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Abstract

Conversational machine reading (CMR) re-
quires machines to communicate with humans
through multi-turn interactions between two
salient dialogue states of decision making and
question generation processes. In open CMR
settings, as the more realistic scenario, the re-
trieved background knowledge would be noisy,
which results in severe challenges in the in-
formation transmission. Existing studies com-
monly train independent or pipeline systems
for the two subtasks. However, those methods
are trivial by using hard-label decisions to acti-
vate question generation, which eventually hin-
ders the model performance. In this work, we
propose an effective gating strategy by smooth-
ing the two dialogue states in only one decoder
and bridge decision making and question gen-
eration to provide a richer dialogue state refer-
ence. Experiments on the OR-ShARC dataset
show the effectiveness of our method, which
achieves new state-of-the-art results.

1 Introduction

The ultimate goal of multi-turn dialogue is to en-
able the machine to interact with human beings and
solve practical problems (Zhu et al., 2018; Zhang
et al., 2018; Zaib et al., 2020; Huang et al., 2020;
Fan et al., 2020; Gu et al., 2021). It usually adopts
the form of question answering (QA) according to
the user’s query along with the dialogue context
(Sun et al., 2019; Reddy et al., 2019; Choi et al.,
2018). The machine may also actively ask ques-
tions for confirmation (Wu et al., 2018; Cai et al.,
2019; Zhang et al., 2020b; Gu et al., 2020).

In the classic spoken language understanding
tasks (Tur and De Mori, 2011; Zhang et al., 2020a;
Ren et al., 2018; Qin et al., 2021), specific slots
and intentions are usually defined. According to
these predefined patterns, the machine interacts
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with people according to the dialogue states, and
completes specific tasks, such as ordering meals
(Liu et al., 2013) and air tickets (Price, 1990). In
real-world scenario, annotating data such as in-
tents and slots is expensive. Inspired by the studies
of reading comprehension (Rajpurkar et al., 2016,
2018; Zhang et al., 2020c, 2021), there appears a
more general task — conversational machine read-
ing (CMR) (Saeidi et al., 2018): given the inquiry,
the machine is required to retrieve relevant sup-
porting rule documents, the machine should judge
whether the goal is satisfied according to the dia-
logue context, and make decisions or ask clarifica-
tion questions.

A variety of methods have been proposed for
the CMR task, including 1) sequential models that
encode all the elements and model the matching re-
lationships with attention mechanisms (Zhong and
Zettlemoyer, 2019; Lawrence et al., 2019; Verma
et al., 2020; Gao et al., 2020a,b); 2) graph-based
methods that capture the discourse structures of the
rule texts and user scenario for better interactions
(Ouyang et al., 2021). However, there are two sides
of challenges that have been neglected:

1) Open-retrieval of supporting evidence. The
above existing methods assume that the relevant
rule documents are given before the system inter-
acts with users, which is in a closed-book style.
In real-world applications, the machines are of-
ten required to retrieve supporting information to
respond to incoming high-level queries in an inter-
active manner, which results in an open-retrieval
setting (Gao et al., 2021). The comparison of the
closed-book setting and open-retrieval setting is
shown in Figure 1.

2) The gap between decision making and ques-
tion generation. Existing CMR studies generally
regard CMR as two separate tasks and design in-
dependent systems. Only the result of decision
making will be fed back to the question generation
module. As a result, the question generation mod-
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Closed-Book
Rule Text: Eligible applicants may obtain direct loans 
for up to a maximum indebtedness of $300,000, and 
guaranteed  loans for up to a maximum indebtedness 
of $1,392,000 (amount adjusted annually for inflation).

Open-Retrieval
Rule Text-1: Eligible applicants may obtain direct ...
Rule Text-2: Guaranteed loans for up to a maximum ...
Rule Text-3: $1,392,000 ...

User Scenario: I got my loan last year. It was for 
450,000.
Initial Question: Does this loan meet my needs?
Dialogue History: 
Follow-up Q1:  Do you need a direct loan?
Follow-up A1:  Yes.
Follow-up Q2:  Is your loan for less than 300,000?
Follow-up A2:  Yes.
Follow-up Q3:  Is your loan less than 1,392,000?
Follow-up A3:  Yes.

+

+

Rule Text User Scenario Initial Question History

Pre-trained Language Model

Decision Making Question Generation

Yes No Inq.Irre. Follow-up Question

Rule Text User Scenario Initial Question History

Pre-trained Language Model

Decision Making Question Generation

Yes No Inq.Irre. Follow-up Question

(a) Closed-book setting v.s. open-retrieval setting

(b) The framework of existing methods (c) The framework of our model

Figure 1: The overall framework for our proposed model (c) compared with the existing ones (b). Previous studies
generally regard CMR as two separate tasks and design independent systems. Technically, only the result of
decision making will be fed to the question generation module, thus there is a gap between the dialogue states
of decision making and question generation. To reduce the information gap, our model bridges the information
transition between the two salient dialogue states and benefits from a richer rule reference through open-retrieval
(a).

ule knows nothing about the actual conversation
states, which leads to poorly generated questions.
There are even cases when the decision masking
result is improved, but the question generation is
decreased as reported in previous studies (Ouyang
et al., 2021).

In this work, we design an end-to-end system by
Open-retrieval of Supporting evidence and bridg-
ing deCision mAking and question geneRation
(OSCAR),1 to bridge the information transition be-
tween the two salient dialogue states of decision
making and question generation, at the same time
benefiting from a richer rule reference through open
retrieval. In summary, our contributions are three
folds:

1) For the task, we investigate the open-retrieval
setting for CMR. We bridge decision making and
question generation for the challenging CMR task,
which is the first practice to our best knowledge.

2) For the technique, we design an end-to-end
framework where the dialogue states for decision
making are employed for question generation, in
contrast to the independent models or pipeline sys-
tems in previous studies. Besides, a variety of

1Our source codes are available at https://github.
com/ozyyshr/OSCAR.

strategies are empirically studied for smoothing the
two dialogue states in only one decoder.

3) Experiments on the ShARC dataset show the
effectiveness of our model, which achieves the new
state-of-the-art results. A series of analyses show
the contributing factors.

2 Related Work

Most of the current conversation-based reading
comprehension tasks are formed as either span-
based QA (Reddy et al., 2019; Choi et al., 2018)
or multi-choice tasks (Sun et al., 2019; Cui et al.,
2020), both of which neglect the vital process of
question generation for confirmation during the
human-machine interaction. In this work, we are
interested in building a machine that can not only
make the right decisions but also raise questions
when necessary. The related task is called con-
versational machine reading (Saeidi et al., 2018)
which consists of two separate subtasks: decision
making and question generation. Compared with
conversation-based reading comprehension tasks,
our concerned CMR task is more challenging as it
involves rule documents, scenarios, asking clarifi-
cation questions, and making a final decision.

Existing works (Zhong and Zettlemoyer, 2019;

https://github.com/ozyyshr/OSCAR
https://github.com/ozyyshr/OSCAR
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Ques: Am I entitled to the National Minimum Wage? 

Scen: I am not following a European Union programme.

Rule Retrieval

The following are not entitled to the National Minimum Wage: 
higher students on a work placement up to 1 year
workers on government pre-apprenticeships schemes
people on the European Union programmes
people working on a Jobcentre Plus Work trial for 6 weeks

Rule Documents
Document 1

...... Document k

Comment

Comment

Contrast

Contrast

......

Rule Conditions 
Tagging

<rule>

</s><s> Scen.EDU0 EDU1 EDU... </s>Ques. QA... </s>

BART-base

... ... ...... ......e1 e2
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R2
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*relations obtained by tagging model
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relations
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GCN layer

<rule> <rule> <rule>

Double-channel Decoder

<rule> Rule </s> Span </s>

Question Generation

BART-base

follow-up ques.

Decision Making

Figure 2: The overall structure of our model OSCAR. The left part introduces the retrieval and tagging process for
rule documents, which is then fed into the encoder together with other necessary information.

Lawrence et al., 2019; Verma et al., 2020; Gao et al.,
2020a,b; Ouyang et al., 2021) have made progress
in modeling the matching relationships between
the rule document and other elements such as user
scenarios and questions. These studies are based on
the hypothesis that the supporting information for
answering the question is provided, which does not
meet the real-world applications. Therefore, we are
motivated to investigate the open-retrieval settings
(Qu et al., 2020), where the retrieved background
knowledge would be noisy. Gao et al. (2021) makes
the initial attempts of open-retrieval for CMR. How-
ever, like previous studies, the common solution
is training independent or pipeline systems for the
two subtasks and does not consider the information
flow between decision making and question gen-
eration, which would eventually hinder the model
performance. Compared to existing methods, our
method makes the first attempt to bridge the gap
between decision making and question generation,
by smoothing the two dialogue states in only one
decoder. In addition, we improve the retrieval pro-
cess by taking advantage of the traditional TF-IDF
method and the latest dense passage retrieval model
(Karpukhin et al., 2020).

3 Open-retrieval Setting for CMR

In the CMR task, each example is formed as a tu-
ple {R,Us, Uq, C}, where R denotes the rule texts,
Us and Uq are user scenarios and user questions,
respectively, and C represents the dialogue history.
For open-retrieval CMR, R is a subset retrieved
from a large candidate corpus D. The goal is to
train a discriminator F(·, ·) for decision making,

and a generator G(·, ·) on {R,Us, Uq, C} for ques-
tion generation.

4 Model

Our model is composed of three main modules:
retriever, encoder, and decoder. The retriever is em-
ployed to retrieve the related rule texts for the given
user scenario and question. The encoder takes the
tuple {R,Us, Uq, C} as the input, encodes the ele-
ments into vectors and captures the contextualized
representations. The decoder makes a decision or
generates a question once the decision is “inquiry”.
Figure 1 overviews the model architecture, we will
elaborate the details in the following part.

4.1 Retrieval

To obtain the supporting rules, we construct the
query by concatenating the user question and user
scenario. The retriever calculates the semantic
matching score between the query and the candi-
date rule texts from the pre-defined corpus and re-
turns the top-k candidates. In this work, we employ
TF-IDF and DPR (Karpukhin et al., 2020) in our
retrieval, which are representatives for sparse and
dense retrieval methods. TF-IDF stands for term
frequency-inverse document frequency, which is
used to reflect how relevant a term is in a given
document. DPR is a dense passage retrieval model
that calculates the semantic matching using dense
vectors, and it uses embedding functions that can
be trained for specific tasks.
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4.2 Graph Encoder

One of the major challenges of CMR is interpret-
ing rule texts, which have complex logical struc-
tures between various inner rule conditions. Ac-
cording to Rhetorical Structure Theory (RST) of
discourse parsing (Mann and Thompson, 1988),
we utilize a pre-trained discourse parser (Shi and
Huang, 2019)2 to break the rule text into clause-
like units called elementary discourse units (EDUs)
to extract the in-line rule conditions from the rule
texts.

Embedding We employ pre-trained language
model (PrLM) model as the backbone of the en-
coder. As shown in the figure, the input of our
model includes rule document which has already be
parsed into EDUs with explicit discourse relation
tagging, user initial question, user scenario and the
dialog history. Instead of inserting a [CLS] token
before each rule condition to get a sentence-level
representation, we use [RULE] which is proved to
enhance performance (Lee et al., 2020). Formally,
the sequence is organized as: {[RULE] EDU0

[RULE] EDU1 [RULE] EDUk [CLS] Question
[CLS] Scenario [CLS] History [SEP]}. Then
we feed the sequence to the PrLM to obtain the
contextualized representation.

Interaction To explicitly model the discourse
structure among the rule conditions, we first an-
notate the discourse relationships between the rule
conditions and employ a relational graph convolu-
tional network following Ouyang et al. (2021) by
regarding the rule conditions as the vertices. The
graph is formed as a Levi graph (Levi, 1942) that re-
gards the relation edges as additional vertices. For
each two vertices, there are six types of possible
edges derived from the discourse parsing, namely,
default-in, default-out, reverse-in, reverse-out, self,
and global. Furthermore, to build the relationship
with the background user scenario, we add an extra
global vertex of the user scenario that connects all
the other vertices. As a result, there are three types
of vertices, including the rule conditions, discourse
relations, and the global scenario vertex.

For rule condition and user scenario vertices,

2This discourse parser gives a state-of-the-art performance
on STAC so far. There are 16 discourse relations according to
STAC (Asher et al., 2016), including comment, clarification-
question, elaboration, acknowledgment, continuation, expla-
nation, conditional, question-answer, alternation, question-
elaboration, result, background, narration, correction, parallel,
and contrast.

we fetch the contextualized representation of the
special tokens [RULE] and [CLS] before the cor-
responding sequences, respectively. For relation
vertices, they are initialized as the conventional em-
bedding layer, whose representations are obtained
through a lookup table.

For each rule document that is composed of mul-
tiple rule conditions, i.e., EDUs, let hp denote the
initial representation of every node vp, the graph-
based information flow process can be written as:

h(l+1)
p = ReLU(

∑
r∈RL

∑
vq∈Nr(vp)

1

cp,r
w(l)
r h

(l)
q ),

(1)
where Nr(vp) denotes the neighbors of node vp
under relation r and cp,r is the number of those
nodes. w(l)

r is the trainable parameters of layer l.
We have the last-layer output of discourse graph:

g(l)p = Sigmoid(h(l)p Wr,g),

r(l+1)
p = ReLU(

∑
r∈RL

∑
vq∈Nr(vp)

g(l)q
1

cp,r
w(l)
r h

(l)
q ),

(2)

where W (l)
r,g is a learnable parameter under relation

type r of the l-th layer. The last-layer hidden states
for all the vertices r(l+1)

p are used as the graph
representation for the rule document. For all the k
rule documents from the retriever, we concatenate
r
(l+1)
p for each rule document, and finally have
r = {r1, r2, . . . , rm} where m is the total number
of the vertices among those rule documents.

4.3 Double-channel Decoder

Before decoding, we first accumulate all the avail-
able information through a self-attention layer
(Vaswani et al., 2017a) by allowing all the rule con-
ditions and other elements to attend to each other.
Let [r1, r2, . . . , rm;uq;us;h1, h2, . . . , hn] denote
all the representations, ri is the representation of
the discourse graph, uq, us and hi stand for the
representation of user question, user scenario and
dialog history respectively. n is the number of his-
tory QAs. After encoding, the output is represented
as:

Hc = [r̃1, r̃2, . . . , r̃m; ũq, ũs; h̃1, h̃2, . . . , h̃n],
(3)

which is then used for the decoder.
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Decision Making Similar to existing works
(Zhong and Zettlemoyer, 2019; Gao et al., 2020a,b),
we apply an entailment-driven approach for deci-
sion making. A linear transformation tracks the
fulfillment state of each rule condition among en-
tailment, contradiction and Unmentioned. As a
result, our model makes the decision by

fi =Wf r̃i + bf ∈ R3, (4)

where fi is the score predicted for the three labels
of the i-th condition. This prediction is trained via a
cross entropy loss for multi-classification problems:

Lentail = −
1

N

N∑
i=1

log softmax(fi)r, (5)

where r is the ground-truth state of fulfillment.
After obtaining the state of every rule, we are

able to give a final decision towards whether it is
Yes, No, Inquire or Irrelevant by attention.

αi = wTα [fi; r̃i] + bα ∈ R1,

α̃i = softmax(α)i ∈ [0, 1],

z =Wz

∑
i

α̃i[fi; r̃i] + bz ∈ R4,
(6)

whereαi is the attention weight for the i-th decision
and z has the score for all the four possible states.
The corresponding training loss is

Ldecision = − log softmax(z)l. (7)

The overall loss for decision making is:

Ld = Ldecision + λLentail. (8)

Question Generation If the decision is made to
be Inquire, the machine needs to ask a follow-up
question to further clarify. Question generation in
this part is mainly based on the uncovered informa-
tion in the rule document, and then that informa-
tion will be rephrased into a question. We predict
the position of an under-specified span within a
rule document in a supervised way. Following De-
vlin et al. (2019), our model learns a start vector
ws ∈ Rd and end vector we ∈ Rd to indicate the
start and end positions of the desired span:

span = argmin
i,j,k

(wTs tk,i + wTe tk,j), (9)

where tk,i denote the i-th token in the k-th rule sen-
tence. The ground-truth span labels are generated
by calculating the edit distance between the rule

span and the follow-up questions. Intuitively, the
shortest rule span with the minimum edit distance
is selected to be the under-specified span.

Existing studies deal with decision making and
question generation independently (Zhong and
Zettlemoyer, 2019; Lawrence et al., 2019; Verma
et al., 2020; Gao et al., 2020a,b), and use hard-label
decisions to activate question generation. These
methods inevitably suffer from error propagation
if the model makes the wrong decisions. For ex-
ample, if the made decision is not “inquiry", the
question generation module will not be activated
which may be supposed to ask questions in the
cases. For the open-retrieval CMR that involves
multiple rule texts, it even brings more diverse rule
conditions as a reference, which would benefit for
generating meaningful questions.

Therefore, we concatenate the rule document
and the predicted span to form an input sequence:
x = [CLS] Span [SEP] Rule Documents [SEP].
We feed x to BART encoder (Dong et al., 2019)
and obtain the encoded representation He. To take
advantage of the contextual states of the overall
interaction of the dialogue states, we explore two
alternative smoothing strategies:

1. Direct Concatenation concatenates Hc and
He to have H = [Hc;He].

2. Gated Attention applies multi-head attention
mechanism (Vaswani et al., 2017b) to ap-
pend the contextual states to He to get Ĥ =
Attn(He,K, V ) where {K,V} are packed
from Hc. Then a gate control λ is computed
as sigmoid(WλĤ + UλH

e) to get the final
representation H = He + λĤ .

H is then passed to the BART decoder to gener-
ate the follow-up question. At the i-th time-step,
H is used to generate the target token yi by

P (yi | y<i, x; θ) ∝ exp(Wd tanh(WwH)), (10)

where θ denotes all the trainable parameters. Wd

and Ww are projection matrices. The training ob-
jective is computed by

Lg = argmax
I∑
i=1

logP (yi | y<i, x; θ). (11)

The overall loss function for end-to-end training
is

L = Ld + Lg. (12)
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Model
Dev Set Test Set

Decision Making Question Gen. Decision Making Question Gen.

Micro Macro F1BLEU1 F1BLEU4 Micro Macro F1BLEU1 F1BLEU4

w/ TF-IDF
E3 61.8±0.9 62.3±1.0 29.0±1.2 18.1±1.0 61.4±2.2 61.7±1.9 31.7±0.8 22.2±1.1
EMT 65.6±1.6 66.5±1.5 36.8±1.1 32.9±1.1 64.3±0.5 64.8±0.4 38.5±0.5 30.6±0.4
DISCERN 66.0±1.6 66.7±1.8 36.3±1.9 28.4±2.1 66.7±1.1 67.1±1.2 36.7±1.4 28.6±1.2
DP-RoBERTa 73.0±1.7 73.1±1.6 45.9±1.1 40.0±0.9 70.4±1.5 70.1±1.4 40.1±1.6 34.3±1.5
MUDERN 78.4±0.5 78.8±0.6 49.9±0.8 42.7±0.8 75.2±1.0 75.3±0.9 47.1±1.7 40.4±1.8
w/ DPR++
MUDERN 79.7±1.2 80.1±1.0 50.2±0.7 42.6±0.5 75.6±0.4 75.8±0.3 48.6±1.3 40.7±1.1
OSCAR 80.5±0.5 80.9±0.6 51.3±0.8 43.1±0.8 76.5±0.5 76.4±0.4 49.1±1.1 41.9±1.8

Table 1: Results on the validation and test set of OR-ShARC. The first block presents the results of public models
from Gao et al. (2021), and the second block reports the results of our implementation of the SOTA model MUD-
ERN, and ours based on DPR++. The average results with a standard deviation on 5 random seeds are reported.

Model Seen Unseen
F1BLEU1 F1BLEU4 F1BLEU1 F1BLEU4

MUDERN 62.6 57.8 33.1 24.3
OSCAR 64.6 59.6 34.9 25.1

Table 2: The comparison of question generation on the
seen and unseen splits.

5 Experiments

5.1 Datasets

For the evaluation of open-retrieval setting, we
adopt the OR-ShARC dataset (Gao et al., 2021),
which is a revision of the current CMR benchmark
— ShARC (Saeidi et al., 2018). The original dataset
contains up to 948 dialog trees clawed from govern-
ment websites. Those dialog trees are then flattened
into 32,436 examples consisting of utterance_id,
tree_id, rule document, initial question, user sce-
nario, dialog history, evidence and the decision.
The update of OR-ShARC is the removal of the
gold rule text for each sample. Instead, all rule
texts used in the ShARC dataset are served as the
supporting knowledge sources for retrieval. There
are 651 rules in total. Since the test set of ShARC
is not public, the train, dev and test are further man-
ually split, whose sizes are 17,936, 1,105, 2,373,
respectively. For the dev and test sets, around 50%
of the samples ask questions on rule texts used in
training (seen) while the remaining of them contain
questions on unseen (new) rule texts. The rationale
behind seen and unseen splits for the validation
and test set is that the two cases mimic the real
usage scenario: users may ask questions about rule
text which 1) exists in the training data (i.e., dialog
history, scenario) as well as 2) completely newly
added rule text.

5.2 Evaluation Metrics
For the decision-making subtask, ShARC evaluates
the Micro- and Macro- Acc. for the results of clas-
sification. For question generation, the main metric
is F1BLEU proposed in Gao et al. (2021), which
calculates the BLEU scores for question generation
when the predicted decision is “inquire".

5.3 Implementation Details
Following the current state-of-the-art MUDERN
model (Gao et al., 2021) for open CMR, we em-
ploy BART (Dong et al., 2019) as our backbone
model and the BART model serves as our base-
line in the following sections. For open retrieval
with DPR, we fine-tune DPR in our task follow-
ing the same training process as the official imple-
mentation, with the same data format stated in the
DPR GitHub repository.3 Since the data process re-
quires hard negatives (hard_negative_ctxs),
we constructed them using the most relevant rule
documents (but not the gold) selected by TF-IDF
and left the negative_ctxs to be empty as it
can be. For discourse parsing, we keep all the de-
fault parameters of the original discourse relation
parser4, with F1 score achieving 55. The dimen-
sion of hidden states is 768 for both the encoder and
decoder. The training process uses Adam (Kingma
and Ba, 2015) for 5 epochs with a learning rate
set to 5e-5. We also use gradient clipping with a
maximum gradient norm of 2, and a total batch
size of 16. The parameter λ in the decision making
objective is set to 3.0. For BART-based decoder
for question generation, the beam size is set to 10

3https://github.com/facebookresearch/
DPR

4https://github.com/shizhouxing/
DialogueDiscourseParsing

https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR
https://github.com/shizhouxing/DialogueDiscourseParsing
https://github.com/shizhouxing/DialogueDiscourseParsing
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Model Dev Set Test Set
Top1 Top5 Top10 Top20 Top1 Top5 Top10 Top20

TF-IDF 53.8 83.4 94.0 96.6 66.9 90.3 94.0 96.6
DPR 48.1 74.6 84.9 90.5 52.4 80.3 88.9 92.6
TF-IDF + DPR 66.3 90.0 92.4 94.5 79.8 95.4 97.1 97.5

Table 3: Comparison of the open-retrieval methods.

TF-IDF Top1 Top5 Top10 Top20

Train 59.9 83.8 94.4 94.2
Dev 53.8 83.4 94.0 96.6

Seen Only 62.0 84.2 90.2 93.2
Unseen Only 46.9 82.8 90.7 83.1

Test 66.9 90.3 94.0 96.6
Seen Only 62.1 83.4 89.4 93.8
Unseen Only 70.4 95.3 97.3 98.7

Table 4: Retrieval Results of TF-IDF.

for inference. We report the averaged result of five
randomly run seeds with deviations.

5.4 Results

Table 1 shows the results of OSCAR and all the
baseline models for the End-to-End task on the
dev and test set with respect to the evaluation met-
rics mentioned above. Evaluating results indicate
that OSCAR outperforms the baselines in all of the
metrics. In particular, it outperforms the public
state-of-the-art model MUDERN by 1.3% in Mi-
cro Acc. and 1.1% in Macro Acc for the decision
making stage on the test set. The question genera-
tion quality is greatly boosted via our approaches.
Specifically, F1BLEU1 and F1BLEU4 are increased
by 2.0% and 1.5% on the test set respectively.

Since the dev set and test set have a 50% split
of user questions between seen and unseen rule
documents as described in Section 5.1, to analyze
the performance of the proposed framework over
seen and unseen rules, we have added a comparison
of question generation on the seen and unseen splits
as shown in Table 2. The results show consistent
gains for both of the seen and unseen splits.

6 Analysis

6.1 Comparison of Open-Retrieval Methods

We compare two typical retrievals methods, TF-
IDF and Dense Passage Retrieval (DPR), which are
widely-used traditional models from sparse vector
space and recent dense-vector-based ones for open-
domain retrieval, respectively. We also present the
results of TF-IDF+DPR (denoted DPR++) follow-

DPR Top1 Top5 Top10 Top20

Train 77.2 96.5 99.0 99.8
Dev 48.1 74.6 84.9 90.5

Seen Only 77.4 96.8 98.6 99.6
Unseen Only 23.8 56.2 73.6 83.0

Test 52.4 80.3 88.9 92.6
Seen Only 76.2 96.1 98.6 99.8
Unseen Only 35.0 68.8 81.9 87.3

Table 5: Retrieval Results of DPR.

ing Karpukhin et al. (2020), using a linear combi-
nation of their scores as the new ranking function.

The overall results are present in Table 3. We see
that TF-IDF performs better than DPR, and com-
bining TF-IDF and DPR (DPR++) yields substan-
tial improvements. To investigate the reasons, we
collect the detailed results of the seen and unseen
subsets for the dev and test sets, from which we
observe that TF-IDF generally works well on both
the seen and unseen sets, while DPR is degraded
on the unseen set. The most plausible reason would
be that DPR is trained on the training set, it can
only give better results on the seen subsets because
seen subsets share the same rule texts for retrieval
with the training set. However, DPR may easily
suffer from over-fitting issues that result in the rela-
tively weak scores on the unseen sets. Based on the
complementary merits, combining the two methods
would take advantage of both sides, which achieves
the best results finally.

6.2 Decision Making

By means of TF-IDF + DPR retrieval, we com-
pare our model with the previous SOTA model
MUDERN (Gao et al., 2021) for comparison on
the open-retrieval setting. According to the results
in Table 1, we observe that our method can achieve
a better performance than DISCERN, which indi-
cates that the graph-like discourse modeling works
well in the open-retrieval setting in general.

6.3 Question Generation

Overall Results We first compare the vanilla
question generation with our method with encoder
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DPR++ Top1 Top5 Top10 Top20

Train 84.2 99.0 99.9 100
Dev 66.3 90.0 92.4 94.5

Seen Only 84.6 98.0 99.8 100
Unseen Only 51.2 83.3 86.3 100

Test 79.8 95.4 97.1 97.5
Seen Only 83.7 98.5 99.9 100
Unseen Only 76.9 93.1 95 95.6

Table 6: Retrieval Results of DPR++.

Model Dev Set Test Set
F1BLEU1 F1BLEU4 F1BLEU1 F1BLEU4

OSCAR 51.3±0.8 43.1±0.8 49.1±1.1 41.9±1.8
w/o GS 50.9±0.9 43.0±0.7 48.7±1.3 41.6±1.5
w/o SS 50.6±0.6 42.8±0.5 48.1±1.4 41.4±1.4
w/o both 49.9±0.8 42.7±0.8 47.1±1.7 40.4±1.8

Table 7: Question generation results on the OR-ShARC
dataset. SS and GS denote the sequential states and
graph states, respectively.

states. Table 7 shows the results, which verify that
both the sequential states and graph states from
the encoding process contribute to the overall per-
formance as removing any one of them causes a
performance drop on both F1BLEU1 and F1BLEU4.
Especially, when removing GS/SS, those two ma-
trices drops by a great margin, which shows the
contributions. The results indicate that bridging the
gap between decision making and question genera-
tion is necessary.5

Smoothing Strategies We explore the perfor-
mance of different strategies when fusing the con-
textual states into BART decoder, and the results
are shown in Table 8, from which we see that the
gating mechanism yields the best performance. The
most plausible reason would be the advantage of
using the gates to filter the critical information.

Upper-bound Evaluation To further investigate
how the encoder states help generation, we con-
struct a “gold" dataset as the upper bound evalua-
tion, in which we replace the reference span with
the ground-truth span by selecting the span of the
rule text which has the minimum edit distance with
the to-be-asked follow-up question, in contrast to
the original span that is predicted by our model.
We find an interesting observation that the BLEU-1
and BLEU-4 scores drop from 90.64→ 89.23, and

5Our method is also applicable to other generation archi-
tectures such as T5 (Raffel et al., 2020). For the reference of
interested readers, we tried to employ T5 as our backbone,
achieving better performance: 53.7/45.0 for dev and 52.5/43.7
for test (F1BLEU1/F1BLEU4).

Model Dev Set Test Set
F1BLEU1 F1BLEU4 F1BLEU1 F1BLEU4

Concatenation 51.3±0.8 43.1±0.8 49.1±1.1 41.9±1.8
Gated Attention 51.6±0.6 44.1±0.5 49.5±1.2 42.1±1.4

Table 8: Question generation results using different
smoothing strategies on the OR-ShARC dataset.

Model ShARC OR-ShARC
BLEU1 BLEU4 F1BLEU1 F1BLEU4

BASELINE 62.4±1.6 47.4±1.6 50.2±0.7 42.6±0.5

OSCAR 63.3±1.2 48.1±1.4 51.6±0.6 44.4±0.4

Table 9: Performance comparison on the dev sets of the
closed-book and open-retrieval tasks.

89.61→ 85.81 after aggregating the DM states on
the constructed dataset. Compared with the experi-
ments on the original dataset, the performance gap
shows that using embeddings from the decision
making stage would well fill the information loss
caused by the span prediction stage, and would be
beneficial to deal with the errors propagation.

Closed-book Evaluation Besides the open-
retrieval task, our end-to-end unified modeling
method is also applicable to the traditional CMR
task. We conduct comparisons on the original
ShARC question generation task with provided rule
documents to evaluate the performance. Results in
Table 9 show the obvious advantage on the open-
retrieval task, indicating the strong ability to extract
key information from noisy documents.

6.4 Case Study

To explore the generation quality intuitively, we
randomly collect and summarize error cases of the
baseline and our models for comparison. Results of
a few typical examples are presented in Figure. 3.
We evaluate the examples in term of three aspects,
namely, factualness, succinctness and informative-
ness. The difference of generation by OSCAR and
the baseline are highlighted in green, while the blue
words are the indication of the correct generations.
One can easily observe that our generation out-
performs the baseline model regarding factualness,
succinctness, and informativeness. This might be
because that the incorporation of features from the
decision making stage can well fill in the gap of
information provided for question generation.
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Types Gold Snippet & Scenario Predicted Span Our Gen. & Ori. Gen.

Succinctness 
(does not contain 
redundant information)

..., In general, loan funds may be used for normal 
operating expenses, machinery  and equipment, minor real 
estate repairs or  improvements, and refinancing debt.

Informativeness
(covers the most 
important content)

The eligible items include: 
(1) medical, veterinary and scientific equipment  
(2) ambulances   (3) goods for disabled people 
(4) motor vehicles for medical use.

expenses, 
machinery, 
equipment

goods for 
disabled people

Will it be used for machinery and 
equipment?

Will it be used for expenses, ma-
chinery and equipment?

Is the item goods for disabled 
people?

Is it for disabled people?

You can still get Statutory Maternity Leave and SMP 
if your baby: 
(1) is born early; 
(2) is stillborn after the start of your 24th week of pregnancy 
(3) dies after being born

Factualness
(associates with the
correct facts)

is born early
Was your baby born early?

Was you born early?

Snippet:

Scenario: (empty)

Snippet:

Scenario: I have no intentions of using the loan for 
operating expenses...

Snippet:

Scenario: (empty)

Ours: 

Ours: 

Ours: 

Original: 

Original: 

Original: 

Figure 3: Question generation examples of OSCAR and the original model.“Our Gen.” stands for the question
generated by OSCAR; “Ori. Gen.” stands for the question generated by the baseline model.

7 Conclusion

In this paper, we study conversational machine
reading based on open-retrieval of supporting rule
documents, and present a novel end-to-end frame-
work OSCAR to enhance the question generation
by referring to the rich contextualized dialogue
states that involve the interactions between rule
conditions, user scenario, initial question and dia-
logue history. Our OSCAR consists of three main
modules including retriever, encoder, and decoder
as a unified model. Experiments on OR-ShARC
show the effectiveness by achieving a new state-of-
the-art result. Case studies show that OSCAR can
generate high-quality questions compared with the
previous widely-used pipeline systems.
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