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Abstract

Recently, end-to-end (E2E) trained models for
question answering over knowledge graphs
(KGQA) have delivered promising results us-
ing only a weakly supervised dataset. How-
ever, these models are trained and evaluated in
a setting where hand-annotated question enti-
ties are supplied to the model, leaving the im-
portant and non-trivial task of entity resolution
(ER) outside the scope of E2E learning. In this
work, we extend the boundaries of E2E learn-
ing for KGQA to include the training of an ER
component. Our model only needs the ques-
tion text and the answer entities to train, and
delivers a stand-alone QA model that does not
require an additional ER component to be sup-
plied during runtime. Our approach is fully dif-
ferentiable, thanks to its reliance on a recent
method for building differentiable KGs (Co-
hen et al., 2020). We evaluate our E2E trained
model on two public datasets and show that it
comes close to baseline models that use hand-
annotated entities.

1 Introduction

The conventional approach for Question Answer-
ing using a Knowledge Graph (KGQA) involves a
set of loosely connected components; notably, an
entity resolution component identifies entities men-
tioned in the question, and a semantic parsing com-
ponent produces a structured representation of the
question. The programs resulting from combining
these components can be executed on a knowledge
graph (KG) engine to retrieve the answers.

While this approach can be effective, collect-
ing training datasets for individual components can
be challenging (Dahl et al., 1994; Finegan-Dollak
et al., 2018). For example, supervised seman-
tic parsing requires training data pairing natural-
language questions with structured queries, which
is difficult to obtain. This has motivated many ef-
forts in weakly supervised training (Chakraborty
et al., 2021). Following recent breakthroughs in

Figure 1: High-level architecture of the end-to-end
model. One forward pass of RoBERTa extracts contex-
tual embeddings for all components. Span Detection
and Entity Resolution happen jointly to derive seed en-
tities vector x0. The inference module performs multi-
hop reasoning to reach answer entities vector ŷ

machine translation (Bahdanau et al., 2015), a new
goal is to directly optimize the entire chain of com-
ponents end-to-end, without the need for interme-
diate annotations.

However, entity resolution (ER) is by and large
a neglected component of E2E learning, and ex-
isting weakly supervised solutions mostly assume
question entities are either given or extracted by an
external system. In practice, there’s a scarcity of
quality training data for ER on questions, and poor
entity extraction by out-of-domain models affects
the overall performance of a KGQA system (Singh
et al., 2020; Han et al., 2020).

In this work, we present an end-to-end model
for KGQA that learns to jointly perform entity res-
olution and inference. Our work leverages the dif-
ferentiable KG proposed in Cohen et al. (2020),
which allows all the components of our model to
be trained using a dataset of only questions and
answers. This eliminates the need for labelled ER
data for questions and allows our model to run inde-
pendently, without relying on external components.
Furthermore, the tight integration of ER into our
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solution allows uncertainties about entities to be
directly reflected in our confidence in answers.

2 Related Work

Traditional approaches to KGQA rely on seman-
tic parsing (SP) to translate natural language into
a logical form. Weakly supervised SP is a well-
studied topic with increasing interest in applying
Reinforcement Learning (RL) (Hua et al., 2020;
Agarwal et al., 2019). ER is rarely considered in
the scope of surveyed solutions, and if it is, it’s
treated as an independent component and not in-
cluded in the weak supervision scope (Ansari et al.,
2019). In general, RL algorithms for QA are hard
to tune and have large variances in their results.
The exploration-exploitation issue also lets models
settle on high-reward but spurious logical forms,
leading to poor generalization (Chakraborty et al.,
2021). Including ER with a discrete output space
as part of an E2E RL pipeline will further add to
the challenges that RL-based solutions face.

Another line of work in KGQA uses embedding
techniques to implicitly infer answers from knowl-
edge graphs without explicit queries (Saxena et al.,
2020; Sun et al., 2019). While these embedding-
based approaches perform well, they are memory
intensive and difficult to scale to large knowledge
graphs. In addition, when new entities are added to
the KG, they need to be retrained to learn updated
embeddings. The differentiable KG we use in this
work can incorporate new entities without affecting
trained models, and can scale to billions of entities
via horizontal scaling (Cohen et al., 2020).

The few relevant works on entity resolution for
questions utilize complex models with many in-
terworking modules (e.g. Sorokin and Gurevych
2018; Tan et al. 2017). ELQ (Li et al., 2020) is
a more recent effort and simplifies the process by
relying on a bi-encoder to jointly perform span
detection and ER in a multi-task setup. However,
these solutions rely on direct supervision. Our pro-
posed method eliminates the need for labelled data
for ER. In fact, the weakly supervised ER model
presented here could be detached and used as a
standalone ER module after training.

3 E2E Model

3.1 Differentiable Knowledge Graph
A traditional knowledge graph (KG) stores facts
as triples and uses a symbolic query engine to ex-
tract answers. A differentiable KG stores facts in

tensors and makes query execution over facts dif-
ferentiable.

We use the approach presented in ReifiedKB
(Cohen et al., 2020) to create a scalable and differ-
entiable knowledge graph supporting multi-hop re-
lation following programs. We provide an overview
here but full details can be found in the original
paper. Assume the set of all triples in a knowl-
edge graph T = {ti}NT

i=1, ti = (ssi , ppi , ooi) are
represented by the following sparse matrices:

Ms ∈ {0, 1}NT×NE , Ms(i, j) = I
(
ej = ssi

)
Mo ∈ {0, 1}NT×NE , Mo(i, j) = I

(
ej = ooi

)
Mp ∈ {0, 1}NT×NR , Mp(i, j) = I

(
pj = ppi

)
,

where Ms, Mo, and Mp are denoted as subject,
object, and relation index matrices. NT , NE , and
NR are the number of triples, entities, and relations,
respectively.

Given an entities vector xt−1 ∈ RNE at t− 1-th
hop, the entities vector xt resulting from following
a relation vector rt ∈ RNR can be computed by:

xt = follow(xt−1, rt) = MT
o (Msxt−1 �Mprt),

(1)
where � is the element-wise multiplication.

3.2 Multi-hop Inference
Given an input question q = q1 · · · qn of length
n, we first use the pretrained language model
RoBERTa (Liu et al., 2019) to extract contextual
embeddings for each token:

[hq, q1 · · · qn]T = LM(CLS, q1 · · · qn) (2)

where hq ∈ RD corresponds to the CLS token
and is used as the question embedding. We com-
pute the relation vector for the t-th hop using a
hierarchical decoder and subsequent entities vector
by following that vector as:

rt =softmax
(
Winf

t

[
hq|rt−1| · · · |r1

]T)
, (3)

xt =follow(xt−1, rt). (4)

Since the follow operation (Equation 1) can be
chained infinitely, we set a maximum number of
hops and use an attention mechanism to combine
answer entities across all hops. We compute atten-
tion across all hops by:

ct =Watt
t

[
hq|rt−1| · · · |r1

]T
, (5)

a =softmax([c1, · · · , cTmax ]), (6)
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where Tmax is the predefined maximum number of
hops. The final answer entities vector will be:

ŷ =

Tmax∑
t=1

atxt. (7)

Compared to ReifiedKB, our decoder uses
RoBERTa for embedding questions, simplifies the
stopping mechanism, and allows returning more
than one answer entity.

3.3 Entity Resolution

We approach Entity Resolution by estimating the
likelihood of all the plausible spans in the question
and then selecting the most likely candidate entity
for each span.

Given an input question q = q1 · · · qn of length
n, the likelihood of each span [i, j] in the question
(i-th to j-th tokens of q) is calculated as:

qij =

∑j
i qk

(j − i+ 1)
∈ RD, (8)

sij =
exp(qijws)∑

∀m,n exp(qmnws)
, (9)

wherews ∈ RD×1 is a learnable matrix and qk are
contextual token embeddings from Equation 2.

For a given span, candidate entities that could
be referred to by that span are extracted by exact
search against a lookup table, built using titles and
aliases of entities in the KG. Candidate generation
can further be improved by considering other ap-
proximate or fuzzy search methods, but we leave
this as future work.

If there are overlapping candidates between two
spans, they are assigned to the longer one. For ex-
ample, consider the question "what position does
carlos gomez play?". If candidates of the three
spans "carlos", "gomez", and "carlos gomez" all
contain Q2747238 (the Wikidata entity ID refer-
ring to Carlos Gomez, the Dominican baseball
player), the entity ID will be assigned to the longest
span only ("carlos gomez"). This is to avoid hav-
ing duplicate entities across spans and comes from
the intuition that longer spans are more specific
and should be preferred. We have not seen errors
arising from this preprocessing step.

Assume ckij is the k-th candidate for span [i, j].
We embed each candidate entity by learning a

dense representation of its KG neighbourhood:

Fk
ij ={fem([p|o]) ∀ (ckij , p, o) ∈ G}, (10)

zkij =

∑
υ∈Fk

ij
υ

|Fk
ij |

∈ RD, (11)

where G is the knowledge graph, [p|o] is the string
concatenation of p and o, and fem is an embedding
function that maps a string to a dense vector.

For example, assume Q2747238 is the candi-
date entity we want to embed. It is on the left-hand
side of two triples in the knowledge graph:
(Q2747238, instance-of, human) and
(Q2747238, occupation, baseball
player).

We first create the two strings “instance-
of : human” and “occupation : baseball player”
and pass them to fem to embed. These strings
are treated as features of Q2747238, and we are
able to learn embeddings effectively since they are
also used for other humans and baseball players.
Finally, we take the average of these two feature
embeddings to get to the entity embedding for
Q2747238. These operations are implemented
using torch.nn.EmbeddingBag in PyTorch
with random initialization. Our approach is not lim-
ited by knowledge graph features or this specific
embedding approach; for instance, a RoBERTa en-
coding of entity descriptions could be used as an
alternative. We leave experiments with other entity
representations as future work.

Given the embedding, the likelihood of a can-
didate entity is estimated by considering the span
likelihood and the likelihood of other candidates in
that span:

ekij = sij
exp([zkij � qij ])∑
∀l exp([z

l
ij � qij ])

. (12)

To get to the final entity vector, we re-score can-
didate entities across all spans:

xkij =
exp(ekij)∑

∀u,v,w exp(ewuv)
, (13)

x0 =xkij 7→ ~0 ∈ RNE , (14)

where 7→ maps each candidate entity likelihood to
its corresponding index in the zero vector~0. The re-
sulting x0 vector is used in Equation 4 and captures
uncertainties about entity resolution. It is different
from Cohen et al. 2020 where x0 is assumed to be
given with {0, 1} as the only possible values.
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3.4 Training

We train the model using the binary cross-entropy
loss function:

L(y, ŷ) = 1

NE

NE∑
i=1

yi log ŷi+(1−yi) log(1− ŷi),

(15)
where y ∈ RNE is a k-hot label vector. While Rei-
fiedKB uses cross-entropy loss, we instead use a
multi-label loss function across all entities. This
is because the output space in a majority of cases
contains multiple entities, so cross-entropy loss is
inadequate. During training, the entity resolution
and inference modules are trained jointly and un-
certainties about each module are propagated to
final answer entities vector ŷ.

4 Experiments

We call our model Rigel and evaluate 3 versions
at different E2E learning boundaries. The baseline
model , Rigel-Baseline, is given gold entities and
no entity resolution is involved, demonstrating the
performance of the inference module alone. Rigel-
ER is given the gold spans, but still has to learn to
disambiguate between candidate entities for that
span. Finally, in Rigel-E2E, we provide the ques-
tion text only, requiring the model to attend to the
right span and disambiguate between candidates
for each span.

4.1 Datasets

We evaluate our models on two open-domain Ques-
tion Answering datasets: SimpleQuestions (Bordes
et al., 2015) and WebQSP (Yih et al., 2016). Both
datasets were constructed based on the outdated
FreeBase. Therefore, to generate better candidates
and entity representation, we chose to use a subset
of these datasets that are answerable by Wikidata
(Diefenbach et al., 2017). This is different from
other baselines we compare against, which do not
include an ER component. For WebQSP, this leads
to 2349 train, 261 dev, and 1375 test set samples.
For SimpleQuestions the number of samples are
19471 train, 2818 dev, and 5620 test.

Questions in SimpleQuestions and WebQSP can
be answered in 1 and 2 hops respectively, so we
set the maximum number of hops Tmax in Equa-
tion 7 accordingly. For each dataset, we also limit
Wikidata to a subset that is Tmax-hop reachable
from any of the candidates ckij in Equation 10. This
results in a subgraph with 3.7 million triples, 1.0

million entities, and 1,158 relations for Simple-
Questions; and 4.9 million triples, 1.1 million enti-
ties, and 1,230 relations for WebQSP.

4.2 Results

Results of our experiments are shown in Table 1.
We don’t directly compare to other related work
since their performance is reported with access to
gold-entities and their quality when building a prac-
tical QA system with an external ER is unknown.

Compared to Rigel-Baseline, there is approxi-
mately a 3% drop in performance when gold ques-
tion entities are not provided to the model (Rigel-
ER). We realized this is mainly due to cases where
it is not possible to distinguish between all possi-
ble candidate entities based on the question alone.
This is consistent with earlier studies that conclude
15-17% of questions in these datasets cannot be
answered due to context ambiguity (Han et al.,
2020; Petrochuk and Zettlemoyer, 2018). For ex-
ample, in the question “What position does car-
los gomez play?” ("carlos gomez" given as correct
span), Rigel-ER learns to give higher likelihood
to athletes compared to art performers; but since
the question does not include discriminative infor-
mation such as sport or team name, all athletes
called "Carlos Gomez" will receive very similar
likelihood scores.

There is a further drop in performance when we
go from Rigel-ER to Rigel-E2E, which performs
full E2E learning. This time, the errors can be
explained by the fact that different spans produce
candidates with overlapping entity types, leaving
the model with little signal to prefer one span over
another.

For example, given the question “who directed
the film gone with the wind?”, Rigel-ER is given the
correct span “gone with the wind” and just needs to
disambiguate between Q2875 (the Wikidata entity
ID for the American film "Gone with the Wind")
and the other candidates stemming from that span.
Rigel-E2E will additionally need to learn to max-
imize the span score (Equation 9) for “gone with
the wind” compared to other spans in the question,
such as “the film”, “the wind”, and “wind”, which
are all film titles as well. This is a difficult task
since all these spans produce film entities, and rely-
ing on the loss from following the director relation
is not enough to effectively disambiguate between
them.

We are working on a few solutions to allevi-
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ate this span ambiguity issue with Rigel-E2E. The
main question is, what should we do when span
scores are diffused and not spiked? This, for ex-
ample, happens in the above question and the 4
spans: “gone with the wind” , “the film”, “the
wind”, and “wind”. A simple post-processing step
to merge overlapping spans seems to be quite effec-
tive. In the example above, "the wind" and "wind"
fall under "gone with the wind", and given that their
scores are similar we can decide to assign all child
span scores to their parent. Diversity or entropy of
candidates produced by a certain span also seems
to be helpful in pruning bad spans. In the above
question, candidate entities from the span “wind”
include movies, companies, music bands, and even
a satellite, among others. On the other hand, candi-
date entities for “gone with the wind” are mostly
works of art, suggesting that it may be a better
choice. We are looking into using this information
as part of training, as well as post-processing.

While we don’t directly compare, the gap be-
tween our results and other related work is partly
due to the inference mechanism used. At this time,
ReifiedKB only supports a relation following oper-
ation (Equation 1), while, for instance, EmQL (Sun
et al., 2020) additionally supports set intersection,
union, and difference. These additional operations
allow answering more complex questions present
in the WebQSP dataset. We are working on adding
support for intersection, union, count, min, and
max operations to our model as future work.

We’d like to emphasize that although including
the ER component adversely affects the results,
extracting question entities is a necessity for real
world applications, and alternatives with off-the-
shelf models do perform worse. Hence, we believe
our approach is more practical, especially given the
lack of training data for ER on questions.

5 Conclusion

In this work, we proposed a solution for KGQA
that jointly learns to perform entity resolution (ER)
and multi-hop inference. Our model extends the
boundaries for end-to-end learning and is weakly
supervised using pairs of only questions and an-
swers. This eliminates the need for external compo-
nents and expensive domain-specific labelled data
for ER. We further demonstrate the feasibility of
this approach on two open-domain QA datasets.

Model WQSP SIQ

KVMem (Miller et al., 2016) 46.7 -
ReifiedKB (Cohen et al., 2020) 52.7 -
EmQL (Sun et al., 2020) 75.5 -
MemNN (Bordes et al., 2015) - 61.6
KBQA-Adapter (Wu et al., 2019) - 72.0

Rigel-Baseline 52.4 73.4
Rigel-ER 48.2 70.1
Rigel-E2E 45.0 68.2

Table 1: Comparison of Hits@1 results on WebQSP
(WQSP) and Accuracy on SimpleQuestions (SIQ)
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A Model Hyperparameters

We train Rigel models using the hyperparameters
below on a single GPU machine with 16GB GPU
memory (AWS p3.2xlarge). WebQSP requires
more than 1 hop for question answering, leading
to a larger knowledge graph, so we use a smaller
batch size to avoid out of memory issues. Training
with early stopping completes in approximately 4-7
hours depending on the model configuration used
(Rigel-baseline, Rigel-ER, Rigel-E2E).

Hyperparameter SIQ WQSP

Batch Size 32 6
Gradient Accumulation 8 32
Max Training Steps 20000 30000
Learning Rate 1e-4 1e-4
Max Number of Hops 1 3

Table 2: Hyperparameters for training on WebQues-
tionsSP (WQSP) and SimpleQuestions (SIQ)

B Examples

The table below shows outputs of Rigel-E2E model
on two questions from SimpleQuestions. In the first
example, the model assigns high likelihood to the
correct span and candidate entity. The inference
module also assigns a high likelihood to the right
relation (instance of), which leads to the cor-
rect answer entity.

In the second question, the model assigns higher
likelihood to the sam edwards span, but it’s
not very confident and other spans such as sam
and edwards receive similar scores. In addition,
there’s a large overlap between candidate entities of
these spans (i.e. all produce candidates which are
human and have place of birth property).
This ambiguity in context leads to the ground truth
question entity receiving a low likelihood. Even
though the right relation is predicted by the infer-
ence module, the final answer entity is different
from the answer label.
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Question: what is the category of the celestial object 1241 dysona?
Question Entity: Q137259 (1241 Dysona)
Answer Entity Q3863 (asteroid)

Span Likelihoods:
(’1241 dysona’, 0.965), (’celestial’, 0.013), (’celestial object’, 0.011),
(’object’, 0.009), (’1241’, 0.002), (’the category’, 0.0), (’what is’, 0.0), (’category’, 0.0)

Candidate Entity Likelihoods:
(’Q137259’, 0.998), (’Q6999’, 0.0), (’Q66311333’, 0.0), (’Q488383’, 0.0), · · ·

Top Prediction:
(’1241 dysona’, 0.965)→ (instance of, 1.000) → (’Q3863’, 0.998) 3

Question: what is the place of birth of sam edwards?
Question Entity: Q472382 (Sam Edwards, Welsh Physicist)
Answer Entity Q23051 (Swansea)

Span Likelihoods:
(’edwards’, 0.366), (’sam edwards’, 0.332), (’sam’, 0.301), (’what is’, 0.0), (’the place’, 0.0),
(’place’, 0.0), (’the place of birth’, 0.0), (’place of birth’, 0.0), (’birth’, 0.0)

Candidate Entity Likelihoods:
(’Q3470479’, 0.25), (’Q835638’, 0.111), (’Q911493’, 0.058), (’Q2691159’, 0.017),
(’Q20812281’, 0.016), (’Q1816301’, 0.014), (’Q47465190’, 0.013), (’Q1118055’, 0.011),
(’Q58317511’, 0.01), (’Q472382’, 0.01), (’Q27925002’, 0.01), (’Q52852726’, 0.009), · · ·

Top Prediction:
(’Q3470479’, 0.25)→ (place of birth, 1.000)→ (’Q219656’, 0.250) 7

Table 3: Example outputs of Rigel-E2E on SimpleQuestions


