset.

Table 2 further demonstrates the good perfor-

mance of the proposed generative models on mul-

timodal SiMT. For all three language pairs, the

GSiMT-Poisson model maintains the best perfor-

mance. More importantly, by simply concatenating

the visual features, the GSiMT models perform bet-

ter than state-of-the-art multimodal SiMT model

DEC-OD (Caglayan et al., 2020).

4.3 Generalisation Ability

To further verify the effectiveness of the soft bound-

ary modelled by the Poisson distribution, we also

test the performance for test-only setup. In this

case, we first pretrain a GSiMT-Poisson and a

GSiMT-Possion-T5 with ζ = 8 as the base models.

Then, we directly set up different free parameters

ζ to dynamically adjust the translation latency dur-

ing testing. The test-only model of Wait-k (Zheng

et al., 2020) pretrain a consecutive NMT as the base

model and apply the Wait-k policies during testing.

Table 3 shows the results on the WMT15 dataset.

Compared to Wait-k, both the GSiMT-Possion-T5

and GSiMT-Poisson have stronger generalisation

ability in test-only setup. It demonstrates the great

potential of adjusting the translation latency on-the-

fly without much loss on translation quality given

a pretrained GSiMT model.

Figure 6 shows decoded sentences under dif-

ferent set of parameters. As we can see, even in

the test-only setup, the generative model can ef-

fectively adjust the translation latency to decode

the target sentences. Interestingly, the translation

quality is not affected much when pursuing lower

latency, and with less restrictive latency (ζ = 3
compared to ζ = 0), the generative model is able

re-arrange the sub-sequences and produce the word

order that is more natural in the target language.

5 Conclusions

This paper proposes a generative framework for si-

multaneous MT, which we demonstrated achieves

the best translation quality and latency to date

on common datasets. The introduction of Pois-

son prior over the buffer size fills in the gap be-

tween simultaneous MT and structural sequence-

to-sequence learning. More importantly, the overall

algorithm is simple and easy to implement, which

grants the ability to be massively applied for vari-

ous real-world tasks. It has the potential to become

the standard framework for SiMT and we will re-

lease the code to the public for future research.
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A Top-k Strategy

Alternative to the full paths dynamic programming

computation, each step of the generative simultane-

ous machine translation can also be formulated as

sum of top-k sub-sequence generation probabilities.

The original position distribution Equation 3 can

be reformed as:

p(zj = i, Y:j−1|X:i)

= max
|K|=k

∑

i′∈K

p(zj = i|zj−1 = i′, X:i, Y:j−1)·

p(Y:j−1|X:i′) (8)

where K is the set of position indices that equal

or lower than i. This yields to a biased estima-

tor for the log-likelihood estimation of the target

sequences. The difference is that it acts as an

inductive bias to have a sparse ‘attention’ over

the previous sub-sequence generation probabilities.

According to the experiments, the top-k strategy

can achieve adequate performance as the full paths

strategy.


