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Abstract

Visual Dialog is assumed to require the dialog
history to generate correct responses during a
dialog. However, it is not clear from previous
work how dialog history is needed for visual
dialog. In this paper we define what it means
for visual questions to require dialog history
and we propose a methodology for identifying
them. We release a subset of the Guesswhat?!
questions for which their dialog history com-
pletely changes their responses. We propose
a novel interpretable representation that visu-
ally grounds dialog history: the Region under
Discussion. It constrains the image’s spatial
features according to a semantic representa-
tion of the history inspired by the information
structure notion of Question under Discussion.
We evaluate the architecture on task-specific
multimodal models and the visual transformer
model LXMERT and show that there is still
room for improvement.

1 Introduction

Visual Dialog (VD) is a task that combines natural
language understanding grounded in vision with di-
alog. Being visual, VD is closely related to the area
of Visual Question Answering (VQA). On VQA,
important progress has been obtained recently with
models that connect vision and language and are
pre-trained on a variety of tasks (Tan and Bansal,
2019). Arguably, less progress has been made on
the dialog part of VD, which is the topic of this pa-
per. Currently, the two most popular datasets for vi-
sual dialog are VisDial (Das et al., 2017) and Guess-
What?! (de Vries et al., 2017). The former contains
chit-chat conversations about an image whereas the
latter contains dialogs about a visual game whose
goal is reference resolution, hence its dialogs are
task-oriented. Reference resolution is a fundamen-
tal task in situated dialog (Clark and Wilkes-Gibbs,
1986; Clark, 1996; Foster et al., 2009). Questions
in reference resolution can be classified as intrinsic

of the target (“It is a car?”) or relative to the context
(“On the left?”) (Clark and Marshall, 1981).

Visual Dialog is assumed to require the dialog
history to generate correct responses. However, it
is not clear from previous work how dialog his-
tory is used for VD (Agarwal et al., 2020). In this
paper we define history dependence in terms of
a representation that is interpretable as a region
of the visual common ground shared between dia-
log participants (Traum, 1994; Clark, 1996). This
representation, which we call Region under Discus-
sion (RuD), is inspired by the pragmatic theory of
Question under Discussion (QuD). QuD (Roberts,
2012; Ginzburg, 2012; Velleman and Beaver, 2016)
is a somewhat overlooked but conceptually fruit-
ful theory for spelling out the connection between
the information structure of a sentence or question
and the discourse or dialog in which the utterance
occurs. In this paper we define RuD and use it to
connect a question to its visual dialog history; we
make the following contributions:1

• We define what it means for a visual question
to require dialog history considering intrinsic
and relative visual properties.

• We design a methodology for annotating a
subset of the Guesswhat?! questions for which
their dialog history is required because it com-
pletely changes their responses.

• We propose an interpretable representation of
history based on the Question under Discus-
sion (QuD) theory; we call our representation
Region under Discussion (RuD).

• We extend the Oracle model by de Vries
et al. (2017) and the LXMERT-based model
of Testoni et al. (2020) with our RuD.

• We find that RuD summarizes dialog history
in an interpretable visual way which is linguis-
tically well founded and improves responses
for history dependent questions.

1Code and data at https://github.com/mmazuecos/Region-
under-discussion-for-visual-dialog
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2 Region under Discussion (RuD)

Following Clark (1996) we define dialog common
ground to be the commitments that the dialog part-
ners have agreed upon during the dialog. An im-
portant part of the common ground is the Ques-
tion under Discussion (QuD) (Ginzburg, 2012;
De Kuthy et al., 2020). QuD is an analytic tool
that has become popular among linguists and lan-
guage philosophers as a way to characterize how a
sentence fits in its context (Velleman and Beaver,
2016). The idea is that each sentence in discourse
is interpreted with respect to a QuD. The QuD is
defined by the dialog or discourse history. The
linguistic form and the interpretation of an utter-
ance, in turn, may depend on the QuD that provides
the constraints that define the utterance’s context.
Similarly, we define a Region under Discussion
(RuD) for visual dialog as a representation of the
constraints that the dialog history establishes. The
interpretation of a question depends on its RuD.

Figure 1 shows a dialog from the GuessWhat?!
visual dialog dataset (de Vries et al., 2017). Guess-
What?! is a cooperative reference resolution game:
two players attempt to identify an object in an im-
age. The Questioner does not know the target ob-
ject and has to find it by asking questions; the Ora-
cle knows the target and provides yes/no answers.
For each question in the dialog, its dialog history
is defined as the previous questions together with
their answers (DeVault et al., 2009). In the figure,
the target is highlighted in green. The baseline Or-
acle model proposed by de Vries et al. correctly
answers the first four questions, failing only in ques-
tion number 5 with a no answer. This question does
not look particularly difficult. So, why did it create
a problem? Because question 5 is the only question
for which the dialog history modifies the response.
All the other questions can be answered correctly
just by looking at the image and ignoring what was
said before. That is, questions 1 to 4 are VQA turns
because they do not need the dialog history.2 If we
answer question 5 is it on the left? ignoring the
dialog history the correct answer is no, because the
target is clearly to the right of the picture, not to the
left. The RuD for this question, depicted in blue in
the figure, modifies the response.

In this work, we model in the RuD the con-
straints that are related to intrinsic properties of
the target that have been previously agreed upon

2We invite the reader to try it: just ignore the dialog history
and answer the questions by only looking at the image.

Question Human response

1. It is a person? no
2. It is a car? yes
3. Is it in the back? yes
4. Are there two together? yes
5. Is it on the left? yes

Figure 1: Human-human dialog from the Guesswhat?!
dataset (de Vries et al., 2017). The example illustrates
our definition of history dependent question. Question
5 can be correctly answered with no if asked at the be-
ginning of the dialog, when the dialog history is empty
because the target (marked in green) is not to the left
of the picture. However, when the RuD (depicted in
blue) is constrained by the initial turns then the correct
answer to the same question is yes.

between the dialog participants. An intrinsic prop-
erty is one that is inherent and inseparable from
the target and is not dependent on the visual con-
text that the target is put in. In this example, such
intrinsic property is the fact that the target is a
car, which is established in question 2. Another
intrinsic property may be that the target is a vehi-
cle, but not the fact that the target is together with
another car. We say that such property is not in-
trinsic of the target but relative to the position of
the car. We decide to represent in the RuD only
intrinsic history motivated by literature from robot
dialog, where intrinsic properties are plentiful and
stable constraints (Tan et al., 2020). Using intrinsic
properties appears as the most common strategy
for recovering from ambiguous dialog situations,
as they reduce the cognitive effort (Marge and Rud-
nicky, 2015). We believe that restricting the RuD
to intrinsic properties allows us to focus on the
phenomena we are interested in while keeping the
model simple and easily interpretable.

Summing up, most questions in this dialog can
be correctly answered independently of the dialog:
they do not need the history. In effect, except for
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Type Quantity Sample question

Object 39269 is it a traffic light?
Spatial 39250 is it on the left?
Color 15403 its color is light brown?
Other 7925 do you sit on it?
Action 7645 is he running?
Size 1364 the big one?
Texture 901 a rough surface?
Shape 301 the round one?

Table 1: Question type distribution in successful games
in the test set (de Vries et al., 2017), following the clas-
sification proposed in (Shekhar et al., 2019).

one turn, Figure 1 is just visual question answering.
In this paper we model dialog history as constraints
that represent the part of the image which the dialog
partners agree is the RuD and over which the rest of
the questions are to be interpreted. For our example,
with respect to the blue box, the correct answer of
Is it on the left? is yes since the car is on the left of
the agreed RuD.

3 Methodology

In this section we describe the dataset and we show
how we annotate a subset of questions whose dialog
history completely change their responses. We then
explain how we build a semantic history for each
dialog in order to construct a RuD and how we
extend Oracle models with RuDs.

3.1 Dataset and annotation

The GuessWhat?! dataset (de Vries et al., 2017)
contains around 135k successful human-human di-
alogs with an average of 5 questions in natural lan-
guage created by crowdsourcers playing the refer-
ence game on MS COCO images (Lin et al., 2014).
The set contains around 672K questions which are
grounded on about 63K unique images. Following
Shekhar et al. (2019), we classify the questions into
different types. In Table 1, we show the test set
support for each type as well as a sample question.

The table shows that the most frequent types
of questions in the dataset are object and spatial
questions. They constitute about 40% of the total
questions. Object questions are intrinsic and do not
depend on the RuD to be interpreted. Differently,
spatial, color and size questions are relative and
can have their meaning changed due to the RuD as
defined and illustrated in Sections 2 and 4.

To spot history dependent questions, we first
sample a set of relative questions that follow a pos-
itively answered object question in a dialog. Then,
two annotators identify questions such that the po-
larity of the answer changes when the question is
asked considering its history. The annotation pro-
cedure is as follows: (1) Look at the picture and
the candidate question without looking at the di-
alog history. (2) Answer the question with “yes”,
“maybe yes”, “maybe no”, “no” or “I don’t know”
(3) Compare to the answer in the corpus that the
person gave to that question considering the dialog
history. (4) If the answers do not coincide, mark the
question as history dependent.3 In this setting, dis-
agreements between annotators mostly arise from
different views on vague properties of objects.

Surprisingly, and in contrast to what is usually
assumed in previous work (Agarwal et al., 2020),
visual questions dependent on dialog history do
not contain more pronouns and ellipses than his-
tory independent visual questions. From the 1658
questions analyzed, two annotators agreed that 204
questions are history dependent. We call these 204
questions our GWHist test set4. By this procedure,
we marked 12.3% of the questions in the sample as
history dependent.

3.2 Semantic history
To build the RuDs, we parse and match the ques-
tions in each dialog history to build a semantic
history, this is, a representation of the known in-
trinsic properties of the target object. Then, we use
this information to filter the objects in the image
and obtain a set of candidate objects that will be
part of the RuD.

Parsing. We parse questions that establish rela-
tions of types “is a” and “is the” between a noun
phrase (NP) and the target object. The answers to
these questions usually convey information about
the category of the object, as in “Is it a person?”.
A positive answer to a category question implies
that the candidate objects include only objects of
that category, while a negative answer implies that
these objects are not candidates.

We define regular expressions for the most com-
mon syntactic patterns. We tokenize and POS tag
the questions using NLTK and Stanza (Bird et al.,

3See Appendix C for a screenshot of our annotation tool.
4The class balance of the GW test set is: 50.5% are an-

swered with “No”, 47.7% with “Yes” and 1.8% with “N/A”
(Non Answerable). In our GWHist we exclude the “N/A”
class, “Yes” is 50% and the “No” class the other 50%.
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Pattern Example

NP? 1. person ?
is it a NP ? 2. is it a red car ?
is the NOUN a NP ? 3. is the object a plate ?
is it one of the NP ? 4. is it one of the boats ?

NP = NOUN | NOUN NOUN | ADJ NOUN

Table 2: Common syntactic patterns for category ques-
tions and examples for them. The patterns for NPs are
defined at the bottom.

2009; Qi et al., 2020). Table 2 shows some of the
main patterns we use.

Matching. After parsing, the obtained NPs are
lemmatized using NLTK and matched to the 80 cat-
egories from the COCO dataset. Lemmatization is
particularly useful to match questions using plural
nouns (as “boats” in example 4, Table 2). Match-
ing is done using exact string comparison. Two
complementary matching strategies are discussed
in the following two paragraphs.

In the case of some category questions with two-
token NPs, only the second token refers to the cate-
gory, while the first one refers to another intrinsic
property (as color in example 2, Table 2). In this
case, we match only the second token to a category,
if the answer is positive. A negative answer is not
informative about the category (it may be a green
car).

Some NPs refer to categories not present in
COCO but to supercategories, i.e., nouns that cover
several COCO categories (e.g. “food”, covering
“apple”, “banana”, “broccoli”, etc.). We match
these nouns using a pre-computed list of known
supercategories. The supercategories, and its map-
ping to categories, are obtained from WordNet
(Fellbaum, 1998) by extracting hypernym relations.

Filtering. The parsing and matching processes
result in a semantic history that is available for
each question in a game. The semantic history is
the ordered list of positive and negative relations
to (super)categories found in the previous turns
(e.g. [(pos, “ vehicle”), (neg, “car”)] means that the
target is a vehicle but it is not a car). The objects
in the image are filtered using the history to obtain
a set of candidate objects. Next, we describe our
approaches for positive and negative elements of
the history separately.

For the positive history we use only the last el-

ement, assuming that it is the most specific one.
We select the objects that are consistent with the
(super)category of this element. For the negative
history, our policy is to remove all the objects in
the negated (super)categories from the candidates.
For example, in Figure 1 the RuD after question 1
is answered with no removes the boy on the skate-
board from the candidates. Here, we assume that
all the negative elements identify objects that can
be removed from the RuD, regardless of the order
in which they appear.

After processing the semantic history, we check
the candidate objects set for well-formedness. We
say that the set is ill-formed if it does not include
the target object. In this case, we force the inclusion
of the target object as an ad-hoc policy.

Coverage. To evaluate the coverage of the se-
mantic history, we apply it to the validation set of
the GuessWhat!? dataset. In addition to the full-
featured process, we try three feature ablations by
removing either supercategory matching (-super),
second-token matching (-2nd) or negative history (-
neg). This way, we are able to assess the individual
contribution of each of these features.

A summary of the coverage is shown in Table 3.
We report here the total number of questions with
non-empty semantic histories, and the counts for
different types of candidate objects sets: ill-formed
sets such as empty ones (empty) and those that
exclude the target (w/o tgt), and well-formed sets
such as those that only include the target (only tgt)
and those that include the target and some other
distractor objects (tgt+dist).

Despite the simplicity of our approach, there is
an important coverage of the questions, with more
than 60% having semantic history. We also see
that there is a low rate of ill-formed candidate sets
of ∼3%.5 Ablations show that, as expected, neg-
ative history almost doubles the coverage. Also,
WordNet-based supercategories makes an impor-
tant contribution to coverage, at the expense of a
significant increase on ill-formed candidate sets.

3.3 Extending oracle models with RuD

In this section we extend two popular models
for the Oracle in visual dialog, namely the Ques-
tion+Category+Spatial (QCS) baseline proposed
by de Vries et al. (2017) and the more recent
LXMERT-based cross-modal Oracle (CMO) pro-

5Recall that ill-formed sets are fixed by forcing the addition
of the target to them.
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Is it on the left? LSTM

Target
category

Spatial
information
w.r.t. image

Spatial
information
w.r.t. RuD

Question
embedding

Yes

No

N/A

MLP

(a) QCS Model

position feat.
(w.r.t. RuD)

region feat.

[CLS] Is it on the left ? [SEP]

position emb.

word emb.

cross-mod.
encoders

Cross-modality output
([CLS] token)

LXMERT

Yes

No

N/A

MLP

(b) CMO Model

Figure 2: Architectures and inputs for both QCS and CMO models extended with our RuD representation.

Questions full -super -2nd -neg
Has hist. 62096 54019 61743 34151
% 63.0% 54.8% 62.7% 34.7%

ca
nd

id
at

es empty 1529 507 1386 1411
w/o tgt 894 401 841 686
only tgt 3444 2681 3415 1536
tgt+dist 56229 50430 56101 30518

Table 3: Number of questions with history for the
98507 questions in the validation dataset. Also, detail
for different kinds of candidate objects sets.

posed by Testoni et al. (2020). QCS was shown to
be the best performing baseline in de Vries et al.
(2017) and has become the most frequently used
Oracle (de Vries et al., 2017; Strub et al., 2017;
Shekhar et al., 2019; Pang and Wang, 2020). CMO
improves over the QCS baseline by taking advan-
tage of the powerful multi-modal LXMERT en-
coder (Tan and Bansal, 2019), showing SOTA per-
formance for the task. In what follows, we build
upon these models and propose two simple exten-
sions to encode the RuD. We name our models as
QCS+RuD and CMO+RuD, respectively.

For both models, we define the RuD as the small-
est bounding box that encloses all the objects in the
set of candidates. The candidates objects are com-
puted from the dialog history as described in 3.2.
If no history is available we set the RuD to match
the whole image.

QCS takes as input a question encoded by an
LSTM as well as category and spatial feature em-
beddings of the target. An MLP on top of these
features classifies the question into three possible
answers: no, yes and n/a (non answerable). The
spatial embedding in QCS corresponds to an 8-
dimensional vector that encodes the coordinates
of the top-left and bottom-right corners, center

and size of the target bounding box, normalized
such that the image width and height coordinates
range from -1 to 1. We extend this encoding by
adding the same 8-dimensional vector but shifted
and scaled according to the RuD position and
scale. Concretely, let (x1, y1, x2, y2) be top-left
and right-bottom coordinates of the target bound-
ing and (X1, Y1, X2, Y2) that of the RuD. Let us
define x0 = (x1 + x2)/2, y0 = (y1 + y2)/2 and
let (w, h) and (W,H) denote the width and height
of the target box and RuD, respectively. We add
the following features to the QCS input embedding:
2x1−X1

W − 1, 2y1−Y1

H − 1, 2x2−X1
W − 1, 2y2−Y1

H − 1,
x0
W , y0

H , w
W and h

H . The proposed architecture is
shown in Figure 2a.

For questions without history, the RuD spatial
embedding is defined to be the same as the spatial
embedding w.r.t. the entire image.

For CMO, the model expects as inputs not only
word and region embeddings but also their loca-
tion with respect to the query and reference image,
respectively. For the visual modality, this infor-
mation is encoded in the form of bounding box
coordinates after the object detection module. In
our case, this corresponds to the coordinates of
the top-left and bottom-right corners of each ob-
ject bounding box. Using the same notation as
before, we encode each box spatial coordinates as(
x1−X1

W , y1−Y1

H , x2−X1
W , y2−Y1

H

)
. In Figure 2b we

show how we implement RuD for CMO. Note that,
in this case, coordinates lying outside the RuD will
be negative or with a value greater than one. This
does not happen for the QCS+RuD model because
only the coordinates of the target are modified and
these always fall inside the RuD.
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4 Results and discussion

In this section we first report the empirical results
of our experiments, then we argue that RuD summa-
rizes history in a visually interpretable way through
a qualitative analysis. Finally we discuss the limi-
tations of our implementation of RuD.

We performed our experiments with the previ-
ously proposed models for the Oracle task. We im-
plement both of our models as three-way classifiers
using MLPs and a cross-entropy loss, accordingly
with the relevant literature. For the QCS baseline,
we follow de Vries et al. (2017) and use a two
layer MLP with ReLU non-linearities (1024-ReLU-
128) while for the LXMERT-based Oracle we use
a simpler setup with just one layer on top of the
cross-modality output of LXMERT. Our CMO im-
plementation is based on the pre-trained LXMERT
model from the Transformers library (Wolf et al.,
2020). Visual features are the same as in Testoni
et al. (2020). We leave the rest of the details of our
experiments in the Appendix A.

4.1 Empirical results

We report empirical results for the Oracle task
of the GuessWhat?! benchmark (de Vries et al.,
2017) and for the history dependent subset GWHist
described in Section 3. We evaluate the RuD-
augmented models and compare them with their
respective RuD-less baselines.

In Table 4 we show the accuracy in the test set of
each of our models for the questions that were aug-
mented with a semantic history. We use Oracle re-
sponse accuracy as an evaluation metric because it
compares the model response to the human ground
truth answer. In addition to the GuessWhat?! test
set and our GWHist subset, we report the results
on the two more frequent types of questions: ob-
ject and spatial6. The table shows that the RuD-
augmented models do not outperform the RuD-less
models on the object subset. This is to be expected,
since object questions are not history dependent.
We anticipated this in Section 2. For example, a
car will always be a car no matter what was said
about it before.

The accuracy for spatial questions and the whole
GuessWhat?! (GW) dataset is slightly higher for
the models that add RuD but the difference is small.
This is due to the fact that most questions in GW
including spatial questions are not history depen-

6The analysis of the accuracy across all types of questions
is included in Appendix A.

Type QCS QCS+RuD CMO CMO+Rud

Object 0.901 0.902 0.894 0.894
Spatial 0.669 0.691 0.770 0.777
GW 0.733 0.744 0.809 0.813
GWHist 0.285 0.402 0.285 0.416

Table 4: Test response accuracy for the Oracle models
discussed in Section 3 with and without Region under
Discussion (RuD). Results are shown for the question
types object and spatial. Last two rows show the accu-
racy on the whole test set (GW) and on a history depen-
dent subset (GWHist)

dent as we argued in Section 3. However, the ef-
fect of adding the RuD on accuracy is clear in the
history-dependent GWHist, where QCS+RuD and
CMO+RuD show an increment of 41% and 46%,
respectively. The initial accuracy for the GWHist
is very low for both QCS and CMO models. In fact,
the accuracy is close to one minus the accuracy on
GW. These are hard questions that are wrongly an-
swered without the dialog history as we explained
in Section 3. The fact that both models consistently
improve shows that the RuD is capturing the region
of the image on which the history dependent ques-
tion is being interpreted. With a 0.416 maximum
accuracy for history dependent questions there is
still a lot of phenomena that our models are not
able to handle. Below we discuss the kinds of his-
tory dependent questions that our models are able
to handle and also illustrate those that they cannot.

4.2 Qualitative analysis

In this subsection we argue that RuD summarizes
history in an interpretable visual way for different
types of questions. Size, color and spatial questions
can have a meaning which is relative to their RuDs.
We also discuss details about the GWHist and we
show examples of the phenomena we found during
the annotation.

In the first example we see a size question, the
big one near the white plate? in position 8, that gets
correctly answered by the RuD-augmented CMO.
In this picture, the target is the biggest bottle visible
marked in green. The model can use the RuD to
determine which of the biggest bottle relative to
the other bottle present on the scene.

The second image shows an example of a color
questions that improves when answered within the
RuD. The model is able to take advantage of the
RuD to answer the question it is brown? on position
4. Despite the car being some gamma of gray in
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Question HR CMO +RuD
1. is it human? no no no
2. is it food? no no no
3. is it on the gas stove? no no no
4. is it on the nearby counter top? yes yes yes
5. is it red? no no no
6. is the yellow spoon in the plate? no no no
7. is a bottle? yes no no
8. the big one near the white plate? yes no yes

1. it is a sign? no no no
2. it is a car? yes yes yes
3. it is grey? no no no
4. it is brown? yes no yes
5. it is front the other car? yes no no

1. is it a vehicle? no no no
2. is it a person? no no no
3. is it a building? no no no
4. is the color red? no no no
5. is it the sign board? no no no
6. is it a traffic light? yes yes yes
7. is it in middle? no no no
8. is it the first one? yes no yes

Figure 3: The questions in italics are history-dependent. They illustrate how different kinds of questions may need
to be interpreted respect to the RuD. CMO does not answer these questions correctly, but CMO+RuD does. The
RuDs are in blue. The targets are in green. HR is the human response. The questions in italics from top to bottom
and are size, color, and a kind of spatial question that specifies order.

the illumination conditions of the scene and given
the answer “no” to the question it is grey? before,
we could make an argument that the target is the
browner object in the region.

In the third example, question 8 is it the first
one? is interpreted with respect to a thin and long
RuD which establishes an order in the traffic lights.

In Figure 4 we show an example of a history
dependent question that is not improved with the
RuD-augmented models. In this case, the ques-
tion is most first?. This example shows one of the
limitations of our approach. A model that would
correctly answer these sorts of questions would
need to take into account the second question in
right? to infer the direction of the search and ar-
range candidate objects in a row indexed from right
to left.

During annotation we also found a variety of
examples of questions that asked for objects other
than the target. These questions change their se-

mantics completely when isolated from the dialog
history. We found that many of these history depen-
dent questions come from an object question that
has already identified the category of the target ob-
ject and now are looking for another salient object
to univocally identifying it. We show examples of
this and other history dependent questions that our
models are not able to handle in the Appendix B.

Additionally, the GuessWhat?! dataset was gen-
erated by crowdworkers and some of the questions
exhibit English errors. An example of this can be
seen in the third question in Figure 4.

4.3 Limitations

In this work, we relied on the annotations of the
COCO dataset to compute the RuDs. However,
dialogs may contain questions that refer to objects
not present in the annotations; those objects are in-
visible to our RuD computation. Depending on the
COCO annotations makes it easy to compute RuDs
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Question Human response

1. is a banana? yes
2. in right? yes
3. most first? yes

Figure 4: Example of a GWHist example that does not
improve with our approach. Such an example is hard as
it will need further dialog management to get that the
questioner’s attended point is at the right of the bananas
and that a row of such would be indexed from right to
left.

with intrinsic history. The same cannot be said
about histories regarding attributes such as color,
size, shape, etc. Dialogs contain questions that rely
on these questions to build common ground.

Lastly, many Questioners further constrain the
RuD multiple times (either by using grouping, fil-
tering by attributes, delimiting the area with re-
spect to another object, etc). This process requires
more history management than we do to compute
the RuD for a given question. Most of these con-
straints require common sense reasoning, spatial
understanding and a deep connection to the visual
modality. As we explained in Section 2 in this pa-
per we only consider intrinsic properties (that is,
object questions) to constrain the RuD. This ap-
proach is not enough, for example, if the question
5 in Figure 1 would have been “Is it on the right?”
the RuD would be too large.

5 Previous work

Visual Dialog played a prominent role in early work
on natural language understanding (Winograd,
1972) and is now the focus of an active community
investigating the interplay between computer vi-
sion and computational linguistics (Baldridge et al.,
2018; Shekhar et al., 2019). On the GuessWhat?!
task, most previous research has focused on the

Questioner (Strub et al., 2017; Shekhar et al., 2019;
Pang and Wang, 2020). Recent work suggests that
the performance of the Oracle agent used by most
work (de Vries et al., 2017) is quite different for
types of questions (Mazuecos et al., 2020). Ques-
tioners that rely on the Oracle learn to prefer to
ask only those questions that the Oracle can an-
swer reliably. This has an impact on the type and
linguistic variety of the generated questions, reduc-
ing the Guesswhat?! task to a simpler linguistic
task (Shukla et al., 2019; Pang and Wang, 2020).

Clark and Wilkes-Gibbs (1986) models the pro-
cess of finding referring expressions as a collab-
orative process in which the speakers repair, ex-
pand on, or replace the noun phrase in an iterative
process until they reach a version they mutually
accept. This process is explicitly performed in a
Guesswhat?! dialog although the role of the Oracle
is simplified.

The Oracle model proposed by de Vries et al.
(2017) is implemented with an MLP (as we de-
scribed in Section 3). They showed that their best
performing model was the one that takes the ques-
tion, the target’s category and its location as inputs.
This has a major limitation: the model is blind
and cannot see the image. This proposed model
is widely used as the Oracle agent for all of the
following research on the Questioner.

Testoni et al. (2020) proposed an adaptation of
LXMERT (Tan and Bansal, 2019) to improve on
the previous Oracle, achieving a new SOTA for the
GuessWhat?! Oracle without using dialog history
as an input. This work showed various improve-
ments in different types of questions, mainly on
questions regarding location and other attributes
and a little decrease in performance on object or su-
per category questions due to not receiving the gold
standard object category as input from the dataset.
Their qualitative error analysis suggests that spatial
questions are harder because they require history
in order to be answered correctly in context.

Agarwal et al. (2020) argues that although com-
plex models that encode history for visual dialog
have been proposed (Yang et al., 2019), such work
has not demonstrated that history indeed matters
for visual dialog. Agarwal et al. propose and apply
a new methodology for evaluating history depen-
dence of questions in visual dialog. They show
crowdsourcers a question with its image without
the dialog history and ask the crowdsourcer “would
you be able to answer this question by looking at
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the image only or you need more information from
the previous conversation?”. But saying I can confi-
dently tell the correct answer just by looking at the
image is not the same as answering it in the same
way that one would by looking at the previous con-
versation (remember the example in Section 2).
Most questions are answerable no matter where
they appear in a dialog because the answerer ac-
commodates. Our method differs in that our’s has
the advantage of getting history dependent ques-
tions that are not evident at first glance (such as “is
it on the left?” in Figure 1). We found a similar
percent of questions in the GW dataset that are his-
tory dependent, as Agarwal et al. did on Visdial
(12% vs. 11%). This may result in current dialogue
models not learning history dependence since cur-
rent mainstream vision and dialog datasets lack a
significant amount of history dependency.

Dialog history has two characteristics that makes
it difficult for current machine learning methods:
not only it introduces variability with different his-
tories for the same question, history dependence
may also not be lexicalized, as in is it on the left?
in Figure 1. History dependency is easier to spot
when it is lexicalized with explicit pronouns (e.g.
him in ‘is it close to him?’) or through noticeable
ellipsis (e.g. a missing noun such as cars in ‘are
there two together?’). However, as we see in Fig-
ure 3, pronouns in task-oriented VD frequently are
not anaphoric to the dialog history but to the image
(e.g. the pronoun it in is it a person? is anaphoric to
the target). Information structure theory (Roberts,
2012) and, in particular, QuD (Purver et al., 2003;
Ginzburg, 2012; De Kuthy et al., 2020) provide a
framework for defining context dependence beyond
pronouns and syntactic ellipsis.

6 Conclusions

We proposed a novel interpretable representation
for visual dialog history: Region under Discussion
(RuD). It constrains the image spatial features ac-
cording to a semantic representation of the history
inspired in the information structure notion of QuD.
We evaluated our method on models for the Ora-
cle task in the GuessWhat?! dataset. Our results
show that our implementation of RuD leads to im-
provements in performance on history dependent
questions. We release a manually annotated subset
of such questions. Our experiments confirm that
intrinsic properties do not benefit from dialog man-
agement whereas questions that ask for properties

relative to the context see an improvement with it.
Interestingly, only a low percentage of questions

(12%) are indeed history dependent in the Guess-
what?! dataset. However, a single error in a 10
turns GW dialog may cause the identification of
the wrong referent, rendering the task unsuccess-
ful. We agree with de Vries et al. (2020) that the
simplified yes-no nature of this task allows us to
focus on an interesting playground for working on
conceptual advances in representation methods for
dialog history. The Guesswhat?! task is ill-suited
for incremental research, as it is unclear how small
improvements will find their way to real applica-
tions. Our contribution is not incremental. Our
paper makes a theoretical contribution by defin-
ing the new concept of Region under Discussion
and linking it with the concept of Question under
Discussion in dialog. Based on this theoretical con-
tribution it proposes an interpretable, simple and
extensible method for representing dialog history.

This work only adjusts the RuD to reflect the
intrinsic properties of the target entity, not other
attributes (color, shape, etc.) and spatial restrictions
(“is it among the four in the back?”). Including
other types of relations in the generation of the
RuDs is a promising avenue for future research.
In this regard, we are considering the following
approaches: 1) RuD generation from scene graphs
(a SG is a graphical representation of an image that
encodes objects as nodes and pairwise relations as
edges), and 2) learning RuD predictors from dialog
data end-to-end. In both cases, we need a large and
representative training set (SG/RuD annotated for
each turn on each dialog) and such data is hard and
expensive to gather. A possible solution in this case
is to explore weakly supervised strategies, where
the SG/RuD is treated as a latent variable.

We think that these contributions can be of use
for the Questioner model, potentially helping Ques-
tioners learn dialog strategies instead of solving
dialog tasks through Visual Question Answering.
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Ethical considerations

In this paper we trained simple and complex deep
learning models. We have consumed approxi-
mately 16.5Wh for each experiment with QCS and
266.67Wh for each one with CMO. We generated
approximately 0.02 kgCO2eq and 0.77 kgCO2eq
for each QCS and CMO experiment, respectively7.
Each QCS experiment took approximately 9min
to train its 4.3M trainable parameters. It raises
to around 6.7hs to train the 207.94M parameters
of the CMO models. We have not collected a new
dataset so we have not used crowdsourcing. The an-
notation of the GWHist corpus was done by two of
the authors who were not economically rewarded.
However, this work builds upon work or which
carbon footprint and the ethical considerations of
crowdsourcing are important. We discuss these
ethical considerations below.

First, the dataset that we use in this paper is de-
scribed in (de Vries et al., 2017) which was crowd-
sourced. Crowdsourcing raises ethical concerns
including paying a fair wage to crowdworkers, and
limiting the amount of hits they make in a day
so that they are not exhausted and overworked.
de Vries et al. (2017) do not provide this infor-
mation in their paper. Last but not least, machine
learning models trained on long multimodal dialog
histories may get very big very fast (Agarwal et al.,
2020). We need models that learn to summarize
dialog histories as we do with RuDs for the sake
of the environment and the budget of low-resource
researchers.
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A Towards reproducibility

A.1 Implementation details and architecture

Learning rate, epochs and batch size are set to
{10−4, 16, 1024} and {10−5, 5, 32} for the QCS
and CMO oracles, respectively. We ran a grid
search only for the CMO baseline over the range
{3e−4, 1e−4, 1e−5, 1e−6}×{16, 32, 64, 128}
and 5 training epochs. We choose the best combi-
nation by monitoring accuracy on the validation set.
We implemented our models in PyTorch (Paszke
et al., 2019) and trained them on NVIDIA GTX
1080 Ti GPUs.

A.2 Extended Empirical results

In this subsetion we show the extended results dis-
played by games with and without history and by
type of question.

Type QCS QCS+RuD -super -2nd -neg

object 0.913 0.911 0.910 0.911 0.910
spatial 0.677 0.695 0.691 0.693 0.693
color 0.627 0.632 0.629 0.630 0.631
action 0.652 0.651 0.649 0.647 0.647
size 0.639 0.672 0.661 0.655 0.661
texture 0.716 0.722 0.715 0.716 0.701
shape 0.720 0.700 0.713 0.703 0.713

GW 0.786 0.792 0.790 0.791 0.791

Table 5: Results in the validation set for the QCS Or-
acle models. Total classification accuracy and accura-
cies for the different question types are reported. The
QCS baseline is compared to our QCS+RuD models
and three feature ablations of QCS+RuD.

QCS and QCS+RuD. Table 5 show results for
QCS and QCS+RuD. Results are shown for the full
featured RuD, as well as for the three feature abla-
tions discussed in Section 3. The RuD-augmented
models outperform the QCS baseline for questions
that can be considered relative: spatial, size, and

(arguably) color, texture and action. No improve-
ment is observed for intrinsic questions: object and
shape. Spatial questions, the most frequent rela-
tive question type, are the most benefited by the
use of the RuD, with improvements in accuracy
ranging from 1.4% to 1.8%. Ablations show that
all the proposed features contribute to the overall
performance, with the use of WordNet-based su-
percategory being the most contributing one.

We experimented with word embedding to re-
trieve the semantic histories instead of using the
semantic parser we proposed in Section 3. The
relations between the content of a sentence and
the generated histories were calculated using co-
sine distance. For that we tried different thresholds.
A manual analysis showed that higher thresholds
let too many errors in while lower thresholds got
lower coverage than the proposed method. We
then decided to stick with our semantic parser and
leave the exploration of word embeddings for fu-
ture work.

These empirical results suggest that our RuD
seems to be capturing a fact about language: rel-
ative questions tend to depend on dialog history
while intrinsic questions do not. However, the
improvement on relative questions is small. We
believe that working on more elaborate semantic
history and RuD construction schemes can lead to
further significant improvements in Oracle perfor-
mance.

Final results for the test set are shown in Table 6.
Accuracies are reported for the different question
types, and also for questions with and without RuD
(“w” and “w/o” resp.).

CMO and CMO+RuD. Results are shown in
the last two groups of columns in Table 6. Com-
pared to the QCS counterparts, we see an increase
on performance for all question types, consistent
with Testoni et al. (2020) results. Accuracy im-
proves on more than 5 absolute points for CMO
and CMO+RuD compared to QCS and QCS+RuD,
respectively. However, when considering CMO
vs. CMO+RuD we observe only marginal im-
provements on spatial, color, size and action ques-
tions. Consistently with what was found for the
QCS+RuD model, intrinsic questions object and
shape do not show improvements for CMO+RuD.
The only significant improvement is observed in
the spatial subset of history dependent questions
(GWHist). Here we observe a large gap in favor of
the CMO+RuD model on questions with RuD.
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Type QCS QCS+RuD CMO CMO+RuD
all w w/o all w w/o all w w/o all w w/o

object 0.936 0.901 0.967 0.936 0.902 0.965 0.923 0.894 0.947 0.922 0.894 0.946
spatial 0.675 0.669 0.697 0.694 0.691 0.702 0.775 0.770 0.792 0.780 0.777 0.790
color 0.615 0.604 0.651 0.623 0.615 0.651 0.777 0.769 0.805 0.778 0.772 0.800
action 0.641 0.620 0.718 0.650 0.628 0.729 0.780 0.769 0.820 0.785 0.776 0.820
size 0.614 0.595 0.678 0.639 0.630 0.671 0.751 0.748 0.763 0.757 0.756 0.763
texture 0.719 0.716 0.725 0.704 0.688 0.731 0.789 0.775 0.814 0.788 0.782 0.798
shape 0.674 0.659 0.695 0.678 0.659 0.703 0.751 0.740 0.766 0.757 0.734 0.789

GW 0.782 0.733 0.864 0.788 0.744 0.863 0.839 0.809 0.891 0.841 0.813 0.889
GWHist 0.299 0.285 0.333 0.392 0.403 0.366 0.259 0.285 0.200 0.357 0.417 0.216

Table 6: Test classification accuracy for the Oracle models discussed in Section 3. Results are shown for different
question types and for questions with and without history information (RuD). Last two rows show the accuracy on
the whole test set (GW) and on a history dependent subset (GWHist).

We also consider a control configuration based
on zeroing the spatial information associated to the
visual input modality. This model obtains an over-
all accuracy of 0.750 on the full test set, a value
that is below that obtained with the QCS baseline.
This shows the importance of the spatial informa-
tion for these types of models. When we consider
the performance of this model on the GWHist sub-
set, performance is around 50% (0.515, 0.566 and
0.300 for “all”, “w” and “w/o”, respectively). This
is to be expected since the GWHist subset was de-
signed such that the absence of history information
would change the polarity of the answer. The ob-
served 50% is close to a history-less majority class
predictor. The performance of CMO+RuD of 0.301
on the history dependent set GWHist leaves much
room for improvement. Below we illustrate the
performance of CMO+RuD for relative questions.
Then we turn to the limitations of our approach.

B More Qualitative Analysis

As explained in the qualitative analysis on Section
4, there were some questions that some questions
asked for objects other than the target. An example
of this can be seen in the first image in Figure 5
In isolation, final question “guy in red?” would
be interpreted as just another object question, but
in the context they are trying to identify another
object in the image that is related to the target.
This relation is usually set on before such question
appear.

Some more limitations present in the data are
that, sometimes, referenced objects are not present
in the annotation. The second example in Figure 5
shows this phenomena. The fourth question, “is it

small?” has the correct RuD, but fails to compare
the orange to the little blueberries when answering
to the question.

Coming back to the spatial questions, questions
that ask for absolute spatial location of objects tend
to have more ellipsis than other questions. Non
history-dependent absolute spatial questions do not
differ sintactically from their history dependent
counterparts. It is when analyzed in context that
one can start making distinctions between one and
the other, but that escapes the form of the sentences
and requires knowledge that the RuD-less models
did not have access to before.

Exophora In the Guesswhat dataset we find that
visual questions dependent on dialog history do not
contain more pronouns and ellipses than history-
independent visual questions, as said in section 3.
This is due to most questions having exophora in
the corpus, relying heavily on the common visual
context. Such exophoric pronouns are grounded
in the task and the image and not in the previous
dialogue. Exophoras not only refer to the target,
but also to other salient objects that can be referred
to with a pronoun without being linguistically in-
troduced. For example, in a picture with 2 salient
people a question such as “is it behind them?” is
possible when the people were not referred to be-
fore.

C Annotation Tool

We used a web interface as shown Figure 6 for
the annotation of the data. Each annotator was
prompted with a question and were asked to answer
the question with one of the 5 options shown in the
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Question HR CMO +RuD
1. is it a person? no no no
2. is it a bench? yes yes yes
3. is it the leftmost bench? no no no
4. the second bench from left? no no no
5. is there someone sitting on it? yes yes no
5. guy in red? yes no yes

1. is it any type of food? yes yes yes
2. is it a fruit? yes yes yes
3. is it shaped like a ball? yes yes yes
4. is it small? no yes yes
5. is it orange? yes yes yes
6. is it tangy? yes yes yes

Figure 5: Examples of the GWHist questions (marked in italics) that exhibit complex phenomena (such as ques-
tions that ask for objects other than the target) and the lack of annotations in the GuessWhat?! dataset. All
RuD-augmented models fail on the history dependent questions. questions.

figure: “No”,“Maybe no”,“I don’t know”,“Maybe
yes”,“Yes”. Once the answer is decided, the system
would log the annotation and prompt the user with
a new pair of question-image.

For annotation we loaded 11306 color, size and
spatial questions from the GuessWhat?! sampled
from the set of questions that follow an object ques-
tions. The pool was formed by:

• 4141 color questions
• 431 size questions
• 6704 spatial questions

We assigned different pool of questions to each
pair of annotators as for them to cover as much as
possible from the questions’ pool and to make sure
each annotated question had at least 2 annotators.
From that pool we analyzed the 1658 questions ref-
erenced in Section 3. We ended up with a GWHist
dataset that contained 204 history dependent ques-
tions whose question types where distributed as
follows:

• 2 action questions
• 192 spatial questions
• 23 color questions
• 6 size questions
• 1 texture question

Keep in mind that a question can fall in multiple of
these question types. For example “the one on the
right that has a little red left in it?” (present in the
GWHist) is classified as a color, size and spatial
question and, as such, is counted for each of the

question types.
The questions were mapped to their correspond-

ing answer given in the GuessWhat?! convention:
answers “yes” and “no” are kept the same, “I don’t
know” questions are mapped to “N/A”. “Maybe
yes” and “Maybe no” are mapped to “yes” and

“no”, respectively. Once the annotator answers are
mapped we can compare with the ground truth.

We hosted the tool in an instance of Lightsail8

and pulled annotators from within the same authors
of the paper.

8https://aws.amazon.com/lightsail/
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Figure 6: Screenshot of the annotation tool used.


