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Abstract

Human expertise and the participation of
speech communities are essential factors in the
success of technologies for low-resource lan-
guages. Accordingly, we propose a new com-
putational task which is tuned to the available
knowledge and interests in an Indigenous com-
munity, and which supports the construction
of high quality texts and lexicons. The task is
illustrated for Kunwinjku, a morphologically-
complex Australian language. We combine
a finite state implementation of a published
grammar with a partial lexicon, and apply this
to a noisy phone representation of the sig-
nal. We locate known lexemes in the signal
and use the morphological transducer to build
these out into hypothetical, morphologically-
complex words for human validation. We
show that applying a single iteration of this
method results in a relative transcription den-
sity gain of 17%. Further, we find that 75% of
breath groups in the test set receive at least one
correct partial or full-word suggestion.

1 Introduction

In over a century of practice in descriptive linguis-
tics, the pattern has been to prepare texts and a lex-
icon to support the construction of a grammar. The
grammar includes a description of the phonology
and morphosyntax, which inform the representa-
tion of the texts and lexicon, in a cyclic arrange-
ment (Crowley, 2007, 139f). The three types of
data are entwined in the so-called “Boasian trilogy”
of texts, lexicon, and grammar.

More recently, another tradition of working with
little-studied languages has grown up in the lan-
guage technology community. It frames these as
“low resource languages,” lacking the text, speech
and lexical resources that are needed for creating
speech and language technologies (Krauwer, 2003).
In many cases, these languages are not little-studied
at all, it is just that the technological methods can
only exploit texts and lexicons, not the grammar.

This brings us to the question: how can we lever-
age a grammar when working with a low resource
language? In particular, how can we leverage a
morphosyntactic description to accelerate the cre-
ation of texts and a lexicon for a morphologically
complex language?

Our approach complements the practice of
“learning to transcribe” (Bird, 2020), where non-
speaker transcribers train themselves to recognize
words in connected speech. We assume that tran-
scribers are able to sparsely annotate spans of audio
with any words they recognize. These words can
be aligned with the output of an automatic phone
recognizer, and the machine suggests new words
conditioned on phones in the locus of known words
(Fig. 1). We call this task local word discovery.

In the case of low-resource languages like Kun-
winjku (ISO gup), we do not have enough text to
train a language model to guide the suggestion
of words in the locus of previously recognized
words. However, as a morphologically-complex
language with a published grammar, we do have
information at the level of morphemes. Thus, we
employ a morphological transducer to map pre-
viously recognized morphs with the surrounding
noisy phone sequences to new morphologically-
complex wordforms for manual verification. The
constituent morphs of confirmed words are then
added to the lexicon. Figure 2 shows the proposed
local word discovery pipeline, which we deploy in
a prototype interactive transcription system. We

Figure 1: Local Word Discovery: A mix of morphs
and phones have been recognized, and combined into
hypothetical words
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test the system with speakers of Kunwinjku.
The main contributions are: a new word discov-

ery task which cultivates a morph lexicon; a new,
low-friction, interactive speech transcription work-
flow for low-resource morphologically-complex
languages which leverages local word discovery;
and a prototype implementation that integrates a
universal phone recognizer with a morphological
transducer.1.

We begin with a review of related work (Sec. 2),
followed by an overview of the proposed task of
local word discovery and our implementation of a
model which performs this task (Sec. 3). We then
explain how we set up an evaluative experiment
of the model (Sec 4), and give results (Sec. 5),
followed by conclusions (Sec. 6).

2 Previous Work

Early work on computer-assisted speech transcrip-
tion grew out of the increasing effectiveness of
automatic speech recognition (ASR) systems for
resource-rich languages. For example, Nanjo et al.
(2006) trained an ASR system on 228 hours of
transcribed speech from the National Congress of
Japan. Word recognition errors are manually cor-
rected using various interfaces: multiple choice
selection from confusion pairs, respeaking, and
manual correction.

Subsequent work continues to build in human
post-editing of increasingly accurate ASR output
(Luz et al., 2008; Sanchez-Cortina et al., 2012).
Thanks to their reliance on ASR, these systems de-
pend on lexicons and large amounts of transcribed
speech for training. The lack of performant ASR
systems for low-resource languages makes this ap-
proach ill-suited to the linguistic documentation
use case; we can only automate the first stage of
the ASR pipeline, namely phone recognition.

2.1 Phone recognition
Phone recognizers have been able to produce im-
pressive results in low-resource situations. For
example, the Persephone system was trained on
50 minutes of phonetically-transcribed Chatino
speech, and reached a 20% phone error rate.
Trained on 224 minutes of phonetically transcribed
Na speech, it reached a phone error rate of 11%
(Adams et al., 2018). Their results suggest that

1The finite state implementation of local word discov-
ery and the interactive transcription demo which deploys
it can be found at https://cdu-tell.gitlab.io/
tech-resources/

as little as 30 minutes of phonetically transcribed
speech are needed to achieve sub-30% phone er-
ror rate. Many others have been exploring this
approach (Besacier et al., 2014; Adams, 2017; Dun-
bar et al., 2017; Littell et al., 2018; Jimerson and
Prud’hommeaux, 2018; Adams et al., 2019).

Allosaurus provides a large pre-trained model
tuned on speech from over 2,000 languages, allow-
ing us to leverage learned parameters from a large
amount of training data (Li et al., 2020). The tech-
nique of fine-tuning multilingual models to achieve
better performance on lesser-resourced languages
is well attested in areas such as universal machine
translation and language modeling (Gu et al., 2018;
Eisenschlos et al., 2019).

While most acoustic models handle multilingual
data by taking the union of phoneme sets across lan-
guages, Allosaurus adds an allophone layer which
maps narrow phone sets in one language to the
phonemes of another. For example in English, all
instances of [p] and [ph] would map to p, while in
Mandarin Chinese they would be kept distinct. As
a result, there can be more consistent learning of
similar sounds across languages. However, phone
recognition falls far short of the word recognition
required for transcription.

2.2 Word recognition

Phone sequences may be split into word-like units
or “pseudowords” using unsupervised or semi-
supervised methods (Johnson et al., 2006; Johnson
and Goldwater, 2009; Sirts and Goldwater, 2013;
Eskander et al., 2016) or with reference to a trans-
lation (Neubig et al., 2012; Adams et al., 2015;
Godard et al., 2016, 2018). The hope is that man-
ual conversion of pseudoword sequences to word
sequences would be less onerous than entering a
transcription from scratch.

Besacier et al. (2006) describe one such word dis-
covery algorithm for Iraqi Arabic which leverages
mutual information between consecutive phones
along with word frequency counts to iteratively
discover frequent pseudowords. They trained a lan-
guage model and apply it on unsegmented data to
infer the most likely segmentation.

They performed an extrinsic evaluation of the
method in a speech-to-text system, where they
found that simulating human supervision of the
word discovery task by incorporating a lexicon of
high-frequency known words led to better BLEU
scores as well as a much smaller working lexicon—

https://cdu-tell.gitlab.io/tech-resources/
https://cdu-tell.gitlab.io/tech-resources/
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Figure 2: A local word discovery pipeline for morphologically complex words

2,200 words as opposed to 36,000 for the unsuper-
vised phone-based approach—while maintaining
the same translation coverage.

Zanon Boito et al. (2017) explored semi/su-
pervised methods to discover words from unseg-
mented text in Mboshi using encoder decoder mod-
els. They obtained 27% of the target vocabulary,
training on 5k sentences.

3 Local Word Discovery

This research takes place in the context of a se-
ries of engagements with the Bininj community of
West Arnhem, in the far north of Australia. The
community is centered in the town of Gunbalanya
and a network of outstations, and predominantly
speaks Kunwinjku. Schools, ranger programs and
arts centres employ local people in cultural work
where literacy in Kunwinjku is considered desir-
able, though not yet well established.

Kunwinjku has limited electronic texts and lexi-
cons, but there is a comprehensive grammar (Evans,
2003). Transcription in this context is unavoid-
ably collaborative, with a non-speaker transcriber
working with a speaker and acquiring some of the
language in the process (Rice, 2011; Hanke, 2017;
Meakins et al., 2018). The non-speaker transcriber
can transcribe familiar words in a first pass, and
later prompt a speaker to produce any unrecognized
words so they can be added to the lexicon and spot-
ted automatically. Over time, they become part of
the vocabulary of the non-speaker transcriber, who
is able to confirm their appearance more readily in
future.

Such transcription work is held up by the pres-
ence of unknown words, disfluencies, coarticula-
tion, and noise. It is wise to skip difficult passages
at first, and transcribe words that can be easily rec-
ognized, only later coming back to fill in the gaps
once the priorities for careful, contiguous transcrip-
tion have been established. This practice has been
called sparse transcription (Bird, 2020).

Sparse transcriptions become contiguous

through iterative, interactive processes such as
collaborative work with speakers, or by leveraging
word spotting techniques to detect other instances
of identified lexemes across a larger corpus.

Sparse transcription serves a number of real-
world use cases aside from contiguous transcrip-
tion, e.g. spotted words serve as an index into the
audio, facilitating keyword-based retrieval across
large corpora; and lexical entries and associated
metadata can be used in language learning.

3.1 Task definition

The starting point for local word discovery is an
audio file, preprocessed using a phone recognizer
(Li et al., 2020; Adams et al., 2018). We view the
output as a noisy, low-dimensional representations
of the signal (Figure 3, line Q).

We assume an early transcription scenario,
where non-speaker transcribers are learning to tran-
scribe the language. The audio is manually an-
notated with lexemes that non-speaker transcribers
can confidently recognize. For example, in Figure 3
line L shows some morphs that were recognized
by non-speaker transcribers (and identified as lex-
emes Li), automatically aligned to the output of the
phone transcriber. Recognized lexemes are com-
bined with line Q to produce a sparsely-transcribed
phone sequence which serves as the input to the
local word discovery algorithm. The residue of
unrecognised phone spans are labelled Qi. Local
word discovery accepts input I , and returns a list of
legal, morphologically-complex words, anchored
to the phone sequence (e.g. Figure 4).

3.2 Local word discovery in interactive
transcription

In the sparse transcription model, partial transcrip-
tions are stored as entries in a glossary along with
pointers to all other instances of the entry across a
wider corpus (Bird, 2020). This data structure is
conducive to training a model for word spotting,
which can identify other instances of a glossary
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Figure 3: Given an utterance, we assume a small lexicon of morphs which can be recognized by the non-speaker
transcriber. Additionally, we assume an automatic phone transcription of the audio, e.g., from Allosaurus. Com-
bining these two resources, we form the input to the proposed word discovery system.

Figure 4: An automatic phone transcription, with the
top results from the word discovery system. Each zone
contains a set of predicted words that share an attested
lexeme. In the lexical confirmation task, transcribers se-
lect the correct transcription from the list, if available.

entry across the whole corpus.2

“Local word discovery” offers a complemen-
tary mode of interactivity, as follows: human tran-
scribers apply their own mental lexicon to tran-
scribe sparsely, and local word discovery seeks to
fill in gaps interactively as the transcriber works.
Accepted word forms are added to the lexicon, and
word spotting finds instances of lexemes across
the whole corpus. Local word discovery is then
applied in the loci of newly spotted lexemes, gen-
erating new words for the transcriber to confirm
(Figure 5). The interactive feedback loop of local
word discovery, global word spotting, and interac-
tive confirmation comprise a novel transcription
workflow, amplifying human effort in producing
contiguous transcriptions.

3.3 Implementation
Given the task definition, we implement a baseline
version of local word discovery using an FST to
map attested morphs embedded in a noisy phone
sequence to new, morphologically complex word
forms. Our approach makes two assumptions,
namely that the morphosyntactic description is suf-

2See San et al. (2021); Le Ferrand et al. (2020); Chen et al.
(2016); Yuan et al. (2017) for recent work on low resource
word spotting models.

ficiently explicit and complete that it can be rep-
resented as an FST, and that a modest phone rec-
ognizer is available, e.g. by training a recognizer
on a few hours of transcribed audio from related
languages, or fine-tuning a larger pretrained model.

Speech representation. We adopt Allosaurus to
provide a low-dimensional representation of speech
which supports approximate matching against
phone sequences predicted by the morphological
transducer. Allosaurus provides a pretrained model
which includes the ability to constrain the output
vocabulary to a predefined set of phones (Li et al.,
2020). The inventories of over 2,000 languages,
including Kunwinjku, are supported in the default
configuration. In practice, we found that the inven-
tory for Kunwinjku was incomplete and we created
our own, following (Evans, 2003).

Initial trials of Allosaurus on Kunwinjku pro-
duced unacceptably noisy representations, so
we fine-tuned the model using 78 minutes of
phonemically-transcribed spontaneous Kunwinjku
speech (6 speakers). These are field recordings of
speakers giving tours of their community, which
include typical artifacts of natural speech including
coarticulation, disfluency, and code switching.

We fine-tuned Allosaurus using k-fold cross-
validation where k=6 (one fold per speaker, each
time holding out one speaker’s recordings for evalu-
ation). After 50 epochs of fine-tuning we achieved
the phone error rates shown in Figure 6. Across
the 6 folds, we find that Allosaurus performs at
an average phone error rate of 31.8%. This rate is
acceptably good, given that we are not requiring
high accuracy transcription, but an approximate
representation to support the proposed local word
discovery method.

Finite state word discovery. In order to perform
word discovery on a stream of phones, we need a
component capable of recognizing and performing
morphological segmentation on full words. We
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Figure 5: An interactive transcription workflow, which leverages local word discovery to increase the density of
sparse transcriptions. We integrate the new task of local word discovery with existing Task S (word spotting) and
Task G (growing the glossary) (Bird, 2020), to form a new interactive workflow.

Speaker Time (hh:mm:ss) PER

GN 00:12:21 .289
TG 00:09:21 .338
DY 00:23:28 .417
RN 00:15:35 .289
SG 00:10:27 .256

MM 00:07:44 .321

Total: 01:18:56 AVG: .318

Figure 6: Allosaurus phone error rate (PER) for each
speaker held out as validation, with the model fine-
tuned on the remaining speakers.

have a detailed linguistic description (Evans, 2003),
and an implementation of the morphology as an
FST (Lane and Bird, 2019). This FST recognizes
valid morphotactic sequences in Kunwinjku, and
transduces to a morphological analysis. We can
take the lower side of this transducer to obtain an
FSA which recognizes the language of licensed
surface forms of full words. From here, we build
up the regular expression around the surface form
to allow for the skipping of arbitrary characters on
either side of the word. We have opted to output a
padding character when we encounter characters
which do not belong to the recognized word, for
the purpose of retaining offset information. See
Algorithm 1 for the implementation of the word
discovery component in XFST format.

Accounting for phone noise. We used Pan-
Phone (Mortensen et al., 2016) to acquire vec-
tor representations of each phone for both the Al-
losaurus representation and the orthographic-to-
IPA mapping. We computed the cosine distance
between each phone in both representations, form-
ing a matrix of distance calculations. In the FST,

Define NoisyPhones "n" (->) [ "n" | "m" | "ñ" ].o.
"l" (->) [ "l" | "r" | "í" ].o.
"r" (->) [ "r" | "l" | "í" ].o.
"y" (->) [ "j" | "I" | "E" ].o.
"h" (->) [ "Ü" ] ...

Figure 7: An excerpt from an implementation of the
NoisyModel FST in XFST. The list of phones specified
on the right is treated by the FST as being acceptably
translated into the orthography on the lefthand side of
the optional insertion operator.

we defined a transducer which maps from the or-
thographic character to a set of plausible phones.
To define the set of phones per grapheme, we
picked a cosine distance threshold of K = .3, and
any phone below that threshold is deemed simi-
lar enough to be treated interchangeably with the
canonical phone for that grapheme (Figure 7).

4 Experiment Setup

We explore the concept of local word discovery
on sparsely-transcribed audio by measuring the
change in transcription densities before and after
applying local word discovery implemented with
the FST.

The first step is to define an initial lexicon which
we use to sparsely transcribe a collection of audio.
We used the collection of transcribed utterances
from speaker SG as the test set, and the automatic
phone recognition model which was fined tuned
on all but SG’s speech. From the transcriptions
of SG’s speech, we identify the 10 most frequent
morphs and locate them in the speech. This is the
input for word discovery (Figure 3, line I). This pro-
duced 126 annotated utterances: 126 breath groups
represented by their phone stream, with individ-
ual tokens of the lexemes from the initial lexicon



2063

Algorithm 1 Finite State Word Discovery from Sparsely Transcribed Input

Require: Grammar . The FST which transforms a valid surface string into its morph analysis
1: define WSpace [..] (->) “ ”; . Optionally insert a single whitespace
2: define LexA [Grammar .o. WSpace].l; . All surface forms optionally interspersed with a space
3: define LexB [0:“ ”] LexA [0:“ ”]; . Suppress space on either side of lexeme
4: define LexC [ “-”:? ]* LexB [ “-”:? ]*; . recognize lexemes, padding all non-member characters
5: define LexD [LexC] .o. NoisyPhones; . Recognize LexC, flexibly allowing for phones in

equivalence classes

aligned to the speech.
For each of the 126 lines of input, we calculated

their baseline transcription density as the sum of
character lengths of spotted lexemes divided by the
sum of characters in the gold transcription. For
example, if the utterance is “k a r I re”, where “k”,
“a”, “r”, and “I” are phones and “re” is a lexeme, and
its gold orthographic transcription is “karrire”, then
the baseline transcription density of this utterance
is 2/7, or 28.6%.

We ran each of the 126 sparsely transcribed ut-
terances through the local word discovery pipeline
defined in Section 3.3. The output is a list of par-
tial or full word completions, anchored in known
lexemes (see Figure 4). For each utterance, we
examined the suggestions and accepted those that
were correct based on the gold transcription (simu-
lating the manual confirmation of a speaker). We
report the transcription density increase relative to
the baseline density, since the model seeks only
to increase density around the locus of existing
annotations.

5 Experiment Results

Across the test set of 126 utterances, we found
that 47.6% of them received correct, full word sug-
gestions, and 75.4% received correct partial word
suggestions.

Individual utterances varied widely in terms of
baseline transcription densities, and how much lo-
cal word discovery with an FST was able to con-
tribute. In terms of characters transcribed solely
by accepting full word suggestions anchored at the
locus of known lexemes across all utterances in the
corpus, we saw a transcription density growth of
17.34% relative to the baseline density. Summary
statistics on the performance of local word discov-
ery on the SG collection can be seen in Figure 8.
Full word density is the number of characters tran-
scribed before applying local word discovery plus
the number of characters transcribed by accept-

SG Corpus
Baseline Density
(chars)

34.6%

Full Word Density
(chars)

40.6%

Relative Increase 17.3%
% Breath Groups with Full Word
Suggestions

47.6%

% Breath Groups with Partial Word
Suggestions

75.4%

Figure 8: Summary statistics on the performance of lo-
cal word discovery on the SG corpus of 126 utterances
(breath groups).

ing full word suggestions from the system output,
over the the number of characters in the gold or-
thographic transcription. For individual utterances,
we calculate the increase in transcription density, a
subset of which can be seen in Figure 9.

Accepting only the full-word suggestions across
the SG collection leads to the creation of 76 new
unique entries for the lexicon. In the context of
a full interactive transcription pipeline, this repre-
sents 76 new possible exemplars for lexeme spot-
ting across the wider corpus. For reference, this
experiment was seeded with just 10 unique glos-
sary entries and produced more than 7 times that
number of entries to seed a second round. As new
instances of lexemes are confirmed, the local word
discovery pipeline can be run again to discover
more full-words around these new loci.

5.1 Relying on a human-in-the-loop

One of the weaknesses of the FST implementation
of local word discovery is that allowing the trans-
ducer to treat any similar sounds as interchange-
able opens up the space of possibly recognized
words. The number of system suggestions could
easily be detrimental to the transcription workflow,
if the human-computer interaction is not properly
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DocID Input
Baseline
Density

Full Word
Density

Relative
Increase

Correct Full Words Correct Partial Words

doc73 ngarri k U l u ng ng a ngarri é u k m E 59.3% 74.1% 25.0% {ngarrikolung} {ngarrikolu}
doc74 n u ng a n yimeng ng a r E r E t m E k E re b u kun w 0 t a ng a ng a t u k 30.0% 46.0% 53.3% {nungan, ngardduk} {ngad}
doc75 w a l kun t u ng ka n ka n ka m u r ng U a E k u n b E k f i t a m a k 32.0% 36.0% 12.5% {kankan, kundung} {kanka, dung, kan}
doc76 ngarri wok ng i m m E n 80.0% 80.0% 0.0% {} {}
doc77 k U kun w a t E k @ n bu ngarri t r u k m i t i kabirrimarnbun ng a t b E r E 49.1% 61.4% 25.0% {ngadberre} {ngadberre, kunwardde, ngad}
doc78 b E t S r k a t i ñ E b a s t U ng kayime t a n yiman 19.1% 19.1% 0.0% {} {}
doc79 k u r u ng kayime r a n m a r i N ngarri w u m E bonj 31.7% 43.9% 38.5% {kurrung} {kayimerran}
doc80 man m E kabirri N U n bonj 75.0% 95.0% 26.7% {manme, kabirringun} {kabirringu, ngu, ngun}
doc81 w a ñi ka b u l k b E l E t k m E ngarri b E n b E ng k a n k U b U b a i 26.1% 26.1% 0.0% {} {bengka, kab, kabo, kan}
doc82 n a P n E kore b E ng U l E yime k i E k w U é b a l a é E n 32.50% 37.5% 15.4% {ken} {na}
doc83 ka r i yime kore b u a t E r r birri k U 42.9% 51.4% 20.0% {karriyime} {}

Figure 9: A sample of the results from the local word discovery experiment on the test set of 126 breath groups by
speaker SG. Percent increase is calculated relative to the baseline transcription density.

handled. Accordingly, we implemented a transcrip-
tion system which uses local word discovery to
assist the transcriber, providing word suggestions
per keystroke. In this implementation, it is often
the case that the FST hallucinates an unmanage-
able number of suggestions conditioned on a fuzzy
interpretation of the phone stream.

One solution is to rely on the human who is
providing interactive feedback in real time. For
example, suppose “kabirri” is a transcribed lexeme
in a stream of phones. Local word discovery finds
10 possible continuations that are consistent with
the following phone stream. As the user considers
suggestions and continues to type, the system filters
the suggestions to match. So, “kabirrib” yields 7
results, “kabirribu” yields just 3. In this example,
the correct transcription “kabirribukkan” is present
in all result sets.

5.2 Community experience
The automatic evaluation of local word discovery
results in sets of hypothesized transcriptions for
sub-spans of audio. The non-speaker transcriber
can leverage interactivity with the model to give
their best first pass transcription, and prioritize
more difficult passages for confirmation with a
speaker. The task for speakers of the language
then is one of confirmation: presented with pre-
prioritized and pre-scoped spans of audio, they
confirm hypothesis derived through the human-
computer interaction.

With this in mind, we visited the township of
Gunbalanya and sat with a speaker, SB, for a tran-
scription session. Our primary goal with this en-
gagement was to assess whether the task of con-
firming prioritized work was a low-friction entry
point to transcription work for speakers who have
no experience with transcription. SB is a young
adult, fluent in the language, yet not confident with
reading and writing. He expressed uncertainty as

to whether he was qualified to assist with tran-
scription, and he suggested that a community elder
might be more suitable. We assured him that the
task only involved listening to recordings and talk-
ing about what we heard. After this he agreed to
participate.

We used the same SG collection of utterances
which we used for the automatic evaluation of lo-
cal word discovery. The output of the pipeline
organizes suggestions by zones, where each anchor
lexeme and its associated suggestions form a dis-
tinct zone grouping (e.g., Fig. 4). As we progressed
through the zones, we played the associated audio
region and discussed the available options for tran-
scription. SB was soon joined by GM, a community
elder who wanted to observe the collaborative tran-
scription process. GM volunteered his insights as
well, and encouraged SB to pursue language work
such as this. “This is like education you know,”
GM said to SB, pointing to the computer we were
using together.

We worked with these two speakers, each with
different levels of confidence in the written lan-
guage, and both were capable of participating in
the task effectively. This suggests that this is a
low-friction entry point to language work. The
task is simple and it grows the lexicon with well-
formed words attested in the speech corpus. Lower
barriers to participation democratize the work of
transcription, enabling asynchronous collaboration
with speakers.

6 Conclusion

The literature on low-resource languages has
framed such languages as lacking the required
texts and lexicons for developing the usual suite
of speech and language technologies. Recent work
in this vein has generally not explored the use of
published linguistic descriptions, the third linguis-



2065

Figure 10: Screenshots from the interactive transcription system where we deploy local word discovery. As the
user types, local word discovery is applied and suggestions appear below. The set of suggestions is refreshed
per keystroke, so the user can let current suggestions guide their input choice and interactively receive updated
suggestions based on continuing input choices. The target word, “kabirribukkan”, is present in all result sets.

tic data type in the Boasian trilogy, perhaps because
descriptions are seen to require too much manual
labour to convert into computational grammars, or
because the resulting grammars are seen to be too
brittle for working with natural speech.

Nevertheless, we believe such descriptions can
play a role in supporting the creation of texts and
lexicons, while reducing the dependence on lan-
guage models. A description, suitably interpreted,
can constrain the forms that can hypothesized in a
given textual context, and this information can be
used to inform (rather than limit) the choices made
by human transcribers. In this paper we have ex-
plored this idea and applied it to a morphologically
complex language.

We have proposed a new computational task of
“local word discovery” to complement the prac-
tice of sparse transcription. We have discussed an
approach to local word discovery that uses an exist-
ing morphological analyzer to process a sequence
of known lexemes aligned to a noisy stream of
phones. The method suggests possible completions
of morphologically complex surface forms that are
grounded at the locus of known lexemes and condi-
tioned on the phonetic environment. On test data
from Kunwinjku, local word discovery increases
transcription density by 17.3% and contributes 76
new unique glossary entries. These new entries
then serve as new loci for further iterations of lo-
cal word discovery. These results show that local
word discovery a promising means of generating

transcription suggestions which grow the lexicon
and produce more dense transcriptions.

This approach enables a novel transcription
workflow where a non-speaker transcriber does a
first pass, transcribing easily identifiable words,
and a speaker comes along behind to work on the
residue, while the system is performing word spot-
ting and local word discovery in the background.
We deployed the model in an interactive transcrip-
tion system and tested it in the field and saw that
local word discovery, together with the other stages
of the new transcription workflow, enabled low
friction interactions between transcribers and the
system, speeding up the transcription process.
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