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Abstract

Aspect-based sentiment analysis (ABSA) pre-
dicts the sentiment polarity towards a par-
ticular aspect term in a sentence, which is
an important task in real-world applications.
To perform ABSA, the trained model is re-
quired to have a good understanding of the
contextual information, especially the partic-
ular patterns that suggest the sentiment polar-
ity. However, these patterns typically vary in
different sentences, especially when the sen-
tences come from different sources (domains),
which makes ABSA still very challenging. Al-
though combining labeled data across different
sources (domains) is a promising solution to
address the challenge, in practical applications,
these labeled data are usually stored at differ-
ent locations and might be inaccessible to each
other due to privacy or legal concerns (e.g., the
data are owned by different companies). To
address this issue and make the best use of
all labeled data, we propose a novel ABSA
model with federated learning (FL) adopted
to overcome the data isolation limitations and
incorporate topic memory (TM) proposed to
take the cases of data from diverse sources (do-
mains) into consideration. Particularly, TM
aims to identify different isolated data sources
due to data inaccessibility by providing use-
ful categorical information for localized pre-
dictions. Experimental results on a simulated
environment for FL with three nodes demon-
strate the effectiveness of our approach, where
TM-FL outperforms different baselines includ-
ing some well-designed FL frameworks.1

1 Introduction

Aspect-based sentiment analysis (ABSA) is one
of the most popular natural language processing

*Equal contribution.
†Corresponding author.
1The code involved in this paper are released at https:

//github.com/cuhksz-nlp/ASA-TM.

(NLP) tasks aiming to predict the sentiment po-
larity (i.e., “positive”, “negative”, and “neutral”)
for an aspect term in sentences. Currently, meth-
ods based on deep learning have been widely uti-
lized for ABSA and demonstrated excellent poten-
tials (Chen et al., 2017; Zadeh et al., 2017; Zhang
et al., 2018; Xue and Li, 2018; Zhao et al., 2018;
Chaturvedi et al., 2018; Xu et al., 2019b). However,
these methods still reach a bottleneck if there is no
enough labeled training data. One feasible solution
for it is to leverage extra labeled data from other
sources or domains. However, in real applications,
these data are always stored in different locations
(nodes) and are inaccessible to each other owing to
privacy or legal concerns.

To address the data isolation issue, feder-
ated learning (FL) (Shokri and Shmatikov, 2015;
Konečnỳ et al., 2016a,b) is proposed and has shown
its great promises for many machine learning tasks,
such as user-computer interaction (Aono et al.,
2017), medical image analysis (Sheller et al., 2018),
and financial data analysis (Yang et al., 2019a; He
et al., 2020). In some cases, data in different nodes
are encrypted and aggregated to the centralized
model, and they are invisible to each other during
the training stage (Hard et al., 2018). This property
makes FL an essential technique for real applica-
tions with privacy and security requirements.

Recently, FL has been applied to many down-
stream natural language processing (NLP) applica-
tions (Zhu et al., 2020) such as mobile keyboard
prediction (Hard et al., 2018), language model train-
ing (Chen et al., 2019), representation learning
(Liu et al., 2019), spoken language understanding
(Huang et al., 2020), medical relation extraction
(Sui et al., 2020), medical named entity recognition
(Ge et al., 2020), and news recommendation (Qi
et al., 2020). However, conventional FL techniques
are more suitable for nodes sharing homogeneous
data, which is seldom the case for NLP tasks be-

https://github.com/cuhksz-nlp/ASA-TM
https://github.com/cuhksz-nlp/ASA-TM
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cause text data are usually heterogeneous in vo-
cabularies and expression patterns. Particularly for
ABSA, it is sensitive to the domain information,
where one particular token may suggest completely
different sentiment polarity in different datasets.
Therefore, the restricted data access in traditional
federated learning approaches could result in in-
ferior performance for ABSA since they cannot
update the model using all domain information.
Unfortunately, limited attentions have been paid to
address this issue. Most existing approaches with
FL on NLP (e.g., for language modeling (Hard
et al., 2018; Chen et al., 2019), named entity recog-
nition (Ge et al., 2020), and text classification (Zhu
et al., 2020)) mainly focus on optimizing the learn-
ing process and ignore domain diversities.

In this paper, we propose a neural model based
on FL for ABSA in a distributed environment,
namely TM-FL, with a topic memory to enhance
FL by providing categorical (topic) information for
localized predictions, which can address the dif-
ficulty of identifying text sources caused by data
inaccessibility. Specifically, the topic model serves
as a server-side component to read different in-
puts from each node and respond with categori-
cal weights to help the backbone ABSA classi-
fier. Compared with previous ABSA studies that
leverage extra features, e.g., document informa-
tion (Li et al., 2018a), commonsense knowledge
(Ma et al., 2018), and word dependencies (Tang
et al., 2020), our approach offers an alternative to
improve ABSA by leveraging extra labeled data
through the FL framework enhanced by TM. Ex-
perimental results on a simulated environment with
isolated data from laptop, restaurant reviews, and
social media (i.e., Tweets), demonstrate the effec-
tiveness of our approach, where TM-FL outper-
forms different baselines including the ones with
well designed FL framework.

2 Related Work

2.1 Federated Learning

Federated learning (FL) was first proposed by
Google and then further developed by many studies
over the past years (Shokri and Shmatikov, 2015;
Konečnỳ et al., 2016a,b; McMahan et al., 2017).
FL is to build machine-learning models based on
datasets distributed across multiple devices while
preventing data leakage. Generally, in federated
learning, the data is locally stored in different nodes
and never uploaded to the server or exchanged with

each other node. Thus, the centralized model on
the server-side cannot directly exploit the data to
optimize its parameters. Instead, each node com-
putes a local model update based on their data, and
then the local updates in all nodes are aggregated
by the centralized model to optimize parameters.
Since such local model updates cannot be directly
translated to the original data, the data privacy and
security are significantly enhanced. However, there
are some other approaches to apply FL, such as
sending transformed or encrypted data which can-
not be converted to the original data (Hard et al.,
2018). FL has been applied to many areas (Yang
et al., 2019b; Liu et al., 2020; Wang et al., 2020b;
Zheng et al., 2020) and recently, many studies fo-
cus on optimizing the learning process (Konečnỳ
et al., 2016b; Li et al., 2019; Zheng et al., 2020;
Wang et al., 2020b).

Particularly, the FEDERATEDAVERAGING algo-
rithm, proposed by McMahan et al. (2017), is to
combine node updates and produce a new global
model. At the beginning of each training round, the
global model is sent to a subset of nodes. Each of
the selected nodes then randomly samples a subset
of its local dataset to train the model locally. In
the training process, the nodes compute the aver-
age gradient on their local datasets with the current
global model. The server collects the gradients and
aggregates them to update the global model. This
process repeats until the global model converges.

2.2 Aspect-based Sentiment Analysis

Aspect-based sentiment analysis (ABSA) is a long-
standing NLP task of detecting a sentiment polarity
towards a given aspect term in a sentence. Many
recent studies applied neural network approaches
to ABSA (Chen et al., 2017; Ma et al., 2017; Fan
et al., 2018; Gu et al., 2018; He et al., 2018b; Huang
and Carley, 2018; Li et al., 2018b; Chen and Qian,
2019; Hu et al., 2019; Du et al., 2019; Sun et al.,
2019; Zhang et al., 2019). Usually, external knowl-
edge is incorporated to obtain better understand-
ings of contextual information so as to enhance the
model performance for natural language process-
ing downstream tasks (including ABSA) (Li et al.,
2018a; Ma et al., 2018; Chen et al., 2020b; Tang
et al., 2020; Tian et al., 2020b; Chen et al., 2021;
Tian et al., 2021b,c,d). However, most previous
studies assume an ideal environment where all the
data is accessible and visible to each other for the
experiments, which is rarely the case in real appli-
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Figure 1: An overview of the architecture for the centralized model at server of TM-FL, where the aspect term(s)
(e.g., menu and dishes) in the input sentence are highlighted in green.

cations. In this paper, we propose an alternative
to handle the data isolation problem and improve
ABSA under the constraints of FL by leveraging
extra labeled data from different domains through
a topic memory module.

3 The Proposed Method

We propose TM-FL for ABSA and the overall
server-node architecture of our approach is illus-
trated in Figure 2. The centralized model is stored
in the FL server and data from multiple sources
(domains) are stored at different nodes (the i-th
node is denoted by Ni), respectively. Encrypted
information (e.g., data, vectors, and loss) commu-
nicates between each node Ni and the FL server.
In this way, the original data stays in the local node
and is not accessible to the other nodes. To en-
code categorical information to facilitate localized
prediction, we incorporate TM into the centralized
model (Figure 1). Herein, FL encodes the topic
information from the encrypted input and uses the
encoded information to guide the centralized model
to make a localized prediction. In the following
texts, we introduce FL for ABSA and then the cen-
tralized model with TM.

3.1 Federated Learning
In federated learning, the data is stored in different
local nodes and never exchanged with other nodes.
Thus, the centralized model cannot directly access

these data, but aggregate the encrypted information
of data generated by each local node to complete
an update in every training round. Specifically,
there are different ways to apply federated learn-
ing, such as having the clients send the losses and
gradients with respect to the local data back to the
FL server (Konečnỳ et al., 2016a), or having the
clients send encrypted information which cannot
be deciphered back about the local data back to the
FL server (Hard et al., 2018). In this paper, we fol-
low the paradigm from Hard et al. (2018) to apply
federated learning, where encrypted information,
including hidden vectors and loss, are transferred
between the server and clients. In addition, fol-
lowing (Chen et al., 2019), we adopt a modified
version of FEDERATEDAVERAGING algorithm in
which no models are sent to clients. In the train-
ing process of FL, the node Ni firstly encrypts the
original input sentence Xi = x

(i)
1 , x

(i)
2 · · ·x

(i)
n with

n words and the aspect term Ai = a
(i)
1 , a

(i)
2 · · · a

(i)
m

with m words (Ai is usually a sub-string of Xi)
into encrypted vectors X̃i and Ãi by

X̃i, Ãi = Encrypt(Xi,Ai) (1)

Next, the encrypted X̃i and Ãi are sent to the server
and fed into the centralized model. Then, the model
processes the encrypted input and computes the
score vectors oi for all sentiment polarities by

oi = TM-FL
(
X̃i, Ãi

)
(2)
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Figure 2: The server-node architecture of our approach.

where each dimension of oi corresponds to a partic-
ular sentiment polarities among positive, negative,
and neutral. Afterward, oi is passed back to Ni
and decoded to the model prediction ŷi by

ŷ(i) = softmax (oi) (3)

After that, we apply the negative log likelihood loss
function to the sentiment polarity predictions and
compute the loss for node Ni (i.e., Li) by

Li = − log p(y(i)∗ |Xi,Ai) (4)

where p(y(i)∗ |Xi,Ai) denotes the predicted proba-
bility of the ground truth sentiment polarity y(i)∗

for a given aspect term Ai in Xi. Finally, Li is
passed to the server and backpropagation is applied
to update the parameters in the centralized model
accordingly. The nodes will host no model but only
encrypt the local data and send it to the server. In
the following texts, we first describe how we con-
struct a topic memory network and use it to capture
domain-specific information. Then we explain how
we apply our approach to ABSA.

3.2 Centralized Model with Topic Memory
Standard FL cannot utilize the categorical informa-
tion from the isolated data and thus cannot achieve
optimal results for localized prediction. This is
a critical barrier for ABSA task, where the data
from different sources always contains heteroge-
neous vocabularies and expressing patterns. In this
work, we propose to leverage TM to explore the
topic information in the data and use it to guide
the centralized model for making localized predic-
tion. As for the input sentence, previous studies
concatenate aspect term(s) directly to the end of
an input sentence with a special token2 serving as
the separator and feed the resulted sentence+aspect
pair into an encoder (Song et al., 2019; Zeng et al.,
2019; Phan and Ogunbona, 2020; Veyseh et al.,

2If the encoder is BERT, the special token will be [SEP].

2020; Chen et al., 2020a). This straightforward
method has been proved to be effective for ABSA.
Following this paradigm, in the centralized model,
we concatenate the encrypted X̃i and Ãi into a new
sequence X̃Ei with a special token inserted between
them, formalized by

X̃Ei = X̃i + [SEP] + Ãi (5)

Then we encode X̃Ei into vectorized representa-
tions hXi ∈ Rdh (dh is the vector dimension) by

hXi = SE(X̃Ei ) (6)

where SE is the encoder for encoding the encrypted
information. Based on X̃i and hXi , TM generates
the topic vector (which is denoted as ui ∈ Rdh)
through the following process.

Firstly, we use a matrix Wφ ∈ Rdv×dt (dv and
dt denote the vocabulary size and the topic size,
respectively) to represent the topic model which is
to obtain the categorical information, where the ma-
trix Wφ is from a pre-trained neural topic model3.
Each row of Wφ can be regarded as a word em-
bedding for a particular word with each dimension
of the embedding corresponding to the value for
a specific topic. Similarly, each column of Wφ

can be regarded as a topic embedding for a par-
ticular topic. Next, we use Wφ to map all words
in X̃i to the corresponding word embeddings (the
embedding for the j-th word in X̃i is denoted as
exi,j ∈ Rdt), and map all topics to the correspond-
ing topic embeddings (the embedding for the k-th
topic is denoted as etk ∈ Rdv ). Then, we apply
average pooling to the word embeddings over X̃i

exi = AvgPooling(exi,1 · · · exi,j · · · exi,l) (7)

where the k-th topic is represented by a one-
dimensional vector (esi,k ∈ R1) in exi ∈ Rdt . We
feed esi,k into a multi-layer perceptron (MLP) to
compute the source memories si,k by

si,k = MLPs(esi,k) (8)

Afterward, we compute the attention weights pi,k
for the k-th topic by

pi,k =
exp (hXi · si,k)∑dt
k=1 exp (hXi · si,j)

(9)

Finally, pi,k is applied to target memories by

ui =

dt∑
k=1

pi,k · tk (10)

3The details of the neural topic model are illustrated in
Section 4.2
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Dataset Pos. # Neu. # Neg. #

LAP14 Train 994 464 870
Test 341 169 128

REST14 Train 2,164 637 807
Test 728 196 182

TWITTER Train 1,561 3,127 1,560
Test 173 346 173

Table 1: The number of aspect terms with “positive”
(Pos.), “neutral” (Neu.), and “negative” (Neg.) senti-
ment polarities in the train/test sets of all three datasets.

where the target memory tk ∈ Rdh is obtained by

tk = MLPt(etk) (11)

We perform element-wise addition on hXi and ti,
and pass the resulting vector to a fully connected
layer to obtain oi, which can be formalized by

oi = W · (hXi + ui) + b (12)

where W and b are the trainable matrix and bias
vector, respectively, in the fully connected layer.

4 Experimental Settings

4.1 Datasets

To test the proposed approach, we follow the con-
vention of recent FL-based NLP studies (Liu et al.,
2019; Huang et al., 2020; Zhu et al., 2020; Sui
et al., 2020; Tian et al., 2021a) to build a simu-
lated environment where isolated data are stored
in three nodes. Each node contains one of the
three widely used English benchmark datasets (i.e.,
LAP14, REST14 (Pontiki et al., 2014), and TWIT-
TER (Dong et al., 2014)) for ABSA, where each
node contains all the data from the same domain.
Particularly, LAP14 contains laptop computer re-
views; REST14 consists of online reviews from
restaurants; TWITTER includes tweets collected
through Twitter API. For LAP14 and REST14, fol-
lowing previous studies (Tang et al., 2016b; Chen
et al., 2017; He et al., 2018a), the aspect terms
with “conflict” sentiment polarity4 and the sen-
tences without an aspect term are removed. For
all datasets, we use their official train/test splits5

and randomly pick 10% of the training set serv-
ing as the development set so as to find the best
hyper-parameters, which are then applied to our

4“Conflict” is a sentiment polarity used to identify the
aspect terms that have contradictory sentiment polarities in
the same sentence in LAP14 and REST14.

5It is worth noting that LAP14, REST14, and TWITTER
do not have their official development sets.

Figure 3: The overview of the neural topic model.

models when learning on the entire training set6.
The statistics of the datasets (i.e., the numbers of
aspect terms with “positive”, “negative”, and “neu-
tral” sentiment polarities) of the three datasets is
reported in Table 1.

To further improve the model performance by
leveraging extra labeled data from different do-
mains, we train a neural topic model and then ob-
tain the topic-vocab matrix to initialize W φ. We
train our neural topic model on five online datasets:
(1) Yelp dataset7, (2) IMDb dataset8, (3) Amazon
dataset9, (4) SemEval-2017 Task 4 (SemEval2017)
dataset10, and (5) MitchellAI-13-Opensentiment
dataset (Mitchell et al., 2013). Particularly, Yelp
contains online reviews of restaurants and hotels;
IMDb contains reviews of movies; Amazon in-
cludes comments on goods; SemEval2017 and
MitchellAI-13-Opensentiment contain tweets. We
randomly sample 75K sentences from each domain
(i.e., reviews of restaurants and hotels, reviews of
movies, comments on goods, and tweets11) and put
them together to form the combined training data
with roughly 300K sentences12 for the topic model.

4.2 Neural Topic Model

Inspired by Miao et al. (2017), we train a neu-
ral topic model based on variational auto-encoder

6We report the hyper-parameter settings in Appendix A.
7We obtained Yelp dataset from https://www.yelp.

com/dataset
8We obtained IMDb dataset from https://course.

fast.ai/datasets#nlp
9We obtained Amazon dataset from https://course.

fast.ai/datasets#nlp
10We obtained SemEval-2017 Task 4 dataset from https:

//alt.qcri.org/semeval2017/task4/
11Since MitchellAI-13-Opensentiment only has 25K tweet

sentences in total, we extract the other 50K tweet sentences
from SemEval2017 and then merge them into a data collection
consisting of 75K sentences of tweets.

12The duplicated sentences are removed.

https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://course.fast.ai/datasets#nlp
https://course.fast.ai/datasets#nlp
https://course.fast.ai/datasets#nlp
https://course.fast.ai/datasets#nlp
https://alt.qcri.org/semeval2017/task4/
https://alt.qcri.org/semeval2017/task4/
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(Kingma and Welling, 2013) to extract the latent
topic distribution z with prior parameters µ and φ
of the datasets, where the overall structure of the
topic model is illustrated in Figure 3. Specifically,
given an input sentence X = x1x2x3 · · ·xn, we
first obtain the one-hot representation Xbow of X
and then pass it to a multi-layer perceptron (MLP)
to get the hidden representation htX of the input
sentence, formalized by

Xbow = one-hot(X ) (13)

and
htX = MLPbow(Xbow) (14)

where htX ∈ Rdh . Next, the prior parameters µ and
σ of the latent topic distribution z are estimated
and defined as

µ = MLPµ(htX ) (15)

and
σ = MLPσ(htX ) (16)

where MLPµ and MLPσ refer to two different
multi-layer perceptrons. Then, we randomly sam-
ple θ from z to be the latent topic representation of
the input sentence X . Afterward, we generate the
output vector by

ot = softmax(Wφ · θ + bφ) (17)

where Wφ ∈ Rdv×dt and bφ ∈ Rdv are trainable
matrix and bias vector, respectively; ot ∈ Rn×dv
refers to the predicted probability of words from all
vocabularies of each position in the original input
sentence. In practice, we train the topic model in
an unsupervised manner and then extract the topic-
vocab matrix to initialize W φ. For sampling θ, we
sample another random variable ε̂ ∈ N(0, 1) and
then parameterize θ by θ = µ+ ε̂ · σ.

4.3 Implementation

In the experiments, we run the baselines without
federated learning (i.e. BT-b and BT-l) on the sin-
gle dataset (i.e. LAP14, REST14, or TWITTER)
and the combined dataset consisting of all the three
datasets, denoted by the union dataset. However, it
is rarely practical to have the model trained on the
union dataset in real applications (since the data
are isolated in different nodes). Therefore, the ex-
perimental results on the union dataset reveal the
possible upper-boundary of FL-based models and
they are mainly used for reference. For FL base-
lines (i.e. FL) and our proposed approaches (i.e.,
TM-FL), we run them in the simulated environ-
ment where the LAP14, REST14, and TWITTER

LAP14 REST14 TWITTER
Acc F1 Acc F1 Acc F1

1 BT-b (single) 76.65 73.40 84.02 76.26 72.64 71.02
2 BT-b (union) 80.72 76.87 85.54 78.68 76.16 74.80
3 FL (BT-b) 79.31 75.11 84.46 76.95 74.57 73.32
4 TM-FL (BT-b) 80.56 76.78 84.55 77.58 74.76 73.54

5 BT-l (single) 78.84 74.73 85.27 77.80 73.31 72.38
6 BT-l (union) 82.60 79.87 86.96 80.09 77.02 76.15
7 FL (BT-l) 81.35 78.21 85.71 78.28 74.28 73.46
8 TM-FL (BT-l) 82.29 79.25 86.07 79.00 74.57 73.63

Table 2: Accuracy and Macro-F1 scores of models
using BERT-base (BT-b) and BERT-large (BT-l) under
different settings on three benchmark datasets.

datasets are isolated to three nodes. Specifically,
the first node holds LAP14; the second node holds
REST14; the third node holds TWITTER.

For encoder, considering that high-quality text
representations from pre-trained embeddings or lan-
guage models are able to effectively to enhance the
model performance (Mikolov et al., 2013; Song
et al., 2018a,b; Song and Shi, 2018; Devlin et al.,
2019; Diao et al., 2020; Song et al., 2021) and
BERT-based models have achieved great success
in many NLP tasks (Mao et al., 2019; Xu et al.,
2019a; Song et al., 2020; Tang et al., 2020; Tian
et al., 2020a,c, 2021b,c; Qin et al., 2021a,b), we use
the BERT-base-uncased and BERT-large-uncased13

(Devlin et al., 2019) to encode the encrypted in-
put14 (i.e., X̃i and Ãi) from Ni. For TM, we train
our neural topic model using an unsupervised ap-
proach proposed by Miao et al. (2017) and then use
the resulted topic-vocab matrix to initialize Wφ

in TM-FL. In the training process of TM-FL, both
BERT and Wφ are updated.15 Moreover, it is noted
that for baselines (i.e., BT) on the single dataset and
the union dataset, we choose the models based on
their F1 scores with respect to the dev set of each
dataset separately. For FL and TM-FL, we choose
the models according to their average F1 score of
the three F1 scores over the dev sets of the three
datasets. For the evaluation metrics, we follow
previous studies (Tang et al., 2016a; Chen et al.,
2017; He et al., 2018a; Sun et al., 2019; Zhang
et al., 2019) to evaluate all models via accuracy
and macro-averaged F1 scores over all sentiment
polarities, i.e., positive, neutral and negative.

13We obtain the BERT models from https://github.
com/huggingface/pytorch-pretrained-BERT.

14For the sake of simplicity, we do not perform actual en-
cryption in the simulated environment.

15We report the hyper-parameter settings of different mod-
els with their size and running speed in Appendix B.

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT


3948

LAP14 REST14 TWITTER

Acc F1 Acc F1 Acc F1

*Mao et al. (2019) 75.84 72.49 82.49 72.10 72.35 69.45
*Xu et al. (2019b) 78.07 75.08 84.95 76.96 - -
Sun et al. (2019) 77.19 72.99 82.30 74.02 74.66 73.66
Zhang et al. (2019) 75.55 71.05 81.22 72.94 72.69 70.59
Wang et al. (2020a) 78.21 74.07 86.60 81.35 76.15 74.88
Tang et al. (2020) 79.80 75.60 86.30 80.00 77.90 75.40

*FL (BERT-large) 81.35 78.21 85.71 78.28 74.28 73.46
*TM-FL(BERT-large) 82.29 79.25 86.07 79.00 74.57 73.63

Table 3: Comparison of model performance (accu-
racy and F1 scores) of our FL-based models (i.e., TM-
FL and FL) with previous studies on the benchmark
datasets (in new environments). Models with BERT-
large are marked by “*”.

5 Results and Analyses

5.1 Overall Results

To evaluate the TM-FL’s performance, we compare
it with 1) the baseline FL models without TM, i.e.,
FL (BT-b) and FL (BT-l); and 2) two BERT-only
models without FL that all training instances are
not isolated and they are accessible to each other.
Table 2 illustrates the accuracy and F1 scores of our
TM-FL models and all the aforementioned base-
lines on the test set of three benchmark datasets.16

There are several observations. First, in most
cases, models under the FL framework (ID: 3, 4,
7, 8) outperform the models trained on the single
datasets (ID: 1, 5) with different encoders. This
confirms that FL works well to leverage extra iso-
lated data with both BERT-base and BERT-large
encoders. Second, FL baselines (ID: 3, 7) fail
to outperform the models trained on the union of
all datasets (ID: 2, 6) with different encoders on
all datasets, which demonstrates that even though
FL can leverage extra isolated data, it still fails
to achieve the upper bound performance provided
by models (ID 2, 6) that do not suffer from the
data isolation problem. Third, our TM-FL models
(ID: 4, 8) consistently outperform the FL baselines
(ID: 3, 7) on all datasets. In addition, it is promis-
ing to observe that some results (e.g., ID: 4 on
Lap14) from TM-FL are very close to the reference
BERT-only models (ID: 2, 6) that provide poten-
tial upper boundaries for FL-based models, which
demonstrates the effectiveness of the proposed TM
module to leverage categorical information to fa-
cilitate localized prediction. Moreover, TM-FL
shows higher improvements over FL on LAP14
and REST14 than that on TWITTER, which can

16For the same group of models, we report the F1 scores
on the development sets in Appendix C, and the mean and
standard deviation of their test set results in Appendix D.

Lap14 Rest14 TWITTER
Acc F1 Acc F1 Acc F1

FL (BT-b) 79.31 75.11 84.46 76.95 74.57 73.32
TM-FL + R. (BT-b) 79.84 75.57 84.32 77.01 73.75 73.39
TM-FL + T. (BT-b) 80.56 76.78 84.55 77.58 74.76 73.54

FL (BT-l) 81.35 78.21 85.71 78.28 74.28 73.46
TM-FL + R. (BT-l) 81.98 78.52 85.52 78.75 74.11 73.49
TM-FL + T. (BT-l) 82.29 79.25 86.07 79.00 74.57 73.63

Table 4: Experimental results of FL baselines, our pro-
posed TM-FL with random initialized Wφ (R.) and pre-
trained Wφ (T.) on the test sets, where BT-b and BT-l
refer to BERT-base and BERT-large respectively.

be explained by that LAP14 and REST14 are prod-
uct reviews focusing on a particular area whereas
TWITTER contains social media texts that may
share heterogeneity. Such difference, including the
difference among domains and within the TWIT-
TER domain, distracts the model on TWITTER.

5.2 Comparison with Previous Studies

Since our experimental settings are different from
the settings of most previous studies on the three
benchmark datasets, direct comparisons of our re-
sults with previous studies are not valid. Compared
with those previous studies focusing on a single
domain, FL can access extra data to help the model
even though data from different datasets are not
visible to each other. For previous studies working
on multiple datasets at the same time and leverag-
ing external knowledge, they do not conduct their
experiments in an environment suffering from data
isolation problems. To provide relatively fair com-
parisons with previous studies on the single dataset,
we build another three simulated environments for
FL and TM-FL where a single dataset, instead of
the three datasets, is distributed through all the iso-
lated nodes in each environment. Thus, it is ensured
that for each dataset, external knowledge is not in-
troduced into the model during the training process.
Therefore, to a certain extent, it is relatively valid to
compare our results with previous studies on every
single dataset, where the comparisons are reported
in Table 3. It is noted that although TM-FL suffers
from data isolation under the simulation setting, it
still outperforms some studies (Mao et al., 2019;
Xu et al., 2019b) using BERT-large (marked by
“*”) and achieve state-of-the-art results on Lap14,
which further confirms the effectiveness of our ap-
proach to leverage local isolated data. Besides,
TM-FL fails to outperform Wang et al. (2020a) and
Tang et al. (2020) on Rest14 and TWITTER, which
could be explained that they leverage dependency
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Figure 4: A case study on two groups of sentences , where the aspect terms extracted from different nodes (i.e.,
LAP14, REST14, and TWITTER) are highlighted in red colors , and the predictions of TM-FL (BERT-large) and
the FL baseline, as well as the gold labels, are presented below the corresponding sentence. The word list on the
right side shows the top four topics (ranked by their receiving wights) in TM.

information and use advanced architectures (e.g.,
GCN) to encode it.

5.3 The effect of Topic Model

To further explore the effect of the topic model,
we test FL and our proposed TM-FL on the test
sets with randomly initialized W φ and pre-trained
W φ obtained from the topic model, and report the
results in Table 4. First, it is observed that TM-FL
with either pre-trained W φ or randomly initialized
W φ outperforms FL, which is reasonable that TM
is able to leverage the domain information from ex-
tra labeled data and hence help ABSA on localized
sentiment polarity prediction. Moreover, TM-FL
with pre-trained W φ (T.) outperforms TM-FL with
randomly initializedW φ (R.), demonstrating the ef-
fectiveness of the topic model to leverage external
topic knowledge with regard to specific domains
from other datasets to help the centralized model
on ABSA in the simulated environment.

5.4 Case Study

To examine whether our approach with TM is able
to capture categorical information to facilitate local-
ized prediction, we conduct a case study with two-
sentence groups (i.e., the first group with sentence
(1), sentence (2), and the second group with sen-
tence (3), sentence (4)), where all sentences are ob-
tained from different domains (i.e., the test sets of
LAP14, REST14, and TWITTER datasets). Figure
4 illustrates such two-sentence groups (the aspect
term is highlighted in red color in each sentence),
where the predictions from the FL baseline (with
BERT-large) and our TM-FL, as well as the gold
labels, are also presented. Besides, the top four
topic words (ranked based on the received weights
in TM) for each individual sentence are presented

on the right side. It is worth noting that in each
group, both sentences share some same opinion
words (i.e. opinion word “hot” and “salas” which
are highlighted in yellow, respectively) which con-
vey contradictory sentiment polarities. Specifically,
in the first sentence group, the shared opinion word
is “hot”, which generally demonstrates negative
sentiment polarity in laptop reviews while shows
positive sentiment polarity in restaurant reviews. In
LAP14, among the instances containing “hot”, 75%
of them are associated with the negative sentiment
polarity, whereas in REST14, no more than 1/3 of
such instances are associated with the negative sen-
timent polarity. Compared with FL baselines, our
approach enhanced by TM successfully leverage
the categorical information and hence is able to
distinguish the cues from “hot” in a particular con-
text, where results incorrect predictions for both
instances, whereas FL fails to recognize that “hot”
suggests a positive sentiment polarity in the sen-
tence (2) from restaurant reviews and thus results
in an incorrect prediction. Moreover, in the sec-
ond sentence group, the word “fresh” serves as the
shared opinion word with its sentiment polarity
generally being generally positive in the domain
of restaurant reviews and neutral in the domain of
tweets. FL successfully models the opinion word
“fresh” and predict the sentiment polarity for the as-
pect term “pizza” for sentence (3), while it fails to
distinguish the domain difference between sentence
(3) and sentence (4). Therefore, due to the cue from
“fresh” in restaurant domain, FL incorrectly models
the opinion word “fresh” in another domain and
hence make incorrect sentiment polarity prediction
with regard to the aspect term “britney spears”.
However, our approach is able to distinguish the
domain information in the sentence (3) and sen-
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tence (4), resulting incorrect predictions for both
instances.

6 Conclusion

In this paper, we present TM-FL, a domain-aware
topic memory network under the federated learning
framework to enhance ABSA under the restriction
of data isolation issues. Specifically, our approach
offers an alternative to enhance ABSA by leverag-
ing extra labeled data through the FL framework
improved by TM. Experimental results on three
widely used English benchmark datasets demon-
strate the effectiveness of our method, which out-
performs all the baseline models trained under the
federated learning framework and competes for
state-of-the-art performance on all datasets.
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Appendix A. Hyper-parameter Settings

Table 5 reports the hyper-parameters tested in train-
ing our models. We test all combinations of them
for each model and use the one achieving the high-
est accuracy score in our final experiments.

Hyper-parameters Values

Learning Rate 5e− 6,1e− 5, 2e− 5, 3e− 5
Warmup Rate 0.06,0.1
Dropout Rate 0.1
Batch Size 8, 16, 32

Table 5: The hyper-parameters tested in tuning our
models, where the best ones used in our final experi-
ments are highlighted in boldface.

Appendix B. Model Size and Performance

Table 6 reports the number of trainable parameters
and the inference speed (sentences per second) of
the baseline (i.e., BERT (single), BERT (union),
and FL with BERT-base and BERT-large) and our
models (i.e., TM-FL with BERT-base and BERT-
large) on all of the three datasets. All models are
performed on an NVIDIA Tesla V100 GPU.

Appendix C. Experimental Results on the
Development Set

Table 7 reports the F1 scores of different models
on the development sets of LAP14 and REST14.17

Appendix D. Mean and Deviation of the
Results

In the experiments, we test models with different
configurations. For each model, we train it with
the best hyper-parameter setting using five different
random seeds. We report the mean (µ) and standard
deviation (σ) of the F1 scores on the test sets of
LAP14, REST14 and TWITTER in Table 8.

17TWITTER does not have an official dev set.

Models Para.
LAP14 REST14 TWITTER
Speed Speed Speed

BT-b (single) 109M 63.1 63.1 63.1
BT-b (union) 109M 63.1 63.1 63.1

FL (BT-b) 109M 63.1 63.1 63.1
TM-FL (BT-b) 143M 57.3 57.3 57.3

BT-l (single) 335M 29.2 29.2 29.2
BT-l (union) 335M 29.2 29.2 29.2

FL (BT-l) 335M 29.2 29.2 29.2
TM-FL (BT-l) 380M 23.9 23.9 23.9

Table 6: Numbers of trainable parameters (Para.) in
different models and the inference speed (sentences
per second) of these models on the test sets of both
datasets. “BT-b" and “BT-l" refer to encoder BERT-
base and BERT-large respectively.

Models LAP14 REST14

BT-b (single) 73.64 75.85
BT-b (union) 76.75 78.25

FL (BT-b) 74.92 77.19
TM-FL (BT-b) 76.65 78.25

BT-l (single) 75.57 78.67
BT-l (union) 80.09 80.22

FL (BT-l) 78.84 78.72
TM-FL (BT-l) 77.99 79.78

Table 7: F1 scores of our TM-FL models and the base-
lines (i.e., single domain model, union domain model
and standard FL) under different settings with BERT-
base and BERT-large on the development set of LAP14,
REST14. “BT-b" and “BT-l" refer to encoder BERT-
base and BERT-large respectively.

Models
LAP14 REST14 TWITTER
µ σ µ σ µ σ

BT-b (single) 73.15 0.18 76.02 0.17 70.70 0.24
BT-b (union) 76.21 0.44 78.30 0.34 74.40 0.33

FL (BT-b) 74.90 0.15 76.51 0.37 72.42 0.36
TM-FL (BT-b) 76.45 0.31 76.99 0.46 72.69 0.40

BT-l (single) 73.98 0.47 77.47 0.29 71.98 0.36
BT-l (union) 79.60 0.14 79.50 0.43 75.90 0.21

FL (BT-l) 77.77 0.42 78.04 0.12 72.95 0.39
TM-FL (BT-l) 79.00 0.21 78.76 0.15 73.44 0.23

Table 8: The mean (µ) and standard deviation (σ) of
F1 scores of our TM-FL model and baselines on the
test set of LAP14, REST14 and TWITTER for aspect-
based sentiment analysis. “BT-b" and “BT-l" refer to
encoder BERT-base and BERT-large respectively.


