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Abstract

Stereotypical character roles—also known as
archetypes or dramatis personae—play an im-
portant function in narratives: they facilitate
efficient communication with bundles of de-
fault characteristics and associations and ease
understanding of those characters’ roles in the
overall narrative. We present a fully unsuper-
vised k-means clustering approach for learn-
ing stereotypical roles given only structural
plot information. We demonstrate the tech-
nique on Vladimir Propp’s structural theory
of Russian folktales (captured in the extended
ProppLearner corpus, with 46 tales), showing
that our approach can induce six out of seven
of Propp’s dramatis personae with F1 mea-
sures of up to 0.70 (0.58 average), with an
additional category for minor characters. We
have explored various feature sets and varia-
tions of a cluster evaluation method. The best-
performing feature set comprises plot func-
tions, unigrams, tf-idf weights, and embed-
dings over coreference chain heads. Roles that
are mentioned more often (Hero, Villain), or
have clearly distinct plot patterns (Princess)
are more strongly differentiated than less fre-
quent or distinct roles (Dispatcher, Helper,
Donor). Detailed error analysis suggests that
the quality of the coreference chain and plot
functions annotations are critical for this task.
We provide all our data and code for repro-
ducibility1.

1 Introduction

Stereotypical characters are characters that both
play an important role in the plot of a story and fit
into recognizable categories. In general, characters
are central to every narrative and drive the action
forward, and stereotypical character roles include
both common, context-independent roles such as
Hero, Villain, or Victim, as well as culturally-
specific roles such as the Donor (in, for example,

1https://doi.org/10.34703/gzx1-9v95/
DD6SEN

Russian tales) or the Trickster (in, for example, Na-
tive American tales). Referred to alternatively as
archetypes (Abrams and Harpham, 2014) or drama-
tis personae (Propp, 1968), stereotypical character
roles are crucial aids to narrative understanding:
they facilitate efficient communication with bun-
dles of default characteristics and associations and
ease understanding of the purpose of those char-
acter in the overall narrative (Robbins, 2005). Be-
yond demonstrated cognitive effects, stereotypical
character roles are useful for NLP tasks such as
narrative generation (Gervás, 2013), interactive dia-
logue generation (Rowe et al., 2008), and sentiment
analysis (Bhaskaran and Bhallamudi, 2019).

Prior work has demonstrate the utility of pre-
identified roles. But how do we learn the roles in
the first place? There have been several approaches
to this task, but all prior work incorporated some
a priori knowledge of the possible stereotypical
roles in the model, for example, results of manual
qualitative analyses (Harun and Jamaludin, 2016),
an archetype ontology (Groza and Corde, 2015),
or feature vectors of archetype information (Valls-
Vargas et al., 2016). Ideally a solution to this task
will learn roles from the data in a completely unsu-
pervised manner. We present just such an approach
here, a k-means-based unsupervised clustering us-
ing plot functions as the key feature: we show that
if you know characters’ involvement in plot func-
tions for a corpus, we can automatically induce the
stereotypical roles with reasonable performance.

The paper proceeds as follows. To motivate our
approach we begin by describing prior work on
learning stereotypical character roles (§2). We
next describe our corpus (§4), followed by the
experimental setup, including cluster assignment
methods, features, and clustering models (§5). We
present the results (§6) and analyze the error pat-
terns of the system, discussing various aspects,
which leads us to a discussion of future work (§7).
We conclude with our contributions (§8).

https://doi.org/10.34703/gzx1-9v95/DD6SEN
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2 Related Work

Vladimir Propp (1895–1970) was a Russian folk-
lorist who provided one of the first classic accounts
of stereotypical character roles in literary theory
(Propp, 1968). Propp studied a corpus of 100 Rus-
sian Hero folktales, and in his analysis proposed
31 plot functions and seven stereotypical character
roles (which he called dramatis personae): Hero,
Villain, Donor, Helper, Princess, Dispatcher, and
False Hero. While Hero and Villain are fairly uni-
versal, roles such as Donor and False Hero are
somewhat culturally specific.

There is a limited amount of prior work on learn-
ing or using stereotypical character roles in stories.
One body of work uses roles, but does not auto-
matically extract them. For example, Valls-Vargas
et al. (2014b) built upon their work in character
identification (Valls-Vargas et al., 2014a) to assign
stereotypical roles to characters. The authors en-
coded Propp’s “sphere of action” (Propp, 1968, §6)
into a role action matrix and used a greedy simi-
larity matching approach to assign roles to charac-
ters achieving 33.56% accuracy when using manu-
ally extracted characters. Similarly, Skowron et al.
(2016) designed a system to classify characters in
action movies into categories such as Hero, Antag-
onist, Spouses, and Sidekicks using graph and n-
grams features, with an overall performance of 0.43
F1. Groza and Corde (2015) integrated Propp’s
seven dramatis personae into an existing ontology,
and then exploited constraints of character roles to
reason over the ontology, inferring such things as
family relationships and whether an entity was a
main character. The model achieves 74% accuracy
and outputs major characters who belong to one
the seven types, but does not classify them more
precisely.

Other work has tackled unsupervised clustering
of characters, but either at more abstract levels
or not quantitatively evaluated. The level of ab-
straction is important, because the more abstract
a character role, the more likely it is to be found
across cultures: unlike automatic character identifi-
cation (Jahan et al., 2020), which is generalizable
across domains, stereotypical character roles de-
pend strongly on the cultural background of the
text. For example, Chen et al. (2019) used a mini-
mum span clustering approach to group characters
into core, secondary and peripheral categories us-
ing a character network; such categories, while
useful for stereotypical role learning, are not them-

selves culturally-specific stereotypical roles. Bam-
man et al. (2013) identifies the what they call the
persona of characters—similar to a stereotypical
character role—by clustering agent and patient ac-
tions as well as the adjectives used to describe the
characters. Their model achieves 42% purity at
best between the models of the same size. Fol-
lowing a similar persona definition, Bamman et al.
(2014) developed the BookNLP pipeline to extract
narrative information from English novels. The
model is hierarchical and assigns multiple personas
to a characters, and the authors used the analysis
to explore the relationship between character per-
sona and author style and literary effects; however,
the reliability or performance of the actual persona
extraction was not quantitatively evaluated.

Stereotypical roles are also useful in other NLP
tasks. Gervás (2013) explores the use of Propp’s
31 plot functions and seven dramatis personae to
generate stories, while Rowe et al. (2008) propose
a model to generate role-appropriate dialogues for
different character archetypes in an interactive en-
vironment. Another recent work (Bhaskaran and
Bhallamudi, 2019) looks at stereotypical gender
and occupational roles to identify bias in sentiment
analysis models.

3 Propp’s Morphology

Vladimir Propp (1895-1970) was a Russian folk-
lorist who wrote one of the first classic analyses
of stereotyped character roles in literary theory
(Propp, 1968). Propp analyzed 100 Russian folk-
tales and introduced seven stereotypical character
roles, listed below, which were connected to 31
basic structural elements or plot functions typical
of the Russian hero tales he analyzed, as shown in
Table 1.

Hero The role model of a story.
Villain The negative character who creates strug-

gles for the hero.
Donor The character who provides some magi-

cal object to the hero.
Helper The character who helps the hero.
Princess The character who becomes a compan-

ion of the hero.
Dispatcher The character who illustrates the

need for the hero’s quest and sends the hero off.
False Hero The character who takes credit for

the hero’s actions.



494

Symbol Name Description

β Absentation One of the members of a family absents himself from home.
γ Interdiction An interdiction is addressed to the hero.
δ Violation The interdiction is violated.
ε Reconnaissance The villain makes an attempt at reconnaissance.
ζ Delivery The villain receives information about his victim.
η Trickery The villain attempts to deceive his victim.
θ Complicity Victim submits to deception and thereby unwittingly helps his enemy.
A/a Villainy/Lack A member of a family is harmed by the villain, or lacks something.
B Mediation Misfortune or lack is made known.
C Beginning Counteraction The hero agrees to or decides upon counteraction.
↑ Departure The hero leaves home.
D Donor Encounter The hero is tested, interrogated, attacked, etc., which prepares the way for E.
E Hero’s Reaction The hero reacts to the actions of the future Donor.
F Receipt of Magical Agent The hero acquires the use of a magical agent.
G Transference Hero is led to the whereabouts of an object of search.
H Struggle The hero and the villain join in direct combat.
I Victory The villain is defeated.
J Branding The hero is branded.
K Tension Liquidated The initial misfortune or lack is liquidated.
↓ Return The hero returns.
Pr Pursuit The hero is pursued.
Rs Rescue Rescue of the hero from pursuit.
o Unrecognized Arrival Unrecognized, he arrives home or in another country.
L Unfounded Claims A false hero presents unfounded claims
M Difficult Task A difficult task is proposed to the hero.
N Solution The task is resolved.
Q Recognition The hero is recognised.
Ex Exposure The false hero or villain is exposed.
T Transfiguration The hero is given a new appearance
U Punishment The villain is punished.
W Reward The hero is married and ascends the throne, or receives money.

Table 1: Propp’s 31 functions.

4 Corpus

We demonstrate our method on the so-called ex-
tended ProppLearner corpus (Jahan et al., 2020),
which is an expansion of the 16 tale ProppLearner
corpus (Finlayson, 2017). This corpus comprises
46 Russian folktales originally collected in Rus-
sia in the late 1800s but translated into English,
and then annotated using modern linguistic anno-
tation methods for a variety of useful information.
We used all 46 folktales for training the animacy
and character detection stages, but excluded two
of those texts (#16 and #17) from the archetype
learning experiments due to errors in the alignment
of archetype markings with referring expression an-
notations. To the best of our knowledge, this is the
only corpus that provides gold-standard stereotypi-
cal character role annotations as well as plot func-
tion information. It also contains gold-standard
annotations for referring expressions, coreference
chains, animacy, and character (Jahan et al., 2018,
2020). We performed some manual correction
on this corpus, primarily eliminating minor errors
in the coreference chain and plot function anno-

tation and merging coreference chains that were
erroneously split. Table 2 shows various infor-
mation about the corpus, focusing on both gold
standard and automatically computed features of
coreference chains, and also including counts of
coreference chains that were marked with various
stereotypical character roles.

Element Type Counts Archetype Gold Auto.

Texts 46 Hero 58 53
Tokens 1,09,120 Villain 97 72
Coreference Chains Donor 28 21

Total 4,960 Helper 50 31
Gold Anim. 2,004 Princess 27 25
Auto. Anim. 2,225 Dispatcher 20 17
Gold Char. 564 False Hero 2 2
Auto. Char. 534 Others 282 313
Arch. 194

Table 2: Counts of different archetypes of the gold-
standard annotation and the automated output of the
animacy-character-archetype model.

5 Approach

Our approach assumes we begin with coreference
chain annotations. We first detected the animate
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entities using an existing state-of-the-art animacy
detector (Jahan et al., 2018), then identified which
of those animate entities are characters using an
existing character identifier (Jahan et al., 2020). Fi-
nally, we implemented k-means clustering to learn
stereotypical roles of those characters.

5.1 Animacy Detection

According to the operational definition of character
found in Jahan et al. (2020), a character must be an
animate object that is important to the plot. Thus
the first step of role learning is to detect the animate
entities. We used the animacy classifier described
in Jahan et al. (2018) for animacy detection over
coreference chains. We used their best-performing
model (0.90 F1), a hybrid model incorporating su-
pervised machine learning and hand-built rules.

5.2 Character Identification

For identifying characters, we used the character
identifier and the gold-standard character annota-
tion of (Jahan et al., 2020). The character model is
a supervised machine learning model that includes
seven features, and it performs quite well on the
extended ProppLearner corpus (0.88 F1).

5.3 Role Clustering

To cluster identified characters into Propp’s stereo-
typical character roles groups, we used k-means
clustering2. Although Propp identifies seven roles
we excluded the False Hero characters from the
data because there are only two examples. We have
added an extra label named Others which repre-
sents non-archetype characters or non-major char-
acters. We explored different features (computed
for each character) as follows.

tf-idf: We computed tf-idf vectors over words
of the heads of the coreference chains as a feature.
The vector size is 319, which means 319 unique
words where each coreference chain has non-zero
tf-idf entries for at least one place in the vector or
possibly more, depending on the number of words
in the head.

Bag-of-words: We computed bag-of-words vec-
tors over coreference chain head words as a feature.
The vector length is 319, one entry for each unique
word across the co-reference chain heads.

Hashing: We calculated hashing vectors to con-
vert the words of the coreference chain heads to a

2K-means (from sklearn Python library) parameters were
set at init = k −means + +, n_init = 10, max_iter =
500, verbose = 0, random_state = 3425

sparse matrix of token occurrence counts.
We explored six different vector encodings of

how characters participated in plot functions (P1c,
P1b, P2c, P2b, P3, and P4). Vectors P1 and P2 were
computed in one of two ways: “count” where each
index represents how many times a character partic-
ipates in a particular function, and “binary” where
each index represents whether or not a character
participates a particular function.

P1c and P1b: These feature vectors are of length
31 (one for each of Propp’s plot functions), and
encodes whether there is a string match between the
input character chain and the sentences containing
the plot function events. We calculated this feature
in both “count” (P1c) and “binary” (P1b) ways.
This feature vector is intended to capture whether
a character participates in a function.

P2c and P2b: These feature vector are of length
62 (two places for each of Propp’s plot functions),
and encodes whether there is a string match be-
tween the input character chain and the agent or
patient arguments (computed via a semantic role
labeler) for the verb associated with each plot func-
tion. We calculated this feature in both ways,
“count” and “binary”. These feature vectors are in-
tended to capture whether a character participates
in a function but distinguish between agent and
patient participation.

P3: This feature vector is of length 62 and is a
function of P2c and P2b. The first 31 places encode
the difference between the P2c agent and P2c pa-
tient counts for each plot function: i.e., P3[i]0−30 =
P2c[i]−P2c[i+31]. The second 32 places encodes
the P2 binary agent entry OR’d with the binary pa-
tient entry for each plot function: i.e., P3[i]31−61 =
P2b[i] ∨ P2b[i+31]. This feature vector is intended
to capture how much more a character participates
in a function as agent or patient.

P4: This feature vector is the same as P3 ex-
cept the first 31 places are mapped via the sgn()
function to -1, 0, or 1. This feature vector captures
merely whether a character on balance participates
in a function more as agent or patient.

5.4 Cluster Evaluation Method

Because the output of the k-means clustering is just
a set of clusters, to evaluate against the gold stan-
dard we must assign a stereotypical character role
to each cluster. To do so, we followed the following
procedure: (a) Order the list of seven stereotypical
character role labels by their gold-standard anno-
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Features Hero Villain Donor Helper Princess Dispatcher Other ARI F1

tf-idf 0.35 0.42 0.09 0.33 0.70 0.55 0.03 0.11 0.24
P2c 0.03 0.04 0.00 0.18 0.04 0.24 0.61 0.09 0.41
P2b 0.00 0.30 0.32 0.00 0.26 0.28 0.65 0.18 0.43
P4 0.24 0.38 0.05 0.21 0.46 0.09 0.63 0.14 0.47
P3 0.03 0.04 0.00 0.20 0.06 0.24 0.61 0.09 0.41
P1c 0.15 0.05 0.00 0.05 0.00 0.32 0.60 0.07 0.39
P1b 0.38 0.59 0.44 0.37 0.27 0.00 0.69 0.27 0.50
P1b, tf-idf, BOW, H 0.60 0.63 0.27 0.37 0.67 0.40 0.68 0.29 0.58

Table 3: Performance of the different feature sets for k = 7. ARI = Adjusted Rand Index, BOW = bag-of-words,
H = Hashing

tation counts in descending frequency. (b) Pop the
first label from the list and compute the F1 of that
specific label in each cluster based on the gold-
standard annotations for characters. (c) The cluster
with the maximum F1 for that label will be as-
signed to that label. (d) Repeat steps b− c until the
label list is empty. We explored variations of this
procedure using counts and percentages instead of
F1, but the final result was unchanged.

6 Results and Discussion

For each feature set explored, we swept the number
of clusters (k) from 1 to 20, calculating the overall
F1 across the clustering as an objective measure.
In most cases, k = 7 produces the highest perfor-
mance, which matches the number of labels in the
set. In general, the plot function P1b feature out-
performed all of the other plot function features.
Our model achieved the best performance (F1 0.58)
for the feature set of P1b, tf-idf, bag-of-words, and
hashing for all clustering assignment methods.

For the case of individual cluster results, we can
see that the results of Hero, Villain, Princess, and
Other clusters are better than Donor, Helper, and
Dispatcher clusters. We hypothesize that this is due
to both lack of data for the latter labels, as well as
lack of distinctiveness in the distributions of their
plot function participation.

Donor does poorly on tf-idf while Princess is
high, we suspect because Donor is mostly depen-
dent on actions, not on the content of the corefer-
ence chains. On a different note, the features con-
taining thematic information do not impact most of
the classes except for Dispatcher.

7 Error Analysis

A detailed error analysis of the results revealed
some minor problems for the model that depends
on the external tools we have used and the qual-
ity of the data. First, the model uses the output

of the animacy and character models. Therefore,
our clustering model compounds the errors from
those steps. Improvement in animacy and character
models can improve the performance. Second, the
quality of coreference chains and plot functions is
critical for the model. Initially runs of our model
did not achieve good performance, but the perfor-
mance increased when we discovered and corrected
a number of errors in the coreference chains and
plot function annotations. After including missing
plot function annotations and completing incom-
plete coreference chains, the F1 improved from
0.45 to 0.50 for P1b. Third, some roles are not
involved in very many plot functions; therefore,
the model has difficulty clustering them correctly.
Finally, a few characters have multiple roles simul-
taneously, but our model can learn only assign one
role for each character. Future work might address
this issue through a hierarchical clustering method
that supports multiple roles simultaneously.

8 Contributions

We have made two major contributions in the area
of stereotypical character role learning. First, we
designed and developed a pipeline to learn stereo-
typical roles automatically. Second, we showed
that plot functions, agent, and patient information
are necessary to cluster similar roles. We provide
our code and data for reproducibility of the work 3.
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