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Abstract
Temporal language grounding in videos aims
to localize the temporal span relevant to the
given query sentence. Previous methods treat
it either as a boundary regression task or a span
extraction task. This paper will formulate tem-
poral language grounding into video reading
comprehension and propose a Relation-aware
Network (RaNet) to address it. This frame-
work aims to select a video moment choice
from the predefined answer set with the aid of
coarse-and-fine choice-query interaction and
choice-choice relation construction. A choice-
query interactor is proposed to match the vi-
sual and textual information simultaneously
in sentence-moment and token-moment lev-
els, leading to a coarse-and-fine cross-modal
interaction. Moreover, a novel multi-choice
relation constructor is introduced by leverag-
ing graph convolution to capture the dependen-
cies among video moment choices for the best
choice selection. Extensive experiments on
ActivityNet-Captions, TACoS, and Charades-
STA demonstrate the effectiveness of our so-
lution. Codes will be available at https:
//github.com/Huntersxsx/RaNet.

1 Introduction

Recently, temporal language grounding in videos
has become a heated topic in the computer vision,
and natural language processing community (Gao
et al., 2017; Krishna et al., 2017). This task requires
a machine to localize a temporal moment semanti-
cally relevant to a given language query, as shown
in Fig.1. It has also drawn great attention from in-
dustry due to its various applications such as video
question answering (Huang et al., 2020; Lei et al.,
2018), video content retrieval (Dong et al., 2019;
Shao et al., 2018), and human-computer interaction
(Zhu et al., 2020), etc.

A straightforward paradigm for this task is the
proposing-and-ranking pipelines (Xu et al., 2019;

∗ Jialin Gao and Xin Sun are co-first authors with equal
contributions, supervised by Prof. Xi Zhou in SJTU.

Figure 1: An illustration of temporal language
grounding in videos based on the relation-aware net-
work. Given a video and a query sentence, our ap-
proach aims to semantically align the query represen-
tation with a predefined answer set of video moment
candidates (a1,a2,a3 and a4) and then mine the rela-
tionships between them to select the best-matched one.

Zhang et al., 2020b, 2019a). They first generate a
number of video moment candidates and then rank
them according to moment-query similarities. This
requires a solution to achieve two key targets simul-
taneously, which are (1) semantic visual-language
interaction and (2) reliable candidate ranking. The
former ensures a satisfying cross-modal match-
ing between video moments and the query, while
the latter guarantees the distinction among candi-
dates. For the first target, some previous works
(Yuan et al., 2019; Zhang et al., 2020b; Chen and
Jiang, 2019) resort to the visual clues by model-
ing moment-sentence or snippet-sentence relations.
However, they overlook the linguistic clues from
token-level, i.e., token-moment relations, which
contain fine-grained linguistic information. For the
second target, previous solutions (Ge et al., 2019;
Liu et al., 2018; Zhang et al., 2020a) generate rank-
ing scores by considering different moment candi-
dates separately or constructing moment-level rela-
tions in a simple way(Zhang et al., 2020b). Hence,
they neglect the temporal and semantic dependen-
cies among candidates. Without this information,
it is difficult for previous approaches to distinguish
these visually similar moment candidates correctly.

https://github.com/Huntersxsx/RaNet
https://github.com/Huntersxsx/RaNet
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To this end, we propose a Relation-aware Net-
work (RaNet) to address temporal language ground-
ing. In our solution, we formulate this task as
Video Reading Comprehension by regarding the
video, query, and moment candidates as the text
passage, question description, and multi-choice op-
tions, respectively. Unlike previous methods, we
exploit a coarse-and-fine interaction, which cap-
tures not only sentence-moment relations but also
token-moment relations. This interaction can allow
our model to construct both sentence-aware and
token-aware visual representation for each choice,
which is expected to distinguish similar candidates
in the visual modality. Moreover, we propose to
leverage Graph Convolutional Networks (GCN)
(Kipf and Welling, 2016) for mining the moment-
moment relations between candidate choices based
on their coarse-and-fine representations. With in-
formation exchange in GCNs, our RaNet can learn
discriminative features for correctly ranking can-
didates regardless of their high relevance in visual
content.

Similar to the system of multi-choice reading
comprehension, our RaNet consists of five com-
ponents: a modality-wise encoder for visual and
textual encoding, a multi-choice generator for an-
swer set generation, a choice-query interactor for
cross-modality interaction, a multi-choice relation
constructor for relationships mining and an an-
swer ranker for the best-matched choice selection.
Our contributions are summarized as three-fold:
(1) We address temporal language grounding by
a Relation-aware Network, which formulates this
task as a video reading comprehension problem.
(2) We exploit the visual and linguistic clues ex-
haustively, i.e., coarse-and-fine moment-query re-
lations and moment-moment relations, to learn
discriminative representations for distinguishing
candidates. (3) The proposed RaNet outperforms
other state-of-the-art methods on three widely-
used challenging benchmarks: TACoS, Charades-
STA and ActivityNet-Captions, where we improve
the grounding performance by a great margin
(i.e., 33.54% v.s. 25.32% of 2D-TAN on TACoS
dataset).

2 Related Work

Temporal Language Grounding. This task was
introduced by (Anne Hendricks et al., 2017; Gao
et al., 2017) to locate relevant moments given a
language query. He et al. (He et al., 2019) and

Wang et al. (Wang et al., 2019) used reinforcement
learning to solve this problem. Chen et al. (Chen
et al., 2018) and Ghosh et al. (Ghosh et al., 2019)
proposed to select the boundary frames based on
visual-language interaction. Most of recent works
(Xu et al., 2019; Yuan et al., 2019; Zhang et al.,
2020b; Chen and Jiang, 2019; Zhang et al., 2019a)
adopted the two-step pipeline to solve this problem.
Visual-Language Interaction. It is vital for this
task to semantically match query sentences and
video. This cross-modality alignment was usu-
ally achieved by attention mechanism (Vaswani
et al., 2017) and sequential modeling (Hochre-
iter and Schmidhuber, 1997; Medsker and Jain,
2001). Xu et al. (Xu et al., 2019) and Liu et
al. (Liu et al., 2018) designed soft-attention mod-
ules while Hendricks et al. (Anne Hendricks et al.,
2017) and Zhang et al. (Zhang et al., 2019b) chose
the hard counterpart. Some works (Chen et al.,
2018; Ghosh et al., 2019) attempt to use the prop-
erty of RNN cells and others went beyond it by
dynamic filters (Zhang et al., 2019a), Hadamard
product (Zhang et al., 2020b), QANet (Lu et al.,
2019) and circular matrices (Wu and Han, 2018).
However, these alignments neglect the importance
of token-aware visual feature in cross-modal corre-
lating and distinguishing the similar candidates.
Machine Reading Comprehension. Given the
reference document or passage, Machine Reading
Comprehension (MRC) requires the machine to
answer questions about it (Zhang et al., 2020c).
There are two types of the existing MRC varia-
tions related to the temporal language grounding
in videos, i.e., span extraction and multi-choice.
The former (Rajpurkar et al., 2016) extracts spans
from the given passage and has been explored in
temporal language grounding task by some pre-
vious works (Zhang et al., 2020a; Lu et al., 2019;
Ghosh et al., 2019). The latter (Lai et al., 2017; Sun
et al., 2019) aims to find the only correct option
in the given candidate choices based on the given
passage. We propose to formulate this task from
the perspective of multi-choice reading comprehen-
sion. Based on this formulation, we focus on the
visual-language alignment in a token-moment level.
Compared with query-aware context representation
in previous solutions, we aim to construct token-
aware visual feature for each choice. Inspired by
recent advanced attention module (Gao et al., 2020;
Huang et al., 2019), we mine the relations between
multi-choices in an effective and efficient way.
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Figure 2: The overview of our proposed RaNet. It consists of modality-wise encoder, multi-choice generator,
choice-query interactor, multi-choice relation constructor, and answer ranker. Video and language passages are
first embedded in separately branches. Then we initialize the visual representation for each choice < tsi , t

e
i > from

the video stream. Through choice-query interactor, each choice can capture the sentence-aware and token-aware
representation from the query. Afterwards, the relation constructor takes advantage of GCNs to model relationships
between choices. Finally, the answer ranker evaluates the probability of being selected for each choice based on
the exchanged information from the former module.

3 Methodology

In this section, we first describe how to recast the
temporal language grounding from the perspec-
tive of a multi-choice reading comprehension task,
which is solved by the proposed Relation-aware
Network (RaNet). Then, we introduce the detailed
architecture of the RaNet, consisting of five com-
ponents as shown in Fig.2. Finally, we illustrate
the training and inference of our solution.

3.1 Problem Definition

The goal of this task is to answer where is the se-
mantically corresponding video moment given a
language query in an untrimmed video. Referring
to the forms of MRC, we treat the video V as a
text passage, the query sentence Q as a question
description and provide a set of video moment can-
didates as a list of answer options A. Based on the
given triplet (V,Q,A), temporal language ground-
ing in videos is equivalent to cross-modal MRC,
termed video reading comprehension.

For each query-video pair, we have one natu-
ral language sentence and an associated ground-
truth video moment with the start gs and end ge

boundary. Each language sentence is represented
by Q = {qi}Li=1, where L is the number of tokens.
The untrimmed video is represented as a sequential
snippets V = {v1, v2, · · · , vnv} ∈ Rnv×C by a
pretrained video understanding network, such as
C3D (Tran et al., 2015), I3D (Carreira and Zisser-
man, 2017), etc..

In temporal language grounding, the answer
should be a consecutive subsequence (namely time
span) of the video passage. For any video moment
candidate (i, j), it can be treated as a possible an-
swer if it meets the condition of 0 < i < j < nv.
Hence, we follow the fixed-interval sampling strat-
egy in previous work (Zhang et al., 2020b) and
construct a set of video moment candidates as the
answer list A = {a1, · · · , aN} with N valid can-
didates. After these notations, we can recast the
temporal language grounding task from the per-
spective of multi-choice reading comprehension as:

arg max
i

P (ai|(V,Q,A)). (1)

However, different from the traditional multi-
choice reading comprehension, previous solutions
in temporal language grounding also compare their
performance in terms of top-K most matching can-
didates for each query sentence. For fair compar-
ison, it requires our approach to scores K candi-
date moments {(pi, tsi , tei )}Ki=1, where pi, tsi , t

e
i rep-

resent the probability of selection, the start, end
time of answer ai, respectively. Without additional
mention, the video moment and answer/choice are
interchangeable in this paper.

3.2 Architecture

As shown in Figure 2, we describe the details of
each component in our framework as followings:
Modality-wise Encoder. This module aims to sep-
arately encode the content of language query sen-
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Figure 3: (a). Illustration of choice generator and fea-
ture initialization. Each block (i, j) is a valid choice
when i < j, denoted with blue. The Ψ combines
the boundary feature for feature initialization of (1, 3),
the dark blue square. (b). An example of all graph
edges connected to one choice in our Multi-Choice Re-
lation Constructor. Moments with the same start or end
index (dark green) are connected with the illustrative
choice (red). (c). The information propagation between
two unconnected moment choices. For other moments
(dark green) that are not connected with target moment
(red) but have overlaps, relations can be implicit cap-
tured with two loops, namely 2 graph attention layers.

tence and video. Each branch aggregates the intra-
modality context for each snippet and token.
· Video Encoding. We first apply a simple tem-

poral 1D convolution operation to map the input
feature sequence to the desired dimension, which
is followed by an average pooling layer to reshape
the sequence into a desired length T . To enrich
the multi-hop interaction, we use a graph convolu-
tion block called GC-NeXt block (Xu et al., 2020),
which aggregates the context from both temporal
and semantic neighbors of each snippet vi and has
been proved effective in Temporal Action Local-
ization task. Finally, We get the encoded visual
feature as V̂ ∈ RC×T

· Language Encoding. Each word qi of Q is rep-
resented with the embedding vector from GloVe 6B
300d (Pennington et al., 2014) to get Q ∈ R300×L.
Then we sequentially feed the initialized embed-
dings into a three-layer Bi-LSTM network to cap-
ture semantic information and the temporal con-
text. We take the last layer’s hidden states as the
language representation Q̂ ∈ RC×L for cross-
modality fusion with video representation V̂. In
addition, the effect of different word embeddings,
is also compared in 4.4.4.

The encoded visual and textual features can be
formulated as follows:

V̂ = V isualEncoder(V)

Q̂ = LanguageEncoder(Q)
(2)

Multi-Choice Generator. As shown in Fig.3 (a),

the vertical and horizontal axes represent the start
and end index of visual sequence. The blocks in
the same row have the same start indices, and those
in the same column have the same end indices.
The white blocks indicate all the invalid choices in
the left-bottom, where the start boundaries exceed
the end boundaries. Therefore, we have the multi-
choice options as A = {(tsi , tei )}Ni=1. To capture
the visual-language interaction, we should initial-
ize the visual feature for the answer set A so that it
can be integrated with the textual features from the
language encoder. To ensure the boundary-aware
ability inspired by (Wang et al., 2020), the initial-
ization method Ψ combines boundary information,
i.e., v̂tsi and v̂tei in V̂, to construct the moment-level
feature representation for each choice ai. The ini-
tialized feature representation can be written as:

FA = Ψ(V̂, A), (3)

where Ψ is the concatenation of v̂tsi and v̂tei , A is
the answer set and FA ∈ RC×N . We also explore
the effect of different Ψ on grounding performance
in 4.4.3.
Choice-Query Interactor. As shown in Figure 2,
this module explores the inter-modality context for
visual-language interaction. Unlike previous meth-
ods (Zhang et al., 2020b,a; Zeng et al., 2020), we
propose a coarse-and-fine cross-modal interaction.
We integrate the initialized features FA with the
query both in the sentence-level and token-level.
The former can be obtained by a simple Hadamard
product and an normalization as:

F1 = ‖ϕ(Q̂)� Conv(FA)‖F , (4)

where ϕ is the aggregation function for a global rep-
resentation of Q̂ and we set it as the max-pooling,
� is element-wise multiplication, and ‖ · ‖F indi-
cates the Frobenius normalization.

To ensure the token-aware visual feature for each
choice ai, we adopt attention mechanism to learn
the token-moment relation between each choice
and the query. Firstly, we adopt a 1D convolu-
tion layer to project the visual and textual features
to the common space and then calculate their se-
mantic similarities, which depict the relationships
R ∈ RN×T between N candidates and L tokens.
Secondly, we generate query-related feature for
each candidate based on the relationships R. Fi-
nally, we integrate these two features of candidates
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for token-aware visual representation.

R = Conv(FA)T ⊗ Conv(Q̂)

F2 = Conv(FA)� (Conv(Q̂)⊗RT ),
(5)

where T denotes the matrix transpose,� and⊗ are
element-wise and matrix multiplications, respec-
tively. We add the sentence-aware F1 and token-
aware features F2 as the output of this module F̂A.
Multi-choice Relation Constructor. In order to
explore the relation between multi-choices, we pro-
pose this module to aggregate the information from
the overlapping moment candidates by GCNs. Pre-
vious methods MAN (Zhang et al., 2019a), 2D-
TAN (Zhang et al., 2020b) also considered moment-
wise temporal relations, while both of them have
two drawbacks: expensive computations and the
noise from unnecessary relations. Inspired by
CCNet (Huang et al., 2019), which proposed a
sparsely-connected graph attention module to col-
lect contextual information in horizontal and verti-
cal directions, we propose a Graph ATtention layer
(GAT) to constrain the relation between moment
candidates that have high temporal overlaps with
each other.

Concretely, we take each answer candidate ai =
(tsi , t

e
i ) as a graph node, and there is a graph edge

connecting two candidate choices ai, aj if they
share the same start/end time spot, e.g., tsi = tsj
or tei = tej . An example is shown in Figure 3 (b),
where neighbors of the target moment choice (the
red one) is denoted as dark green in a criss-cross
shape. As shown in Figure 3 (c), our model is
also able to achieve the information propagation
between two unconnected moment choices. For
other moments (dark green) that are not connected
with the target moment (red) but have overlapped,
their relations can be implicitly captured with two
loops, namely two graph attention layers. We can
guarantee the message passing between the dark
green moment and cyan moments in the first loop.
And then, in the second loop, we can construct re-
lations between cyan moments and target moment,
where the information from the dark green moment
is finally propagated to the red moment.

Given the choice-query F̂A ∈ RC×N , there are
N nodes and approximately 2TN edges in the
graph. A GAT layer inpsired by (Huang et al.,
2019) is applied on the graph: for each moment,
we compute attention weights of its neighbours in
a criss-cross path, and average the features with
the weights. The output of the GAT layer can be

formulated as:

F̂∗
A = Conv(GAT (Conv(F̂A), Â)) (6)

where Â is the adjacency matrix of the graph to
determine the connections between two moment
choices, defined by the predefined answer set A.
Answer Ranker. Since we have captured the rela-
tionship between multi-choices by GCNs, we adopt
this answer ranker to predict the ranking score of
each answer candidate ai for selecting the best-
matched one. This ranker takes the query-aware
feature F̂A and relation-aware feature F̂∗

A as input
and concatenate them (denoted as ‖) to aggregate
more contextual information. After that, we em-
ploy a convolution layer to generate the probability
PA of being selected for ai in the predefined answer
set A. The output can be computer as:

PA = σ(Conv(F̂∗
A‖F̂A)), (7)

where σ represents the sigmoid activation function.

3.3 Training and Inference

Following (Zhang et al., 2020b), we first calcu-
late the Intersection-over-Union (IoU) between the
answer set A and ground-truth annotation (gs, ge)
and then rescale them by two thresholds θmin and
θmax, which can be written as:

gi =


0 θ ≤ θmin

θi−θmin
θmax−θmin

θmin < θ < θmax
1 θ ≥ θmax

(8)

where gi and θi are the supervision label and corre-
sponding IoU between ai and ground-truth respec-
tively. Hence, the total training loss function of our
RaNet is:

L =
1

N
ΣN
i=1(gi log pi+(1−gi) log(1−pi)), (9)

where pi is the output score in PA for the answer
choice ai and N is the number of multi-choices. In
the inference stage, we rank all the answer options
in A according to the probability in PA.

4 Experiments

To evaluate the effectiveness of the proposed ap-
proach, we conduct extensive experiments on three
public challenging datasets: TACoS (Regneri et al.,
2013), ActivityNet Captions (Krishna et al., 2017)
and Charades-STA (Sigurdsson et al., 2016).
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Methods Rank1@ Rank5@
0.3 0.5 0.3 0.5

MCN - 5.58 - 10.33
CTRL 18.32 13.30 36.69 25.42
ACRN 19.52 14.62 34.97 24.88
ROLE 15.38 9.94 31.17 20.13
TGN 21.77 18.9 39.06 31.02

ABLR 19.50 9.40 - -
SM-Rl 20.25 15.95 38.47 27.84
CMIN 24.64 18.05 38.46 27.02
QSPN 20.15 15.23 36.72 25.30
ACL-K 24.17 20.01 42.15 30.66

2D-TAN 37.29 25.32 57.81 45.04
DRN - 23.17 - 33.36

DEBUG 23.45 11.72 - -
VSLNet 29.61 24.27 - -

Ours 43.34 33.54 67.33 55.09

Table 1: Performance comparison on TACoS. All re-
sults are reported in percentage (%).

4.1 Dataset

TACoS. It consists of 127 videos, which contain
different activities that happened in the kitchen. We
follow the convention in (Gao et al., 2017), where
the training, validation, and testing contain 10,146,
4,589, and 4,083 query-video pairs.
Charade-STA. It is extended by (Gao et al., 2017)
with language descriptions leading to 12,408 and
3,720 query-video pairs for training and testing.
ActivityNet Captions. It is introduced into the
temporal language grounding task recently. Fol-
lowing the setting in CMIN (Lin et al., 2020), we
use val_1 as validation set and val_2 as testing set,
which have 37, 417, 17, 505, and 17, 031 query-
video pairs for training, validation, and testing, re-
spectively.

4.2 Implementation Details

Evaluation metric. Following Gao et al. (Gao
et al., 2017), we compute the Rank k@µ for a fair
comparison. It denotes the percentage of testing
samples that have at least one correct answer in
the top-K choices. A selected choice ai is correct
when its IoU θi with the ground-truth is larger than
the threshold µ; otherwise, the choice is wrong.
Specifically, we set k ∈ {1, 5} and µ ∈ {0.3, 0.5}
for TACoS and µ ∈ {0.5, 0.7} for the other two.
Feature Extractor. We follow the (Zhang et al.,
2019a; Lin et al., 2020) and adopt the same extrac-

tor, e.g., VGG (Simonyan and Zisserman, 2014)
feature for Charades and C3D (Tran et al., 2015)
for other two. We also use the I3D (Carreira and
Zisserman, 2017) feature to make comparison with
(Ghosh et al., 2019; Zhang et al., 2020a; Zeng et al.,
2020) on Charades. For word embedding, we use
the pre-trained GloVe 6B 300d (Pennington et al.,
2014) as previous solutions (Ge et al., 2019; Chen
et al., 2018).
Architecture settings. In all experiments, we set
the hidden units of Bi-LSTM as 256 and the num-
ber of reshaped snippet T is defined as 128 for
TACoS, 64 for ActivityNet Captions and 16 for
Charades-STA. The dimension C of channels is
512. We adopt 2 GAT layers for all benchmarks
and position embedding is used in ActivityNet Cap-
tion as (Zeng et al., 2020).
Training settings. We adopt the Adam optimizer
with learning rate of 1 × 10−3, batch size of 32,
and training epoch of 15. Following (Zhang et al.,
2020b), thresholds θmin and θmax are set to 0.5 and
1.0 for Charades-STA and ActivityNet Captions,
while 0.3 and 0.7 for TACoS.

4.3 Comparison with State-of-the-arts

Our RaNet is compared with recent published state-
of-the-art methods: VLSNet (Zhang et al., 2020a),
2D-TAN (Zhang et al., 2020b), DRN (Zeng et al.,
2020), CMIN (Lin et al., 2020), DEBUG (Lu et al.,
2019), QSPN (Xu et al., 2019), MAN (Zhang et al.,
2019a), ExCL (Ghosh et al., 2019), CTRL (Gao
et al., 2017), etc.. The top-2 performance values
are highlighted by bold and underline, respectively.
TACoS. Table 1 summarizes performance compar-
ison of different methods on the test split. Our
RaNet outperforms all the competitive methods
with clear margins and reports the highest scores
for all IoU thresholds. Compared with the previ-
ous best method 2D-TAN, our model achieves 6%
absolute improvement at least across all evalua-
tion settings in terms of Rank 1@µ, i.e., 8.22% for
µ = 0.5. For evaluation metric of Rank 5@µ, we
even reach around 10% absolute improvement. It
is worth noting that we exceed VSLNet by 9.27%
and 13.73% in terms of Rank 1@µ = 0.5, µ = 0.3
respectively, which also formulates this task from
the perspective of MRC.
Charades-STA. We evaluate our method both on
VGG and I3D features used in previous works
for fair comparison. Our approach reaches the
highest score in terms of Rank 1 no matter which
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Methods Rank1@ Rank5@
0.5 0.7 0.5 0.7

VGG

MCN 17.46 8.01 48.22 26.73
CTRL 23.63 8.89 58.92 29.52
ABLR 24.36 9.01 - -
QSPN 35.60 15.80 79.40 45.40
ACL-K 30.48 12.20 64.84 35.13
DEBUG 37.39 17.69 - -

MAN 41.24 20.54 83.21 51.85
2D-TAN 39.70 23.31 80.32 51.26

DRN 42.90 23.68 87.80 54.87
Ours 43.87 26.83 86.67 54.22

I3D

ExCL 44.10 22.40 - -
VSLNet 54.19 35.22 - -

DRN 53.09 31.50 89.06 60.05
Ours 60.40 39.65 89.57 64.54

Table 2: Performance comparison on Charades-STA.
All results are reported in percentage (%).

kind of feature is adopted as illustrated in Table
2. For VGG feature, we improve the performance
from 23.68% in DRN to 26.83% in terms of Rank
1@µ = 0.7. By adopting the stronger I3D feature,
our method also exceeds VSLNet in terms of Rank
1@µ = {0.5, 0.7} (i.e., 60.40% vs. 54.19% and
39.65% vs. 35.22%).
ActivityNet-Captions. In Table 3, we compare
our model with other competitive methods. Our
model achieves the highest scores over all IoU
thresholds in the evaluation except the result of
Rank 5@µ = 0.5. Particularly, our model out-
performs the previous best method (i.e., 2D-TAN)
by around 1.29% absolute improvement, in terms
of Rank 1@µ = 0.7. Due to the same sampling
strategy for moment candidates, this improvement
is mostly attributed to the token-aware visual rep-
resentation and the relationships mining between
multi-choices.

4.4 Ablation Study

4.4.1 Effectiveness of Network Components
We perform complete and in-depth studies on
the effectiveness of our choice-query interactor
and multi-choice relation constructor based on
the TACoS and Charades-STA datasets. On each
dataset, we conduct five comparison experiments

Methods Rank1@ Rank5@
0.5 0.7 0.5 0.7

MCN 21.36 6.43 53.23 29.70
CTRL 29.01 10.34 59.17 37.54
ACRN 31.67 11.25 60.34 38.57
TGN 27.93 - 44.20 -

QSPN 33.26 13.43 62.39 40.78
ExCL 42.7 24.1 - -
CMIN 44.62 24.48 69.66 52.96
ABLR 36.79 - - -

DEBUG 39.72 - - -
2D-TAN 44.05 27.38 76.65 62.26

DRN 45.45 24.39 77.97 50.30
VSLNet 43.22 26.16 - -

Ours 45.59 28.67 75.93 62.97

Table 3: Performance comparison on ActivityNet Cap-
tions. All results are reported in percentage (%).

for evaluation. First, we remove F2 and R to ex-
plore the RaNet-base model, compared with only
using F2. Then, we integrate the interaction and re-
lation modules into our third and forth experiments
respectively. Finally, we show the best performance
achieved by our proposed approach. Table 4 sum-
marizes the grounding results in terms of Rank
1@µ ∈ {0.3, 0.5, 0.7}. Without the interaction
and relation modules, our framework can achieve
40.99% and 28.54% for µ = 0.3 and 0.5 respec-
tively. It outperforms the previous best method 2D-
TAN, indicating the power of our modality-wise
encoder. When we consider the token-aware visual
representation, our framework can bring significant
improvement on both datasets. Improvements can
also be observed when adding relation module into
our framework. These results demonstrate the ef-
fect of our RaNet on temporal language grounding.

4.4.2 Improvement on different IoUs

To have a better understanding of our approach, we
illustrate the performance gain achieved on three
datasets in terms of different µ ∈ (0, 1) with previ-
ous best method, 2D-TAN, as shown in Figure 4.
This figure visualizes the detailed comparison be-
tween our model and 2D-TAN, which shows that
our approach can continuously improve the perfor-
mance, especially for higher IoUs (i.e., µ > 0.7
). It is observed that the value of relative improve-
ment increases along with the increasing IoU on
TACoS and ActivityNet Captions datasets.
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Figure 4: Detailed comparison across different IoUs on three benchmarks in terms of Rank 1

Datasets Components Rank1@
F1 F2 R 0.3 0.5

TACoS

3 7 7 40.99 28.54
7 3 7 41.26 29.22
3 3 7 41.51 29.64
3 7 3 42.26 32.04
3 3 3 43.34 33.54

F1 F2 R 0.5 0.7

Charades-STA

3 7 7 43.06 24.70
7 3 7 42.72 24.33
3 3 7 42.10 24.78
3 7 3 43.60 25.30
3 3 3 43.87 26.83

Table 4: Effectiveness of each component in our pro-
posed approach on TACoS and Charades-STA, mea-
sured by Rank 1@µ ∈ {0.3, 0.5, 0.7}. VGG features
are used in Charades-STA. 3 and 7 denote the net with
and without that component, respectively.

4.4.3 Feature Initialization Functions

We conduct experiments to reveal the effect of
different feature initialization functions. For a
moment candidate (tsi , t

e
i ), it has the correspond-

ing feature sequence Y from V̂ denoted as Y =

{v̂k}
tei
k=tsi

. We explore four types of operators (i.e.,
pooling, sampling, concatenation and addition) in
the multi-choice generator. The first two consider
all the information of the region within the tem-
poral span of the candidate. Pooling operator fo-
cuses on the statistic characteristic and the sam-
pling serves as weight average operator. On the
contrary, the last two only consider the bound-
ary information (vtsi and vtei ) of a moment can-
didate, which expect the cross-modal interaction
to be boundary sensitive. Table 5 reports the per-
formance of different operators on TACoS dataset.
It is observed that concatenation operator achieves

Ψ
Rank1@ Rank5@

0.3 0.5 0.3 0.5

Pooling 38.84 29.29 63.31 49.86
Sampling 41.33 30.82 65.58 54.69
Addition 42.69 31.59 64.98 54.36

Concatenation 43.34 33.54 67.33 55.09

Table 5: Effectiveness of different operators used in
Multi-Choice Generator on TACoS, measured by Rank
1@µ ∈ {0.3, 0.5} and Rank 5@µ ∈ {0.3, 0.5}.

the highest score across all the evaluation criterion,
which indicates boundary sensitive operators have
better performance than the statistical operators.

4.4.4 Word Embeddings Comparison

To further explore the effect of different textual
features, we also conduct experiments on four pre-
trained word embeddings (i.e., GloVe 6B, GloVe
42B, GloVe 840B and BERTBase). GloVe (Pen-
nington et al., 2014) is an unsupervised learn-
ing algorithm for obtaining vector representations
for words, which has some common word vec-
tors trained on different corpora of varying sizes.
BERT (Devlin et al., 2019) is a language repre-
sentation model considering bidirectional context,
which achieved SOTA performance on many NLP
tasks. All the GloVe vectors have 300 dimensions
whereas BERTBase is a 768-dimensional vector.
Table 6 compares the performance of these four
pre-trained word embeddings on TACoS dataset.
From the results we can see that better word embed-
dings (i.e.BERT) tend to have better performance,
indicating us pay more attention to textual features
encoding. All the models in our paper use concate-
nation feature initialization functions and GloVe
6B word vectors if not specified.
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Methods Rank1@
0.1 0.3 0.5 0.7

GloVe 6B 54.26 43.34 33.54 18.57
GloVe 42B 54.74 44.21 34.37 20.24
GloVe 840B 53.11 44.51 34.87 19.65
BERTBase 57.34 46.26 34.72 21.54

Table 6: Comparison of different word embeddings on
TACoS, measured by Rank 1@µ ∈ {0.1, 0.3, 0.5, 0.7}.

TACoS Charades ActivityNet

2D-TAN 60.93M 60.93M 91.59M
Params RaNet-base 61.52M 59.95M 90.64M

RaNet 12.80M 12.80M 10.99M

2D-TAN 2133.26G 104.64G 997.30G
FLOPs RaNet-base 2137.68G 104.72G 999.54G

RaNet 175.36G 4.0G 43.92G

Table 7: Parameters and FLOPs of our RaNet with the
previous best mothod 2D-TAN, which also considers
moment-level relations. M and G represent 106 and
109 respectively.

4.4.5 Efficiency of Our RaNet

Both fully-connected graph neural networks and
stacked convolution layers result in high computa-
tion complexity and occupy a huge number of GPU
memory. With the help of a sparsely-connected
graph attention module used in our Multi-choice
Relation Constructor, we can capture moment-wise
relations from global dependencies in a more ef-
ficient and effective way. Table 7 shows the pa-
rameters and FLOPs of our model and 2D-TAN,
which uses several convolution layers to capture
context of adjacent moment candidates. We can
see that RaNet is more lightweight with only 11
M parameters compared with 92 M of 2D-TAN on
ActivityNet. Compared with RaNet, RaNet-base
replaces the relation constructor with the same 2D
convolutional layers as 2D-TAN. Hence, their com-
parison on FLOPs further indicates the efficiency of
our relation constructor against simple convolution
layers.

4.4.6 Qualitative Analysis

We further show some examples in Figure 5 from
ActivityNet Captions dataset. From this compari-
son, we can find that predictions of our approach
are closer to ground truth than our baseline model,
which is the one removing F2 and R in Table 4.
Considering the same setting for the moment can-
didate, it also demonstrates the effect of our pro-

Figure 5: The qualitative results of RaNet and RaNet-
base on the ActivityNet Captions dataset.

posed modules. With the interaction and relations
construction modules, our approach can select the
choice of video moments matching the query sen-
tence best. In turn, it reflects that capturing the
token-aware visual representation for moment can-
didates and relations among candidates facilitate
the net scoring candidates better.

5 Conclusion

In this paper, we propose a novel Relation-aware
Network to address the problem of temporal lan-
guage grounding in videos. We first formulate this
task from the perspective of multi-choice reading
comprehension. Then we propose to interact the
visual and textual modalities in a coarse-and-fine
fashion for token-aware and sentence-aware repre-
sentation of each choice. Further, a GAT layer is in-
troduced to mine the exhaustive relations between
multi-choices for better ranking. Our model is effi-
cient and outperforms the state-of-the-art methods
on three benchmarks, i.e., ActivityNet-Captions,
TACoS, and Charades-STA.
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