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Abstract

Recent work has shown that dense passage re-
trieval techniques achieve better ranking accu-
racy in open-domain question answering com-
pared to sparse retrieval techniques such as
BM25, but at the cost of large space and mem-
ory requirements. In this paper, we analyze
the redundancy present in encoded dense vec-
tors and show that the default dimension of
768 is unnecessarily large. To improve space
efficiency, we propose a simple unsupervised
compression pipeline that consists of princi-
pal component analysis (PCA), product quan-
tization, and hybrid search. We further inves-
tigate other supervised baselines and find sur-
prisingly that unsupervised PCA outperforms
them in some settings. We perform exten-
sive experiments on five question answering
datasets and demonstrate that our best pipeline
achieves good accuracy–space trade-offs, for
example, 48× compression with less than 3%
drop in top-100 retrieval accuracy on aver-
age or 96× compression with less than 4%
drop. Code and data are available at http:

//pyserini.io/.

1 Introduction

Dense passage retrieval (DPR; Karpukhin et al.,
2020) improves end-to-end retrieval accuracy
in open-domain question answering (QA) by
representing queries and documents in a low-
dimensional, dense vector space. However, the
vastly increased space and memory demands for
storing and loading the dense vectors call for ef-
fective compression methods (Izacard et al., 2020).
For example, the size of the original DPR vector
(flat) index on the Wikipedia corpus is about 61
GB, while its sparse counterpart—BM25 inverted
index—only uses 2.4 GB. The staggering increase
of around 25× in space requirements only yields
an average gain of 2.5% in top-100 accuracy across

∗ Equal contribution

five datasets (Ma et al., 2021), indicating potential
redundancy in the dense representations.

In this work, we quantify redundancy within the
dense vectors encoded by the DPR model using
explained variance ratio and mutual information.
Figure 1 shows that the original 768 dimensions
is unnecessarily large as both the mutual informa-
tion and explained variance ratio start to plateau at
around 256 dimensions. Based on this observation,
we further propose a simple yet effective pipeline
for dense retrieval compression that includes prin-
cipal component analysis (PCA), product quantiza-
tion (PQ), and hybrid search to reduce index size
while retaining effectiveness.

We also compare other compression options,
including supervised dimensionality reduction,
where we fine-tune a linear projection layer on
top of the pre-trained DPR model using relevance
labels. Surprisingly, we find that PCA achieves top-
100 retrieval accuracy that is better than the two
supervised dimensionality reduction techniques
for 256 and 128 dimensions, while supervised
techniques outperform (unsupervised) PCA for
64 dimensions. Our techniques support different
accuracy–space trade-offs, but one sweet spot man-
ages to compress the dense vectors by 96× with
less than 4% drop in top-100 accuracy on aver-
age across five standard QA datasets. Finally, we
incorporate our pipeline with the BM25 inverted in-
dex for sparse–dense hybrid search, where we can
achieve 16× compression without any accuracy
drop compared to the original DPR results.

2 Background and Related Work

Sparse retrieval methods such as BM25 (Robert-
son and Zaragoza, 2009; Yang et al., 2017)
have established strong baselines in open-domain
QA (Chen et al., 2017; Yang et al., 2019). Re-
cently, dense retrieval emerges as a promising al-
ternative (Karpukhin et al., 2020; Zhan et al., 2020;
Xiong et al., 2021; Hofstätter et al., 2020; Lin et al.,

http://pyserini.io/
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2020) in end-to-end question answering, but at the
cost of increased space requirements. Efforts have
been made towards developing memory efficient
baselines (Izacard et al., 2020), but the topic still re-
mains under-explored. In the following, we briefly
introduce how dense retrieval works during training
and inference.

Given a collection of passages and a QA task,
DPR (Karpukhin et al., 2020) adopts a bi-encoder
structure where encoders fQ(·) and fD(·) are in-
dependent BERT (Devlin et al., 2019) models that
encode questions/passages into dense vectors. The
relevance between the question q and passage d
is defined by the dot product between their corre-
sponding vectors as v>q vd, where vq = fQ(q) and
vd = fD(d). The relevance score is used to rank
the passages during retrieval with nearest neighbor
search techniques. During training, given a ques-
tion q, a positive passage d+ that contains the an-
swer for q, and m negative passages d−1 , d

−
2 , ...d

−
m,

the training objective is:

L(q, d+, d−1 , d
−
2 , · · · , d

−
m)

= − log p(D = d+ | Q = q)

= − log
exp(v>q vd+)

exp(v>q vd+) +
m∑
i=1

exp(v>q vd−i
)

, (1)

where p(D = d+ | Q = q) can be seen as a
classifier given the question q and evaluated at d+.
Normally, the [CLS] output of the BERT model
is used as the dense representation and its default
dimension is 768.

3 Compressing Dense Representations

As mentioned above, DPR’s encoders produce
dense vectors of 768 dimensions by default, which
we will show is unnecessarily large below. In this
section, we discuss how to quantify the redundancy
in the encoded vectors and how to improve DPR’s
space efficiency by reducing this redundancy.

3.1 Quantifying Redundancy

We use two metrics to quantify the redundancy in
dense vectors: explained variance ratio of the prin-
cipal components and mutual information between
the question vectors and passage vectors. The ex-
plained variance ratio of PCA is defined as:∑m

i=1 σ
2
i∑n

i=1 σ
2
i

, (2)
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Figure 1: Quantifying redundancy of encoded vectors
using explained variance ratio and normalized mu-
tual information. Mutual information plateaus beyond
roughly 200 dimensions, indicating redundancy in the
remaining dimensions of DPR-768.

where σ2i is the variance corresponding to the ith

largest eigenvalue, n is the original dimension, and
m is the reduced dimension. This ratio tells us how
much variance is retained by preserving the first m
eigenvectors of the dense representations. Another
way to evaluate redundancy is using the mutual
information between the dense representation of
questions Q and the retrieved passages D, which
can be approximated using the classifier in Eq. (1):

I(Q;D)

≈ 1

N

N∑
i=1

Ep(D|Q=qi)[ln p(D | Q = qi)]

− Ep(D)

[
ln

1

N

N∑
i=1

p(D | Q = qi)

]
, (3)

where {qi}Ni=1 is the training/dev/test questions.
This quantity is upper-bounded by lnN and the
normalized mutual information is I(Q;D)/ lnN .

Figure 1 shows the explained variance and mu-
tual information of compressed vectors with differ-
ent dimensions reduced by PCA. As we can see,
∼90% variance and ∼99% mutual information is
held by the first ∼200 dimensions. However, as the
dimension further decreases, useful information is
discarded at a higher rate and the dense representa-
tion starts to degrade visibly. The figure illustrates
that a dimension of ∼200 could be a sweet spot in
accuracy–space trade-offs. We also find in later ex-
periments that a dimension of 256 indeed achieves
the best balance among other choices as shown in
Figure 2, which will be discussed in Section 5.3.
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3.2 Dense Vector Compression
We explore three different types of dimensionality
reduction techniques given dense representations
from a pre-trained DPR model:

Supervised Approach We apply a linear trans-
formation to the pre-trained dense vector represen-
tations, and fine-tune this linear layer with rele-
vance labels according to Eq. (1). Independent lin-
ear layers Wq and Wp are added to the question en-
coder and passage encoder, respectively. To make
this compression technique a plug-and-play compo-
nent, we only optimize the linear layer while freez-
ing the rest of the networks. In addition, we add an
orthogonality regularization term ||WpW

>
q − I||2

to the original loss function in Eq. (1), where I is
the identity matrix. Such regularization encourages
the weights in Wp and Wq to be orthogonal while
retaining the most information in the original dense
vectors.

Unsupervised Approach A popular technique,
principle component analysis (PCA), can effec-
tively reduce the dimensionality of high dimen-
sional vectors while retaining most of the variance
within the original representation. We fit a linear
PCA transformation using the combination of all
question and passage vectors to learn a compressed
representation based on a pre-trained DPR model.
During inference, the same transformation is ap-
plied to each question and the relevance score is
the dot product between the compressed question
and passage vectors.

Product Quantization On top of the supervised
and unsupervised dimensionality reduction tech-
niques described above, we further leverage prod-
uct quantization (PQ), which decomposes the orig-
inal d-dimensional vector into s sub-vectors. Each
sub-vector is quantized using k-means and even-
tually stored with t bits (Jégou et al., 2011). For
example, the original 768 dimension dense vector
occupies 768 × 32 bits. By dividing it into 192
sub-vectors of 8 bits, the storage space becomes
192× 8 bits, which is 1/16 of the original size. On
average, space is reduced from 32 bits to 2 bits per
dimension.

4 Experimental Setup

Datasets and Metrics We evaluate the top-k re-
trieval accuracy of our compression methods on
five QA datasets examined in the original DPR pa-
per (Karpukhin et al., 2020): NQ, TriviaQA, WQ,

CuratedTREC, and SQuAD. The top-k retrieval
accuracy is defined as the fraction of questions that
have at least one correct answer span in the top-k
retrieved passages. Following previous work, we
use k ∈ {20, 100}. We use the combination of
NQ, TriviaQA, WQ, and CuratedTREC to train our
models, following the same setting as DPR.

Model Training For DPR, instead of the original
Facebook implementation, we use the implementa-
tion of Gao et al. (2021), which takes advantage of
gradient caching to save GPU memory usage and
mixed precision training to speed up the learning
process. We find that using a learning rate of 10−6

and training the model for 40 epochs achieve better
effectiveness than the default DPR setting. We refer
to the original DPR model, which has 768 dimen-
sional output vectors, as DPR-768. Other hyperpa-
rameters are identical to default DPR (Karpukhin
et al., 2020).

For the compression methods, we consider the
reduced dimensions d ∈ {256, 128, 64} according
to Figure 1. For the supervised approach, the linear
layer is trained for one epoch with a learning rate of
10−3 while freezing the backbone DPR model (i.e.,
BERT), and we refer to these models as Linear-
d. For comparison, we train models with identical
architecture to Linear-d, but without freezing the
BERT model, and refer to them as DPR-d.

For the unsupervised PCA approach, we fit the
PCA transformation with question and passage em-
beddings produced by the original DPR-768 model.
The question embeddings are from the original em-
beddings of questions in the training set. A total of
160k passage embeddings are randomly sampled
from the passage embeddings of the entire corpus
(i.e., original dense index).

We utilize the PQ features from Faiss (Johnson
et al., 2021). The number of codewords for each
sub-vector is fixed at 256 (i.e., using 8 bits). Fol-
lowing Izacard et al. (2020), we change the num-
ber of sub-vectors for dense embeddings such that
the average memory of each dimension is reduced.
Combined with dimensionality reduction methods,
we decrease the occupied space of each dimension
from 32 bits to 1 or 2 bits.

Sparse–Dense Hybrid Search Ma et al. (2021)
have shown that hybrid search significantly im-
proves the retrieval accuracy of DPR. Therefore,
we fuse the DPR’s and BM25’s retrieval results
following their same rule, where the final hybrid
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Method NQ TriviaQA WQ CuratedTREC SQuAD
top-20 top-100 top-20 top-100 top-20 top-100 top-20 top-100 top-20 top-100

1× compression size: 61 GB latency: 7570 ms
DPR-768 79.4 87.0 78.5 84.5 75.3 83.0 88.2 94.4 58.3 72.4

3× compression size: 21 GB latency: 2540 ms
PCA-256 77.2 85.5 76.5 83.4 73.5 81.9 87.3 93.8 53.7 69.2
Linear-256 76.2 85.2 75.6 83.0 71.9 81.3 86.3 93.7 51.0 67.1
DPR-256 71.8 84.1 72.1 81.2 71.8 80.6 86.6 91.8 47.2 63.3

6× compression size: 11 GB latency: 1130 ms
PCA-128 75.3 84.3 74.9 82.7 72.4 81.3 86.3 93.5 51.4 67.1
Linear-128 74.7 84.2 74.4 82.7 71.3 80.6 86.0 93.2 48.7 65.4
DPR-128 72.0 82.6 69.9 79.9 68.5 78.9 83.6 91.5 44.4 60.9

12× compression size: 5.1 GB latency: 625 ms
PCA-64 63.6 77.2 66.7 78.4 65.5 76.8 81.1 89.8 42.2 59.8
Linear-64 69.7 81.2 69.3 80.0 66.3 77.8 83.4 91.8 42.4 59.9
DPR-64 68.3 80.4 65.7 77.6 66.2 77.5 82.1 91.1 39.5 56.6

BM25 62.9 78.3 76.4 83.2 62.4 75.5 80.7 89.9 71.1 81.8

Table 1: Top-{20, 100} retrieval accuracy of different dimensionality reduction methods evaluated at d =
{256, 128, 64} on five benchmark QA datasets. The BM25 index size is about 2.4 GB.

score is calculated by scoredense + α · scoresparse.
We set α = 1, which equally weights dense and
sparse scores for all hybrid search cases as it is a
good default option for hybrid search in general.

5 Results

In this section, we characterize the trade-offs be-
tween retrieval accuracy and space requirements
using different combinations of our proposed tech-
niques. All experiments are implemented using the
Pyserini IR toolkit (Lin et al., 2021).

5.1 Dimensionality Reduction

Table 1 shows the top-{20, 100} accuracy of
the three dimensionality reduction techniques
presented in Section 3.2 evaluated at d =
{256, 128, 64} on five benchmark QA datasets.
DPR-768 achieves the best accuracy, which serves
as the upper bound for compression. Overall, the
top-100 accuracy decreases as we reduce the dense
vectors to fewer dimensions. However, we see that
PCA-256 only has a 0.6 ∼ 1.5% drop in accuracy
on {NQ, TriviaQA, WQ, CuratedTREC} while
achieving 3× compression. Model quality degrades
more on SQuAD, since our models are trained on
the combination of the other four datasets.

We further evaluate retrieval latency for different
dimensionality levels in Table 1. Although latency
is not the focus of this work, it is still worth noticing
that dimensionality reduction also reduces retrieval
latency as it speeds up dot-product calculations.
For example, reducing dimensionality from 768

to 256 can reduce retrieval latency by three times.
The latency is measured by query encoding time +
brute-force retrieval time using a machine with In-
tel Xeon Platinum 8160 2.10GHz CPU using Faiss
FlatIP indexes. Both query encoding and retrieval
are performed with a single CPU thread.

Across different dimensions, the unsupervised
PCA method often works the best in terms of the
trade-off between accuracy and compression rate.
It is surprising that unsupervised PCA outperforms
the other two supervised methods at dimensions
256 and 128. Although the supervised methods
might be further improved with carefully-tuned
hyperparameters, training DPR can be computa-
tionally expensive, while PCA is the more robust
and economical method to achieve comparable re-
sults. Another surprising finding is that Linear-d
generally outperforms DPR-d, which means that
freezing the backbone DPR model and fine-tuning
only the linear layer seem to work better than train-
ing the entire model end to end to generate com-
pressed representations. However, this finding may
be simply due to poor hyperparameter selection.

5.2 Product Quantization

Product quantization (PQ) can often aggressively
reduce the index size while largely preserving re-
trieval effectiveness. For example, PQ2 (meaning
each dimension occupies 2 bits on average after
PQ) reduces the size of DPR-768’s vectors by 16×
with only 0.7% loss in top-100 retrieval accuracy
on average. Table 2 shows the top-{20, 100} re-
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Method Comp. Size Latency NQ TriviaQA WQ CuratedTREC SQuAD
top-20 top-100 top-20 top-100 top-20 top-100 top-20 top-100 top-20 top-100

DPR-768 1× 61 G 7570ms 79.4 87.0 78.5 84.5 75.3 83.0 88.2 94.4 58.3 72.4
+ PQ2 16× 3.8 G 2360ms 77.9 86.3 77.0 84.2 73.4 82.4 87.9 93.9 56.1 70.9
+ PQ1 32× 1.9 G 1080ms 73.7 83.5 74.7 82.7 71.1 81.0 86.3 92.8 52.4 68.4

PCA-256 3× 21 G 2540ms 77.2 85.5 76.5 83.4 73.5 81.9 87.3 93.8 53.7 69.2
+ PQ2 48× 1.3 G 765ms 74.8 84.1 74.5 82.6 72.2 81.0 88.2 92.7 51.7 67.5
+ PQ1 96× 642 M 382ms 67.6 79.4 68.0 79.2 66.5 78.7 82.7 90.1 45.1 61.4

PCA-128 6× 11 G 1130ms 75.3 84.3 74.9 82.7 72.4 81.3 86.3 93.5 51.4 67.1
+ PQ2 96× 642 M 416ms 72.3 82.9 72.2 81.7 71.0 80.1 85.3 91.8 48.5 64.9
+ PQ1 192× 321 M 266ms 62.6 76.4 64.3 77.2 64.8 77.1 80.0 89.2 41.4 58.7

Linear-64 12× 5.1 G 625ms 69.7 81.2 69.3 80.0 66.3 77.8 83.4 91.8 42.4 59.9
+ PQ2 192× 321 M 249ms 62.5 77.2 65.9 78.0 63.7 75.8 79.1 90.3 39.7 57.9
+ PQ1 384× 161 M 200ms 44.0 64.2 51.7 70.0 50.0 68.2 71.8 85.2 30.7 50.0

Table 2: Top-{20, 100} retrieval accuracy of three dimensionality reduction methods with different PQ settings at
d = {256, 128, 64}.
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Figure 2: Trade-offs between retrieval accuracy and in-
dex size using different combination of our compres-
sion techniques.

trieval accuracy of our dimensionality reduction
methods with different PQ settings. Combined with
product quantization, the dimensionality reduction
methods achieve a much higher compression rate
with, in some cases, only a modest loss in retrieval
accuracy. In addition, we find that PQ2 outperforms
PQ1 on most datasets and dimensions, as PQ1 suf-
fers more than twice the accuracy loss compared
to PQ2. It appears that compression to 1 bit per
dimension is too aggressive and represents a poor
trade-off. If we restrict the retrieval accuracy drop
to within 4% on average, we can compress the
dense vectors by up to 96×, reducing the original
DPR index from 61 GB to mere hundreds of MB
on the Wikipedia corpus.

5.3 Hybrid Search

Figure 2 shows the trade-off between retrieval ac-
curacy and index size with different combinations
of dimensionality reduction, product quantization,
and hybrid search. On each curve, the points from

left to right represent PQ1, PQ2, and w/o PQ, re-
spectively. Sparse retrieval with the BM25 inverted
index is shown as the black triangle. The dashed
lines represent sparse–dense hybrid retrieval; these
lines include the size of the BM25 inverted index.
In the plot, up and to the left represents better:
higher accuracy and smaller indexes.

As an example, the pipeline consisting of PCA-
256, PQ2, and HS reduces the (total) index size
from 61 GB to 3.7 GB (57 GB or roughly 16×
smaller) and even yields 0.2% gain in top-100 ac-
curacy compared to DPR-768. The dotted black
line in Figure 2 shows the Pareto Frontier, which
can be understood as the best achievable accuracy
for a particular restriction on index size. Overall,
we see that the DPR-768 (orange) line does not lie
on the frontier, which means that some combina-
tion of our techniques is strictly more accurate and
smaller than the original DPR representations.

6 Conclusions

This paper analyzes the redundancy within dense
representations from DPR, a popular dense retrieval
model. We propose a simple yet effective compres-
sion pipeline that enables trade-offs between space
and accuracy, which drastically reduces index size
while preserving end-to-end retrieval accuracy at
reasonable levels.
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