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Abstract

Stance detection determines whether the au-
thor of a text is in favor of, against or neu-
tral to a specific target and provides valu-
able insights into important events such as
legalization of abortion. Despite significant
progress on this task, one of the remaining
challenges is the scarcity of annotations. Be-
sides, most previous works focused on a hard-
label training in which meaningful similarities
among categories are discarded during train-
ing. To address these challenges, first, we eval-
uate a multi-target and a multi-dataset train-
ing settings by training one model on each
dataset and datasets of different domains, re-
spectively. We show that models can learn
more universal representations with respect to
targets in these settings. Second, we investi-
gate the knowledge distillation in stance de-
tection and observe that transferring knowl-
edge from a teacher model to a student model
can be beneficial in our proposed training set-
tings. Moreover, we propose an Adaptive
Knowledge Distillation (AKD) method that ap-
plies instance-specific temperature scaling to
the teacher and student predictions. Results
show that the multi-dataset model performs
best on all datasets and it can be further im-
proved by the proposed AKD, outperforming
the state-of-the-art by a large margin. We pub-
licly release our code.1

1 Introduction

People often express their stances toward specific
targets (e.g., political figures, or abortion) on so-
cial media. These opinions can provide valuable
insights into important events, e.g., legalization of
abortion. The goal of stance detection is to deter-
mine whether the author of a text is in favor of,
against or neutral toward a specific target (Moham-
mad et al., 2016b; Küçük and Can, 2020; AlDayel
and Magdy, 2020). For example, for the tweet in

1https://github.com/chuchun8/
MDL-Stance-Distillation

Tweet: We all have a duty to protect the sanctity of
life...from the first cell division, to the last. #Pro-
tectLife #pjnet #ctot #ccot #SemST

Target: Legalization of Abortion

Stance: Against

Table 1: An example of stance detection.

Table 1, we can infer that the author is against to
the legalization of abortion implied by the presence
of the words “protect the sanctity of life”.

Even though stance detection has received a lot
of attention, one of the biggest challenges for the
stance detection tasks is the scarcity of annotated
data. Even worse, previous studies (Mohammad
et al., 2017; Du et al., 2017; Wei et al., 2018; Li and
Caragea, 2019; Siddiqua et al., 2019) focused on a
per-target training strategy, which aims to train one
model for each target and evaluate it on the test data
corresponding to that target (which we call ad-hoc
training). In this case, the model is more likely to
make predictions based on specific words without
fully considering the target information, and hence,
to overfit in the ad-hoc training setting. Motivated
by these observations, we aim to investigate the
following Research Question (RQ):

RQ1: Can we improve the performance of a
stance detection model by training one model on
all targets of each dataset and can we improve the
performance further by training one model on all
datasets?

Toward this question, we evaluate two training
settings: multi-target training and multi-dataset
training, by training one model on each dataset
and five datasets of different domains, respectively.
We expect the model to learn more universal rep-
resentations on the combined dataset and alleviate
overfitting. On the other hand, compared to having
many single-target models, a multi-target model
or a multi-dataset model is simpler to deploy and
more scientifically meaningful from the perspec-

https://github.com/chuchun8/MDL-Stance-Distillation
https://github.com/chuchun8/MDL-Stance-Distillation
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tive of building general natural language processing
systems.

Besides the limited training data, models might
also overfit to the ground truth labels (one-hot la-
bels) that the meaningful rankings are destroyed,
i.e., models fail to consider the similarity among
different categories during training. Knowledge
distillation (Hinton et al., 2015) transfers knowl-
edge from a teacher model to a student model by
training the student model to imitate the teacher’s
prediction logits (which we call soft labels). It
is commonly believed that the soft labels of the
teacher model can benefit the student model by pro-
viding more training signals than one-hot labels.
However, less attention has been paid to applying
knowledge distillation to the stance detection. This
naturally gives rise to another research question:

RQ2: Can knowledge distillation benefit the
stance detection task in different training settings?

Regarding RQ2, we apply various knowledge
distillation methods in both multi-target and multi-
dataset training settings. We train a teacher model
and a student model for each dataset and all datasets
for multi-target learning and multi-dataset learning,
respectively. Moreover, we propose an Adaptive
Knowledge Distillation (AKD) method that applies
instance-specific temperature scaling to the predic-
tions of teacher and student models. Experimental
results show that knowledge distillation contributes
to the performance improvement of stance detec-
tion models.

Even though we show that knowledge distilla-
tion can be beneficial to the stance detection task,
how to most effectively transfer knowledge to the
student remains an open question. Therefore, our
third research question investigates:

RQ3: Which knowledge distillation setting ben-
efit the stance detection task the most?

In this paper, we perform empirical com-
parisons of three knowledge distillation set-
tings: Single→Single, Multiple→Multiple and
Multiple→Single. More specifically, we train only
one teacher model and student model on all datasets
for Single→Single and use Multiple→Multiple
to indicate distilling single-dataset teacher mod-
els into single-dataset student models, i.e., both
teacher and student models are trained on one
dataset. Multiple→Single indicates distilling multi-
ple teacher models individually trained on each
dataset into one student model trained on all
datasets.

In order to answer these questions, we fine-
tune a pre-trained BERTweet (Nguyen et al., 2020)
model for stance detection and perform the self-
distillation (Furlanello et al., 2018) in both multi-
target and multi-dataset training settings, i.e., both
teacher and student models have the same model
architecture. Our contributions include the follow-
ing: 1) We evaluate three training settings (ad-hoc,
multi-target and multi-dataset settings) for stance
detection and observe that models trained in multi-
target and multi-dataset settings show substantially
better performance than models trained in ad-hoc
setting. The model that is trained on all datasets
performs best, outperforming the state-of-the-art
by a large margin. 2) We explore the effective-
ness of knowledge distillation on the stance de-
tection and experimental results show that knowl-
edge distillation can help improve the performance
of stance detection models. We further propose
an instance-specific temperature scaling method,
which achieves superior performance on five stance
detection datasets. 3) We show that Single→Single
consistently outperforms other distillation settings,
indicating that transferring the knowledge from
a well-trained teacher that learns more universal
representations is more beneficial to the stance de-
tection.

2 Related Work

Stance detection task aims to identify the stance
toward a specific target (Mohammad et al., 2016b;
Küçük and Can, 2020; AlDayel and Magdy, 2020).
The target is usually a political figure (Sobhani
et al., 2017; Darwish et al., 2017; Grimminger and
Klinger, 2021; Li and Caragea, 2021a; Li et al.,
2021), a controversial topic such as marijuana le-
galization (Hasan and Ng, 2014; Mohammad et al.,
2016a; Xu et al., 2016; Taulé et al., 2017; Swami
et al., 2018; Stab et al., 2018; Zotova et al., 2020;
Conforti et al., 2020a; Lai et al., 2020; Vamvas and
Sennrich, 2020; Conforti et al., 2020b; Miao et al.,
2020; Glandt et al., 2021) or a claim that could be
a rumor’s post (Qazvinian et al., 2011; Derczynski
et al., 2015; Ferreira and Vlachos, 2016; Bar-Haim
et al., 2017; Rao and Pomerleau, 2017; Derczyn-
ski et al., 2017; Gorrell et al., 2019). Besides the
in-target stance detection where the test topic has
always been seen in the training stage, cross-target
stance detection (Augenstein et al., 2016; Xu et al.,
2018; Zhang et al., 2020) and zero-shot stance de-
tection (Allaway and McKeown, 2020) have also
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Figure 1: Overview of three training settings. The left figure represents the ad-hoc training setting in which a
model is trained only on one target. The center figure represents the multi-target training setting in which a model
is trained on all targets of each dataset. The right figure represents the multi-dataset training setting and a unified
model is trained on all available targets. Assuming that dataset 1 consists of target 1 and target 2 and dataset 2 only
contains target 3.

attracted a lot of attention in recent years. In this
paper, we focus on the in-target stance detection.

Interestingly, despite significant progress on
stance detection, the large-scale annotated datasets
are limited and the number of training samples
varies drastically between datasets. To make mat-
ters worse, previous studies (Mohammad et al.,
2017; Du et al., 2017; Sun et al., 2018; Wei et al.,
2018; Li and Caragea, 2019; Siddiqua et al., 2019;
Sobhani et al., 2019; Li and Caragea, 2021b)
adopted an ad-hoc training strategy, which means
that the number of models that need to be trained
is proportional to the number of targets. To address
these issues, Schiller et al. (2021) explored multi-
task learning for various stance detection tasks by
fine-tuning the pre-trained BERT (Devlin et al.,
2019) on multiple datasets. Different from Schiller
et al. (2021), in this paper, we evaluate three dif-
ferent training settings on the datasets of diverse
domains, showing the improvement brought by the
joint training step by step. Moreover, we investi-
gate whether knowledge distillation can help fur-
ther improve the performance of stance detection
models.

Knowledge distillation (Ba and Caruana, 2014;
Hinton et al., 2015) aims to distill the knowledge
from a teacher model into a student model and
has been widely adopted and modified in computer
vision (Romero et al., 2015; Gupta et al., 2016;
Zagoruyko and Komodakis, 2017; Wang et al.,
2019; Mirzadeh et al., 2020; Yuan et al., 2020)
and natural language processing (Kim and Rush,
2016; Sun et al., 2019; Liu et al., 2019a; Aguilar
et al., 2020; Sun et al., 2020; Tong et al., 2020;
Currey et al., 2020; Jiao et al., 2020). Furlanello
et al. (2018) proposed self-distillation in which the
teacher and student models have identical archi-
tectures. Clark et al. (2019) further extended self-
distillation to the multi-task setting to achieve supe-

rior performance than standard multi-task training.
Zhang and Sabuncu (2020) attributed the success
of self-distillation to the increasing uncertainty and
diversity in teacher predictions.

Despite recent progress in knowledge distil-
lation, less attention has been paid to combin-
ing knowledge distillation with stance detection.
Miao et al. (2020) distilled knowledge in a semi-
supervised manner for COVID-19 stance detection.
However, experiments have only been conducted
on a small dataset and the test set only contains
one target. Motivated by recent works, we compre-
hensively investigate self-distillation in the stance
detection under multi-target and multi-dataset train-
ing settings and evaluate the model performance on
five datasets of different domains. Moreover, we
propose an instance-specific temperature scaling
method to further improve the self-distillation and
explore how to effectively distill knowledge to the
student model in a holistic way.

3 Methods

3.1 Model
BERTweet (Nguyen et al., 2020) is used as our
base model, which is a pre-trained language model
following the training procedure of RoBERTa
(Liu et al., 2019c). We fine-tune the pre-trained
BERTweet to predict the stance by appending a lin-
ear classification layer to the hidden representation
of the [CLS] token. The input is formulated as:
[CLS] target [SEP] sentence.

3.2 Joint Training
Most previous work focused on an ad-hoc training
setting (Figure 1(a)) that aims to train one model for
each target, which fails to explore the potential of
all the training data and is unable to learn universal
representations of targets. Therefore, in order to
explore the benefits of incorporating more training
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data, we compare the performance of ad-hoc setting
with two training settings: multi-target training
and multi-dataset training, by training models on
all targets of each dataset and on all targets of all
datasets, respectively. More specifically, as shown
in Figure 1(b), the multi-target model is trained and
validated on data of all targets of each dataset, and
tested on single target separately to be compared
with the results of ad-hoc models. Different from
the multi-target training, as shown in Figure 1(c),
the multi-dataset model is trained and validated on
the combination of all datasets in which training
data come from different domains. Multi-target and
multi-dataset training can be considered as one kind
of multi-task learning approaches that help the pre-
trained language models learn more generalized
text representations by sharing the domain-specific
information across the related targets.

3.3 Knowledge Distillation
In this subsection, we first introduce a vanilla
knowledge distillation method, and then present
our proposed Adaptive Knowledge Distillation
(AKD) in details.

Vanilla Knowledge Distillation We assume that
the training dataset Dtr is composed of m different
datasets in multi-dataset training:

Dtr = Dtr
1 +Dtr

2 + ...+Dtr
m

Dtr = {(xi, ti, yi)}ni=1

where xi is a sequence of words, ti is the corre-
sponding target and yi is the hard label. The goal is
to train a fixed-capacity model that performs well
on targets of all m datasets.

Standard supervised learning aims to minimize
the cross-entropy loss LCE(p, y) of training data
where p denotes softmax outputs. In knowledge
distillation, a teacher-student learning mechanism
is used to improve the performance of the student
model. Let ptτ denote the softmax outputs of the
teacher model with temperature scaling and

ptτ (k) = exp(ztk/τ)/

K∑
j=1

exp(ztj/τ)

where τ is the temperature used to scale the model
predictions and zt is the output logits of the teacher
model. The idea behind knowledge distillation
(Hinton et al., 2015) is to transfer knowledge from
the teacher model to the student model by mini-
mizing the sum of cross-entropy loss between the

predictions of student and hard labels and the dis-
tance loss between the predictions of student and
teacher:

LKD = (1− α)LCE(p, y) + αLKL(pτ , p
t
τ )

where LKL is Kullback-Leibler (KL) divergence
loss, α is the hyper-parameter that balances the
importance of the cross-entropy loss and the KL
divergence loss.

Adaptive Knowledge Distillation Previous
works usually apply the same amount of tempera-
ture scaling to all teacher and student predictions.
However, given a training set, we would expect
some samples to be more representative of the label
class than others and we hope to classify the typical
examples with much greater confidence than the
ambiguous ones. In this way, samples with larger
confidence obtained from the teacher predictions
should receive less amount of temperature scaling
and vice versa. Therefore, we propose an Adaptive
Knowledge Distillation (AKD) approach that
applies instance-specific temperature scaling to
the predictions of the teacher and student models.
Formally, given a teacher output distribution zti of
sample i, the temperature can be written as:

τzti =


T1 if 0 ≤ max(softmax(zti)) < a1,

T2 if a1 ≤ max(softmax(zti)) < a2,

1 if a2 ≤ max(softmax(zti)) ≤ 1,

where max(softmax(zti)) is the maximum
probability of softmax output distribution, a1 and
a2 are hyper-parameters to control the range of
scaling, T1 and T2 are random variables that follow
the uniform distributions, taking values in (b1, b2),
(1, b1), respectively, b1 and b2 are hyper-parameters
that control the amount of scaling. By doing so, the
amount of temperature scaling applied to a sample
will be proportional to the amount of confidence
the teacher model shows in that sample’s predic-
tion. Examples that are more challenging to clas-
sify will receive more temperature scaling applied
to their soft labels. More specifically, we use higher
temperature to soften the teacher prediction of a
sample if the teacher shows lower confidence in
that sample’s prediction and vice versa.

We perform the self-distillation (Furlanello et al.,
2018; Zhang and Sabuncu, 2020) in both multi-
target and multi-dataset training settings, i.e., both
teacher and student models have the same network
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architecture. Self-distillation can be repeated it-
eratively to further improve the performance: the
trained student model can be treated as the new
teacher model and the knowledge can be further
distilled to another student model. However, to
better demonstrate the benefits of applying our pro-
posed AKD approach to stance detection, we train
teacher and student models only once for all distil-
lation methods.

4 Experimental Settings

In this section, we first describe stance detection
datasets used for evaluation and introduce the eval-
uation metrics. Then, we describe several baseline
methods of knowledge distillation.

4.1 Datasets

Stance detection datasets of diverse domains are
used to evaluate the performance of the proposed
models. We train and validate the multi-dataset
model on the combined dataset of SemEval, MT,
AM, WT-WT and COVID-19. We then test the
generalization abilities of stance detection models
on unseen datasets WT-WT-E and Election-2020.
Summary statistics of these datasets are shown in
Tables 2, 3, 4, 5, 6, 7 and examples of these datasets
are shown in Table 8. Datasets used for training a
multi-dataset model are described as follows.

SemEval SemEval-2016 (Mohammad et al.,
2016a) is a benchmark stance dataset and con-
tains five different targets: “Atheism”, “Climate
Change”, “Feminist Movement”, “Hillary Clinton”
and “Legalization of Abortion”. The dataset is an-
notated for detecting whether the author is against
to, neutral or in favor of a given target. We split the
train set in a 5:1 ratio into train and validation sets
and removed the target “Climate Change” due to
the limited and highly skewed data. The test set of
each target is the same as provided by the authors.

MT Multi-Target stance dataset (Sobhani et al.,
2017) is a political dataset containing presiden-
tial candidates of 2016 US election. It contains
three sets of tweets corresponding to target pairs:
“Donald Trump and Hillary Clinton”, “Donald
Trump and Ted Cruz”, “Hillary Clinton and Bernie
Sanders”. The task aims at detecting the stances
(against, none or favor) toward two targets for each
data. Train, validation and test sets are as provided
by the authors.

AM AM (Stab et al., 2018) is an argument min-
ing dataset containing eight different topics: “Abor-
tion”, “Cloning”, “Death Penalty”, “Gun Control”,
“Marijuana Legalization”, “Minimum Wage”, “Nu-
clear Energy” and “School Uniforms”. The dataset
is annotated for detecting whether an argument is
in support of, neutral or opposed to a given topic.
Train, validation and test sets are as provided by
the authors.

WT-WT WT-WT (Conforti et al., 2020b) is a fi-
nancial dataset and the task aims at detecting the
stance toward mergers and acquisition operations
between companies. This dataset consists of four
targets in the healthcare domain and one target in
the entertainment domain. We train the model on
the four target pairs of healthcare domain. Each
tweet of WT-WT is annotated with one of four la-
bels (refute, comment, support and unrelated). We
split the dataset in a 10:2:3 ratio into train, vali-
dation and test sets and removed the data of label
“unrelated” to be consistent with other datasets.

COVID-19 COVID-19 (Miao et al., 2020) is a
stance detection dataset collected during COVID-
19 pandemic, which contains one target “Lockdown
in New York State”. The dataset is annotated for
detecting whether the author is in support of, neu-
tral or against to the lockdown policy in New York
State of United States. We split the train set in a
5:1 ratio into train and validation sets and used the
test set as provided by the authors.

Two additional datasets are used to test the gen-
eralization abilities of stance detection models (no
sample from these datasets is used for training).

WT-WT-E Target “Fox and Disney” of WT-WT
(Conforti et al., 2020b) in the entertainment domain
is used to test the generalization ability of stance
detection models.

Election-2020 Election-2020 (Grimminger and
Klinger, 2021) is a political dataset containing two
presidential candidates: “Donald Trump” and “Joe
Biden” of 2020 US elections. The task aims at
detecting the stance (favor, against, neutral, neither
or mixed) toward a given target. We test the gen-
eralization ability of the model on this dataset and
removed the data of label “neither” and “mixed” to
be consistent with other datasets.

4.2 Evaluation Metrics

Similar to Mohammad et al. (2016a) and Sobhani
et al. (2017), Favg and macro-average of F1-score
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Target #Train %Favor %Against %None #Test %Favor %Against %None
Atheism 513 17.93 59.26 22.81 220 14.54 72.73 12.73
Climate 395 53.67 3.80 42.53 169 72.78 6.51 20.71
Feminism 664 31.63 49.40 18.97 285 20.35 64.21 15.44
Hillary 689 17.13 57.04 25.83 295 15.25 58.31 26.44
Abortion 653 18.53 54.36 27.11 280 16.43 67.50 16.07
Total 2,914 25.84 47.87 26.29 1,249 24.34 57.25 18.41

Table 2: Data distribution of SemEval-2016 dataset (Mohammad et al., 2016a).

Topic #Total %Support %Oppose %None
Abortion 3,929 17.31 20.92 61.77
Cloning 3,039 23.23 27.61 49.16
Death Penalty 3,651 12.52 30.43 57.05
Gun Control 3,341 23.56 19.90 56.54
Marijuana Legalization 2,475 23.72 25.29 50.99
Minimum Wage 2,473 23.29 22.28 54.43
Nuclear Energy 3,576 16.95 23.82 59.23
School Uniforms 3,008 18.12 24.23 57.65
Total 25,492 19.40 24.30 56.30

Table 3: Data distribution of AM dataset (Stab et al., 2018).

Target #Total %Refute %Comment %Support %Unrelated
Cigna and Express Scripts 2,527 10.01 37.47 30.58 21.92
Aetna and Humana 7,897 14.00 35.50 13.14 37.34
CVS Health and Aetna 11,622 4.45 47.49 21.24 26.80
Anthem and Cigna 11,044 17.82 28.05 8.78 45.33
21st Century Fox and Disney 18,044 2.09 46.92 7.73 43.26
Total 51,134 8.25 40.75 13.00 38.00

Table 4: Data distribution of WT-WT dataset (Conforti et al., 2020b).

Target #Total %Favor %Against %Neutral %Mixed %Neither
Donald Trump 3,000 26.00 28.07 11.37 0.66 33.90
Joe Biden 3,000 41.20 13.47 10.87 1.56 32.90

Table 5: Data distribution of Election-2020 dataset (Grimminger and Klinger, 2021).

Target Pair #Total #Train #Dev #Test
Trump-Clinton 1,722 1,240 177 355
Trump-Cruz 1,317 922 132 263
Clinton-Sanders 1,366 957 137 272
Total 4,455 3,119 446 890

Table 6: Distribution of instances in Multi-Target
dataset (Sobhani et al., 2017).

Target #Total #Train #Test
Lockdown in New York 1,097 733 364

Table 7: Distribution of instances in COVID-19 dataset
(Miao et al., 2020).

(Fmacro) are adopted to evaluate the performance
of our baseline models. Favg is calculated by aver-
aging the F1-scores of label “Favor” and “Against”.
We calculate the Favg for each target and Fmacro is
calculated by averaging the Favg across all targets
for each dataset. Further, we can obtain avgFm by
averaging the Fmacro across all datasets.

4.3 Baseline Methods

We run experiments with the following baseline
methods:

Base: The pre-trained BERTweet (Nguyen et al.,
2020) is fine-tuned under the PyTorch framework
for 5 epochs. The maximum length is set to 128
and the batch size is 32. We use AdamW optimizer
(Loshchilov and Hutter, 2019) and the learning rate
is 2e-5. Each experiment is conducted on a single
NVIDIA V100 GPU.

KD: A vanilla knowledge distillation method
with temperature scaling. The student has the same
model architecture as the teacher.

LSR (Szegedy et al., 2016): A label smoothing
regularization technique used to encourage the base
model to be less confident in making predictions.

TFKD (Yuan et al., 2020): A teacher-free knowl-
edge distillation method that regularizes the model
with manually designed label distribution.

The proposed methods are listed as follows:

AKD: The proposed adaptive knowledge dis-
tillation method that improves vanilla knowledge
distillation by classifying the typical examples with
greater confidence than an ambiguous example.
(a1, a2) are chosen from {(0.6, 0.8),(0.7, 0.9)}.
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Dataset Target Tweet Stance

SemEval Feminist Movement We celebrate the company of 50 great people & organisations. From
#fiji-lovers #perfumers #ecowarrior #vegan #humanrights #healers
#SemST

None

AM Nuclear Energy It has been determined that the amount of greenhouse gases have
decreased by almost half because of the prevalence in the utilization
of nuclear power .

Favor

WT-WT Aetna and Humana $AET $HUM Hearing Aetna Humana deal blocked by Federal Judge
as anticompetitive

Against

MT Bernie Sanders #Hillary > #Bernie That word salad couldn’t have been better if
it came from Sarah Palin. @OnlyTruthReign @yoloswagnamstyl
@coltonjbauer

Against

COVID-19 Lockdown in New York @MichaelSholler2 The pandemic doesn’t care about plans. They’d
have to lock down until a vaccine to avoid a repeat. NY might
minimize it next time but it’s unavoidable. People are morons and
can’t help but screw things up. And yes, rest of us are screwed the
rest of 2020

Favor

WT-WT-E Fox and Disney 21st Century Fox president believes Disney is a better fit for the
company than Comcast

Favor

Election-2020 Joe Biden @alienfound @Panther7112 Nope Joe Biden is soft on china second
he and his VP has bad thing to say about India relating to removal
of 370 it will for sure benefit Pakistan in future that’s for sure so it’s
going to be tough international pressure is going to be huge because
of Kamala harish

Against

Table 8: Example from each stance detection dataset.

b1 and b2 are set to 2 and 3, respectively2.
AKD-plus: A variation of AKD with oversam-

pling. First, we find the target with the largest
number of training samples. Let Tmax denote this
number. Second, for each of the remaining targets,
we oversample its sentences until we obtain Tmax
training samples for that target.

5 Results

In this section, we thoroughly discuss the exper-
imental results to answer our research questions
presented in §1. First, we study the performance
of models in three training settings in §5.1. Then
we explore the effectiveness of different distilla-
tion models on stance detection datasets and test
the generalization ability of knowledge distillation
models in §5.2. We finally compare the distillation
models in different settings in §5.3.

5.1 Multi-Target Training and Multi-Dataset
Training (RQ1)

We use the BaseMultiple and BaseSingle to indicate
the base models trained in multi-target and multi-

2We expect to see further improvements by tuning the
hyper-parameters in wider range. However, we only tune the
hyper-parameters within a small range due to limited compu-
tational resources.

dataset settings, respectively3. Table 9 shows per-
formance comparisons of ad-hoc, multi-target and
multi-dataset settings. Each result is the average of
six runs with different initializations. First, we can
observe that BaseMultiple and BaseSingle signifi-
cantly outperform the model trained in the ad-hoc
setting. The performance of BaseMultiple is the
same with BaseAd−hoc on the COVID-19 dataset
because there is only one target in this dataset.

Second, BaseSingle shows promising improve-
ments over BaseMultiple, which demonstrates that
BaseSingle learns more universal representations
with respect to targets by leveraging the data
from datasets of diverse domains. Note that
BaseSingle achieves a substantial improvement
over BaseMultiple on SemEval and COVID-19
datasets. One possible reason is that BaseMultiple

still overfits the training data heavily and training
on all datasets can alleviate overfitting. Last, we
can also observe that BaseSingle outperforms the
current state-of-the-art models on the MT and Se-
mEval stance datasets, demonstrating its effective-
ness.

3The subscripts “Multiple” and “Single” mean that we
need to train multiple models for multi-target training (i.e.,
one model for one dataset) and train only single model for
multi-dataset training (i.e., one model for all datasets).
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Model WT-WT MT SemEval COVID-19 AM avgFm

State-of-the-art - 58.72∗ 64.75∗ - - -
BaseAd−hoc 70.88 59.45 65.96 51.67 60.08 61.61
BaseMultiple 74.04† 68.57† 65.25 51.67 64.11† 64.73
BaseSingle 74.60† 69.56† 67.39† 58.02† 64.91† 66.90

Table 9: Performance comparisons of different training settings on stance detection datasets. Bold scores are best
overall. ∗: the result is retrieved from Siddiqua et al. (2019). †: the proposed model improves the ad-hoc model at
p < 0.05 with paired t-test. Model performance on each target of each dataset is shown in Appendix A.1.

Model WT-WT MT SemEval COVID-19 AM avgFm

BaseMultiple 74.04 68.57 65.25 51.67 64.11 64.73
+KDMultiple→Multiple 74.60 69.94 66.47 52.02 64.43 65.49
+LSRMultiple→Multiple 74.61 69.49 65.60 52.65 64.03 65.28
+TFKDMultiple→Multiple 74.50 69.37 66.06 52.06 63.65 65.13
+AKDMultiple→Multiple 75.12 69.95 67.31 53.61 64.86 66.17

BaseSingle 74.60 69.56 67.39 58.02 64.91 66.90
+KDSingle→Single 74.92 70.02 67.34 57.66 64.75 66.94
+LSRSingle→Single 74.56 70.24 67.49 58.68 63.88 66.97
+TFKDSingle→Single 74.50 69.07 68.79 58.14 64.54 67.01
+AKDSingle→Single 75.00 70.45 69.18 61.27 64.93 68.17

Table 10: Performance comparisons of different distillation models on stance detection datasets. Underlined
scores are best within groups of models with same teachers; bold scores are best overall. Model performance on
each target of each dataset is shown in Appendix A.2.

Model WT-WT-E Election-2020
BaseSingle 46.94 73.42
+KDSingle→Single 46.76 73.53
+LSRSingle→Single 47.00 73.87
+TFKDSingle→Single 45.79 72.17
+AKDSingle→Single 48.28 74.52

Table 11: Performance comparisons of distillation
models on the unseen datasets. Best results are marked
in bold.

5.2 Stance Detection with Knowledge
Distillation (RQ2)

Table 10 shows performance comparisons of dif-
ferent distillation models on five stance detec-
tion datasets. We observe that all distillation
models show improvements over their base mod-
els in avgFm, which demonstrates that knowl-
edge distillation can benefit the stance detection.
Moreover, our proposed model AKD that per-
forms instance-specific temperature scaling outper-
forms knowledge distillation with fixed tempera-
ture for each instance in both settings. Specifically,
AKDMultiple→Multiple and AKDSingle→Single out-
perform the vanilla knowledge distillation models
by 0.68% and 1.23% in avgFm in multi-target
and multi-dataset training settings, respectively,
which indicates that training with instance-specific
temperature scaling leads to better performance.
Note that distillation models show less improve-
ments in multi-dataset learning. One explanation

is that knowledge distillation can be viewed as the
instance-specific regularization on the softmax out-
puts of neural networks and the effect of knowledge
distillation diminishes with increasing the size of
train set (Zhang and Sabuncu, 2020).

We test the generalization ability of knowledge
distillation models on the unseen WT-WT-E dataset
and Election-2020 dataset. Even though target
“Donald Trump” of Election-2020 dataset has been
seen in training data, the task is still challenging
since the target-related topics in election 2016 are
quite different from the ones in 20204. Table 11
shows performance comparisons of various distil-
lation models in multi-dataset training setting. We
can observe that our proposed model achieves the
best performance on both datasets, showing better
generalization abilities.

5.3 Different Distillation Settings (RQ3)

We further compare Single→Single distillation
with several variants (Multiple→Single and
Single→Single with oversampled data). Ex-
perimental results of training models in differ-
ent distillation settings are shown in Table 12.
First, we can observe that AKDSingle→Single per-
forms best overall. Specifically, AKDSingle→Single

4The tweets of Donald Trump in 2016 are different from
the ones in 2020 because the target-related events vary a lot.
People may support Donald Trump by attacking the email
scandal of Hillary Clinton in 2016, and support Donald Trump
by attacking the corruption of Joe Biden in 2020.
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Model WT-WT MT SemEval COVID-19 AM avgFm

BaseMultiple 74.04 68.57 65.25 51.67 64.11 64.73
+AKDMultiple→Multiple 75.12 69.95 67.31 53.61 64.86 66.17
+AKDMultiple→Single 74.54 70.16 68.73 57.31 64.91 67.13

BaseSingle 74.60 69.56 67.39 58.02 64.91 66.90
+AKD-plusSingle→Single 74.04 70.56 68.88 58.44 64.00 67.18
+AKDSingle→Single 75.00 70.45 69.18 61.27 64.93 68.17

Table 12: Performance comparisons of different distillation settings on stance detection datasets. Underlined
scores are best within groups of models with same teachers; bold scores are best overall.

Model avgFm

BaseSingle 66.90
+Single-Dataset Fine-Tuning +0.49

BaseSingle+AKDSingle→Single 68.17
+Single-Dataset Fine-Tuning +0.22

Table 13: Performance of single-dataset fine-tuning af-
ter multi-dataset training on the combined dataset (Se-
mEval, MT, AM, WT-WT and COVID-19).

leads to significant performance gains than
AKDMultiple→Multiple on SemEval and COVID-
19 datasets, reinforcing the claim that multi-dataset
training helps models learn more generalized text
representations. Moreover, AKDSingle→Single con-
sistently outperforms AKDMultiple→Single, indicat-
ing that transferring the knowledge from a well-
trained teacher model is more beneficial to the
stance detection task.

Second, we can observe that AKDSingle→Single
shows improvements over AKD-plusSingle→Single.
This might be due to the difference in size between
the target with the largest train set (CVS and Aetna,
5,040 sentences) and the target with the smallest
train set (Atheism, 439 sentences).

5.4 Single-Dataset Fine-Tuning

Multi-task models such as MT-DNN (Liu et al.,
2019b) achieve further improvements by contin-
uing training the model on individual tasks after
the multi-task training. However, we do not fine-
tune the model on each dataset after multi-dataset
training because our goal is training one model
for all datasets instead of training one model for
each dataset. Moreover, one multi-dataset model is
much easier to deploy, and thus has more practical
value.

We evaluate the effectiveness of single-dataset
fine-tuning on the base model and distillation
model in Table 13. We first train a multi-dataset
model and then fine-tune the model on each dataset.
It is unsurprising to observe that single-dataset fine-
tuning further improves the performance of both

models.

6 Conclusion

In this paper, we formulated three research ques-
tions for which evidence-based answers were un-
known. We conducted extensive experiments on
stance detection datasets and answer the questions
as follows: 1) The performance of a stance detec-
tion model can be significantly improved by train-
ing on all targets of each dataset and on multiple
datasets. Moreover, the model trained on datasets
of diverse domains shows superior performance
than the model trained on each dataset, indicating
that the multi-dataset model benefits from learn-
ing with more training data and the multi-target
model might still overfit the training data. 2) Self-
distillation can further improve the stance detection
in both training settings. Our proposed AKD ben-
efits stance detection the most and shows better
generalization abilities over other knowledge distil-
lation methods. 3) We explore different distillation
settings and observe that Single→Single achieves
the best performance overall, which indicates that
distilling knowledge from a well-trained teacher is
more beneficial to the stance detection.

Future work includes further strengthening the
multi-dataset model by incorporating more stance
detection datasets. It would be also interesting to
extend the knowledge distillation to more stance
detection tasks such as rumour detection and multi-
lingual stance detection.
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A More Experimental Results

A.1 RQ1

We use the BaseMultiple and BaseSingle to indicate
the base models trained in multi-target setting and
multi-dataset setting, respectively. Table 14, 15,
16, 20 show performance comparisons of ad-hoc,
multi-target and multi-dataset models on each tar-
get of each dataset. Multi-target and multi-dataset
models are first trained and validated on all targets
of each dataset and all targets of all datasets, re-
spectively. Then, the well-trained models are tested
on single target separately to be compared with the
results of ad-hoc models. Note that we do not re-
port the results of COVID-19 dataset here because
COVID-19 dataset only consists of one target and
we have reported the results in the paper. Exper-
imental results show that BaseSingle consistently
outperforms BaseMultiple and BaseAd−hoc on all
stance datasets, indicating that BaseSingle learns
more universal representations with respect to tar-
gets by leveraging the data from datasets of diverse
domains.

A.2 RQ2

Table 17, 18, 19, 21 show performance compar-
isons of different distillation models on stance de-
tection datasets. KDM→M and KDS→S are short
for KDMultiple→Multiple and KDSingle→Single, re-
spectively. We can observe that our proposed
AKD outperforms the vanilla knowledge distilla-
tion model on 16 and 15 (out of 20) targets in
multi-target and multi-dataset training settings, re-
spectively, which reinforces our claim that training
with instance-specific temperature scaling leads to
better performance.

Targets CI_ES AET_HUM CVS_AET AN_CI
BaseAd−hoc 57.28 75.83 74.50 75.89
BaseMultiple 67.04 77.53 75.55 76.05
BaseSingle 69.27 77.44 75.57 76.12

Table 14: Performance comparisons of different train-
ing settings on the WT-WT dataset. Bold scores are
best overall.

Targets Trump-Clinton Trump-Cruz Clinton-Sanders
BaseAd−hoc 63.41 57.84 57.10
BaseMultiple 68.04 70.02 67.64
BaseSingle 69.40 70.60 68.68

Table 15: Performance comparisons of different train-
ing settings on the MT dataset. Bold scores are best
overall.

Targets Atheism Feminism Clinton Abortion
BaseAd−hoc 70.75 59.55 70.45 63.09
BaseMultiple 68.54 59.35 66.73 66.36
BaseSingle 67.09 62.48 72.55 67.42

Table 16: Performance comparisons of different train-
ing settings on the SemEval dataset. Bold scores are
best overall.

Targets CI_ES AET_HUM CVS_AET AN_CI
BaseMultiple 67.04 77.53 75.55 76.05
+KDM→M 68.62 77.57 76.11 76.11
+AKDM→M 69.21 77.97 77.10 76.20

BaseSingle 69.27 77.44 75.57 76.12
+KDS→S 70.21 77.67 75.12 76.66
+AKDS→S 69.58 77.72 75.80 76.91

Table 17: Performance comparisons of different dis-
tillation models on the WT-WT dataset. Underlined
scores are best within groups of models with same
teachers; bold scores are best overall.

Targets Trump-Clinton Trump-Cruz Clinton-Sanders
BaseMultiple 68.04 70.02 67.64
+KDM→M 69.42 70.78 69.61
+AKDM→M 69.16 71.01 69.69

BaseSingle 69.40 70.60 68.68
+KDS→S 69.58 70.79 69.70
+AKDS→S 70.16 71.38 69.80

Table 18: Performance comparisons of different dis-
tillation models on the MT dataset. Underlined scores
are best within groups of models with same teachers;
bold scores are best overall.

Targets Atheism Feminism Clinton Abortion
BaseMultiple 68.54 59.35 66.73 66.36
+KDM→M 71.19 59.38 69.09 66.20
+AKDM→M 70.99 59.83 69.29 69.13

BaseSingle 67.09 62.48 72.55 67.42
+KDS→S 65.14 61.56 73.40 69.27
+AKDS→S 71.59 62.95 71.73 70.46

Table 19: Performance comparisons of different dis-
tillation models on the SemEval dataset. Underlined
scores are best within groups of models with same
teachers; bold scores are best overall.

https://doi.org/10.18653/v1/2020.acl-main.291
https://doi.org/10.18653/v1/2020.acl-main.291
https://doi.org/10.18653/v1/2020.acl-main.291
https://proceedings.neurips.cc/paper/2020/file/1731592aca5fb4d789c4119c65c10b4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1731592aca5fb4d789c4119c65c10b4b-Paper.pdf
https://www.aclweb.org/anthology/2020.lrec-1.171
https://www.aclweb.org/anthology/2020.lrec-1.171


6345

Targets Abortion Cloning Death Penalty Gun Control Marijuana Minimum Wage Nuclear Energy Uniform
BaseAd−hoc 52.87 69.90 53.57 49.63 65.14 65.66 60.01 63.91
BaseMultiple 57.02 71.44 58.23 55.23 67.84 67.94 64.31 70.86
BaseSingle 59.49 72.17 60.18 56.09 67.87 68.23 63.83 71.38

Table 20: Performance comparisons of different training settings on the AM dataset. Bold scores are best overall.

Targets Abortion Cloning Death Penalty Gun Control Marijuana Minimum Wage Nuclear Energy Uniform
BaseMultiple 57.02 71.44 58.23 55.23 67.84 67.94 64.31 70.86
+KDM→M 56.62 71.01 59.65 55.54 68.28 68.56 64.35 71.39
+AKDM→M 57.53 72.21 59.20 55.81 68.05 69.06 64.72 72.31

BaseSingle 59.49 72.17 60.18 56.09 67.87 68.23 63.83 71.38
+KDS→S 58.84 72.80 60.58 54.32 66.63 67.20 65.06 72.60
+AKDS→S 59.83 72.37 59.10 54.56 68.03 67.44 65.00 73.10

Table 21: Performance comparisons of different distillation models on the AM dataset. Underlined scores are best
within groups of models with same teachers; bold scores are best overall.


