
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3495–3504
November 7–11, 2021. c©2021 Association for Computational Linguistics

3495

Fix-Filter-Fix: Intuitively Connect Any Models for Effective Bug Fixing

Haiwen Hong1 Jingfeng Zhang1 Yin Zhang1∗ Yao Wan2 Yulei Sui3
1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China

2School of Computer Sci. & Tech., Huazhong University of Science and Technology, China
3 School of Computer Science, University of Technology Sydney, Australia

{honghaiwen96, zhjf, zhangyin98}@zju.edu.cn,
wanyao@hust.edu.cn, yulei.sui@uts.edu.au

Abstract
Locating and fixing bugs is a time-consuming
task. Most neural machine translation (NMT)
based approaches for automatically bug fixing
lack generality and do not make full use of the
rich information in the source code. In NMT-
based bug fixing, we find some predicted code
identical to the input buggy code (called un-
changed fix) in NMT-based approaches due to
high similarity between buggy and fixed code
(e.g., the difference may only appear in one
particular line). Obviously, unchanged fix is
not the correct fix because it is the same as the
buggy code that needs to be fixed. Based on
these, we propose an intuitive yet effective gen-
eral framework (called Fix-Filter-Fix or F3)
for bug fixing. F3 connects models with our
filter mechanism to filter out the last model’s
unchanged fix to the next. We propose an F3

theory that can quantitatively and accurately
calculate the F3 lifting effect. To evaluate,
we implement the Seq2Seq Transformer (ST)
and the AST2Seq Transformer (AT) to form
some basic F3 instances, called F3

ST+AT and
F3
AT+ST . Comparing them with single model

approaches and many model connection base-
lines across four datasets validates the effec-
tiveness and generality of F3 and corroborates
our findings and methodology.

1 Introduction

Locating and repairing bugs of programs automati-
cally is important in software engineering. Many
approaches (Tufano et al., 2019; Chen et al., 2019;
Chakraborty et al., 2020) based on the Neural Ma-
chine Translation (NMT) have achieved promising
performance for semantic bug fixing. The basic
idea is to automatically translate a buggy code frag-
ment into a fixed patch. However, there still exist
some limitations. Most of them (1) do not fully ex-
ploit the information of source code and only partly
using the textual or structured information; (2) are
single model architectures with poor generality.

∗Corresponding author: Yin Zhang.

Model

public void METHOD_1 () {
VAR_1.METHOD_2() ;
VAR_1 = false ;
VAR_1.METHOD_3() ;

}

Buggy code

Test Set

Identical

Different

Unchanged fix

public void METHOD_1 () {
VAR_1.METHOD_2() ;
VAR_1 = false ;
VAR_1.METHOD_3() ;

}

Predicted code

public void METHOD_1 () {
VAR_1.METHOD_2() ;
VAR_1 .set(false) ;
VAR_1.METHOD_3() ;

}

Ground truth fixed code

Fail to fix

Figure 1: A motivating example.

We find that many current NMT-based bug fix-
ing models often predict exactly the same output
code as the input buggy codes as Figure 1 shows
(see red lines), which we call unchanged fix. The
input code is buggy, while the unchanged fix does
not make any changes to the buggy code, so the un-
changed fix is a failed fix obviously. It is because
the buggy code and fixed code are always very
similar and the vocabularies of the buggy and fixed
code are closely overlapped in bug fixing. This phe-
nomenon may also exist in many tasks with similar
vocabularies before and after translation, such as
automatic post-editing and text style transfer.

In fact, this is an unsupervised phenomenon,
i.e., without comparing the ground-truth fixed code,
it is possible to determine directly whether the pre-
diction is correct by knowing only the result of the
model prediction and the input buggy code. This
has led to the following question we aim to answer
in this paper: “Can we filter out those unchanged
fixes and then refine the bug fixing process with
a different model?”. A similar scenario also ex-
ists when revising a paper. Multiple revisions can
always find more errors than single revisions. In-
tuitively, in bug fixing, multiple models in tandem
can provide better fixing than a single model does.

Based on the above observation, we propose
a general and intuitive framework for bug fixing
(called Fix-Filter-Fix or F3) with high performance
and marginal extra cost. F3 uses a filter mecha-
nism to connect several different learners (individ-
ual models for bug fixing).

3496

The filter mechanism needs to directly filter out
some buggy code fragments that a learner fails to
fix without checking the ground-truth fixed code
in the dataset, and then feed the filtered buggy
code into the next learner. Each learner in F3 should
be able to fix a portion of the buggy code that oth-
ers cannot fix. Our filter mechanism in this paper
compares a learner’s predicted results with the in-
put buggy code, filters out the unchanged fix, and
continues the corresponding buggy code to the next
learner for processing, but it may not an optimal
filter mechanism. An optimal filter mechanism can
filter out all the buggy code fragments that a learner
fails to fix.

It is intuitive that F3 can improve performance.
To make the intuition more precise, we propose
a theory to precisely calculate the specific perfor-
mance improvement of F3 combined with multiple
learners without experimental verification. Since
source code contains textual and structural infor-
mation, we apply Seq2Seq Transformer (ST) to fix
bugs based on the textual representation of code,
while the AST2Seq Transformer (AT) is based on
abstract syntax tree (AST), the structural informa-
tion of code. We connect these two learners in
different orders to implement F3 instances, called
F3
ST+AT and F3

AT+ST .
We compare its performance with the single

model baselines (Tufano et al., 2019) and model
connection baselines on four datasets transformed
by BFP and CodRep datasets (Chen and Monper-
rus, 2018). Experimental results demonstrate that
our F3

ST+AT outperforms all the baselines at a low
cost. Then we experimentally investigate the ef-
fects when using different orders or number of
learners on F3 as experimental corroboration of
our theoretical proof. Finally, we analyze the gen-
erality and broader impact of F3.

In summary, the key contributions are as follows:

• We, for the first time, reveal and study the
unchanged fix issue existing in NMT-based
bug fixing tasks. This is an unsupervised phe-
nomenon. We present and analyze the causes
and functions of the unchanged fix scenarios
in detail. In addition, we analyze the ways in
which the unchanged fix phenomenon can be
used in a broader domain.

• We propose an intuitive framework called F3

based on unchanged fix to comprise multiple
learners through a filter mechanism for itera-
tive bug fixing. We provide a theory that can

0 50 100 150 200 250 300
Epoch

500

1000

1500

2000

2500

3000

3500

4000

U
nc

ha
ng

ed
F

ix
C

ou
nt

Figure 2: Trend plot of the number of unchanged fixes
as a function of training epochs, where the dataset is
BFPsmall and the model is Seq2Seq Transformer.

accurately calculate the specific improvement
of F3 for each task and each backbone, thus
validating that F3 can be useful in any area
where unchanged fix exists.

• We connect Seq2Seq Transformer (ST) with
AST2Seq Transformer (AT) to form basic F3

instances and evaluate their performance on
four datasets. Experimental results show that
our F3 outperforms all the single model base-
lines and model connection baselines. We also
provide analysis for the generality of F3.

2 Unchanged Fix Issue

When applying NMT to the problem of bug fixing,
the buggy code is translated into the fixed code for
the purpose of fixing. In this process, as shown in
Figure 1, it often happens that the sequence pre-
dicted by the model, and the sequence of buggy
code at the time of input, are exactly the same, a
phenomenon that we call unchanged fix.

The input code is buggy, and the predicted un-
changed fix is exactly the same as the buggy code,
which means that the unchanged fix must also be
buggy, and therefore it must not be a successful
fix. In other words, we do not need to actually
test whether the predicted code can run, or know
how the code that is actually fixed should look like.
Just by comparing the sequences predicted by the
model, with the input sequences, we can filter out
a batch of cases where the fix obviously fails, so
unchanged fix contains unsupervised properties.

This phenomenon is caused by the fact that the
input and output before and after translation are
highly similar, or the vocabularies are highly sim-

3497

ilar, which may cause the model to “accidentally”
generate exactly the same results as the input.

According to our tests on the Seq2Seq Trans-
former, as shown in Figure 2, when the training
epoch increases from 1 to 300, the proportion of
unchanged fix in the test set increases sharply and
then decreases. The proportion is low at the begin-
ning because the initialized sequence is completely
chaotic. As the epoch increases, it slowly learns the
approximate distribution of the dataset, and thus
the phenomenon of unchanged fix starts to appear.
After that, the distribution learned by the model be-
comes more and more accurate, and the number of
model prediction errors gradually decreases, thus
the number of unchanged fixes decreases.

Therefore, unchanged fix can be considered as
a kind of lapse phenomenon when the model is
not in a perfect state, just like a new painting stu-
dent who wants to draw a tiger but accidentally
draws a cat. The observed lapse scenario suggests
that generative models, like humans, may learn
a general generative logic first and then continu-
ously improve and refine the learned knowledge.
Unchanged fix implies that the model itself has a
general learning of the distribution of the data, but
does not have the particularly precise details. This
type of model is more common in many complex
tasks of NLP based on NMT, which means that the
unchanged fix issue may have a generality that is
not limited to the bug fixing task.

3 Preliminaries

For the purpose of quantitative proof for the prop-
erties of F3, we denote all the buggy codes in
the test set as T , the multiple learners in F3 as
M = {M1,M2, . . . ,M|M|}, where |M| is the
number of learners. The part of F3 before the Mi

(including the Mi) is called F 3
i . In particular, given

a buggy program x ∈ T , the learner Mi will gener-
ate a fixed program y. In this paper, we classify y
into the following four different sets:

• Correct fix: It represents a code fragment pro-
duced by a learner successfully fixes the bug.
That means, after being fixed by Mi, the fixed
programs are identical to the correct code in
the ground-truth dataset. We denote these
fixed programs as C(Mi).

• Changed but wrong fix: It represents a code
fragment that is inconsistent with the input
code fragment and the ground truth correct

code. We denote these programs after being
fixed by the learner Mi as CW(Mi).

• Unchanged fix: It represents the fixes pro-
duced by a learner have not modified/changed
anything of a buggy code fragment. We de-
note these fixes by the learner Mi as U(Mi).

• Wrong fix: It represents a fix that is inconsis-
tent with the ground-truth fixing programs, in-
cluding unchanged fix and changed but wrong
fix. We denote these programs after being
fixed by the learner Mi as W(Mi).

The goal of our filter mechanism is to filter
out those unchanged fixes from each learner’s pre-
dicted/generated fixes and feed them into the next
learners. We can obtain the following rules for M1:

|T | = |C(M1)|+ |W(M1)| = |C(M1) ∪W(M1)| (1)

and for any Mi:

|W(Mi)| = |CW(Mi)|+ |U(Mi)| = |CW(Mi) ∪ U(Mi)|
(2)

Similarly, we define C(F 3
i), U(F 3

i), CW(F 3
i),

W(F 3
i) for the F3 results.

4 Fix-Filter-Fix (F3) Framework

4.1 An Overview
Figure 3 shows the workflow of F3. In the first
stage, the first learner M1 digests the buggy pro-
grams T and outputs the first stage results. Then
our filter mechanism classifies those results into
unchanged fix U(M1) and the others (correct fix
C(M1) and changed but wrong fix CW(M1) but
we cannot distinguish each other). The C(M1) and
CW(M1) are sent to the final results, while the
U(M1) are filtered out and fed into the learner M2

in the next stage. The following stages will follow
a similar process. Note that all results from the
learner M|M| in |M| stage are passed to the final
results of F3, since there is no latter learners.

We implement two basic F3 instances, named
F3
ST+AT and F3

AT+ST , which are composed of two
Transformer-based learners, Seq2Seq Transformer
(ST) to represent the textual sequence of code to-
kens and AST2Seq Transformer (AT) to represent
the ASTs extracted from codes. To verify the exten-
sibility, in the experiments of RQ2, we add another
Seq2Seq RNN (SR) learner to the end of them to
achieve a better performance than the two-stage
F3. In the following sections, we will elaborate the

3498

Learner 1

1st Stage Filter Mechanism

……

Filter out
unchanged
results

Final Results

Buggy
Code

First Stage
Results

Learner 2

2nd Stage

Filtered
First Stage

Results

Second
Stage
Results

Filter Mechanism

Learner N

nth StageFilter Mechanism

N Stage
Results

Filtered
N-1 Stage
Results

𝒞𝒲

𝒞

𝒰

𝒞𝒲

𝒞

𝒰

𝒞𝒲

𝒞

𝒰

Figure 3: Workflow of the F3 framework with our Filter Mechanism (filter out the unchanged fix). C is the correctly
fixed programs set, CW is the changed but wrong programs set, U is the unchanged programs set.

main components of F3
ST+AT and F3

AT+ST frame-
work.

4.2 Learners

We can choose any existing bug fixing model as a
F3 learner. In this paper, we implement Seq2Seq
Transformer (ST) and AST2Seq Transformer (AT)
as learners for experiments, and the outputs of these
models are as follows:

o(ST) = Transformer (et) t ∈ buggy−seq (3)

o(AT) = Transformer (et) t ∈ AST−seq (4)

where et is the token embedding for the buggy
code token t sampled from a buggy token sequence
in Eq.3, and for AST token t in the AST token se-
quence AST−seq generated from the AST parsed
from a buggy program in Eq.4. Through DFS
(Depth-First Search), we get the traversed sequence
of AST and feed it into our AST2Seq Transformer.
The two learners fix bugs from different perspec-
tives i.e., textual information and structural infor-
mation of code.

4.3 Our Filter Mechanism

F3 is so understandable that we can intuitively de-
termine that it improves performance because sub-
sequent learners fix bugs that the previous ones
could not. We provide quantitative calculations to
make the intuition more precise, so that we can
determine the amount of improvement in F3’s per-
formance by a direct calculation, without the need
for tedious experimental testing. In this section,
we theoretically prove the effects of the number and
order of learners on the performance of F3 with our
proposed filter mechanism.

With the two learners, F3 will keep correctly
fixed programs C(M1) from the first learner and
give unchanged programs U(M1) to the next.
Among U(M1), the next learner will fix those pro-

grams in its correctly fixed set C(M2):

|C(F 3
2)| = |C(M1)|+ |C(M2) ∩ U(M1)| (5)

When adding a new learner Mi+1, it will fix codes
that it can fix correctly in the F 3

i unchanged set:

|C(F 3
i+1)| = |C(F 3

i)|+ |C(Mi+1) ∩ U(F 3
i)| (6)

We need to know U(F 3
i). The Mi+1 works among

the U(F 3
i), and can only leave the unchanged pro-

grams that are both in U(F 3
i) and U(Mi+1), thus:

U(F 3
i+1) = U(Mi+1) ∩ U(F 3

i) (7)

|C(F 3
i+1)| − |C(F 3

i)| = |C(Mi+1) ∩
i⋂

n=1

U(Mn)| (8)

It shows that when we add a new learner to the
F3, the updated F3 outperforms the old F3 as long
as there are programs in the intersection of previ-
ous learners’ sets of unchanged programs that the
new learner can fix, that means the newly added
learners should have the ability to fix programs
with different granularities. That is why we im-
plement two different learners, i.e., the Seq2Seq
Transformer and AST2Seq Transformer. However,
with our filter mechanism, we cannot establish a
deterministic quantitative relationship between the
unchanged programs set U and the correctly fixed
set C. Therefore, we cannot determine whether the
new learner performs better or worse than the old
F3. With our filter mechanism, we can guarantee
that the new F3 will not perform worse than the old
F3, but there is no guarantee that the new F3 will
perform better than the new learner added to the
old F3.

To explore the effects of the order of learners
on F3, we consider the F3 containing two learners:
the first learner M1 and the last learner M2. Then
we change the order of the two learners to obtain a
framework denoted as F 3

reversed. We have:

|C(F 3)| =|C(M1)|+ |C(M2) ∩ U(M1)| (9)

3499

Datasets BFPsmall BFPmedium CodRepreal CodRepabstract

Training Set 46,680 52,364 11,868 11,868
Validation Set 5,835 6,546 1,483 1,483
Test Set 5,835 6,545 1,483 1,483
Total 58,350 65,455 14,834 14,834

Table 1: The number of programs in the four datasets.

|C(F 3
reversed)| =|C(M2)|+ |C(M1) ∩ U(M2)| (10)

|C(F 3)| − |C(F 3
reversed)| = |C(M1) ∩ CW(M2)|

− |C(M2) ∩ CW(M1)|
(11)

With our filter mechanism, CW(M1) and CW(M2)
are indeterminate so that learners’ order is likely to
affect the performance of F3.

4.4 Is our Filter Mechanism Optimal?
Our filter mechanism is not optimal and the op-
timal filter mechanism should be able to find all
the wrong fixes without checking the ground-truth
fixed code. We rewrite the Eq. 6 and Eq. 7 as:

|C(F 3
i+1)| = |C(F 3

i)|+ |C(Mi+1) ∩W(F 3
i)| (12)

W(F 3
i+1) =W(F 3

i) ∩W(Mi+1) (13)

Based on some set-theoretic derivations, we get:

|C(F 3
i+1)| = |T | − |

i+1⋂
n=1

W(Mn)| = |
i+1⋃
n=1

C(Mn)| (14)

With this optimal filter mechanism, the more dif-
ferent learners involved in the F3, the better per-
formance F3 will gain. Moreover, the learners’
order has no effect on the final results, since the⋃i+1

n=1 C(Mn) is the same for any order of learners.
These equations above mean that as long as we

know the individual performance of learners, we
can calculate the performance for all F3 with dif-
ferent learners’ order and quickly find the best F3

based on these learners without experimental val-
idations. We will validate the theoretical calcula-
tions with experimental results in RQ2.

5 Experiment and Analysis

Our paper is biased towards verifying the theoret-
ical validity of the F3, and the experiments are
just one of the supporting evidences. F3 may im-
prove performance in any area where unchanged
fixes exist, such as automatic post-editing and text
style transfer, which is intuitive and theoretically
proven by us. Here we just pick the bug fixing
as a typical task for experimental validation, and

these experiments should also hold for other F3-
compliant domains. In the experiments, we focus
on investigating the following research questions:

• RQ1 (Performance Boost): How much of the
performance boost does F3 provide?

• RQ2 (Impact of Learner Order and Count):
Is the theoretical performance of F3 accurate
under different orders and number of learners?

• RQ3 (Cost Evaluation): How much will F3

increase the cost?

• RQ4 (Generality Analysis): How to combine
learners with different input and output?

5.1 Performance Boost (RQ1)

5.1.1 Baselines
There are a variety of NMT-based bug fixing
methods. SUQUENCER (Chen et al., 2019)
only conducts bug fixing without localization, and
Graph2diff (Tarlow et al., 2020) is mainly designed
for compilation errors while we focus on seman-
tic bugs. Our approach translates the entire buggy
code into correct code, including bug location and
fixing, which is similar to the Seq2Seq RNN model
in (Tufano et al., 2019), hence we pick it as our
baseline. In fact, F3 can fuse existing models and
what it needs to verify most is its enhancement to
existing models rather than a direct comparison
with existing models. Therefore, comparing F3

with the learners within it (Seq2Seq Transformer
and AST2Seq Transformer) is what matters most.

Besides, considering that F3 is a method of
model connection, in order to reflect the superi-
ority of F3 and the usefulness of the unchanged
fix, we design a variety of different connection
methods as the baselines for comparison. These
connections are based on learners who have been
trained individually, and the difference is in the
strategy of decision making, not in the training
method. Taking the connection between two learn-
ers as an example, these connection methods are de-
signed as follows (“Parallel” stands for two models
arranged in parallel, accepting all input cases sep-
arately and outputting the results. “Series” stands
for connecting two learners in series in order of
overall performance from highest to lowest.):

Parallel Random For each input case, the output
of two learners is randomly taken as the final output
of the framework.

3500

Parallel Prior For each output case, there is a
75% probability that the output of the overall better
performing learner is taken and a 25% probability
that the output of the overall worse performing
learner is taken as the output of the final framework.
That is, the decision is biased in favor of the model
with better performance.

Series Random After the first learner accepts all
input cases, according to the output results, 50% of
the original input cases are randomly selected to en-
ter the second learner, and the output of the second
learner overwrites the output of the corresponding
cases of the previous learner. That is, for all cases
received by the second learner, the final output of
the framework is the output of the second learner,
otherwise, it is the output of the first learner.

Series Prior Only 25% of the original input
cases will be picked into the second learner, the
rest of the design is the same as Series Random.

Parallel Unchanged Random For the current
case, if the output of the current learner is un-
changed fix, the output of the other learner is di-
rectly adopted as the final output of the framework,
and if both are unchanged fix, one is randomly se-
lected as the output. For the remaining cases (i.e.,
cases for which neither learner outputs unchanged
fix), the outputs of two learners are randomly se-
lected as the final output of the framework.

Parallel Unchanged Prior Exactly the same as
the Parallel Unchanged Random design, except that
for remaining cases, there is a 75% probability that
the output of the overall better performing learner
is taken and a 25% probability that the output of
the overall worse performing learner is taken as the
output of the final framework.

Parallel Unchanged Order Exactly the same as
the Parallel Unchanged Random design, except that
for all remaining cases, the output of the learner
with better overall performance is taken as the final
output of the framework.

Series Unchanged Random As the first learner
accepts all input cases, it inputs all cases of un-
changed fix to the second learner, and then takes
50% of the remaining cases and inputs them to the
second learner. The output of the second learner
overwrites the output of the corresponding case of
the first learner, as long as it is not an unchanged
fix of second learner.

Series Unchanged Prior Only 25% of the re-
maining input cases will be picked into the second
learner, the rest of the design is the same as Series
Unchanged Random.

5.1.2 Dataset and Preprocessing
We conduct all our experiments on BFP and Co-
dRep divided as Table 1.

• BFP (Tufano et al., 2019). BFP is derived
from the commits of some Java projects on
github. We use abstract BFP with two col-
lections, BFPsmall (token length <= 50) and
BFPmedium (50 < token length <= 100).

• CodRep (Chen and Monperrus, 2018). Co-
dRep is from open-source Java projects
of (Hata et al., 2012; Li et al., 2019; Monper-
rus and Martinez, 2012; Scholtes et al., 2016;
Tufano et al., 2017; Zhong and Su, 2015; Zhou
et al., 2012). We filter out the methods with
token length > 25 and < 100, and we call it
CodRepreal. Then we do abstraction on it and
get an abstract dataset called CodRepabstract.

5.1.3 Implementation Details
For AST2Seq Transformer and Seq2Seq Trans-
former, we follow the implementation of
Fairseq (Ott et al., 2019). For AST2Seq Trans-
former, we first parse the buggy methods to ASTs,
and use the ASTs as input, fixed method sequences
as output. For Seq2Seq RNN, we implement
it using PyTorch and set the hyperparameters
according to (Tufano et al., 2019). We train all
models separately on the training set of BFPsmall,
BFPmedium, CodRepreal and CodRepabstract.

During inference, we connect Seq2Seq Trans-
former and AST2Seq Transformer with our filter
mechanism to be the F3

ST+AT and F3
AT+ST for test-

ing. The programs are fixed correctly only if they
are identical to their ground-truth fixed programs
in the test set. The evaluation metric is accuracy.

5.1.4 Results and Analysis
Table 2 shows the accuracy comparison among sin-
gle models, different connections methods and our
F3
ST+AT and F3

AT+ST on BFPsmall, BFPmedium,
CodRepreal and CodRepabstract datasets.

It is worth mentioning that baselines contain-
ing the “Prior” field are given a higher priority to
the learner with better performance. For example,
with BFPsmall, in the baseline containing the “Se-
ries” field, ST is first, and the corresponding F3 is

3501

Approach BFPsmall BFPmedium CodRepreal CodRepabstract

Seq2Seq RNN (SR) 530 / 5835 (9.08%) 209 / 6545 (3.19%) 45 / 1483 (3.03%) 105 / 1483 (7.08%)
Seq2Seq Transformer (ST) 822 / 5835 (14.09%) 252 / 6545 (3.85%) 86 / 1483 (5.80%) 145 / 1483 (9.78%)
AST2Seq Transformer (AT) 749 / 5835 (12.84%) 383 / 6545 (5.58%) 52 / 1483 (3.51%) 152 / 1483 (10.25%)

Parallel Random 780 / 5835 (13.68%) 315 / 6545 (4.81%) 67 / 1483 (4.52%) 146 / 1483 (9.84%)
Parallel Prior 809 / 5835 (13.86%) 353 / 6545 (5.39%) 76 / 1483 (5.12%) 149 / 1483 (10.05%)
Series Random 786 / 5835 (13.47%) 311 / 6545 (4.75%) 69 / 1483 (4.65%) 146 / 1483 (9.84%)
Series Prior 800 / 5835 (13.71%) 359 / 6545 (5.49%) 79 / 1483 (5.33%) 151 / 1483 (10.18%)
Parallel Unchanged Random 879 / 5838 (15.06%) 401 / 6545 (6.13%) 75 / 1483 (5.06%) 179 / 1483 (12.07%)
Parallel Unchanged Prior 901 / 5835 (15.44%) 413 / 6545 (6.31%) 85 / 1483 (5.73%) 180 / 1483 (12.14%)
Parallel Unchanged Order 947 / 5835 (16.23%) 438 / 6545 (6.69%) 90 / 1483 (6.07%) 184 / 1483 (12.41%)
Series Unchanged Random 869 / 5835 (14.89%) 395 / 6545 (6.04%) 72 / 1483 (4.86%) 177 / 1483 (11.94%)
Series Unchanged Prior 905 / 5835 (15.51%) 414 / 6545 (6.33%) 83 / 1483 (5.60%) 179 / 1483 (12.07%)

F3
ST+AT 947 / 5835 (16.23%) 424 / 6545 (6.48%) 90 / 1483 (6.07%) 201 / 1483 (13.55%)

F3
AT+ST 854 / 5835 (14.64%) 438 / 6545 (6.69%) 59 / 1483 (3.98%) 184 / 1483 (12.41%)

Table 2: The accuracy comparison among individual models, different connections methods and our F3
ST+AT and

F3
AT+ST on BFPsmall, BFPmedium, CodRepreal and CodRepabstract datasets.

F3
ST+AT , while with BFPmedium, AT is first, and

the corresponding F3 is F3
AT+ST .

Across all four datasets, we can combine a F3

framework, making it outperform any single-model
baselines and multi-model baselines, which fully il-
lustrates the performance advantage of F3. Among
them, the performance of Parallel Unchanged Or-
der can do the same as F3, the reason is that the
two are similar for the use of unchanged fix, but in
the subsequent experiments of RQ3 in Table 5, we
can see that the cost of F3 is smaller. Compared to
the single-model (SR, ST, and AT), F3 has a sig-
nificant degree of improvement, but this is slightly
lacking in the CodRepreal dataset. This may be
due to the fact that CodRepreal has not undergone
any abstraction process and its vocabulary is too
huge, resulting in the unchanged fix not being ob-
vious enough. This suggests that to fully utilize
the F3 framework, the vocabulary size needs to be
controlled, as in many existing approaches (Chen
et al., 2019), which is not the focus of this paper.

In addition, comparing baselines with and with-
out the “Unchanged” field, such as Parallel Ran-
dom and Parallel Unchanged Random, we can find
that the introduction of the unchanged fix phe-
nomenon can steadily improve the performance
of the baseline. For example, in BFPsmall, Series
Prior has lower performance than ST, but the intro-
duction of unchanged fix allows it to make better
decisions compared to the single model. This also
illustrates the enhancement of unchanged fix for
the decision phase.

We also find that although there is a difference
in performance of single models, for example, in

BFPsmall, ST has higher performance than AT, they
combine as F3

ST+AT and are able to improve per-
formance. It means that there still exist input cases
where ST cannot fix but AT can fix though the over-
all performance of ST is better. As long as the
two learners are not identical, they will possess
the possibility to be joined as F3 and improve the
performance.

5.2 Impact of Learners’ Order and Count
(RQ2)

We compare the performance of F3
AT+ST and

F3
ST+AT and we add the Seq2Seq RNN (SR) af-

ter the F3
ST+AT and F3

AT+ST to form F3
ST+AT+SR

and F3
AT+ST+SR.

The optimal filter mechanism should filter out all
the wrong fixes by comparing them with the input
buggy programs. To compare our filter mechanism
and the optimal filter mechanism, we artificially
select the wrong fixes of the learners by comparing
them with the ground-truth fixed programs in the
test set to simulate it. The dataset in this section is
BFPsmall.

Next, we count four sets, i.e., correct fixes C,
changed but wrong fixes CW , unchanged fixes U ,
and wrong fixes W defined above of the Seq2Seq
Transformer and AST2Seq Transformer, to calcu-
late the theoretical performance of these F3 based
on our equations above and compare it with the
experimental results to validate our theory.

5.2.1 Results and Analysis

Our filter mechanism In Table 3, with our filter
mechanism, the accuracy of F3

ST+ST is the same

3502

Approach Accuracy with two Filter Mechanism

Our Filter Mechanism Optimal Filter Mechanism

SR 530 / 5835 (9.08%)
ST 822 / 5835 (14.09%)
AT 749 / 5835 (12.84%)
F3
ST+AT 947 / 5835 (16.23%) 1090 / 5835 (18.68%)

F3
AT+ST 854 / 5835 (14.64%) 1090 / 5835 (18.68%)

F3
ST+AT+SR 949 / 5835 (16.26%) 1097 / 5835 (18.80%)

F3
AT+ST+SR 856 / 5835 (14.67%) 1097 / 5835 (18.80%)

F3
ST+ST 822 / 5835 (14.09%) 822 / 5835 (14.09%)

Table 3: The accuracy with our filter mechanism
and optimal filter mechanism of the Seq2Seq RNN
(SR), Seq2Seq Transformer (ST), AST2Seq Trans-
former (AT) , F3

ST+AT and the various F3 transformed
from it. The dataset of these results is BFPsmall.

T C (AT) W (AT) CW (AT) U (AT)

T 5,835 749 5,086 3,309 1,777
C (ST) 822 481 341 236 105
W (ST) 5,013 268 4,745 3,073 1,672
CW (ST) 2,510 143 2,367 1,894 473
U (ST) 2,503 125 2,378 1,179 1,199

Table 4: Counts of C, CW , U and W of Seq2Seq (ST)
and AST2Seq (AT) Transformer on the test set T .

as Seq2Seq Transformer, demonstrating that con-
necting identical models is not helpful.

The accuracy results of Seq2Seq Transformer,
F3
ST+AT , F3

ST+AT+SR are increasing. A similar
pattern appears in AST2Seq Transformer, F3

AT+ST

and F3
AT+ST+SR. It shows that adding new differ-

ent learners to F3 can improve the performance of
F3. Moreover, we can see that the accuracy im-
provement from Seq2Seq Transformer to F3

ST+AT

is greater than that from F3
ST+AT to F3

ST+AT+SR.
This may be because both Seq2Seq RNN and
Seq2Seq Transformer are based on token sequences
and the bugs they can fix are similar. These results
above can verify our theory that with our filter
mechanism when adding a new learner to the orig-
inal F3, we can guarantee that the new F3 will
performs better than the original F3. As to learner’
order, we can see that F3

ST+AT performs better than
F3
AT+ST , which shows that changing the order of

learners may affect the performance of F3 with our
filter mechanism as we mentioned above.

Quantitatively, according to the counts of the
four sets in Table 4, we can calculate theoretical
number of F3

ST+AT correct fixes with our filter
mechanism based on Eq. 6 as:

|C(F 3
ST+AT)| = |C(ST)|+ |C(AT) ∩ U(ST)| = 947

(15)

and the theoretical accuracy is 16.23% , which

Approach Accuracy Cost
Second
Learner
Cost

Parallel Random 780 / 5835 (13.68%)

11670 5835
Parallel Prior 809 / 5835 (13.86%)
Parallel Unchanged Random 879 / 5838 (15.06%)
Parallel Unchanged Prior 901 / 5835 (15.44%)
Parallel Unchanged Order 947 / 5835 (16.23%)

Series Random 786 / 5835 (13.47%) 8750 2915
Series Prior 800 / 5835 (13.71%) 7293 1458
Series Unchanged Random 869 / 5835 (14.89%) 10004 4169
Series Unchanged Prior 905 / 5835 (15.51%) 9171 3336

F3
ST+AT 947 / 5835 (16.23%) 8338 2503

F3
AT+ST 854 / 5835 (14.64%) 7612 1777

Table 5: The cost of baselines and F3 in BFPsmall.

is consistent with experimental results. Similarly,
it is also consistent for F3

AT+ST . Therefore, the
equations proposed above have been verified.

Optimal filter mechanism As we have proved,
the learners’ order does not have effect on F3, and
F3 outperforms all the internal learners in Table 3.

Moreover, F3 with the optimal filter mechanism
all outperform these with our filter mechanism.
However, improvements between the two filter
mechanism are not really significant, because the
performance of the learners is also an important
bottleneck of F3.

We can calculate the theoretical number of fixes
corrected by F3

ST+AT with the optimal filter mech-
anism based on Eq. 12 as:

|C(F 3
ST+AT)| = |C(ST)|+ |C(AT) ∩W(ST)| = 1090

(16)

and the theoretical accuracy is 18.68%, which is
also identical to our experiment.

5.3 Cost Evaluation (RQ3)
In order to facilitate the cost statistics, we record
the inference cost consumed by each input case
into the Transformer (including ST and AT, both of
which are transformers and have the same number
of parameters, similar time consumption to process
the same case) as one unit of cost. For example, if
a buggy code, after passing ST, is filtered and then
passes the second learner of F3

ST+AT , AT, then it
consumes 2 units of cost. According to this, we
have recorded the amount of cost consumed by
all connection methods in the BFPsmall dataset, as
shown in Table 5.

Overall, compared to other baselines, F3 has the
best performance and almost the lowest consump-
tion. Series Prior has a lower cost than FST+AT ,
but at the cost of a much lower accuracy. The two

3503

public void METHOD_1 () {
if ((VAR_1) != null) {

VAR_2 = true ;
VAR_1 . METHOD_2 () ;

}
}

Buggy code

public void METHOD_1 () {
if ((VAR_1) != null) {

VAR_2 . set (true) ;
VAR_1 . METHOD_2 () ;

}
}

Final results

-: VAR_2 = true ;
+: VAR_2 = true ;

Learner 1 public void METHOD_1 () {
if ((VAR_1) != null) {

VAR_2 = true ;
VAR_1 . METHOD_2 () ;

}
}

First stage results

public void METHOD_1 () {
if ((VAR_1) != null) {

VAR_2 = true ;
VAR_1 . METHOD_2 () ;

}
}

Filtered first stage results

Learner 2

First stage results are unchanged compared to buggy code, filtered out

Diffs

Figure 4: The case analysis. The first learner fails to
fix the bug because its output diffs do not change the
buggy code. This buggy code is filtered into the second
learner which generates the whole code piece to fix it.

learners in all parallel methods accept all cases
and so have the maximum cost. While in Series
methods, the introduction of unchanged fix, which
increases the accuracy, also leads to a part of the
cost increase. This illustrates that the essence of
unchanged fix is to reduce the randomness in the
decision process by additional unsupervised trial
and error, thus improving performance.

5.4 Generality Analysis (RQ4)

F3 is a general framework that can combine a wide
variety of bug fixing methods with different inputs
and outputs. Figure 4 is a case for analysis. The
first learner produces a predicted diff and we incor-
porate the diff into the original buggy code to get
first stage results, which is unchanged because it
is the same as the buggy code, so our filter mecha-
nism filters it out and passes it to the second learner
to continue the fixing, and the second learner com-
pletes the fixing successfully.

Obviously, the two learners can essentially be
replaced by most existing state-of-the-art methods
because no matter how the existing model changes
the input and output, its final fix still needs to be ver-
ified on the original buggy code, which inevitably
can produce complete first stage results, thus allow-
ing our filter mechanism works. F3 may be suitable
for many tasks that make changes to the original
input, such as image denoising.

6 Related Work

We refer the reader to (Monperrus, 2018) for a
comprehensive review of program repair. There
are many bug fixing works (Jiang et al., 2018;
Lutellier et al., 2020) recently. DeepFix (Gupta
et al., 2017), TRACER (Ahmed et al., 2018), Deep-

Delta (Mesbah et al., 2019) and Graph2Diff (Tar-
low et al., 2020) are the important works related
to ours, which use machine learning or NMT for
compiler program repair, while our work focuses
on logical or semantic bugs. Furthermore, (Tu-
fano et al., 2019) investigate the feasibility of NMT
for bug fixing via Seq2Seq RNN model, it takes
a buggy method token sequences as input and the
fixed method token sequences as output, which is
similar to our work. In contrast, we use AST as
input to the Transformer model and focus on ex-
ploring the links between learners in the F3 rather
than single models. (Chen et al., 2019) propose
SUQUENCER using a Seq2Seq model with atten-
tion and copy mechanism for bug fixing without
locating. In contrast, our work includes bug locat-
ing and fixing. CODIT (Chakraborty et al., 2020)
is a tree-based NMT system to model source code
changes and learn code change patterns from the
wild, it uses the AST to model code changes while
we use it to model the buggy code.

In general, the focus of our work differs from all
of the above in that our F3 focuses on the connec-
tions between models. Our works are orthogonal
to many of the above, and the F3 can connect them
to address more comprehensive tasks.

7 Conclusion

We reveal and study the unchanged fix issue in
learning-based bug fixing tasks. Based on our
findings, we propose an intuitive yet effective gen-
eral framework called F3 to concatenate different
learners with the filter mechanism to filter out un-
changed fixes. We demonstrate the considerable
performance and generality of F3 from both theo-
retical and experimental perspectives. In the future,
we will the design better filter mechanism and ap-
ply F3 to different learning tasks.

Acknowledgements

This work is supported by the NSFC projects (No.
62072399, No. U19B2042, No. 61402403), Chi-
nese Knowledge Center for Engineering Sciences
and Technology, MoE Engineering Research Cen-
ter of Digital Library, National Engineering Re-
search Center for Big Data Technology and System,
the Fundamental Research Funds for the Central
Universities, and partially supported by Australian
Research Grant DP21010134.

3504

References
Umair Z Ahmed, Pawan Kumar, Amey Karkare, Pu-

rushottam Kar, and Sumit Gulwani. 2018. Compila-
tion error repair: for the student programs, from the
student programs. In Proceedings of the 40th Inter-
national Conference on Software Engineering: Soft-
ware Engineering Education and Training, pages
78–87.

S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray.
2020. Codit: Code editing with tree-based neural
models. IEEE Transactions on Software Engineer-
ing, pages 1–1.

Zimin Chen, Steve James Kommrusch, Michele Tu-
fano, Louis-Noël Pouchet, Denys Poshyvanyk, and
Martin Monperrus. 2019. Sequencer: Sequence-
to-sequence learning for end-to-end program repair.
IEEE Transactions on Software Engineering.

Zimin Chen and Martin Monperrus. 2018. The codrep
machine learning on source code competition. arXiv
preprint arXiv:1807.03200.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish
Shevade. 2017. Deepfix: Fixing common c lan-
guage errors by deep learning. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intel-
ligence, pages 1345–1351.

Hideaki Hata, Osamu Mizuno, and Tohru Kikuno.
2012. Bug prediction based on fine-grained module
histories. In 2012 34th international conference on
software engineering (ICSE), pages 200–210. IEEE.

Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao,
and Xiangqun Chen. 2018. Shaping program repair
space with existing patches and similar code. In Pro-
ceedings of the 27th ACM SIGSOFT international
symposium on software testing and analysis, pages
298–309.

Daoyuan Li, Li Li, Dongsun Kim, Tegawendé F Bis-
syandé, David Lo, and Yves Le Traon. 2019. Watch
out for this commit! a study of influential software
changes. Journal of Software: Evolution and Pro-
cess, 31(12):e2181.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang,
Yitong Li, Moshi Wei, and Lin Tan. 2020. Coconut:
Combining context-aware neural translation models
using ensemble for program repair. In Proceedings
of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 101–114.

Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glo-
rioso, and Edward Aftandilian. 2019. Deepdelta:
learning to repair compilation errors. In Proceed-
ings of the 2019 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering,
pages 925–936.

Martin Monperrus. 2018. The living review on au-
tomated program repair. HAL/archives-ouvertes. fr,
Tech. Rep. hal-01956501.

Martin Monperrus and Matias Martinez. 2012. Cvs-
vintage: A dataset of 14 cvs repositories of java soft-
ware.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Ingo Scholtes, Pavlin Mavrodiev, and Frank
Schweitzer. 2016. From aristotle to ringel-
mann: a large-scale analysis of team productivity
and coordination in open source software projects.
Empirical Software Engineering, 21(2):642–683.

Daniel Tarlow, Subhodeep Moitra, Andrew Rice,
Zimin Chen, Pierre-Antoine Manzagol, Charles Sut-
ton, and Edward Aftandilian. 2020. Learning to fix
build errors with graph2diff neural networks. In Pro-
ceedings of the IEEE/ACM 42nd International Con-
ference on Software Engineering Workshops, pages
19–20.

Michele Tufano, Gabriele Bavota, Denys Poshyvanyk,
Massimiliano Di Penta, Rocco Oliveto, and An-
drea De Lucia. 2017. An empirical study on
developer-related factors characterizing fix-inducing
commits. Journal of Software: Evolution and Pro-
cess, 29(1):e1797.

Michele Tufano, Cody Watson, Gabriele Bavota, Mas-
similiano Di Penta, Martin White, and Denys Poshy-
vanyk. 2019. An empirical study on learning bug-
fixing patches in the wild via neural machine trans-
lation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 28(4):1–29.

Hao Zhong and Zhendong Su. 2015. An empirical
study on real bug fixes. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engi-
neering, volume 1, pages 913–923. IEEE.

Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where
should the bugs be fixed? more accurate information
retrieval-based bug localization based on bug reports.
In 2012 34th International Conference on Software
Engineering (ICSE), pages 14–24. IEEE.

