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Abstract

We present models which complete miss-
ing text given transliterations of ancient
Mesopotamian documents, originally written
on cuneiform clay tablets (2500 BCE - 100
CE). Due to the tablets’ deterioration, schol-
ars often rely on contextual cues to manually
fill in missing parts in the text in a subjective
and time-consuming process. We identify that
this challenge can be formulated as a masked
language modelling task, used mostly as a pre-
training objective for contextualized language
models. Following, we develop several archi-
tectures focusing on the Akkadian language,
the lingua franca of the time. We find that de-
spite data scarcity (1M tokens) we can achieve
state of the art performance on missing tokens
prediction (89% hit@5) using a greedy decod-
ing scheme and pretraining on data from other
languages and different time periods. Finally,
we conduct human evaluations showing the ap-
plicability of our models in assisting experts to
transcribe texts in extinct languages.

1 Introduction

The Akkadian language was the lingua franca of
the Middle East and Egypt in the Late Bronze and
Early Iron Ages, spoken or in use from 2500 BCE
until its gradual extinction around 100 CE (Oppen-
heim, 2013). It was written in cuneiform signs —
wedge-shaped imprints on clay tablets, as depicted
in Figure 1 (Walker, 1987). These tablets are the
main record from the Mesopotamian cultures, in-
cluding religious texts, bureaucratic records, royal
decrees, and more. Therefore they are a target of
extensive transcription and transliteration efforts.
One such transcription is exemplified by the La-
tinized text to the right of the tablet in Figure 1.

The Open Richly Annotated Cuneiform Corpus
(Oracc)1 is one of the major Akkadian transcrip-
tion collections, culminating in approximately

1http://oracc.org

Figure 1: A clay tablet from Oracc (left) with its corre-
sponding Latin transliteration (right). Words are delim-
ited by spaces, while signs are delimited by hyphens or
dots. A sign which is missing due to deterioration is de-
noted by ‘x’ and highlighted in red in the figure. We de-
velop models which automatically complete these miss-
ing signs based on the surrounding context.

2.3M transcribed signs from 10K tablets. As fur-
ther evidenced in Figure 1, many of the signs in
the tablets were eroded over time and some parts
were broken or lost, forcing editors to “fill in the
gaps” where possible, based on the context of the
surrounding words.

In this paper, we identify that the task of masked
language modeling, used ubiquitously in recent
years for pretraining other downstream tasks (Pe-
ters et al., 2018; Howard and Ruder, 2018; Liu
et al., 2019) lends itself directly to missing sign
prediction in the transliterated texts. We exper-
iment with various adaptations of BERT-based
models (Devlin et al., 2019) trained and tested on
Oracc, combined with a greedy decoding scheme
to extend the prediction from single tokens to mul-
tiple words. We specifically focus on the effect
multilingual pretraining has on downstream per-
formance, which was recently shown beneficial
for low-resource settings (Chau et al., 2020).

http://oracc.org
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In an automatic evaluation, we find that a combi-
nation of large-scale multilingual pretraining with
Akkadian finetuning achieves state-of-the-art re-
sults, with a top 5 accuracy of 89.5%, vastly im-
proving over other models and baselines. Inter-
estingly, we find that the multilingual pretraining
signal seems to be more important than the sig-
nal of the target small-scale Akkadian data, as the
zero-shot performance of a multilingual language
model surpasses that of a monolingual Akkadian
model by about 10%.

Finally, we show the model’s potential applica-
bility in assisting transcription by filling in miss-
ing parts. To account for the challenges in human
assessment of an extinct language, we created a
controlled setup where domain experts are asked
to identify plausible predictions out of a combi-
nation of model predictions, the original masked
sequences, and noise. We find that in a major-
ity of cases, the annotators found at least one of
the model’s top 3 predictions useful, while the per-
formance degrades on longer sequences. Future
work can improve the model by designing more
elaborate decoding schemes and exploring the spe-
cific effect of related languages (e.g., Arabic and
Hebrew) on downstream performance. Our code
and trained models are made publicly available at
www.github.com/SLAB-NLP/Akk.

Our main contributions are:

• We identify that the longstanding challenge
of filling in gaps in Akkadian texts directly
corresponds to advances in masked language
modeling.

• We train the first Akkadian language model,
which can serve as a pretrained starting point
for other downstream tasks such as Akkadian
morphological analysis.

• We develop state-of-the-art models for com-
pleting missing signs by combining large-
scale multilingual pretraining with Akkadian
language finetuning.

• We devise a controlled user study, showing
the potential applicability of our model in
assisting scholars fill in gaps in real-world
Akkadian texts.

2 Background

In this section, we will introduce the Akkadian lan-
guage and the Open Richly Annotated Cuneiform

Corpus (Oracc). While it is one of the largest
sources of the Akkadian language, it is of or-
ders of magnitude smaller compared to resources
for other languages, such as English or German.
Then, we will introduce masked language model-
ing, which will serve as the basis for our sign pre-
diction model.

2.1 The Akkadian Language and the Oracc
Dataset

Akkadian is a Semitic language, related to sev-
eral languages spoken today, such as Hebrew, Ara-
maic, Amharic, Maltese, and Arabic. It has been
documented from the 3rd millennium B.C.E. un-
til the first century of the common era, in mod-
ern Iraq, between the Euphrates and the Tigris
rivers, as well as in modern Syria, east Turkey,
and the Northern Levant (Huehnergard, 2011). In
this work, we will use the Open Richly Annotated
Cuneiform Corpus (Oracc), one of the largest inter-
national cooperative projects gathering cuneiform
texts from many archaeological sites.

Most relevant to this work, Oracc contains La-
tinized transliterations of the cuneiform texts, as
can be seen in Figure 1, depicting a clay tablet
and its transliteration in Oracc. It also contains
English translations for parts of the texts. In to-
tal, as can be seen in Table 1, Oracc consists of
about 10K texts (each a transliteration of a sin-
gle tablet), containing 1M words and 2.3M signs,
as well as 9K translated texts in English contain-
ing 1.2M English words. Importantly, the editors
can often visually estimate the number of missing
signs in a deteriorated or missing part and denote
each with ‘x’ in the transliteration (marked in red
in Figure 1). Therefore, in the following sections,
we will assume that the number of missing signs
is given as input to our models.

# Texts # Words # Signs

Akkadian Train 8K 950K 1.8M
Akkadian Test 2K 250K 500K

English Train 7K 950K –
English Test 2K 250K –

Table 1: Number of texts, words, and signs in our
preprocessed version of Oracc, English texts are cor-
responding translations of the Akkadian texts.

www.github.com/SLAB-NLP/Akk
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2.2 Multilingual Masked Language Modeling
In masked language modeling (MLM), a model
is asked to predict masked parts in a text given
their surrounding context. Recent years have seen
large gains for almost all NLP tasks by using
the token representations learned during MLM
as a starting point for downstream applications.
In particular, recent work has noticed that joint
training on various languages greatly helps down-
stream applications, especially where labeled data
is sparse (Pires et al., 2019; Chau et al., 2020; Con-
neau et al., 2020).

In this work we identify that the MLM objective
directly corresponds to the task of filling in gaps in
Akkadian texts and train several MLM variants on
it. In the following sections, we will especially
examine the effect of multilingual pretraining on
our task.

3 Task Definition

Intuitively, our task, as demonstrated in Figure 2,
is to predict missing tokens or signs given their
context in transliterated Akkadian documents. Hu-
man experts achieve this when compiling Oracc
by considering not only the surrounding context
in the tablet, but also its wider, external con-
text, such as its corpus, or the time and location
where the text was originally written or found. In
many cases, researchers can estimate the number
of missing signs even after their physical deterio-
ration, and mark them as sequences of ‘x’s. E.g.,
note the sequence of 2 ‘x’s marked in red in Fig-
ure 2. We will use this signal as input to our
model, which specifies the number of signs to be
predicted.2

Formally, let T = (s1, ..., sn) ∈ Σn be a
transliterated Akkadian document comprised of
a concatenation of n signs, where Σ is the set
of all Akkadian signs. Let I ⊆ [n] such that
∀i ∈ I : si = x, where x denotes a missing
sign. The number of missing signs is assumed to
be known a priori, based on the editor’s examina-
tion of the tablets. Therefore, the model should
output (p1, ..., p|I|) ∈ Σ|I| predictions for the miss-
ing signs in T .

4 Model

In this section, we will introduce BERT-based
models aiming to solve the task of predicting miss-

2We filter cases where the editors can not estimate the
number of missing signs.

ing signs in Akkadian texts. We chose these mod-
els since their pretraining task is also our down-
stream task. The high-level diagram of the model
is presented in Figure 2 and is elaborated below.
First, in Section 4.1, we outline the preprocessing
of Oracc, aiming to remove annotations that are ex-
ternal to the original text. Then in Section 4.2, we
propose two models for predicting missing signs.
Lastly, in Section 4.3, we present an algorithm to
extend BERT sub-word level prediction to multi-
ple signs and words. In the following two sections
we will test these models in both automatic and
human evaluation setups.

4.1 Preprocessing

Oracc is a collaborative effort to transliterate
Mesopotamian tablets, mainly in Akkadian. Fig-
ure 1 exemplifies different characteristics of the
corpus. We removed signs added by editors in
the transliteration process as they were not part of
the original text. For example, we removed signs
which indicate how certain the editors are in their
reading of the tablet. As an example, note that
in Figure 2 the first sign in the transliterated text
is marked as uncertain with the ⌜⌝ characters be-
fore preprocessing. In addition, we also remove
superscripts and subscripts, which indicate differ-
ent readings of the Akkadian cuneiform text, e.g.,
an ‘m’ superscript is preceding the last word in the
transliterated text.

During training, similarly to Devlin et al.
(2019), we train the model to predict known tokens
by masking them at random. During inference, we
mask each missing sign, indicated by ‘x’ in Oracc,

Figure 2: High-level diagram of our model, producing
a sequence of signs (marked in blue) given input from
Oracc with missing signs (red ‘x’s). We experiment
with different language models and pretraining data.
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and iteratively predict each of the tokens compos-
ing it.

4.2 Masked Language Models

We experimented with monolingual and multilin-
gual versions of BERT.

First, we pretrained from scratch a monolin-
gual BERT model with a reduced number of pa-
rameters (750K) following conclusions from Ka-
plan et al. (2020). Second, following recent re-
search suggesting that pretraining on similar lan-
guages is beneficial for many NLP tasks, includ-
ing in low-resource settings (Pires et al., 2019;
Wu and Dredze, 2019; Chau et al., 2020; Con-
neau et al., 2020), we finetuned a pretrained mul-
tilingual BERT (M-BERT) model (Devlin et al.,
2019).3 M-BERT was trained on the 104 most
common languages of Wikipedia, including He-
brew and Arabic - Semitic languages that are ty-
pologically similar to Akkadian.

To adapt M-BERT to Akkadian, we assign its
99 available free tokens, optimizing for maximum
likelihood by the WordPiece tokenization algo-
rithm (Schuster and Nakajima, 2012; Wu et al.,
2016).

4.3 Decoding: From Tokens to Signs

While the MLM task is designed to predict single
tokens, in our setting, multiple signs and words
may be omitted due to deterioration. To bridge this
gap, we greedily extend the token level prediction
by adapting the k-beams algorithm such that it out-
puts possible predictions given an Akkadian text
with a sequence of missing signs. See the exam-
ple at the top of Figure 2, where the two ‘x’ signs
in the input are predicted as a-na. To achieve this,
we count the number of sign delimiters (space, dot,
hyphens) predicted at each time step, and choose
the best k candidates according to the following
conditional probability:

p(X1, ..., Xn, C) =
n∏

i=1

p(Xi|X1, ..., Xi−1, C)

(1)
Where Xi denotes the ith masked token, and C
denotes the observed context. For example, in Fig-
ure 2, a-na is composed of three sub-sign tokens:

’a’, ’-’, ’na’, while C = (‘a-bat LUGAL’, ‘as̆-s̆ur’),
and the sequence probability is p(na|−, a, C) ·
p(−|a,C) · p(a|C) .

3https://huggingface.co/bert-base-multilingual-cased

5 Automatic Evaluation

We present an automatic evaluation of our mod-
els’ predictions for missing signs in ancient Akka-
dian texts, testing several masked language mod-
eling variants for single token prediction, as well
as our greedy extension to multiple tokens and
signs. In all evaluations, we mask known tokens
and evaluate the model’s ability to predict the orig-
inal masked tokens. This setup allows us to test
against large amounts of texts in Oracc from dif-
ferent periods of time, locations or genres.

5.1 Models and Datasets

We use two strong baselines: (1) the LSTM model
that was proposed by Fetaya et al. (2020), and was
retrained on our dataset using their default config-
uration;4,5 and (2) the cased BERT-base multilin-
gual model, without finetuning over Oracc.6

We compare these two baselines against our
models, as presented in 4.2, trained in three con-
figurations: (1) BERT+AKK(mono) refers to the
reduced size BERT model, trained from scratch on
the Akkadian texts from Oracc; (2) MBERT+Akk
is a finetuned version of M-BERT on the Akka-
dian texts, using the model’s additional free to-
kens to encode sub-word tokens from Oracc; and
(3) MBERT+Akk+Eng further finetunes on the En-
glish translations available in Oracc to introduce
additional domain-specific signal. We test all mod-
els against 5 different genres of Akkadian texts
tagged in Oracc, masking 15% of the tokens. The
genres can be largely divided into two groups.
First, the Royal Inscription, Monumental, and As-
trological Reports are the most common genres in
the dataset and consist of longer coherent texts,
mostly of essays and correspondence. Second, we
test on two other genres: Lexical which consists
mostly of tabular information (lists of synonyms
and translations), and Decree that contains con-
catenated non-contextualized short sentences.

5.2 Experimental Setup

For all our experiments, we used a random 80%
- 20% split for train and test (see Table 1). For
the monolingual model, we trained our reduced-
parameters BERT model from scratch for 300
epochs with 4 NVIDIA Tesla M60 GPUs for 2
hours. For the multilingual experiments, we fine-

4https://github.com/DigitalPasts/Atrahasis
5https://github.com/DigitalPasts/Akkademia
6https://huggingface.co/bert-base-multilingual-cased
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Genre Metric LSTM MBERT-base BERT+AKK(mono) MBERT+Akk MBERT+Akk+Eng

Royal
Inscription

MRR .52 .57 .57 .83 .83
Hit@5 .60 .65 .56 .90 .90

Royal or
Monumuental

MRR .51 .61 .61 .84 .83
Hit@5 .61 .69 .69 .90 .90

Astrological
Report

MRR .53 .55 .55 .81 .80
Hit@5 .60 .64 .64 .88 .88

Lexical
MRR .10 .61 .69 .69 .66
Hit@5 .10 .76 .76 .85 .85

Decree
MRR .49 .67 .39 .71 .74
Hit@5 .60 .73 .51 .76 .76

Overall MRR .52 .60 .50 .83 .83
Hit@5 .59 .67 .60 .89 .89

Table 2: MRR and Hit@5 precision by genre. The first two models from the left are our baselines: LSTM refers
to the model from (Fetaya et al., 2020) retrained on our data, MBERT-base refers to the zero-shot M-BERT model
without training on Oracc. The following three models are introduced in Section 4.2: BERT+AKK(mono) is
trained mono-lingually from scratch on Oracc Akkadian texts; MBERT+Akk finetunes on Oracc Akkadian texts;
and MBERT+Akk+Eng is also finetuned on their English translations. The three genres at the top of the Table
(Royal Inscription, Monumental, Astrological) are the most common in our test dataset and contain longer, more
coherent texts. The two genres at the bottom (Lexical and Decree) contain tabular texts and non-contextualized,
short sentences.

tuned M-BERT for 20 epochs similarly to (Chau
et al., 2020), with 8 NVIDIA Tesla M60 GPUs
for 2-3 hours. We used the original architecture
of M-BERT, adding a masked language modeling
head for prediction. For the LSTM model of Fe-
taya et al. (2020), we train for 200 epochs, with 1
NVIDIA Tesla M60 GPU for 68 hours.

5.3 Metrics

We report performance according to the Hit@k
and mean reciprocal rank (MRR) metrics, as de-
fined below:

MRR =
1

N

N∑
i=1

1

ranki
(2)

Hit@k =
1

N

N∑
i=1

1[ranki≤k] (3)

Where N is the number of masked instances,
ranki is the rank of the original masked token
in the model’s predictions, and 1 is the indicator
function.

The Hit@k metric directly measures applicabil-
ity in our target application, i.e., how likely is the
correct prediction to appear if we present the user
with our model’s top k predictions. MRR comple-
ments Hit@k by providing a finer-grained evalua-

tion, as the model receives partial credit in correla-
tion with every ranking.

5.4 Results
Table 2 compares token level evaluation across
our different models and genres, while Figure 3
presents an evaluation of the prediction of multi-
ple signs and words. We note several interesting
observations based on these results.

Multilingual pretraining + Akkadian finetun-
ing achieves state-of-the-art performance. On
average, the two M-BERT models, which were
finetuned over Oracc texts, outperform all other
models by at least 20% on both metrics. This is
particularly pronounced in the more natural first
set of genres, where the multilingual models often
surpass 85% in both MRR and Hit@5.

Zero-shot multilingual pretraining outper-
forms monolingual training. Surprisingly, in
most tested settings, the zero-shot version of
M-BERT outperforms both BERT+AKK(mono)
and the LSTM models, despite never training
on Akkadian. This suggests that the signal from
pretraining is stronger than that of the Akkadian
texts, likely due to the relatively small amounts
of data. Moreover, as M-BERT was trained
over the MLM task in other languages during
its pretraining, this evaluation can be seen as a
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Figure 3: Hit@k precision for sequences of varying lengths in Akkadian (A) and English (B). We find that both
languages do well on 1 token and 1 sign, where the correct answer is expected to be in the models’ top 5 predictions
for half of the instances. Performance drops sharply for longer sequences, possibly due to the large search space.
We directly measure the model’s applicability in user studies in Section 6.

zero-shot cross-lingual transfer learning, on which
M-BERT was found to be competitive in many
NLP tasks (Pires et al., 2019; Wu and Dredze,
2019; Conneau et al., 2020).

Performance degrades on the Lexical genre.
The gains of the multilingual models are reduced
in the Lexical genre. Specifically, they are on par
with BERT+AKK(mono) in this genre. This may
indicate that this genre’s idiosyncratic syntax does
not benefit much from multilingual pretraining.

Context matters after finetuning M-BERT.
The performance of the finetuned M-BERT is the
lowest in the Decree genre and is very close to that
of the MBERT-base. This is perhaps not surprising
as the Decree texts are concatenations of unrelated
short sentences, while one of BERT’s main advan-
tages is its learned contextualized representations
of different domains.

Finetuning on English Oracc translations
does not improve performance. Finetuning M-
BERT only on Akkadian (MBERT+Akk) leads
to results on par with additional finetuning on
English (MBERT+Akk+Eng), possibly indicating
that the amount of Akkadian texts and English
translations is not enough to make M-BERT align
between the two languages in Oracc’s unique do-
mains.

Performance degrades on longer masked se-
quences for both English and Akkadian. Fig-
ure 3 compares our best-performing model in
predicting a varying number of signs against M-
BERT on English texts, where both use our greedy

decoding strategy to extend their predictions to
multiple signs and words. We note similar patterns
for both languages. The performance for a single
sign and word is high, and it deteriorates when
more elements are predicted. In the following sec-
tion, we extend this evaluation by conducting a hu-
man evaluation that aims to test the model’s appli-
cability in a real-world setting.

6 Human Evaluation and User Studies

We note that the automatic evaluation presented in
the previous section offers only an upper bound
of the model’s ability to suggest reasonable com-
pletions, since the original text is often only one
out of many other equiprobable completions of the
masked text. Consider, for example, the masked
English text at the top of Figure 4. While the
original text was “of the former”, the model’s top
predictions (“of the previous”, “of the first”) may
also be acceptable to scholars. This may also ex-
plain the degradation in performance in Figure 3,
as the number of plausible completions rises in cor-
relation with the length of the predicted span.

To address this, we conduct a direct manual
evaluation of the top performing model’s predic-
tions (M-BERT finetuned over Oracc) in a con-
trolled environment, on both the original Akka-
dian, as well as its corresponding English trans-
lation. We begin by describing the experiment
setup, which aims to cope with the inherent noise
of human analysis in the MLM task, especially in
an extinct language. Then, we discuss our find-
ings, which show that the model provides sensible
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Figure 4: Human evaluation interface for English (top)
and transliterated Akkadian (bottom). Given the tex-
tual context from the tablet and a missing span of text
(marked by red X’s), the annotator decides whether
each presented option is plausible. The options consist
of the top three model predictions (marked in blue) and
two controls: the original masked span (marked in yel-
low) and a randomly sampled span of text functioning
as a distractor (marked in red).

Figure 5: Human evaluation results. The X-axis repre-
sents the number of signs (in Akkadian) or words (in
English) in a predicted sequence, and the Y-axis rep-
resents the average number of model predictions that
our human experts approved for the given predicted se-
quence. The upper error bars represent false negatives,
where the gold sequence was labeled not plausible. The
lower error bars represent false positives, where the dis-
tractor was labeled as plausible. We find that annotators
tend to introduce false negatives, while they are less
prone to falsely label distractors as plausible.

suggestions in most instances, while the compari-
son with English reveals that there is room for im-
provement, especially on longer sequences.

6.1 Experiment Setup: Coping with Noisy
Human Evaluation

Our human evaluation of missing sign prediction
in Akkadian was done by two of the authors, who
are professional Assyriologists. They can read
Akkadian at an academic level, and represent the
users who work on cuneiform transliteration and
may benefit from our model’s predictions. Despite
their unique expertise, they do not speak the lan-
guage fluently like native speakers did, and the lan-

guage’s natural variations over thousands of years
makes the reading even more difficult.

To address this, we created an annotation
scheme7 which evaluates the model’s predictions
and estimates the noise introduced in the annota-
tion process. As exemplified in Figure 4, for each
annotation instance, we generated 5 suggestions: 3
model predictions, the original masked term, and
a distractor sequence that was randomly sampled
from the Akkadian texts.8 The annotators observe
the 5 suggestions in a randomized order, oblivi-
ous to which ones are model predictions. They
are then required to mark each suggestion as either
plausible or implausible, given the document’s sur-
rounding context.

Inserting the original masked sequence and the
distractor enabled us to quantitatively estimate two
sources of noise. First, the percentage of gold
samples which were marked as incorrect reflects
an underestimation of the model’s ability as these
are samples which in fact occurred in the original
ancient texts, yet were ruled out by our experts.
Similarly, the percentage of distractors marked as
plausible reflects an overestimation of the model’s
performance.

By combining the estimated model accu-
racy (the percentage of the predictions marked as
plausible) with both sources of noise, we can esti-
mate a range in which the actual performance of
the model may lie. Finally, for comparison with
a high-resource language, we asked two fluent En-
glish speakers to annotate instances from the En-
glish translations of Oracc when predictions were
generated by English BERT-base uncased model
in the same experimental setup, as demonstrated
at the top of Figure 4.

We conclude this part with an example human
annotation and its corresponding analysis.

Annotation example. Consider the English an-
notation instance presented in Figure 4, and as-
sume the annotator marked as plausible the fol-
lowing four items: the artificially introduced noise
(“of Enlil’s”); two of the model predictions: “of
the first”, “of the previous”; and the gold instance
(“of the former”), while the remaining model pre-
diction (“, your father”) is considered wrong by
the human annotator. In which case, we compute

7Created with docanno (Nakayama et al., 2018).
8In case the model predicted the gold sequence, we added

an additional model prediction, to ensure we always present
5 options.
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the annotator’s quality assessment for this instance
as 2

3 , while we record that they tend to overesti-
mate the model performance, as they marked the
artificial noise as plausible. Both of these met-
rics (accuracy and error estimation) are aggregated
and averaged over the entire annotation.

6.2 Results
Each of our two annotators marked the top 5
model predictions for 70 different missing se-
quences, resulting in 700 binary annotations over-
all. 150 of these annotations were doubly anno-
tated to compute agreement, overall finding good
levels of agreement (.81κ for English and .79κ
for Akkadian). These were drawn from royal in-
scriptions, as tagged in Oracc. This genre con-
tains straight-forward, yet elaborate syntax and
is well known by our annotators. We can make
several observations based on Figure 5 which de-
picts the results of the human evaluation, based
on the number of missing signs and the tested lan-
guage (Akkadian versus English).

Our model’s Akkadian predictions are applica-
bly useful... Per sequence of one or two signs,
the annotators tended to accept on average at least
one suggestion as plausible, while for three signs,
they accepted on average about one suggestion
per two sequences. From an applicative point of
view, this functionality readily lends itself to aid
transliteration of missing signs for sequences of
such lengths, which constitute the majority (57%)
of missing spans in Oracc.9

... yet performance degrades with the number
of missing tokens. In Figure 5, we observe that
the performance of the Akkadian model (in or-
ange) degrades faster than the English model (in
blue) the longer the predicted sequence gets. This
indicates that the greedy decoding from a single
span to multiple spans works better for English
than for Akkadian. Designing a better decoding
scheme is left as an interesting avenue for future
work.

Humans tend to underestimate the model per-
formance. By examining the assessments for
the artificially introduced gold and distractor se-
quences we can estimate that the actual model
performance may be higher than our experts es-
timated. We see that for both languages and in

9E.g., imagine a virtual keyboard auto-complete feature
that suggests plausible completions in half of the cases.

most tested scenarios, our annotators were able to
rule out the distractor, while they tended to also
wrongly discarded the gold sequence (shown by
the upper error bar), indicating that they may have
also ruled out other plausible predictions made by
the model.

7 Related Work

Most related to our work, Fetaya et al. (2020)
designed an LSTM model which similarly aims
to complete fragmentary sequences in Babylonian
texts. They differ from us in two major aspects.
First, they focus on small-scale highly-structured
texts, for example, lists (parataxis), such as re-
ceipts or census documents (Jursa, 2004). Sec-
ond, their LSTM model does not use multilingual
pretraining, instead, it is trained on monolingual
Akkadian data and its parameters are randomly ini-
tialized. In Section 5, we retrain their model on
our data, showing that it underperforms on all gen-
res compared to models which were pretrained us-
ing multilingual data, even in a zero-shot setting,
further attesting to the valuable signal of multilin-
gual pretraining in low-resource settings.

Other works have used Oracc and other Akka-
dian resources and may benefit from our language
model for Akkadian. Jauhiainen et al. (2019) used
Oracc for a shared task around language and di-
alect identification. Luukko et al. (2020) recently
introduced a syntactic treebank for Akkadian over
texts from Oracc, while Sahala et al. (2020) built
a morphological analyzer using annotations from
Oracc. Finally, Gordin et al. (2020) automatically
transliterated Unicode cuneiform glyphs into the
Latinized transliterated form.

Several recent works also noticed the cross-
lingual transfer capabilities of M-BERT. Wu and
Dredze (2019) and Conneau et al. (2020) found
that M-BERT can successfully learn various NLP
tasks in a zero-shot setting using cross-lingual
transfer, pointing at the shared parameters across
languages as the most important factor. Pires
et al. (2019) showed that M-BERT is capable
of zero-shot transfer learning even between lan-
guages with different writing systems.

8 Conclusions and Future Work

We presented a state-of-the-art model for missing
sign completion in Akkadian texts, using multilin-
gual pretraining and finetuning on Akkadian texts.
Interestingly, we discovered that in such a low-
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resource setting, the signal from pretraining may
be more important than the finetuning objective.
Evidently, a zero-shot model outperforms mono-
lingual Akkadian models. Finally, we conducted a
controlled user study showing the model’s poten-
tial applicability in aiding human editors.

Our work sets the ground for various avenues
of future work. First, A more elaborate decoding
scheme can be designed to mitigate the degrada-
tion of performance for longer masked sequences,
for example by employing SpanBERT (Joshi et al.,
2020) to represent the missing sequences during
training and inference. Second, our findings sug-
gest that an exploration of the specific utility of
similar languages, e.g., Arabic or Hebrew, may
yield improvements in missing sign prediction.
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