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Abstract

Against the background of what has been
termed a reproducibility crisis in science, the
NLP field is becoming increasingly interested
in, and conscientious about, the reproducibility
of its results. The past few years have seen an
impressive range of new initiatives, events and
active research in the area. However, the field
is far from reaching a consensus about how re-
producibility should be defined, measured and
addressed, with diversity of views currently in-
creasing rather than converging. With this fo-
cused contribution, we aim to provide a wide-
angle, and as near as possible complete, snap-
shot of current work on reproducibility in NLP,
delineating differences and similarities, and
providing pointers to common denominators.

1 Introduction

Reproducibility is one of the cornerstones of sci-
entific research: inability to reproduce results is,
with few exceptions, seen as casting doubt on their
validity. Yet it is surprisingly hard to achieve,
70% of scientists reporting failure to reproduce
someone else’s results, and more than half report-
ing failure to reproduce their own, a state of af-
fairs that has been termed the ‘reproducibility cri-
sis’ in science (Baker, 2016). Following a history
of troubling evidence regarding difficulties in re-
producing results (Pedersen, 2008; Mieskes et al.,
2019), where 24.9% of attempts to reproduce own
results, and 56.7% of attempts to reproduce an-
other team’s results, are reported to fail to reach the
same conclusions (Mieskes et al., 2019), the ma-
chine learning (ML) and natural language process-
ing (NLP) fields have recently made great strides
towards recognising the importance of, and address-
ing the challenges posed by, reproducibility: there
have been several workshops on reproducibility
in ML/NLP including the Reproducibility in ML
Workshop at ICML’17, ICML’18 and ICLR’19; the

Reproducibility Challenge at ICLR’18, ICLR’19,
NeurIPS’19, and NeurIPS’20; LREC’20 had a re-
producibility track and shared task (Branco et al.,
2020); and NeurIPS’19 had a reproducibility pro-
gramme comprising a code submission policy, a
reproducibility challenge for ML results, and the
ML Reproducibility checklist (Whitaker, 2017),
later also adopted by EMNLP’20 and AAAI’21.
Other conferences have foregrounded reproducibil-
ity via calls, chairs’ blogs,1 special themes and
social media posts. Sharing code, data and supple-
mentary material providing details about data, sys-
tems and training regimes2 is firmly established in
the ML/NLP community, virtually all main events
now encouraging and making space for it. Repro-
ducibility even seems set to become a standard part
of reviewing processes via checklists. Far from
beginning to converge in terms of standards, termi-
nology and underlying definitions, however, this
flurry of work is currently characterised by growing
diversity in all these respects. We start below by
surveying concepts and definitions in reproducibil-
ity research, areas of particular disagreement, and
identify categories of work in current NLP repro-
ducibility research. We then use the latter to struc-
ture the remainder of the paper.

Selection of Papers: We conducted a structured
review employing a stated systematic process for
identifying all papers in the field that met specific
criteria. Structured reviews are a type of meta-
review more common in fields like medicine but
beginning to be used more in NLP (Reiter, 2018;
Howcroft et al., 2020).

Specifically, we selected papers as follows. We
1https://2020.emnlp.org/blog/

2020-05-20-reproducibility
2There are some situations where it is difficult to share

data, e.g. because the data is commercially confidential or
because it contains sensitive personal information. But the
increasing expectation in NLP is that authors should share as
much as possible, and justify cases where it is not possible.

https://2020.emnlp.org/blog/2020-05-20-reproducibility
https://2020.emnlp.org/blog/2020-05-20-reproducibility
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Figure 1: 35 papers from ACL Anthology search, by
year and venue.5

searched the ACL Anthology for titles containing
either of the character strings reproduc or replica,
either capitalised or not.3 This yielded 47 papers;
following inspection we excluded 12 of the papers
as not being about reproducibility in the present
sense.4 We found 25 additional papers in non-ACL
NLP/ML sources, and a further 7 in other fields.

Figure 1 shows5 how the 35 papers from the
ACL Anthology search are distributed over years:
one paper a year at most until 2017/18 when inter-
est seems to have increased spontaneously, before
dropping off again. The renewed high numbers
for 2020 are almost entirely due to the LREC RE-
PROLANG shared task (see Section 5 below).

2 Terminology and Frameworks

Reproducibility research in NLP and beyond uses
a bewildering range of closely related terms, often
with conflicting meaning, including reproducibil-
ity, repeatability, replicability, recreation, re-run,
robustness, repetition and generalisability. The
fact that no formal definition of any of these terms
singly, let alone in relation to each other, is gen-
erally accepted as standard, or even predominant,
in NLP at present, is clearly a problem for a sur-
vey paper. In this section, we review usage before
identifying common-ground terminology that will
enable us to talk about the research we survey.

The two most frequently used ‘R-terms’, repro-
ducibility and replicability, are also the most prob-
lematic. For the ACM (Association for Computing
Machinery, 2020), results have been reproduced
if “obtained in a subsequent study by a person or
team other than the authors, using, in part, artifacts

3grep -E ‘title *=.*(r|R)\}*(eproduc|epl
ica)’ anthology.bib

4Most were about annotation and data replication.
5Data and code: https://github.com/

shubhamagarwal92/eacl-reproducibility

provided by the author,” and replicated if “obtained
in a subsequent study by a person or team other
than the authors, without the use of author-supplied
artifacts” (although initially the terms were defined
the other way around6). The definitions are tied to
team and software (artifacts), but it is unclear how
much of the latter have to be the same for repro-
ducibility, and how different the team needs to be
for either concept.

Rougier et al. (2017) tie definitions (just) to new
vs. original software: “Reproducing the result of
a computation means running the same software
on the same input data and obtaining the same re-
sults. [...] Replicating a published result means
writing and then running new software based on
the description of a computational model or method
provided in the original publication, and obtaining
results that are similar enough to be considered
equivalent.” It is clear from the many reports of
failures to obtain ‘same results’ with ‘same soft-
ware and data’ in recent years that the above defini-
tions raise practical questions such as how to tell
‘same software’ from ‘new software,’ and how to
determine equivalence of results.

Wieling et al. (2018) define reproducibility as
“the exact re-creation of the results reported in a
publication using the same data and methods,” but
then discuss (failing to) replicate results without
defining that term, while also referring to the “un-
fortunate swap” of the definitions of the two terms
put forward by Drummond (2009).

Whitaker (2017), followed by Schloss (2018),
tie definitions to data as well as code:

Data
Same Different

Code Same Reproducible Replicable
Different Robust Generalisable

The different definitions of reproducibility and
replicability above, put forward in six different
contexts, are not compatible with each other. Grap-
pling with degrees of similarity between properties
of experiments such as the team, data and software
involved, and between results obtained, each draws
the lines between terms differently, and moreover
variously treats reproducibility and replicability as
properties of either systems or results. All are
patchy, not accounting for some circumstances, e.g.
a team reproducing its own results, not defining

6ACM swapped definitions of the two terms when
prompted by NISO to “harmonize its terminology and defini-
tions with those used in the broader scientific research com-
munity.” (Association for Computing Machinery, 2020).

https://github.com/shubhamagarwal92/eacl-reproducibility
https://github.com/shubhamagarwal92/eacl-reproducibility
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some concepts, e.g. sameness, or not specifying
what can serve as a ‘result,’ e.g. leaving the sta-
tus of human evaluations and dataset recreations
unclear.

The extreme precision of the definitions of
the International Vocabulary of Metrology (VIM)
(JCGM, 2012) (which the ACM definitions are sup-
posed to be based on but aren’t quite) offers a com-
mon terminological denominator. The VIM defini-
tions of reproducibility and repeatability (no other
R-terms are defined) are entirely general, made
possible by two key differences compared to the
NLP/ML definitions above. Firstly, in a key con-
ceptual shift, reproducibility and repeatability are
properties of measurements (not of systems or ab-
stract findings). The important difference is that
the concept of reproducibility now references a
specified way of obtaining a measured quantity
value (which can be an evaluation metric, statis-
tical measure, human evaluation method, etc. in
NLP). Secondly, reproducibility and repeatability
are defined as the precision of a measurement un-
der specified conditions, i.e. the distribution of the
quantity values obtained in repeat (or replicate)
measurements.

In VIM, repeatability is the precision of mea-
surements of the same or similar object obtained
under the same conditions, as captured by a spec-
ified set of repeatability conditions, whereas re-
producibility is the precision of measurements of
the same or similar object obtained under different
conditions, as captured by a specified set of repro-
ducibility conditions. See Appendix C for a full
set of VIM definitions of the bold terms above.

To make the VIM terms more recognisable in
an NLP context, we also call repeatability repro-
ducibility under same conditions, and (VIM) re-
producibility reproducibilty under varied condi-
tions. Finally, we refer to experiments carrying
out repeat measurements regardless of same/varied
conditions as ‘reproduction studies.’

Categories of Reproducibility Research: Us-
ing the definitions above, the work we review in the
remainder of the paper falls into three categories
(corresponding to Sections 3–5):

Reproduction under same conditions: As near
as possible exact recreation or reuse of an existing
system and evaluation set-up, and comparison of
results.7

7This excludes the countless cases where results for a
previous method are used as a baseline or other comparitor,

Reproduction under varied conditions: Repro-
duction studies with deliberate variation of one or
more aspects of system and/or measurement, and
comparison of results.

Multi-test studies: Multiple reproduction stud-
ies connected e.g. because of an overall multi-test
design, and/or use of same methodology.

3 Reproduction Under Same Conditions

Papers reporting reproductions under same con-
ditions account for the bulk of NLP reproducibil-
ity research to date. The difficulty of achieving
‘sameness of system’ has taken up a lot of the
discussion space. As stressed by many papers
(Crane, 2018; Millour et al., 2020), recreation at-
tempts have to have access to code, data, full de-
tails/assumptions of algorithms, parameter settings,
software and dataset versions, initialisation details,
random seeds, run-time environment, hardware
specifications, etc.

A related and striking finding, confirmed by mul-
tiple repeatability studies, is that results often de-
pend in surprising ways and to surprising degrees
on seemingly small differences in model param-
eters and settings, such as rare-word thresholds,
treatment of ties, or case normalisation (Fokkens
et al., 2013; Van Erp and Van der Meij, 2013;
Dakota and Kübler, 2017). Effects are often dis-
covered during system recreation from incomplete
information, when a range of values is tested for
missing details. The concern is that the ease with
which such NLP results are perturbed casts doubt
on their generalisability and robustness.

The difficulties in recreating, or even just re-
running, systems with same results have led to
growing numbers of reproducibility checklists
(Olorisade et al., 2017; Pineau, 2020), and tips for
making system recreation easier, e.g. the PyTorch
(Paszke et al., 2017) recommended settings.8

We analysed reproduction studies under same
conditions from 34 pairs of papers, and identified
549 individual score pairs where reproduction ob-
ject, method and outcome were clear enough to
include in comparisons (for a small number of pa-
pers this meant excluding some scores). Table 1 in
Appendix A provides a summary of the results. In
36 cases, the reproduction study did not produce
scores, e.g. because resource limits were reached,

but experiments are not run again.
8https://pytorch.org/docs/stable/

notes/randomness.html

https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
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Figure 2: Histogram of percentage differences between original and reproduction scores (bin width = 1; clipped to
range -20..20).

or code didn’t work. This left 513 cases where the
reproduction study produced a value that could be
compared to the original score. Out of these, just
77 (14.03%) were exactly the same. Out of the
remaining 436 score pairs, in 178 cases (40.8%),
the reproduction score was better than the original,
and in 258 cases (59.2%) it was worse.

We also examined the size of the differences be-
tween original and reproduction scores. For this
purpose we computed percentage change (increase
or decrease) for each score pair, and looked at the
distribution of size and direction of change. For
this analysis, we excluded score pairs where one or
both scores were 0, as well as 4 very large outliers
(all increases). Results are shown in the form of a
histogram with bin width 1 (and clipped to range
-20..20) in Figure 2. The plot clearly shows the im-
balance between worse (60% of non-same scores)
and better (40%) reproduction scores. The figure
also shows that a large number of differences fall
in the -1..1 range. However, the majority of differ-
ences, or 3/5, are greater than +/-1%, and about 1/4
are greater than +/-5%.

4 Reproduction Under Varied Conditions

Reproduction studies under varied conditions delib-
erately vary one or more aspects of system, data or
evaluation in order to explore if similar results can
be obtained. There are far fewer papers of this type
(see Table 2 in Appendix B for an overview) than
papers reporting reproduction studies under same
conditions; however, note that we are not including
papers here that use an existing method for a new
language, dataset or domain, without controlling
for other conditions being the same in experiments.

Horsmann and Zesch (2017) pick up strong re-
sults by Plank et al. (2016) showing LSTM tag-

ging to outperform CRF and HMM taggers, and
test whether they can be confirmed for datasets
with finer-grained tag sets. Using 27 corpora (21
languages) with finer-grained tag sets, they sys-
tematically compare results for the 3 models, and
show that LSTMs do perform better, and that their
superiority grows in proportion to tag set size.

Htut et al. (2018a) recreate the grammar induc-
tion model PRPN (Shen et al., 2018), testing differ-
ent versions with different data. PRPN is confirmed
to be “strikingly effective” at latent tree learning. In
a subsequent repeat study under same conditions,
Htut et al. (2018b) test PRPN using the authors’
own code, obtaining the same headline result.

Millour et al. (2020) attempt to get the POS tag-
ger for Alsatian from Magistry et al. (2018) to work
with the same accuracy for a different dataset. Col-
laborating with, and using resources provided by,
the original authors and recreating some where nec-
essary, the best result obtained was 0.87 compared
to the original 0.91.

Abdellatif and Elgammal (2020) varied condi-
tions of reproduction for classification results by
Howard and Ruder (2018), and were able to con-
firm outcomes for three new non-English datasets,
in all three respects (value, finding, conclusion)
identified by Cohen et al. (2018).

Pluciński et al. (2020) and Garneau et al. (2020)
both find that the cross-lingual word embedding
mappings proposed by Artetxe et al. (2018) yield
worse results on more distant language pairs.

Vajjala and Rama (2018)’s automatic essay scor-
ing classification system was tested on different
datasets and/or languages in three studies (Arhiliuc
et al., 2020; Caines and Buttery, 2020; Huber and
Çöltekin, 2020) all of which found performance to
drop on the new data.
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5 Multi-test and Multi-lab Studies

Work in this category is multi-test, in the sense of
involving multiple reproduction studies, in a uni-
form framework using uniform methods. Some of
it is also multi-lab in that reproduction studies are
carried out by more than one research team. For
example, in one multi-test repeatability study, Wiel-
ing et al. (2018) randomly select five papers each
from ACL’11 and ACL’16 for which code/data was
available. In a uniform design, original authors
were contacted for help if needed, a maximum time
limit of 8h was imposed, and all work was done by
the same Masters student. It’s not clear how scores
were selected (not all are attempted), and reasons
for failure are not always clear even from linked
material. Of the 120 score pairs obtained, 60 were
the same, 12 reproduction scores were better, 22
were worse, and 26 runs failed (including exceed-
ing the time limit). See Table 1 for summary.

Rodrigues et al. (2020) recreated six SemEval’18
systems from the Argument Reasoning Compre-
hension Task, following system descriptions and/or
reusing code, with no time limit. Scores were the
same for one system, and within +/- 0.036 points
for the other five; the SemEval ranking was exactly
the same. Systems were also run on a corrected
version of the shared-task data (which contained un-
witting clues). This resulted in much lower scores
casting doubt on the validity of the original shared
task results.

REPROLANG (Branco et al., 2020) is so far
the only multi-lab (as well as multi-test) study of
reproducibility in NLP. It was run as a selective
shared task, and required participants to conform
to uniform rules. 11 papers were selected for re-
production via an open call and direct selection.
Participants had to ‘reproduce the paper,’ using in-
formation contained/linked in it. Participants sub-
mitted (a) a report on the reproduction, and (b)
the software used to obtain the results as a Docker
container (controlling variation from dependencies
and run-time environments) on GitLab. Submis-
sions were reviewed in great detail, submitted code
was test-run and checked for hard-coding of results.
11 out of 18 submissions were judged to conform
with requirements. One original paper (Vajjala and
Rama, 2018) attracted four reproductions (Best-
gen, 2020; Huber and Çöltekin, 2020; Caines and
Buttery, 2020; Arhiliuc et al., 2020) in what must
be a groundbreaking first in NLP. See Table 1 for
summaries of all 11 reproductions. An aspect the

organisers did not control was how to draw con-
clusions about reproducibility; most contributions
provide binary conclusions but vary in how simi-
lar they require results to be for success. E.g. the
four papers reproducing Vajjala and Rama (2018)
all report similarly large deviations, but only one
(Arhiliuc et al., 2020) concludes that the reproduc-
tion was not a success.

6 Conclusions

It seemed so simple: share all data, code and pa-
rameter settings, and other researchers will be able
to obtain the same results. Yet the systems we cre-
ate remain stubbornly resistant to this goal: a tiny
14.03% of the 513 original/reproduction score pairs
we looked at were the same. At the same time, wor-
ryingly small differences in code have been found
to result in big differences in performance.

Another striking finding is that reproduction un-
der same conditions far more frequently yields re-
sults that are worse than results that are better: we
found 258 out of 436 non-same reproduction re-
sults (59.2%) to be worse, echoing findings from
psychology (Open Science Collaboration, 2015).
Why this should be the case for reproduction un-
der same conditions is unclear. It is probably to
be expected for reproduction under different con-
ditions, as larger parameter spaces, more datasets
and languages etc., are tested subsequently, and the
original work may have selected better results.

There is a lot of work going on in NLP on re-
producibility right now; it is to be hoped that we
can solve the vexing and scientifically uninterest-
ing problem of how to rerun code and get the same
results soon, and move on to addressing far more
interesting questions of how reliable, stable and
generalisable promising NLP results really are.
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Grouin, and Kevin Cohen. 2019. Community per-
spective on replicability in natural language process-
ing. In Proceedings of the International Conference
on Recent Advances in Natural Language Process-
ing (RANLP 2019), pages 768–775, Varna, Bulgaria.
INCOMA Ltd.
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Appendices

A Table of Reproductions Under Same Conditions

Original paper Reproduction study
(same conditions)

NLP task Summary of score differences

Collins (1999) Gildea (2001) Phrase-structure parsing +16.7% error on Model 1 results
Collins (1999) Bikel (2004) Phrase-structure parsing +11% error on Model 2 results on WSJ00;

later same results with help from Collins
Freire et al. (2012) Van Erp and Van der

Meij (2013)
NER “Despite feedback from Freire [...], results

remained 20 points below those reported
in Freire et al. (2012) in overall F-score”
(Fokkens et al., 2013)

Nakov and Ng (2011) Wieling et al. (2018) MT *Unsuccessful (scripts did not work)
He et al. (2011) Wieling et al. (2018) Sentiment analysis *-0.18 points
Sauper et al. (2011) Wieling et al. (2018) Topic modelling *Unsuccessful on 3 scores (8h cut-off

reached)
Liang et al. (2011) Wieling et al. (2018) Question answering *Exact reproduction of 2 scores in 4h
Branavan et al. (2011) Wieling et al. (2018) Joint learning of game

strategy and text selec-
tion from game manual

*Unsuccessful on 7 scores (scripts did not
generate output)

Coavoux and Crabbé
(2016)

Wieling et al. (2018) Constituent parsing *9/18 scores same, 9/18 parser did not
complete for 4 languages

Gao et al. (2016) Wieling et al. (2018) Semantic role ground-
ing

*Exact reproduction of 44/72 scores, 17
worse, 11 better, average -0.62 points

Hu et al. (2016) Wieling et al. (2018) Sentiment analysis,
NER

*exact reproduction of 1/2 scores, 1 worse
-0.2 points

Nicolai and Kondrak
(2016)

Wieling et al. (2018) Stemming, lemmatisa-
tion

*2/8 scores -3.4 and -1.55 points, 6/8
scores took longer than 8h cut-off

Tian et al. (2016) Wieling et al. (2018) Sentence completion *4/6 scores reproduced exactly, 2/6 dif-
fered -0.1 and +0.01 %-points).

Badjatiya et al. (2017) Fortuna et al. (2019) hate speech detection reproduction under same conditions not
possible due to issue with code; recre-
ated/corrected system did well at Offen-
sEval’19 but not at HatEval’19

Choi and Lee (2018) Rodrigues et al. (2020) Argument Reasoning
Comprehension Task

1/1 score +0.002 points

Zhao et al. (2018) Rodrigues et al. (2020) Argument Reasoning
Comprehension Task

1/1 score +0.038 points

Tian et al. (2018) Rodrigues et al. (2020) Argument Reasoning
Comprehension Task

1/1 score -0.021 points

Niven and Kao (2018) Rodrigues et al. (2020) Argument Reasoning
Comprehension Task

1/1 score +0.033 points

Kim et al. (2018) Rodrigues et al. (2020) Argument Reasoning
Comprehension Task

1/1 score -0.022 points

Brassard et al. (2018) Rodrigues et al. (2020) Argument Reasoning
Comprehension Task

Exact reproduction of 1/1 score.

Artetxe et al. (2018) Garneau et al. (2020) Cross-lingual Mappings
of Word Embeddings

Main scores: 2/8 same, 1/8 -0.1, 5/8 +0.1
to +0.3; ablation scores: 4/40 scores same,
19/40 +0.1 to 6.9, 9/40 -0.1 to -0.9, 8/40
took too long

Artetxe et al. (2018) Pluciński et al. (2020) Cross-lingual Mappings
of Word Embeddings

Main scores: 10/14 better, 4/14 worse;
ablation scores: 3/48 scores same, 31/48
better, 14/48 worse

Bohnet et al. (2018) Khoe (2020) POS and morphological
tagging

POS tagging scores: 35/41 worse, 6/41
better; morph. tagging: 43/46 worse, 3/46
better

Rotsztejn et al. (2018) Rim et al. (2020) Relation extraction
and classification
(SemEval’18 T7)

4 subtasks: 4/4 scores worse, up to 9.04
points; subtask 1.1 by relation: 3/6 worse,
3/6 better

Nisioi et al. (2017) Cooper and Shardlow
(2020)

Simplification NTS default system: 1/2 automatic scores
better, 1/2 automatic scores worse; 2/2
human scores worse

Table continued on next page.
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Original paper Reproduction study
(recreation of system)

NLP task Summary of score differences

Vajjala and Rama
(2018)

Bestgen (2020) Automatic essay scor-
ing (classification)

multilingual: 6/11 better, 5/11 worse;
monolingual: 15/27 better, 11/27 worse,
1/27 same; crosslingual: 5/8 better, 1/8
worse, 2/8 same

Vajjala and Rama
(2018)

Huber and Çöltekin
(2020)

Automatic essay scor-
ing (classification)

multilingual: 3/11 better, 8/11 worse;
monolingual: 8/27 better, 19/27 worse;
crosslingual: 6/8 better, 2/8 worse

Vajjala and Rama
(2018)

Caines and Buttery
(2020)

Automatic essay scor-
ing (classification)

multilingual: 9/11 better, 2/11 worse;
monolingual: 14/27 better, 11/27 worse,
2/27 same; crosslingual: 1/8 better, 7/8
worse

Vajjala and Rama
(2018)

Arhiliuc et al. (2020) Automatic essay scor-
ing (classification)

multilingual: 11/11 worse; monolingual:
7/27 better, 20/27 worse; crosslingual: 1/8
better, 5/8 worse, 2/8 same

Magistry et al. (2018) Millour et al. (2020) POS tagging for Alsa-
tian

baseline: same (0.78 Acc); main: worse
(Acc 0.87 vs. 0.91)

Howard and Ruder
(2018)

Abdellatif and Elgam-
mal (2020)

Sentiment classification,
question classification,
topic classification

3/6 better, 3/6 worse

Vo and Zhang (2015) Moore and Rayson
(2018)

Target Dependent Senti-
ment analysis

6/6 better

Wang et al. (2017) Moore and Rayson
(2018)

Target Dependent Senti-
ment analysis

2/5 better, 3/5 worse

Tang et al. (2016) Moore and Rayson
(2018)

Target Dependent Senti-
ment analysis

3/3 worse

Table 1: Tabular overview of individual repeatability tests from 34 paper pairs, and a total of 549 score pairs. * =
additional information obtained from hyperlinked material.
ind Where scores obtained in a repeatability study (reproduction under same conditions) are worse than in the
original work, this should not be interpreted as casting the original work in a negative light. This is because it is
normally not possible to create the exact same conditions in repeatability studies (and lower scores can result from
such differences), and because the outcome from multiple repeatability studies may be very different.
ind For a small number of papers, the score pairs included in this table are a subset of scores reported in the paper.
More generally, the summary in the last column should not be interpreted as a summary of the whole paper and its
findings.
ind Our intention here is to summarise differences that have been reported in the literature, rather than draw
conclusions about what may have caused the differences.
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B Table of Reproductions Under Varied Conditions

Original paper reproduction study (confir-
mation of finding)

NLP task Summary of outcome (as interpreted by
authors)

Plank et al. (2016) Horsmann and Zesch
(2017)

POS tagging Confirmed for finer-grained tagsets

Shen et al. (2018) Htut et al. (2018a,b) Grammar induction Overall finding confirmed (that PRPN
is a high performing grammar induction
method)

Magistry et al.
(2018)

Millour et al. (2020) POS tagging Not confirmed, reproduction results worse
by > 10 BLEU points

Vajjala and Rama
(2018)

Arhiliuc et al. (2020) Automatic essay scor-
ing (classification)

Lower classification results on a corpus of
Asian learners’ English.

Vajjala and Rama
(2018)

Caines and Buttery (2020) Automatic essay scor-
ing (classification)

Lower classification results for English
and Spanish CEFR datasets, and some
adversarial data (e.g., scrambled English
texts).

Vajjala and Rama
(2018)

Huber and Çöltekin (2020) Automatic essay scor-
ing (classification)

Lower classification results for English
Cambridge Learner Corpus.

Artetxe et al. (2018) Garneau et al. (2020) Cross-lingual mappings
of word embeddings

For other distant language pairs (from En-
glish to Estonian, Latvian, Finnish, Per-
sian) the method did not converge or ob-
tained lower scores.

Artetxe et al. (2018) Pluciński et al. (2020) Cross-lingual mappings
of word embeddings

For other distant language pairs (from En-
glish to Czech, Polish) the method did not
converge or obtained lower scores.

Howard and Ruder
(2018)

**Abdellatif and Elgam-
mal (2020)

Sentiment classification,
question classification,
topic classification

Confirmed that transfer learning (pre-
training) improves final classification ac-
curacy.

Table 2: Tabular overview of individual studies to confirm a previous research finding. * = additional information
obtained from hyperlinked material; ** = reproduction study had minor differences, e.g. hyperparameter tuning
was omitted (Abdellatif and Elgammal, 2020).
ind The comments from the caption for Table 1 also apply here, but note that some differences between original and
reproduction study are overt and intentional in the case of the papers in this table, whereas they are not intentional
and often inadvertent in the case of the papers in Table 1.
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C Verbatim VIM and ACM Definitions

2.1 (2.1) measurement process of experimentally obtaining one or more quantity values that can rea-
sonably be attributed to a quantity

2.15 measurement precision (preci-
sion)

closeness of agreement between indications or measured quantity values ob-
tained by replicate measurements on the same or similar objects under specified
conditions

2.20 (3.6, Notes 1 and 2) repeatability
condition of measurement (repeatabil-
ity condition)

condition of measurement, out of a set of conditions that includes the same
measurement procedure, same operators, same measuring system, same op-
erating conditions and same location, and replicate measurements on the same
or similar objects over a short period of time

2.21 (3.6) measurement repeatability
(repeatability)

measurement precision under a set of repeatability conditions of measure-
ment

2.24 (3.7, Note 2) reproducibility con-
dition of measurement (reproducibility
condition)

condition of measurement, out of a set of conditions that includes different
locations, operators, measuring systems, and replicate measurements on the
same or similar objects

2.25 (3.7) measurement reproducibil-
ity (reproducibility)

measurement precision under reproducibility conditions of measurement

2.3 (2.6) measurand quantity intended to be measured

Table 3: VIM definitions of repeatability and reproducibility (JCGM, 2012).

Repeatability (Same team,
same experimental setup)

The measurement can be obtained with stated precision by the same team using the same
measurement procedure, the same measuring system, under the same operating conditions,
in the same location on multiple trials. For computational experiments, this means that a
researcher can reliably repeat her own computation.

Reproducibility (Differ-
ent team, same experimen-
tal setup)*

The measurement can be obtained with stated precision by a different team using the same
measurement procedure, the same measuring system, under the same operating conditions, in
the same or a different location on multiple trials. For computational experiments, this means
that an independent group can obtain the same result using the author’s own artifacts.

Replicability (Different
team, different experimen-
tal setup)*

The measurement can be obtained with stated precision by a different team, a different
measuring system, in a different location on multiple trials. For computational experiments,
this means that an independent group can obtain the same result using artifacts which they
develop completely independently.

Results Validated: This badge is applied to papers in which the main results of the paper have been successfully obtained
by a person or team other than the author. Two levels are distinguished:

Results Reproduced v1.1 The main results of the paper have been obtained in a subsequent study by a person or team
other than the authors, using, in part, artifacts provided by the author.

Results Replicated v1.1 The main results of the paper have been independently obtained in a subsequent study by a
person or team other than the authors, without the use of author-supplied artifacts.

In each case, exact replication or reproduction of results is not required, or even expected. Instead, the results must be in
agreement to within a tolerance deemed acceptable for experiments of the given type. In particular, differences in the
results should not change the main claims made in the paper.

Table 4: ACM definitions (bold) and badges (underlined) (Association for Computing Machinery, 2020).


