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Abstract

Non-neural approaches to argument mining
(AM) are often pipelined and require heavy
feature-engineering. In this paper, we propose
a neural end-to-end approach to AM which is
based on dependency parsing, in contrast to
the current state-of-the-art which relies on rela-
tion extraction. Our biaffine AM dependency
parser significantly outperforms the state-of-
the-art, performing at F1 = 73.5% for com-
ponent identification and F1 = 46.4% for re-
lation identification. One of the advantages of
treating AM as biaffine dependency parsing is
the simple neural architecture that results. The
idea of treating AM as dependency parsing is
not new, but has previously been abandoned as
it was lagging far behind the state-of-the-art.
In a thorough analysis, we investigate the fac-
tors that contribute to the success of our model:
the biaffine model itself, our representation for
the dependency structure of arguments, differ-
ent encoders in the biaffine model, and syntac-
tic information additionally fed to the model.
Our work demonstrates that dependency pars-
ing for AM, an overlooked idea from the past,
deserves more attention in the future.

1 Introduction

People often hold different opinions about the same
thing. One very common way to express one’s opin-
ions is to construct an argument (Mercier and Sper-
ber, 2011; Van Eemeren and Henkemans, 2016).
To help people efficiently understand different opin-
ions and their reasoning embedded in arguments, it
is necessary to develop systems that can automati-
cally analyse structures of arguments. An emerging
research field called Argumentation Mining or Ar-
gument Mining (AM) (Peldszus and Stede, 2013;
Green et al., 2014) addresses this problem.

To analyse the structure of arguments, AM
typically proposes four subtasks: 1) component
segmentation, i.e., cutting a raw sequence into

text spans that are either argumentative or non-
argumentative segments (only argumentative seg-
ments are called argument components); 2) com-
ponent classification, i.e., labelling each argument
components with a tag in a pre-defined scheme,
(e.g., “PREMISE” or “CLAIM”); 3) relation detec-
tion, i.e., deciding if two argument components are
directly related; and 4) relation classification, i.e.,
categorizing a detected relation into a class in a pre-
defined scheme, (e.g., “ATTACK” or “SUPPORT”)
(Persing and Ng, 2016; Eger et al., 2017; Haber-
nal and Gurevych, 2017; Stab and Gurevych, 2017;
Lawrence and Reed, 2020). The first two subtasks
are often referred together as component identifica-
tion, and the last two as relation identification. An
example of the argument structure is illustrated in
Figure 1. We see that the “rain” component acts as
the premise, supporting the claim of “beautiful”.

Some of the AM approaches that try to solve all
four subtasks use a pipelined architecture. Inde-
pendent models are first trained for each subtask;
the final results are then achieved by using model
ensemble methods such as Integer Linear Program-
ming (Persing and Ng, 2016; Stab and Gurevych,
2017). Like many other pipelined approaches, they
often suffer from error propagation. Moreover,
many of those models are rule-based or feature-
based (Persing and Ng, 2016; Stab and Gurevych,
2017), which require extensive manual efforts and
are not flexible or robust in cross-domain scenarios.

As a result, neural end-to-end approaches are
desirable for AM. However, it is difficult to jointly
model all AM subtasks within one single neural
network, because component segmentation and

Figure 1: An example argument structure for “Cam-
bridge is beautiful, because it rains a lot.”
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classification are usually approached at the token-
level, but relation detection and classification at
the segment-level. Therefore, many researchers
try to solve only some of them with neural ap-
proaches. For example, Morio and Fujita (2019)
focus only on component segmentation and clas-
sification; Niculae et al. (2017) and Morio et al.
(2020) both ignore the component segmentation
task, feeding manually segmented text as input into
their models.

As far as we know, Eger et al. (2017) present the
first study on neural end-to-end AM that addresses
all subtasks in one model. They make a compre-
hensive comparison of methods, among which a
model originally proposed for extracting entities
and relations (LSTM-ER) achieves the best per-
formance on a popular AM benchmark (Stab and
Gurevych, 2017), far outperforming one that uses
a dependency parsing (DP) approach.

In this paper, we propose another neural end-
to-end approach for the full AM task, called Bi-
affine Dependency Parsing for Argument Mining
(BiPAM). In our approach, AM is formalised as a
DP problem, which we model with a modified bi-
affine neural network (Dozat and Manning, 2018),
using our own dependency representation for ar-
guments. Our representation, like the one in Eger
et al. (2017), also unifies all AM subtasks under
a token-level framework, so that they can be mod-
elled with one single neural network. The biaffine
parser in our approach mainly consists of a neural
encoder to extract contextualized features of each
token in a sequence, and a biaffine classifier that
decides which relation holds between any two to-
kens, and returns a directed acyclic graph (DAG)
expressing this information.

Compared with the DP approach in Eger et al.
(2017), our model performs at a much higher per-
formance rate. We argue that this is mainly due to
the fact that our biaffine model is more powerful
in modelling AM-style dependency structures, and
also due to other factors such as our dependency
representation, which seems closer aligned with
linguistic intuitions. Eger et al. (2017) may have
discredited the DP approach altogether due to its
unsatisfactory results in their setting, but our work
reaffirms its potential for AM, given a more power-
ful parser and a better dependency representation.

Experiments show that our approach also outper-
forms the best-performing approach (LSTM-ER)
in Eger et al. (2017) and thus achieves a new state-

of-the-art. Compared with LSTM-ER, our biaffine
parser is conceptually and structurally simpler, and
our approach is more general because the output
of our biaffine parser is a DAG instead of a tree;
this is required by several argument schemes which
go beyond trees (Park and Cardie, 2018; Lawrence
and Reed, 2020).

Our main contributions are as follows:

• We are the first to apply the biaffine parser
to AM in an end-to-end approach addressing
all four subtasks in one model. Our proposed
biaffine argument parser is applicable to non-
tree as well as tree-based argument schemes.
• As well as being a theoretically more clean-

cut model, our proposed model also signif-
icantly outperforms the state-of-the-art ap-
proach by 3.3% in F1 for component iden-
tification and 1.3% for relation identification.
• We also present a novel representation for

dependency structures of arguments, which
is empirically more efficient than Eger et al.
(2017).

2 Related Work

Our work is closely related to existing approaches
framing AM as DP and to research on neural end-
to-end AM.

The essential aim of AM is to analyse the struc-
ture of arguments. Most argument schemes (Toul-
min, 2003; Peldszus and Stede, 2013; Habernal
and Gurevych, 2017; Visser et al., 2019) repre-
sent argument structures as trees or DAGs. Similar
structures also exist in syntactic and semantic pars-
ing, and can be efficiently analysed with existing
dependency parsers (Dozat and Manning, 2017,
2018; Qi et al., 2018). However, unlike syntac-
tic or semantic parsing, dependency structures in
AM operate at the segment-level, not the token-
level. To apply existing DP techniques to AM, one
can either ignore the component segmentation task,
only working on already segmented text, or one can
convert segment-level dependencies to token-level
dependencies.

Morio et al. (2020) take the first approach. In
their work, the input is manually segmented, with
argumentative and non-argumentative segments al-
ready given. They use task-specific BiLSTMs to
encode those segments, and a biaffine dependency
parser (Dozat and Manning, 2018) with minor alter-
nation to classify argument components and their
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Figure 2: (a) Eger et al. (2017)’s representation, and (b) our representation, for “Just because it killed much marine
life, tourism has threatened nature.”

relations. They report satisfactory results for com-
ponent classification and relation identification on
the Cornell eRulemaking Corpus (CDCP) (Niculae
et al., 2017; Park and Cardie, 2018).

In contrast, Eger et al. (2017) take the second ap-
proach, taking raw text as input so that the compo-
nent segmentation task is addressed. They design
a dependency representation for argument struc-
tures, in which dependencies are represented at the
token-level, with all edges pointing from parent to
child1. They have evaluated feature-based parsers
(McDonald et al., 2005; Bohnet and Nivre, 2012)
and neural parsers (Dyer et al., 2015; Kiperwasser
and Goldberg, 2016), both of which show unsatis-
factory performance. As a result, they discarded
DP as inferior.

Our work is similar to Morio et al. (2020) in that
we also use a modified biaffine dependency parser
to model dependencies in argument structures, but
similar to Eger et al. (2017) in that we model AM
as a full task starting from tokens, not segments.

Besides DP, Eger et al. (2017) also study other
approaches to neural end-to-end AM, including se-
quence tagging (Ma and Hovy, 2016), multi-task
tagging (Søgaard and Goldberg, 2016), and rela-
tion extraction (Miwa and Bansal, 2016). Among
them, the LSTM-ER model for relation extraction
performs the best. However, it requires an addi-
tional syntactic parser to produce syntactic depen-
dency trees for the model input. Moreover, the
tree-structured LSTM module used to encode those
syntactic dependency trees is both conceptually and
structurally complicated. In contrast, our proposed
approach does not require such syntactic informa-
tion to break the state-of-the-art (although we will
show that it can be enhanced if this information is

1Note the difference in arrow conventions between AM
and standard DP. Figure 2 shows dependencies pointing from
head to dependent, as is common in DP. In contrast, in AM,
relations are shown in the opposite direction (i.e., pointing
from parent to child), as shown in Figure 2(a). In the rest of
this paper, A→B means A pointing to B in terms of argument
schemes, while A⇐B means B pointing to A in terms of
dependency representations.

provided), and the architecture of our biaffine de-
pendency parser is both simpler and more general
than that of the LSTM-ER.

3 Proposed Approach

We propose to formalise AM as DP, using a modi-
fied biaffine dependency parser, which outputs de-
pendency graphs. To make this work, we first de-
sign a dependency representation for arguments
which unifies all subtasks of AM under a token-
level framework.

3.1 Dependency Representation for
Arguments

Our dependency representation for the structure
of arguments contains information about segment
boundaries, and about types of relations that could
potentially hold between segments, as illustrated in
Figure 2(b). The relevant properties of our repre-
sentation are as follows:

• Information on segment boundaries and seg-
ment labels is shown as within-segment
labelled edges. Within a segment (e.g.,
token[3, ..., 7]), whether argumentative or
non-argumentative, each token, except the
last one, is parented by its succeeding
token. Labels of within-segment edges
are in the form of “(segment label ∈
[component label,N], APP)”, in which
component label = {MC, C, P...}. “APP”
here means “append”, and “N” means ”non-
argumentative segment”.
• Information on relations and relation labels is

shown as inter-segment labelled edges. If a
relation exists between two components, it is
expressed as a labelled edge between the last
token of the parent, pointing to the last token
of the child (e.g., the “SUPPORT” edge from
token[12] to token[7]). The last token in a
non-argumentative segment does not have any
parent node.
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Figure 3: (a) the biaffine parser in Dozat and Manning (2018), and (b) our modified biaffine parser.

• A pseudo-token ROOT is added to the begin-
ning of each argument. This ROOT token
can be used to represent the topic or the gist
of the entire argument, making it possible to
model the relationship between components
and the topic or the gist. ROOT is always
acting as a parent to the highest-level compo-
nent(s).
• Each token is allowed to have zero, one,

or more parents, resulting in a dependency
graph.

In contrast, Eger et al. (2017) use a representa-
tion where each token in a segment is parented by
the first token in its parent. But this contradicts gen-
eral linguistic intuitions, whereby tokens within a
segment should be closely related to their surround-
ing tokens, as is the case in our representation. As
a result, we might expect that our representation
is better able to model within-segment and long-
distance inter-segment dependencies. There are
also differences between how we and Eger et al.
conceptualize the root node of the argument. They
use the terminating token in an argument as root,
with all non-argumentative tokens parented by it;
in their case this is always a punctuation mark.
We think this conceptualisation of the root node
is troublesome for two reasons. First, there is no
reason why all non-argumentative segments should
be related to the terminating token. Second, for ar-
bitrary annotation schemes, the terminating token
could be a part of a component. When this happens,
all non-argumentative tokens will be parented by
the last component in an argument, which goes
against linguistic intuitions. In contrast, our rep-
resentation uses the pseudo-node ROOT to avoid
this, which is outside all textual segments, and
non-argumentative segments never have any inter-
segment relations in our representation. In addition,
Eger et al. (2017) use the BIO scheme to encode
segment boundaries, which results in a larger pre-
diction space than ours, because we can encode

the same information topologically2, making our
representation potentially computationally more
efficient.

3.2 Modified Biaffine Parser

To our knowledge, the state-of-the-art dependency
parser is the one in Dozat and Manning (2018). It
consists of a BiLSTM to encoder input text, and a
deep biaffine attention module to score each possi-
ble head-dependent pair, as shown in Figure 3(a).

The structure of our biaffine parser, as shown
in Figure 3(b), closely follows that of Dozat and
Manning (2018). We have replaced the Embedding
layer and the BiLSTM layer with a pre-trained
BERT encoder (Devlin et al., 2019), so that the
parser can benefit from rich unsupervised data.
Given a text sequence S = s1s2...sn, its encoded
representation r S ∈ Rn×denc is calculated as in
Eq. (1), where BERT means the BERT encoder.

r S = BERT(s1s2...sn) (1)

r ROOT = FFN(mean(r S), axis=0) (2)

R = [r S ; r ROOT ], axis=0 (3)

Hedge parent = FFNedge parent(R) (4)

H label parent = FFNlabel parent(R) (5)

Hedge child = FFNedge child(R) (6)

H label child = FFNlabel child(R) (7)

Biaff(x, y) = x>Uy + W(x⊕ y) + b (8)

scedge = Biaffedge(Hedge parent, Hedge child) (9)

sclabel = Biaff label(H label parent, H label child) (10)

y
′edge
i,j = {scedgei,j ≥ 0} (11)

y
′label
i,j = argmax sclabeli,j (12)

L = (1− λ)L edge + λL label, λ ∈ (0, 1) (13)

Eq. (2) shows how r ROOT ∈ R1×denc , the
representation of ROOT , is calculated using a

2Segment boundaries in our system can be recognised by
parenthood or by label – when a label does not contain “APP”,
a segment boundary has occurred.
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deep averaging network (DAN) (Iyyer et al., 2015).
ROOT does not go through the BERT encoder like
other tokens, because it is considered to represent
the gist of the whole argument for the dataset in our
experiments. FFN means a feedforward network.

In Eq. (3), R ∈ R(n+1)×denc , the ROOT -
inclusive representation of S, is derived as the con-
catenation of r ROOT and r S .

In Eq. (4, 5, 6, 7), four representations are cre-
ated for R respectively, including two parent-wise
representations and two child-wise representations
for edge and label prediction, as in Dozat and Man-
ning (2018).

Eq. (8) shows the biaffine classifier in Dozat and
Manning (2018), with U, W and b being trainable
variables. Using this classifier, edges and their la-
bels are predicted respectively as in Eq. (9, 10, 11,
12). Like Dozat and Manning (2018), the edge-
classifier is trained with sigmoid cross-entropy,
and the label-classifier with softmax cross-entropy.
The total loss is calculated as in Eq. (13). During
training, losses are back-propagated to the label-
classifier only through edges in the gold standard.

Dropout (Srivastava et al., 2014) is applied for
each layer in the proposed model.

4 Experiments

We conduct experiments on a benchmark for AM
to evaluate the performance of our model.

4.1 Dataset
The dataset we use in our experiments is a bench-
mark constructed by Stab and Gurevych (2017),
which is also used in Eger et al. (2017). This
dataset consists of 402 persuasive essays randomly
selected from an online forum (322 for training and
80 for testing). Statistics for this dataset are shown
in Table 1.

The argument scheme adopted for this dataset

All Per Essay

Size
Sentence 7,116 18
Token 147,271 366
Paragraph 1,833 5

Components
MAJORCLAIM 751 2
CLAIM 1,506 4
PREMISE 3,832 10
Total 6,089 15

Relation
FOR 2,345 6
AGAINST 496 1
SUPPORT 3,613 9
ATTACK 219 1

Table 1: Statistics of the entire Stab and Gurevych
(2017) dataset (test+train).

Figure 4: The argument scheme adopted in the Stab
and Gurevych (2017) dataset.

is illustrated in Figure 4. In this dataset, there are
four kinds of components. A major claim (MAJOR-
CLAIM) is the overall stance of the author, which
can be regarded as the overall gist of the whole
essay. A claim (CLAIM) is a statement that is ei-
ther for (FOR) or against (AGAINST) one or more
major claims. A premise (PREMISE) is the lowest-
level component that either supports (SUPPORT) or
attacks (ATTACK) a claim or another premise.

Some special characteristics of this dataset are
as follows:

• Each essay contains one or more major claims.
All major claims within an essay are consid-
ered to be equivalent in meaning, and are
treated as an equivalence class. In the case of
multiple major claims, the structure of the ar-
gument is no longer a tree (it is reconstructed
as a tree by regarding multiple major claims
as one single node in Eger et al. (2017)).
• A claim is allowed to have no supporting or

attacking premise.
• Premise→Claim and Premise→Premise

pairs are always within-paragraph. Only
Claim→MajorClaim pairs are allowed to cut
across paragraphs.

Since most relations are within-paragraph for
this dataset, our proposed model operates at the
paragraph-level. According to our dependency rep-
resentation, we need a pseudo-token ROOT for
each paragraph. If there is one or more major
claims in a paragraph, ROOT takes them all as
children. Otherwise, ROOT takes all claims in
that paragraph as children.

4.2 Competing Models
We choose two models in Eger et al. (2017) for
comparison: 1) LSTM-Parser, the best-performing
DP model, and 2) LSTM-ER, the overall best-
performing model. We use our reimplementation
of these models and observe results close to those
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reported in Eger et al. (2017). Both models are
trained at the paragraph-level, with the default hy-
perparameter configuration provided in the source
code. The same pre-trained GloVe embeddings
(Pennington et al., 2014) are used as in Eger et al.
(2017)3. We use the Stanford syntactic dependency
parser (Chen and Manning, 2014) to produce syn-
tactic trees required by the LSTM-ER model.

4.3 Training

We create a development set by choosing 30 es-
says randomly from the training set, which we use
for tuning the interpolation factor λ (λ = 0.05) in
Eq. (13) and dropout rate (dropout = 0.1), as well
as for the early stopping mechanism. We choose
the pre-trained BERT model by OpenAI from De-
vlin et al. (2019) as the encoder. We abandoned
another pre-trained encoder GPT2 (Radford et al.,
2019) because it performed slightly below BERT.
The hidden size of FFNs and biaffine classifiers is
set to 600, in line with Dozat and Manning (2018).
We use the Adam optimizer (Kingma and Ba, 2014)
(β1 = 0.95, β1 = 0.98, ε = 1e−9), and adopt the
strategy in Vaswani et al. (2017) for the learning
rate, with warm up steps set to 1000.

Each model in our experiments, except LSTM-
ER and LSTM-Parser (and their related models),
which we run only once4, is trained ten times with
different random initialisations. Results are re-
ported in terms of average performance with stan-
dard deviations.

4.4 Final Graph Generation

First, several post-processing techniques are ap-
plied to make the parser output compatible with the
AM dataset (similar techniques are also applied in
Eger et al. (2017)), in the following order.

1. The parser sometimes recognises a segment as
(mainly) belonging to one label, but interrupts
it with a small number of non-fitting labels.
We assume the label intended is the majority
label and therefore assign it to the segment,
if at least 3/5 of the edges share that same
majority label in a sequence of consecutive
tokens which are linked together.

2. For the remaining inter-segment edges,
only valid edges are kept, namely

3This pre-trained GloVe embeddings are used for all LSTM
encoders in our experiments.

4This is due to excessively long training time.

Component Modela Modelb
g1 TP FN
g2 FN FP
... ... ...

gm TP TP

p1 FP TN
p2 FP FP
... ... ...
pn TN FP

Table 2: Result table for paired permutation tests.

Claim⇐MajorClaim, Premise⇐Claim,
and Premise⇐Premise.

3. If two remaining segments are linked by mul-
tiple edges, all edges except the one with the
highest probability are deleted.

4. If a remaining segment has multiple inter-
segment edges, only Claim⇐MajorClaim
edges are kept (as only claims can have multi-
ple parents, which have to be major claims).

Since our model operates at the paragraph-
level rather than the essay-level, we need to com-
bine the sub-graph produced with each paragraph.
In the Stab and Gurevych (2017) dataset, only
Claim→MajorClaim pairs can connect all sub-
graphs in an entire essay. As a result, for each
Claim→ROOT or Claim→MajorClaim pair, we
first eliminate it, and then redirect that claim to all
major claims, keeping the original edge label. By
doing so, a final graph for the argument structure
of the entire essay can be generated.

4.5 Evaluation
Similar to most work in AM, we adopt the evalu-
ation metric in Persing and Ng (2016) to evaluate
the performance of AM models. The F1 scores
for component and relation identification are cal-
culated as F = 2TP

2TP+FP+FN , in which TP is a true
positive, FP false positive, and FN false negative.

We also design a method to apply paired Monte
Carlo permutation tests (Dwass, 1957; Nichols and
Holmes, 2002) to the results of two AM models.
In our situation, results are measured by F1 scores
based on components, but a paired permutation
test cannot be straightforwardly applied, because
in general the number of components returned by
the models is not the same. To address this, a result
table is first constructed, as illustrated in Table 2.
The set of items consists of the union of : 1) all
gold standard components {g1, g2, ..., gm}, and 2)
all predicted components {p1, p2, ..., pm} by both
models (those that are not duplicates, i.e.already
contained in the gold standard). The treatment of
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Model Component Relation

LSTM-Parser 58.4 (58.9) 34.9 (35.6)
LSTM-ER 70.2 (70.8) 45.1 (45.5)
BiPAM 72.9 ± 0.7 45.9 ± 0.5

Table 3: F1 scores for competing models and our Bi-
PAM model, with published results for competing mod-
els (the best instead of average results) in brackets.

gold standard components is standard for such tests
(i.e., TP, FN, FP are possible labels), but the pre-
dicted components are added by us, and can only be
labelled as TN or FP. As these components are not
in the gold standard, each time a model proposes
such a component, it will be punished by receiving
an FP. A predicted component pi counts as a true
negative (TN) for Modela if pi has been predicted
by Modelb but not Modela. Permutations are gen-
erated by swapping labels in the second and third
columns for combinations of randomly selected
rows. The two-tailed p-value is then calculated
as in Eq. (14, 15), in which Fa means the real F1

score for Modela, and F
′i
a means the F1 score for

Modela in the i-th permutation. N is the number
of sampled permutations. When a model is trained
with multiple initialisations, the one performing
closest to the average is used for permutation tests.

diffi =

1 , |Fa − Fb| < |F
′i
a − F

′i
b |

0 , |Fa − Fb| ≥ |F
′i
a − F

′i
b |

(14)

p−value =
1 +

∑N
i=1 diffi

1 +N
(15)

5 Results and Discussion

The overall results of our experiments are shown in
Table 3. For both component and relation identifi-
cation, our model BiPAM significantly (p < 0.01)
outperforms the state-of-the-art model LSTM-ER
(72.9% vs. 70.2% and 45.9% vs. 45.1%), and also
significantly outperforms LSTM-Parser by a large
margin.

We can see from these results that the DP ap-
proach for AM is able to achieve the best results
currently known on this dataset. This is interesting,
as the current state-of-the-art, LSTM-ER, uses a far
more complex neural architecture than our BiPAM.

The equivalent model to our BiPAM in Eger et al.
(2017), LSTM-Parser, is outperformed by BiPAM
by a large margin. We believe this is due to two
factors: a biaffine parser is far more suitable for
AM than an LSTM parser, and our dependency
representation is superior to Eger et al. (2017)’s.
We will now investigate the influence of these two

Model Component Relation

LSTM-Eger (LSTM-Parser) 58.4 34.9
LSTM-ours 67.9 36.0
Biaff-Eger 65.7 ± 0.5 38.4 ± 0.5
Biaff-ours (BiPAM) 72.9 ± 0.7 45.9 ± 0.5

Table 4: F1 scores for models with different combina-
tions of parsers and representations.

factors. As we have already shown that our version
of this approach beats the state-of-the-art, we will
consider only those models which treat AM as DP.

5.1 Ablation Study

To understand why our proposed model performs
better than LSTM-Parser in Eger et al. (2017), we
conduct ablation experiments to assess the influ-
ence of our modified biaffine dependency parser
and our representation for the dependency structure
of arguments.

Besides LSTM-Parser and BiPAM (renamed as
LSTM-Eger and Biaff-ours in Table 4), we also
experiment with two other combinations of parsers
and representations: 1) LSTM-ours, replacing Eger
et al. (2017)’s representation in LSTM-Parser with
ours; and 2) Biaff-Eger, replacing our representa-
tion in BiPAM with Eger et al. (2017)’s. Results of
these cross-comparisons are shown in Table 4.

As far as parsers are concerned, our modified bi-
affine parser with either representation (Biaff-Eger
and Biaff-ours) performs significantly (p < 0.01)
better than its counterpart (LSTM-Eger and LSTM-
ours). This suggests that our modified biaffine
parser is better at capturing dependencies than the
LSTM parser in Eger et al. (2017).

As for representations, either parser with our
representation (LSTM-ours and Biaff-ours) sig-
nificantly (p < 0.01) outperforms its counterpart
(LSTM-Eger and Biaff-Eger). This demonstrates
that our representation is superior.

The example text in Figure 5 is a paragraph in
the test data that illustrates this fact. Our BiPAM
model correctly predicts all components in it, as
well as all the relations. In contrast, in the predic-
tion of Biaff-Eger, the parenthetical phrase “such
as Beijing Place[sic], Shanghai Artist Museum,” in
the relatively long component Premise2, is incor-
rectly recognized as non-argumentative. Biaff-Eger
also fails to predict the relation between Premise3
and Claim, which is probably because these two
components are located far from each other at op-
posite ends of the paragraph, making it difficult to
detect the relations between and the first token in
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Figure 5: Argument structures of an example paragraph
predicted by BiPAM and by Biaff-Eger.

Model Component Relation

BiPAM 72.9 ± 0.7 45.9 ± 0.5
BiPAM-LSTM 71.4 ± 0.7 43.1 ± 0.7

Table 5: F1 scores for BiPAM and BiPAM-LSTM.

Claim and tokens in Premise3.
We also want to understand the influence of the

pre-trained BERT encoder in the biaffine parser.
When we built BiPAM, we modified the original
biaffine parser (Dozat and Manning, 2018) by re-
placing its Embedding layer and BiLSTM layer,
with a pre-trained BERT encoder. It is possible
that our performance improvements are at least
partially due to this. We therefore test against a
biaffine model without this replacement5, named
BiPAM-LSTM in Table 5. Results show that replac-
ing the pre-trained BERT encoder with the original
Embedding layer and BiLSTM layer significantly
(p < 0.01) lowers the performance. This is easy to
understand since the pre-trained BERT encoder has
benefited from an tremendous amount of additional
unsupervised data6.

5.2 Enhancement with Syntactic Information
We believe that a part of the success of LSTM-ER
in Eger et al. (2017) might be credited to the fact
that the model is also given syntactic information
in its input, in addition to the raw text. We bor-
row this idea to test whether BiPAM might get a
performance boost in a similar way.

To do so, we use the Stanford syntactic de-
pendency parser to produce syntactic trees. The
pseudo-token ROOT is headed by the real root
node in the syntactic tree, with an edge labelled as
“ROOT”. For each input token, we record its syntac-
tic information in a triple as [head, location of head,

5With this model, there is one change we cannot avoid,
and this is that we have to keep the DAN layer for ROOT ,
which does not go through the encoder.

6One could also argue that the right way to address the
in-domain vs. out-of-domain problem is to train the BERT
encoder from scratch using our in-domain training data. We
do not perform these experiments, because due to the small
data size, it is almost certain that BERT would be over-fitted.

Model Component Relation

BiPAM 72.9 ± 0.7 45.9 ± 0.5
BiPAM-syn 73.5 ± 0.7 46.4 ± 0.6

Table 6: F1 scores for BiPAM and BiPAM enhanced
with syntactic information.

label of in-coming edge]. The syntactic informa-
tion triples are encoded as follows: 1) head tokens
are encoded by an FFN with pre-trained GloVe em-
beddings; 2) head locations are encoded using the
positional encoding method proposed in Vaswani
et al. (2017); and 3) edge labels are passed to an
FFN using one-hot encoding. For each token, the
encoded representation of its syntactic information
triple is concatenated to its encoded representation
by BERT, and the entire representation is then fed
into the following layers in BiPAM.

Results in Table 6 show that introducing syn-
tactic information to the input can significantly
(p < 0.01) boost the performance of the orig-
inal BiPAM, outperforming LSTM-ER by 3.3%
for component identification and 1.3% for relation
identification. These results represent our best and
final system.

6 Conclusion

In this paper, we solve argument mining (AM) as a
neural end-to-end dependency parsing (DP) prob-
lem. As a non-pipelined approach, our solution
is free from error propagation. We have demon-
strated that the biaffine dependency parser from
Dozat and Manning (2018) can act as a power-
ful AM parser, under the right circumstances. We
use BERT as the encoder, feed syntactic informa-
tion into the model in addition to raw text, and
propose a novel, efficient and linguistically plausi-
ble representation for the dependency structure of
arguments. Our model significantly outperforms
current state-of-the-art in neural end-to-end AM,
performing at F1 = 73.5% for component identi-
fication and 46.4% for relation identification. Our
research suggests that DP, which has been prema-
turely abandoned in the past, is actually a very
promising approach for AM. Through an ablation
study, we find that both the modified biaffine parser
and the dependency representation contribute to the
performance improvement of BiPAM.
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