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Abstract

Modern classification models tend to struggle
when the amount of annotated data is scarce.
To overcome this issue, several neural few-
shot classification models have emerged, yield-
ing significant progress over time, both in
Computer Vision and Natural Language Pro-
cessing. In the latter, such models used to rely
on fixed word embeddings before the advent
of transformers. Additionally, some models
used in Computer Vision are yet to be tested in
NLP applications. In this paper, we compare
all these models, first adapting those made
in the field of image processing to NLP, and
second providing them access to transformers.
We then test these models equipped with the
same transformer-based encoder on the intent
detection task, known for having a large num-
ber of classes. Our results reveal that while
methods perform almost equally on the ARSC
dataset, this is not the case for the Intent De-
tection task, where the most recent and sup-
posedly best competitors perform worse than
older and simpler ones (while all are given ac-
cess to transformers). We also show that a sim-
ple baseline is surprisingly strong. All the new
developed models, as well as the evaluation
framework, are made publicly available'.

1 Introduction

Text classification often requires a large number of
mappings between texts and target classes, so that it
is challenging to build few-shot text classification
models (Geng et al., 2019). With the recent ad-
vances of transformer-based models (Devlin et al.,
2018; Wolf et al., 2019) along with their fine-tuning
techniques (Sun et al., 2019), text classification has
significantly improved. In few-shot settings, meth-
ods based on these extracted text representations
have been historically made of semi-supervision,
especially thanks to pseudo-labeling (Blum and

"https://github.com/tdopierre/FewShotText

935

Meetic
Paris, France

{t.dopierre,w.logerais}@

meetic-corp.com

Mitchell, 1998; Mihalcea, 2004; Zhi-Hua Zhou
and Ming Li, 2005), which aims at propagating
known labels to unlabeled data points in the rep-
resentational space. Such methods depend on the
number of collected unlabeled data, which can also
be costly to obtain (Charoenphakdee et al., 2019),
and also suffer from the infamous pipeline effect
in NLP (Tenney et al., 2019), as cascade process-
ing tends to make errors accumulate. In order to
address the hindrance of collecting unlabeled data,
modern approaches include unsupervised data aug-
mentation techniques (Xie et al., 2019). It consists
of generating samples through well-established text
augmentation techniques in Neural Machine Trans-
lation, such as backtranslation (Sennrich et al.,
2015; Edunov et al., 2018), and then use a con-
sistency loss, training the classifier to assign the
same prediction to all variations of the same sample
text. While collecting new pseudo-labels can there-
fore be overcome by manipulating the dataset (es-
pecially using data augmentation techniques), the
pipelining error accumulation effect instead calls
for new neural architectures supporting scarcity of
labeled data in an end-to-end fashion. Such end-to-
end few-shot neural architectures for few-shot clas-
sification were discovered in image processing — it
includes Matching Networks (Vinyals et al., 2016),
Prototypical Networks (Snell et al., 2017) plus a
follow-up known as Prototypical Networks++ (Ren
et al., 2018), and Relation Networks (Sung et al.,
2018). Ultimately Induction Networks (Geng et al.,
2019) is a meta-learning based method dedicated to
few-shot text classification, supposedly the state-of-
the-art. Since our contribution considers this family
of models, we will further detail them in Section 2.
Nonetheless, it is important to stress that most of
these neural architectures were originally devised
to integrate image feature extractors. Despite both
text and image relying on features extractors, a
paragraph or sentence of few words hardly convey
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as much information as a full-fledged three-canals
600 x 400 image (720,000 numerical values in-
trinsically). It is therefore of the utmost practical
interest to validate and compare if what works best
for end-to-end few-shot image classification is the
same for end-to-end few-shot fext classification.
Moreover, when applying these end-to-end few-
shot models to text, two main system components
are into action: the text feature extractor itself and
the downstream part of the neural network that
provides a learning strategy over few shots. If we
want to compare these systems, we need to plug
the same feature extractor (hopefully the best one,
that is transformer-based currently) into each end-
to-end model. For the time being, the literature
on end-to-end few-shot text classification compare
aforementioned techniques using a different text ex-
tractor for each system, which is the one available
when the technique was discovered — these text
encoding varying greatly (Section 3.3). From that
point-of-view, it is hardly possible to conclude if
the improvement over time in few-shot text classi-
fication is due to new few-shot learning techniques
or plainly to the significant advances made by text
feature extractors. The same applies to vectors met-
rics: one method can use the cosine and another
the euclidean distance, and that choice alone can
impact conclusions made on the method being the
state-of-the-art, although it could well rely only on
the metric at work. Ultimately, experimental setups
are usually restricted to one dataset, and evalua-
tion schemes are heterogeneous among papers (Yu
et al., 2018a),

e We revise different end-to-end neural archi-
tectures for few-shot text classification using
the same transformer-based feature extractor,

e We investigate how these re-implemented
state-of-the-art solutions compete with very
simple baselines found to be yet very compet-
itive for few-shot classification in the field of
image-processing,

e We introduce an evaluation framework based
on a number of intent detection datasets which
is significantly bigger than what is usually
used as evaluation in seminal papers transpos-
ing each of these architectures from image to
text classification,

e The entire framework used in this paper,
including all the re-implemented methods

plugged with up-to-date transformers, is pro-
vided as an open-source repository for further
research.

In a nutshell, we will demonstrate that provid-
ing a transformer-based encoder to a previously
obsolete few-shot technique makes it the state-of-
the-art again, that standard baselines are surpris-
ingly strong, and that Induction Networks, while
performing well for binary sentiment classification,
struggles to perform correctly in the most common
setups of few-shot text classification.

2 Few-Shot Classification Methods

In this section, we will describe the few-shot learn-
ing methods. In the following section, sentence
vectors derived from the sentence encoder are de-
noted v. V¥, V9 and V" represent vectors for
support, query, and unlabeled points, respectively.
The number of shots is denoted K, and the num-
ber of classes per episode is denoted C. The k"
support vector of class ¢ is denoted v;,. In the
equations, s ; (resp. s/ ) will denote the similarity
between the i*” query vector and the j** support
vector (resp. the c** class). Similarly, S;.; repre-
sents the similarity between the i*" unlabeled sam-
ple and the j** support vector. When needed, the
number of unlabeled data is denoted U. For each
method relying on a given similarity or distance
metric, we devise two experiments, using either the
cosine similarity or the euclidean distance. Those
additional experiments are crucial, as they allow us
to compare methods directly, without introducing
a metric choice bias. Architectures of the differ-
ent few-shot approaches are illustrated in Figure 1.
They are each detailed in Section 2.2 and onwards,
yet we first introduce the common building blocks
among all methods in what follows.

2.1 Common building blocks

Class average All Matching, Prototypical, and
Relation Networks contain a class average block.
This step is used to directly compare a query point
to a given class in order to make a prediction for
this query point. In both Matching and Proto-
typical Networks, this step averages embeddings
of support points for each class (they are class
prototypes), which are then compared to query
points to output class probabilities. In Matching
Networks, this block averages similarity scores
class-wise. On the contrary, in Induction Networks,
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(a) Prototypical Network, with the optional proto++ step.
In the original Prototypical Networks, the euclidean dis-
tance is used as distance metric.
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(c) Matching Network. In the original Matching Networks,
the cosine similarity is used as a distance metric.

Figure 1: Few-Shot classification methods and variants used in our experiments.

this step is lacking as support points are converted
into prototypes using an Induction Layer, which
aims at finding a better way to aggregate such
knowledge than using the average (Section 2.5).

Loss Matching and Induction Networks both use
the mean squared error (MSE) loss. Other meth-
ods use cross-entropy (CE). We implemented both
losses on Matching and Induction networks, and
it leads to very similar results — and sometimes,
slightly better using CE. We therefore report results
for all models using CE due to space limitations.
Note that both losses are available in the publicly
available source code. The cosine similarity being
bounded, it would not make sense to directly apply
such a loss on cosine similarities. To overcome
this issue, we multiply the cosine similarities by a
constant factor of 5, allowing them to reach more
extreme values, hence ensuring that probabilities
obtained by softmax are sparse enough.

2.2 Matching Networks

Introduced by Vinyals et al. (2016), Matching Net-
works (Figure 1c) rely on the comparison between
query and support vectors using the cosine similar-
ity in the seminal paper. After similarities between
a query point and all support points are computed,
they are averaged for each class. The predicted
label for a given query point is the one with the
highest average cosine similarity. In our notation
framework, this process is summed up in Equa-
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2.3 Prototypical Networks

Prototypical Networks (Figure 1a) were introduced
by Snell et al. (2017) as an extension of Matching
Networks. After obtaining support vectors from the
encoder, a class-wise average operation is done, as
in Equation 2. This results in C' prototypes denoted
{pe, ¢ € [1,C]}, each one being the representative
of a class. Then, a distance metric compares all
query points to all prototypes. For each query point,
the predicted class is the one for which this dis-
tance is the smallest. In the original Prototypical
Networks, the euclidean distance was used, as in
Equation 3. We also add the cosine similarity-based
distance in our experiments in order to measure the
impact of selecting another distance metric.

K
=K7Y vl &)
k=1

q,proto _ €xp (_”U;] _ch%)
Y Eomiexp (<l —pel)

An extension to Prototypical Networks was pro-
posed by Ren et al. (2018), where unlabeled data
points are used along with support and query points.
After computing each class’s prototype, a soft k-
means technique is applied to further refine those

3



prototypes using unlabeled data points. The re-
fined prototypes, denoted p., are derived using
Equation 4. This additional step aims at correcting
the support points selection bias and making the
method more robust.

K s U u . U,proto
D By D DIy

Dc K+ Z Su,proto : (4)
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2.4 Relation Networks

Relation Networks (Sung et al., 2018) challenge
the idea of using a pre-defined metric. The Re-
lation Module takes as an input a query vector
ol € R?, and the prototype of a class p. € R,
the latter being obtained the same way as in Pro-
totypical Networks (Equation 2). The idea is to
use a relation module, modeling the relationship
between those two vectors, yielding a similarity
score s; . € (0,1). Instead of using a pre-defined
distance metric like the euclidean or the cosine
one, this approach allows such networks to learn
this metric by themselves. Two different relation
module architectures exist.

base The base relation module concatenates
both v{ and p,, and applies a small feed-forward
neural network composed of two linear layers, with
a ReLU activation function in between. The for-
mula for this given relation module is described
in Equation 5, where C (-, -) denotes the concate-
nation operator, f (-) denotes the ReLU activation
function, and w, My, M> are learnable parameters.

TIPS — (w, My (f (M (C (v],pc)))) (5)

NTL Introduced by Socher et al. (2013), the
Neural Tensor Layer relation module uses interme-
diate learnable matrices M}, € R%% to model the
relation between support vectors and prototypes.
The similarity score for this relation module is ob-
tained using Equation 6, where w is a learnable
parameter. Following the work done by Geng
et al. (2019), we fix the number & of intermediate
matrices to 100 in all our experiments.

q,rel-ntl rel-ntl
Si,c - <’U.J, zi,c >

., weR"  (6)

ZZ’Z?_n“:f ((U?)TMtpc> , te[1,h] (7)

2.5 Induction Networks

Induction Networks (Geng et al., 2019) aims at find-
ing a general representation of each class in the sup-
port set to compare to new queries. They are com-
posed of both an induction module and a relation
module. The main motivation for such networks
is that representing the class by the average vector
of its data points — what is done in Prototypical
and Relation networks — is too restrictive. The first
part, the induction module, leverages a dynamic
routing (Sabour et al., 2017) algorithm. In their
contribution, Geng et al. (2019) show that their
method can better induce (hence their name) and
generalize class-wise representations. For the sec-
ond part, an NTL Relation Module is used: this is
the same as the one introduced earlier (Section 2.4).
Such networks are illustrated in Figure 1d.

As in (Geng et al., 2019), we fix the number of
routing iterations to 3, and the number of matrices
in the NTL to 100.

2.6 Classifier Baselines

Few-shot learning algorithms are designed to over-
come the data scarcity problem. With the tremen-
dous shift in the architecture of sentence encoders
using transformers, control baselines are needed to
validate their ability to learn from few samples. For
this reason, we include as a first Base1line model
a traditional classifier, as described by Equation 8,
added on top of BERT. Both W and b are learnable
parameters, fine-tuned on the support vectors V%,
In our experiments, this method will henceforth be
referred to as Baseline.

sEe — (Wl +b). 5 WeRM  (8)

In addition to this Baseline model, we also
implement a variant of it, which will henceforth
be referred to as Baseline++. In that second
baseline, the classifier design differs as follows:
it measures similarities to a learnable vector in-
stead of transforming vectors into logits using a
linear layer. The matrix W used in the Baseline
model can be writen as [wy, . .., wc] where each
wy, € R? is a weight vector corresponding to the
k" class. To measure the similarity between class
j and a query vector v}, we compute the similarity
scores in Equation 9. After all scores s. . are com-
puted, we then obtain a probability vector through
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(b) Baseline++ Network. The distance-base classifier can
either use cosine or euclidean distance

Figure 2: Few-Shot classification baselines used in our
experiments.
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As in Prototypical Networks, the derived vec-
tors [w1, ..., wc] can be interpreted as class proto-
types. For both baselines, at each training episode,
the weights W and b are initialized, and the whole
model is fine-tuned for a few iterations using sup-
port samples. This is important in practice, as it
teaches the sentence encoder — a transformer, see
Section 3.3 — how to produce good enough embed-
dings for the downstream classifier to learn effi-
ciently. At test time, the same process is used —
using test labels —, except that we freeze the en-
coder’s weights and only fine-tune the classifier
part. The baselines architectures are represented in
Figure 2.

3 Experimental Setup

3.1 Few-Shot Evaluation Setup

Introduced by Vinyals et al. (2016), few-shot clas-
sification corresponds to the case when a classifier
must adapt to new classes, denoted here as Cest,
unseen during training, and only given a few la-
beled examples of these new classes. To this end,
the approaches assume that during training, a task-
significant set of classes noted Cyy4iy, is available,
along with an accordingly task-significant number
of labeled data for each class cirqin; € Cirain. For
each training episode, C' classes are sampled from
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Cirain, C < |Ctrain|- Then, K support examples
and @ query examples are randomly drawn for
each of these classes. The model is then iteratively
trained using both query and support points.

At testing time, the same sampling strategy is
made, this time drawing classes among Cyest, With
Ciest N Cirain = 0. The model is then evaluated
on its ability to predict labels for the () query sam-
ples, using the K support samples (unless other-
wise stated, C, (), and K values are the same at
both testing and training time).

This training procedure is called C-way K -shot
classification. In all our experiments, we used
K = @) = 5. Concerning the value of C, it is
fixed to 2 for ARSC, as this dataset is already com-
posed of binary classification tasks. Regarding the
intent detection datasets we introduce later (Sec-
tion 3.2), in order to see the shift between ARSC
binary tasks and the more common 5-way evalua-
tion (Geng et al., 2019; Ren et al., 2018), we mea-
sured performances of the different models with C'
ranging from 2 to 5.

3.2 Datasets

In this section, we describe the datasets used in our
evaluation framework. The first one is a popular
sentiment classification dataset, while the others
are intent detection datasets. All datasets are public
and in English.

ARSC The Amazon Review Sentiment
Classification dataset (Blitzer et al., 2007) is
composed of product reviews from 27 product
categories. Each review belongs to one of the 27
domains, and contains a grade ranging from 1 to
5 stars. The usual setup (Yu et al., 2018b; Geng
et al., 2019) to evaluate few-shot classification
with this dataset is as follows: for each of p < 27
product category and 2 < ¢ < 5 score thresholds,
EArsc = p X t binary classification evaluation
tasks are created. In each of these p x 4 tasks, a
competitor model must learn to classify negative
(< t) and positive (> t) reviews. To build our test
tasks, we consider the same product categories
as previous works (Yu et al.,, 2018b; Geng
et al., 2019), which are Books, DVD, Electronics,
Kitchen, and t = 3 (thresholds are picked in the
{2,4,5} set) — hence 12 binary classification test
tasks in our benchmark for this dataset.

Each of these twelve evaluation tasks comes with
a number of support test samples (K = Q = 5
as stated previously). Nonetheless, in (Yu et al.,



2018b) the same 5 samples per testing class are
fixed for all experiments®, which leads to a sig-
nificant selection bias towards these 5 randomly
selected samples used throughout the evaluation.
In order to get more consistent results, we ran ad-
ditional experimental runs, each of them selecting
randomly new support samples. In the ARSC result
table (table 1), this corresponds to the last column
(BERT + Sample shots).

00S The Out Of Scope dataset? (Larson et al.,
2019) is an intent detection dataset containing 150
equally-distributed classes. While initially used for
out-of-scope prediction, it was also motivated by a
high number of classes, a low number of examples
per class (150), and its chatbot life-like style. In
our experiments, we discard the out-of-scope class,
keeping the remaining 150 classes to work with.

Liu Introduced by Liu et al. (2019), this intent de-
tection dataset consists in 54 classes. This dataset
was collected on the Amazon Mechanical Turk plat-
form, where workers were given an intent and had
to formulate queries for this intent with their own
words. It is highly imbalanced: the most common
class (query) holds 5, 920 samples while the least
common one (volume_other) 24 samples.

TREC28 TREC* is an open-domain fact-based
dataset for question classification. We use the 50
labels version of the dataset but remove the labels
which have less than 40 samples. This filtering
process yields a dataset with 28 classes, ranging
from 40 to 962 samples per class.

3.3 Sentence Encoder

In previous works comparing few-shot text classifi-
cation methods, sentence encoders were not always
the same. For example, Yu et al. (2018b) use a
CNN on top of word embeddings, while Geng
et al. (2019) use a Bi-LSTM. Those differences
make the results hard to compare since they do
not use the same method to convert sentences into
vectors. In our experiments, in order to reduce this
selection bias, and since it is now the state-of-the-
art in many applications, we use a BERT (Devlin
et al., 2018) encoder, using models from the Hug-
ging Face (Wolf et al., 2019) team.

2See labeled sampled in https://github.com/
Gorov/DiverseFewShot_Amazon

*https://github.com/clinc/ocos-eval

*nttps://trec.nist.gov/data/ga.html
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For each dataset, instead of using an off-the-shelf
pre-trained model, we fine-tune it on the masked
language modeling task, as it greatly improves the
quality of embeddings (Sun et al., 2019; Xie et al.,
2019). This fine-tuned transformer is then used as
input for all few-shot models.

4 Observations

We report results for the ARSC dataset in Table 1,
and results for the Intent Detection tasks in Table 3.

4.1 Baselines are surprisingly strong

Few-shot learning methods were originally used to
overcome data scarcity. In those situations, training
a classifier on top of a small dataset — in our case,
5 samples per class — can be hard. However, our
experiments on ARSC show that the Baseline
and Baseline++, plain and simple classifiers,
get surprisingly close to state-of-the-art results. Ta-
ble 2 provides four correct and four incorrect clas-
sification examples for the Baseline model.

While it fails to predict the correct text label
for some shots, it is also able to correctly clas-
sify sentences such as What do I take home ?
among the 50 test classes of the OOS dataset. On
the ARSC dataset, it is also important to note
that the Baseline++ model is significantly bet-
ter than the Baseline, and is even on par with
all other architectures, except Prototypical
Networks.

4.2 Sample selection bias

The mean accuracy difference between the last and
the second columns of Table 1 accounts for the
difference of randomly selecting new support sam-
ples at each iteration (last column) as opposed to
picking the same fixed pool of support samples as
done previously (second to last column). We can
see that this difference alone is in the range of the
increments brought by each model over time (base-
lines aside, bringing from 1 point up to 2.6 points
for Prototypical Networks). This huge gap shows
the importance of using evaluation tricks like cross-
validation, instead of evaluating only for one run
over a fixed set of shots.

4.3 Impact of switching to transformers

One of the main contributions of our paper is to
compare few-shot learning methods with the low-
est bias possible (see Section 3.3). On the ARSC
dataset, using transformers drastically changes the
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Configuration

Mean binary accuracy

Model Metric  Relation Original encoder BERT as encoder ( * or BERT +
module \( W.r.t. original encoder) Sample shots
Matching Network euclid. N/A — 81.2 82.9
(Vinyals et al., 2016)  cosine N/A 65.7 819 (" 83.3
Prototypical Network  euclid. N/A 68.2 80.0 (L, 82.6
(Snell et al., 2017) cosine N/A - 81.7 83.5
Proto++ euclid. N/A 82.4 84.0
(Ren et al., 2018) cosine N/A 82.6 83.6
Relation Network N/A base — 81.0 82.9
(Sung et al., 2018) N/A ntl 83.1 81.7 (\) 83.3
Induction Network
(Geng et al., 2019) N/A ntl 85.6 79.3 (\0) 80.3
Baseline N/A N/A 80.7 79.8
Baselinet+ euclid. N/A — 81.9 82.2
cosine N/A 79.7 81.1

Table 1: Mean accuracy on the 12 ARSC binary classification test tasks. In column f, results are reproduced
from the Induction Networks seminal paper (Geng et al., 2019) (where applies), a dash (—) means that results
for that encoder/metric pair were not reported, and Ell denotes models only tested on computer vision tasks (first
time applied to text in our contribution). The BERT column is our implementation using the same 5 shots as
the first column but using a BERT encoder for all methods. The last column is also using BERT, but results are
averaged over five runs, sampling different shots for each run. In the Configuration column, N/A means that the

configuration criteria does not apply to the model.

Correct classification examples

Do I have enough in my boa account for a new pair of skis ?
balance
balance

What’s 15% of 68 ?
calculator
calculator

I need to know the nearest bank’s location.
directions
directions

‘What do I take home ?
income
income

AP 2T AN 3Te

Incorrect classification examples

On Tuesday you are supposed to have a meeting.
meeting schedule
calendar

What are my insurance rewards ?
insurance
redeem rewards

How much farther is Orlando from my location?
current_location
distance

Stop talking please.
change_speed
cancel

IRl e BBl N AR ol e BasR o

Table 2: Examples of OOS query examples correctly
and incorrectly predicted by the Baseline method
using 5 shots. S (resp. P, T') is the sentence (resp.
prediction and true label).

performances of all methods. When feeding the
same transformer-based encoder to all few-shot
methods, Prototypical Networks are now on top,

whereas metric learning approaches (Induction &
Relation Networks) tend to struggle, almost reach-
ing the same performances as Matching Networks.
Such metric learning approaches rely on various
weight matrices and parameters, while more tra-
ditional approaches (Matching, Proto) do not
use any parameter apart from the encoding step.
This hints that the upstream transformer does most
of the learning and is able to model the embedding
space well enough such that no more additional
metric learning is needed. The massive increase in
embedding quality brought by the BERT encoder
makes Prototypical Network approaches reclaim
the state-of-the-art position.

4.4 The curious case of induction networks

When Geng et al. (2019) introduced Induction
Networks, both the ARSC dataset and a private
intent detection dataset were used for evaluation
(publicly unavailable). Our experiments of this
method on the ARSC dataset confirm those re-
sults in an acceptable range, even when trying
to get more consistent results using multiple ran-
dom seeds. Nonetheless, the performances of this
method are underwhelming on all three intent de-
tection datasets, even when matching the binary
classification scenario using C' = 2. Those poor
performances were observed both on the test set
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. Liu 00S TREC28
. Relation

Metric 1 qute 2 3 4 5 2 3 4 5 2 3 4 5

Matchi euclid. - 96.6 937 91.1 89.1 992 987 98.1 97.7 894 81.6 766 69.6
alehing . sine . 933 879 848 810 968 958 951 947 81.6 754 685 63.5
Prot euclid. . 974 953 934 91.8 995 990 987 984 926 87.6 82.0 792
roto cosine . 946 904 885 856 976 973 969 965 856 79.1 745 713
Protoss  cuclid. - 97.7 957 937 922 995 99.1 988 985 917 849 82.0 768
roto cosine - 940 909 879 854 975 973 970 965  83.8 78.1 71.0 659
Relati . base 882 765 71.8 651 91.1 860 799 779 808 663 61.7 518
clation . ntl 87.4 80.1 743 69.0 909 842 8.0 778 747 625 577 48.6
Induction . ntl 739 579 526 406 749 593 509 438 703 49.6 419 339
Baseline . . 943 89.0 84.1 798  99.1 985 977 972 905 83.6 793 757
Baseliness  Cuclid - 93.1 87.6 814 78.1 958 933 92.1 90.6 877 783 725 69.1
aseline cosine - 93.1 868 81.0 751 989 979 968 96.1 867 782 72.1 70.0

Table 3: Mean accuracy of C'-way 5-shot intent detection, with C' ranging between 2 and 5. Each reported value is
the average over five runs with different random seeds. For each column, the best method is highlighted in bold.

as well as the train set, discarding the over-fitting
argument. Such a big performance gap between
sentiment and intent classification tasks show that
Induction Networks, while suited for the former,
are not directly applicable to any type of task.

4.5 On metric choice

Prototypical Networks were originally designed to
do better than Matching Networks. The two dif-
ferences between them are the placement of the
class average step, and the choice of the met-
ric (cosine for Matching, euclidean for Prototyp-
ical). Our results show that metric choice yields
a big gap in performances for both methods, this
gap being larger than the gap caused by the model
design. This hints that when using a pre-defined
metric — excluding the case of metric learning —,
choosing the right metric is of paramount impor-
tance. Moreover, while Matching Networks
were designed to use the cosine distance, we
found here that they perform significantly better
when equipped with the Euclidean distance (on all
datasets for all number of given test classes).

4.6 On architectural choices

Overall, Prototypical Networks come on top of ev-
ery intent detection dataset. More importantly, their
gap between other competing approaches is wider
as the number of classes increases. This result is
important, as in practice, the number of classes is
likely to be higher than what is used in the litera-
ture. The extended variant, proto++, obtains mixed
results. While this shows that using unlabeled data
can have some benefits, we also observe that the
proto++ way of integrating this external knowledge

is perfectible. Ultimately, note that our results do
not mirror Computer Vision results. Since few-shot
learning methods are used on top of embeddings,
we could emit the hypothesis that they can be ap-
plied to any embeddings, regardless of the field.
However, while Relation Networks, for example,
were performing well in Computer Vision classifi-
cation tasks — the tasks which they were originally
designed for — as well as text classification — back
in the days when transformers did not exist —, this
is not the case anymore. The drawback is that all
methods are very sensitive to the feature extractor
used in prior steps.

5 Conclusion

We provided a fair comparison for end-to-end neu-
ral few-shot text classification methods discovered
over the last few years. When they are all equipped
with a transformer-based text encoder, we show
that Prototypical Networks become the state-of-the-
art again. We also found that a traditional classifier
trained on few shots yields very competitive results,
especially when given shots are re-sampled at each
iteration. Ultimately, we also demonstrated the sig-
nificant impact of the vector metric, illustrated by
Matching Networks strongly improving by only
replacing the cosine by the euclidean distance. The
complete source code with the re-implementation
of all the tested methods and evaluation framework
used in this study is publicly available® — we hope
that it will help the community build upon consis-
tent comparative experiments.

Shttps://github.com/tdopierre/FewShotText
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