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Abstract

We propose a method for online news stream
clustering that is a variant of the non-
parametric streaming K-means algorithm. Our
model uses a combination of sparse and
dense document representations, aggregates
document-cluster similarity along these mul-
tiple representations and makes the cluster-
ing decision using a neural classifier. The
weighted document-cluster similarity model is
learned using a novel adaptation of the triplet
loss into a linear classification objective. We
show that the use of a suitable fine-tuning ob-
jective and external knowledge in pre-trained
transformer models yields significant improve-
ments in the effectiveness of contextual em-
beddings for clustering. Our model achieves a
new state-of-the-art on a standard stream clus-
tering dataset of English documents.

1 Introduction

Human presentation and understanding of news ar-
ticles is almost never isolated. Seminal real-world
events spawn a chain of strongly correlated news
articles that form a news story over time. Given
the abundance of online news sources, the con-
sumption of news in the context of the stories they
belong to is challenging. Unless people are able
to scour the many news sources multiple times a
day, major events of interest can be missed as they
occur. The real-time monitoring of news, segregat-
ing articles into their corresponding stories, thus
enables people to follow news stories over time.

This goal of identifying and tracking topics from
a news stream was first introduced in the Topic
Detection and Tracking (TDT) task (Allan et al.,
1998). Topics in the news stream setting usually
correspond to real-world events, while news ar-
ticles may also be categorized thematically into
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sports, politics, etc. We focus on the task of cluster-
ing news on the basis of event-based story chains.
We make a distinction between our definition of
an event topic, which follows TDT and refers to
large-scale real-world events, and the fine-grained
events used in trigger-based event detection (Ahn,
2006). Given the non-parametric nature of our
task (the number of events is not known before-
hand and evolves over time), the two primary ap-
proaches have been topic modeling using Hierar-
chical Dirichlet Processes (HDPs) (Teh et al., 2005;
Beykikhoshk et al., 2018) and Stream Clustering
(MacQueen, 1967; Laban and Hearst, 2017; Mi-
randa et al., 2018). While HDPs use word distri-
butions within documents to infer topics, stream
clustering models use representation strategies to
encode and cluster documents. Contemporary mod-
els have adopted stream clustering using TF-IDF
weighted bag of words representations to achieve
state-of-the-art results (Staykovski et al., 2019).

In this paper, we present a model for event topic
detection and tracking from news streams that lever-
ages a combination of dense and sparse document
representations. Our dense representations are ob-
tained from BERT models (Devlin et al., 2019) fine-
tuned using the triplet network architecture (Hoffer
and Ailon, 2015) on the event similarity task, which
we describe in Section 3. We also use an adaptation
of the triplet loss to learn a Support Vector Machine
(SVM) (Boser et al., 1992) based document-cluster
similarity model and handle the non-parametric
cluster creation using a shallow neural network. We
empirically show consistent improvement in clus-
tering performance across many clustering metrics
and significantly less cluster fragmentation.

The main contributions of this paper are:

• We present a novel technique for event-driven
news stream clustering, which, to the best of
our knowledge, is the first attempt of using
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contextual representations for this task.

• We investigate the impact of BERT’s fine-
tuning objective on clustering performance
and show that tuning on the event similarity
task using triplet loss improves the effective-
ness of embeddings for clustering.

• We demonstrate the importance of adding ex-
ternal knowledge to contextual embeddings
for clustering by introducing entity aware-
ness to BERT. Contrary to a previous claim
(Staykovski et al., 2019), we empirically
show that dense embeddings improve cluster-
ing performance when augmented with task-
pertinent fine-tuning, external knowledge and
the conjunction of sparse and temporal repre-
sentations.

• We analyze the problem of cluster fragmenta-
tion and show that it is not captured well by
the metrics reported in the literature. We pro-
pose an additional metric that captures frag-
mentation better and report results on both.

2 Related Work

In this section, we introduce the TDT task, prior
work on tracking events from news streams and a
few related parametric variants of the TDT task.

The goal of the TDT task is to organize a col-
lection of news articles into groups called topics.
Topics are defined as sets of highly correlated news
articles that are related to some seminal real-world
event. This is a narrower definition than the gen-
eral notion of a topic which could include sub-
jects (like New York City) as well. TDT defines
an event to be represented by a triple <location,
time, people involved>, which spawns a series of
news articles over time. We are interested in all five
sub-tasks of TDT - story segmentation, first story
detection, cluster detection, tracking and story link
detection - though we do not explicitly tackle these
sub-problems individually.

After the initial work on the TDT corpora, in-
terest in news stream clustering was rekindled by
the news tracking system NewsLens (Laban and
Hearst, 2017). NewsLens tackled the problem
in multiple stages: (1) document representation
through keyphrase extraction; (2) non-parametric
batch clustering using the Louvian algorithm (Blon-
del et al., 2008); and (3) linking of clusters across
batches. Staykovski et al. (2019) presented a modi-
fied version of this model, using TF-IDF bag of

words document representations instead of key-
words. They also compared the relative perfor-
mance of sparse TF-IDF bag of words and dense
doc2vec (Le and Mikolov, 2014) representations
and showed that the latter performs worse, both
individually and in unison with sparse represen-
tations. Linger and Hajaiej (2020) extended this
batch clustering idea to the multilingual setting by
incorporating a Siamese Multilingual-DistilBERT
(Sanh et al., 2019) model to link clusters across
languages.

In contrast to the batch-clustering approach,
Miranda et al. (2018) adopt an online clustering
paradigm, where streaming documents are com-
pared against existing clusters to find the best
match or to create a new cluster. We adopt
this stream clustering approach as it is robust to
temporal density variations in the news stream.
Batch clustering models tune a batch size hyper-
parameter that is both training corpus dependent
and might not be able to adjust to temporal varia-
tions in stream density. In their model, they also
use a pipeline architecture, having separate mod-
els for document-cluster similarity computation
and cluster creation. Similarity between a docu-
ment and cluster is computed along multiple doc-
ument representations and then aggregated using
a Rank-SVM model (Joachims, 2002). The deci-
sion to merge a document with a cluster or create
a new cluster is taken by an SVM classifier. Our
model also follows this architecture, but critically
adds dense document representations, an SVM
trained on the adapted triplet loss for aggregating
document-cluster similarities and a shallow neural
network for cluster creation.

News event tracking has also been framed as
a non-parametric topic modeling problem (Zhou
et al., 2015) and HDPs that share parameters across
temporal batches have been used for this task
(Beykikhoshk et al., 2018). Dense document rep-
resentations have been shown to be useful in the
parametric variant of our problem, with neural LDA
(Dieng et al., 2019a; Keya et al., 2019; Dieng et al.,
2019b; Bianchi et al., 2020), temporal topic evolu-
tion models (Zaheer et al., 2017; Gupta et al., 2018;
Zaheer et al., 2019; Brochier et al., 2020) and em-
bedding space clustering (Momeni et al., 2018; Sia
et al., 2020) being some prominent approaches in
the literature.
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Figure 1: The architecture of the news stream clustering model, showing the clustering process for a single doc-
ument in the news stream. At the end of the clustering process for each document, the cluster pool is updated
based on the output from the cluster creation model, either by adding document d to cluster c∗ or by creating a new
cluster with the document.

3 Methodology

Our clustering model is a variant of the stream-
ing K-means algorithm (MacQueen, 1967) with
two key differences: (1) we compute the similar-
ity between documents and clusters along a set of
representations instead of a single vector represen-
tation; and (2) we decide the cluster membership
using the output of a neural classifier, a learned
model, instead of a static tuned threshold.

At any point in time t, let n be the number of
clusters the model has created thus far, called the
cluster pool. Given a continuous stream of news
documents, the goal of the model is to decide the
cluster membership (if any) for each input docu-
ment. In our task, we assume that each document
belongs to a single event, represented by a cluster.
The architecture of the model, as shown in Figure
1, consists of three main components : (1) docu-
ment representations, (2) document-cluster similar-
ity computation using a weighted similarity model
and (3) cluster creation model. In what follows, we
describe each of these components.

3.1 Document Representations

Documents in the news stream have a set of repre-
sentations, as shown in Figure 1, where each rep-
resentation is one of the following types - sparse
TF-IDF, dense embedding or temporal. We de-
scribe below these representation types and how
clusters, which are created by our model, build
representations from their assigned documents.

3.1.1 TF-IDF Representation
Separate TF-IDF models that are trained only on
the tokens, lemmas and entities in a corpus are
used to encode documents separately. For every
document in the news stream, its title, body and
title+body are each encoded into separate bags of
tokens, lemmas and entities, creating nine sparse
bag of word representations per document.

3.1.2 Dense Embedding Representation
Dense document representations are obtained by
embedding the body of documents using BERT,
with pre-trained BERT (P-BERT) without any fine-
tuning as our baseline embedding model. In order
to improve the effectiveness of contextual embed-
dings for our clustering task, we experiment with
enhancements along two dimensions: (1) the fine-
tuning objective, and (2) the provision of external
knowledge. We train separate BERT models for (1)
and (2) and use them to encode documents.

To evaluate the impact of the fine-tuning objec-
tive, we fine-tune BERT models on two different
tasks - event classification (C-BERT) and event
similarity (S-BERT). We also evaluate the impact
of external knowledge on the embeddings through
an entity-aware BERT architecture, which may be
paired with either of the fine-tuning objectives.

Fine-tuning on Event Classification The goal
of this fine-tuning is to tune the CLS token1 em-
bedding such that it encodes information about the

1The CLS token, introduced in (Devlin et al., 2019), is a special token
added to the beginning of every document before being embedded by BERT
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event that a document corresponds to. A dense and
softmax layer are stacked on top of the CLS token
embedding to classify a document into one of the
events in the output space.

Fine-tuning on Event Similarity Fine-tuning
on the task of event classification constrains the
embedding of documents corresponding to differ-
ent events to be non-linearly separable. Semantics
about events can be better captured if the vector
similarity between document embeddings encode
whether they are from the same event or not.

For this, we adapt the triplet network architecture
(Hoffer and Ailon, 2015) and fine-tune on the task
of event similarity. Triplet BERT networks were in-
troduced for the semantic text similarity (STS) task
(Reimers and Gurevych, 2019), where the vector
similarity between sentence embeddings was tuned
to reflect the semantic similarity between them. We
formulate the event similarity task, where the term
“similarity” refers to whether two documents are
from the same event cluster or not. In our task,
documents from the same event are similar (with
similarity = 1), while those from different events
are dissimilar (with similarity = 0). Given the em-
beddings of an anchor document da, a positive doc-
ument dp (from the same event as the anchor) and
a negative document dn (from a different event),
triplet loss is computed as

ltriplet = sim(da, dn)− sim(da, dp) +m (1)

where sim is the cosine similarity function and m
is the hyper-parameter margin.

Providing External Entity Knowledge In line
with TDT’s definition, entities are central to events
and thus need to be highlighted in document rep-
resentations for our clustering task. We follow
Logeswaran et al. (2019) to introduce entity aware-
ness to BERT by leveraging knowledge from an
external NER system. Apart from token, position
and token type embeddings, we also add an en-
tity presence-absence embedding for each token
depending on whether it corresponds to an entity
or not. The entity aware BERT model architecture
is shown in Figure 2. This enhanced entity-aware
model can then be coupled with the event similarity
(E-S-BERT) objective for fine-tuning.

3.1.3 Temporal Representation
Documents are also represented with the timestamp
of publication. Unlike TF-IDF and dense embed-
dings, which are vector valued representations, the

Figure 2: Entity-aware BERT model, with the addi-
tional entity presence (EE) and absence (ENE) embed-
dings

temporal representation of a document is just a sin-
gle value (e.g ”05-09-2020”) which has an associ-
ated subtraction operation. The difference between
two timestamps is defined as the number of inter-
vening days between them. Section 3.2 describes
how these timestamps are used for clustering.

3.1.4 Cluster Representation
Since clusters are created and updated by our
model, their representations need to be generated
dynamically from the documents assigned to them.
While documents in the news stream have a set of
11 representations (9 TF-IDF, dense embeddings
and timestamp), clusters have two additional time-
stamp representations. Cluster representations are
derived from documents in the cluster through ag-
gregation. While dense embedding and sparse TF-
IDF representations of a cluster are aggregated us-
ing mean pooling, clusters have three timestamp
representations corresponding to different aggrega-
tion strategies - min, max and mean pooling.

3.2 Weighted Similarity Model

Once documents are encoded by a set of represen-
tations, they are compared to the clusters in the
cluster pool to find the most compatible cluster.
The similarity between a document and a cluster
is computed along each representation separately
and is then aggregated into a single compatibility
score (c-score). While similarity along contex-
tual embeddings and TF-IDF bag representations
is computed using cosine similarity (as shown in
Equation 2), timestamp similarity is computed us-
ing the Gaussian similarity function introduced in
Miranda et al. (2018) (as shown in Equation 3).

Let rdv and rc
v denote a dense or sparse vector
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representation of a document d and cluster c re-
spectively. Let rdt and rc

t denote their timestamp
representations. Let (i, j) correspond to a pair of
document-cluster representations of the same type
(as defined in Section 3.1). Document-cluster sim-
ilarity is computed along each representation and
aggregated using a weighted summation as

sim(rd, rc) = {sim(rd
i, rc

j) ∀ (i, j)}

sim(rd
v, rc

v) =
rd

v · rcv

|rdv||rcv|
(2)

sim(rd
t, rc

t) = e−
((rd

t−rc
t)−µ)

2σ2 (3)

c-score(rd, rc) =
∑
(i,j)

wj · sim(rd
i, rc

j)

where µ and σ are tuned hyper-parameters of the
temporal similarity function. It is noted here that
since clusters have two additional timestamp rep-
resentations, all three timestamp similarities are
computed using the single document timestamp
representation, as illustrated in Figure 3.

The dataset does not contain annotation for the
degree of membership between a document and
cluster and thus, the weights for combining the
representation similarities can’t be learned directly.
To circumvent this issue, we train a linear model on
a relevant task so that the trained weights can then
be adapted to compute the compatibility score.

In our model, we train a linear model on a novel
adaptation of the event similarity triplet loss used to
train the S-BERT model. The triplet loss, as defined
in Equation 1, can be adapted to a linear classifier
if similarity has a related notion with regards to the
classifier. SVM is an appropriate model since the
degree of compatibility between a point x and a
class c is given by the distance of the point from
the class’ decision hyperplane wc. This distance,
computed as wc · x + b, can thus be used as the
similarity metric to adapt the triplet loss.

In our case, the inputs to the SVM model are
vectors of document-cluster similarities along the
set of representations sim(rd, rc). The adapted
SVM-triplet loss is thus computed as shown below.
Since we want to minimize this loss, we analyze
its point of minima.

lsvm−triplet = w · sim(ra, rn)− w · sim(ra, rp)

+m

lsvm−triplet = 0

=⇒ m = w · (sim(ra, rp)− sim(ra, rn))

The adapted triplet loss can thus be modeled
as a classification task with inputs (sim(ra, rp)−
sim(ra, rn)) and the outputs m. For mathemat-
ical convenience, we set m = 1 without loss of
generality. In this manner, we transform the event
similarity triplet loss objective into a classification
objective to train an SVM model. The novelty of
this supervision is that we focus on learning use-
ful weights and not a useful classifier. The learned
weights, which minimize the event similarity triplet
loss, are utilized for document-cluster c-score com-
putation. During the clustering process, a docu-
ment d is compared against all the clusters in the
pool C to determine the most compatible cluster
c∗ as

c∗ = argmax
c ∈ C

c-score(rd, rc)

3.3 Cluster Creation Model
Since our clustering problem is non-parametric,
each document in the stream could potentially be
the start of a new event cluster. Thus, the most
compatible cluster c∗ might not actually be the
cluster that the document corresponds to. Given
a document and its most compatible cluster, the
cluster creation model decides whether or not a
new cluster is to be created. For this, we employ
a shallow neural network which takes document-
cluster similarities along the set of representations
as input and decides if a new cluster should be
created. Since the dimensionality of the input space
for the network is small, we use a shallow network
to prevent overfitting.

4 Experiments and Results

4.1 Data
To train and evaluate our clustering models, we use
the standard multilingual news stream clustering
dataset (Miranda et al., 2018), which contains ar-
ticles from English, French and German. For our
clustering task, we only use the English subset of
the corpus, which consists of 20,959 articles. Ar-
ticles are annotated with language, timestamp and
the event cluster to which they belong, in addition
to their title and body text. We use the same train-
ing and evaluation split provided by Miranda et al.
(2018) and use the training set to fine-tune the pa-
rameters of the clustering model. The training and
evaluation sets are temporally disjoint to ensure
that the clustering models are tuned independent of
the events seen during training.
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Figure 3: Computation of c-score: (a) similarities are computed for each representation individually using the
appropriate similarity function (cosine or Gaussian); (b) subsequently, the computed similarities are aggregated
into a single c-score value using the weights of the weighted similarity model (w)

4.2 Experimental Setup
We train our model pipeline in a sequence where
each component model is supplied with the output
from the component trained before in the sequence.
For instance, the cluster creation model is trained
using the embeddings from the fine-tuned BERT
model and by selecting the most compatible clus-
ter determined by the trained weighted similarity
model. We experiment with multiple document
representation sets, training all the component mod-
els each time and evaluating the entire clustering
model on the test set.

We use the TF-IDF weights provided in the Mi-
randa et al. (2018) corpus to ensure fair comparison
with prior work. For training the event similarity
BERT model (S-BERT), triplets are generated for
each document using the batch-hard regime (Her-
mans et al., 2017) by picking the hardest positive
and negative examples from its mini-batch2. We
train the S-BERT model for 2 epochs using a batch
size of 32, with 10% of the training data being used
for linear warmup. We use Adam optimizer with
learning rate 2e−5 and epsilon 1e−6. Document
embeddings are obtained by mean pooling across
all its tokens. For NER, we use the medium English
model provided by spaCy (Honnibal and Montani,
2017).

Training instances for the weighted similarity
and cluster creation models are generated by simu-
lating the stream clustering process on the training
set and assigning each document to its true event

2We use the batch-hard implementation provided by
Reimers and Gurevych (2019) at https://github.com/
UKPLab/sentence-transformers

cluster. For the weighted similarity model, we gen-
erate triples of <document, true cluster, sampled
negative cluster> and convert them into SVM train-
ing instances as mentioned in Section 3.2. Since all
the training instances have the same label m, half
the training set is negated to balance the dataset.

To generate training samples for the cluster cre-
ation model, the most compatible cluster is deter-
mined using the trained weighted similarity model
for each document. A sample is then generated
with input as the document-cluster similarities and
output as 0 or 1 depending on whether the true
cluster for that document is in the cluster pool or
not. The dataset contains over 12k documents but
only 593 clusters, entailing that the fraction of train-
ing samples where a new cluster is created is only
5%, making the dataset extremely biased. To miti-
gate this issue, we use the SVMSMOTE algorithm
(Nguyen et al., 2011) to oversample the minority
class and make the classes equal in size. For clus-
ter creation, we train a shallow single layer neural
network with two nodes using the L-BFGS solver
(Nocedal, 1980). The weighted similarity and clus-
ter creation models are trained using 5-fold cross
validation to tune hyper-parameters and then on the
entire training set using the best settings.

The clustering output is evaluated by comparing
against the ground truth clusters. We report results
on the B-Cubed metrics (Bagga and Baldwin, 1998)
in Table 1 to compare against prior work.

4.3 Results

TF-IDF sets a tough baseline: Prior work
has shown that sparse TF-IDF bag representa-

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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Model Clusters Count
(True Count - 222)

B-Cubed Metrics
Precision Recall F1 Score

Laban and Hearst (2017) 873 94.37 85.58 89.76
Miranda et al. (2018) 326 94.27 90.25 92.36
Staykovski et al. (2019) 484 95.16 93.66 94.41
Linger and Hajaiej (2020) 298 94.19 93.55 93.86
Ours - TF-IDF 530 93.50 80.23 86.36
Ours - TF-IDF (out-of-order) 413 90.57 87.51 89.01
Ours - TF-IDF + Time 222 87.57 96.27 91.72
Ours - E-S-BERT 452 79.76 60.77 68.98
Ours - E-S-BERT + Time 471 92.70 74.69 82.73
Ours - TF-IDF + P-BERT + Time 196 83.12 97.26 89.63
Ours - TF-IDF + C-BERT + Time 321 83.10 91.33 87.03
Ours - TF-IDF + S-BERT + Time 247 88.30 96.10 92.04
Ours - TF-IDF + E-S-BERT 433 89.40 86.99 88.18
Ours - TF-IDF + E-S-BERT (out-of-order) 384 91.15 88.60 89.86
Ours - TF-IDF + E-S-BERT + Time 276 94.28 95.25 94.76

Table 1: Results of clustering performance for different document representation strategies as compared against
contemporary models. P-BERT refers to pre-trained BERT; C-BERT refers to BERT fine-tuned on event classifi-
cation S-BERT refers to BERT fine-tuned using triplet loss on event similarity; E-S-BERT refers to entity aware
BERT fine-tuned on event similarity.

tions achieve competitive performance (Laban and
Hearst, 2017; Miranda et al., 2018) and our exper-
iments validate this observation. The clustering
model that uses only sparse TF-IDF bags to rep-
resent documents achieves a very high score of
86.8% B-Cubed F1 score, as shown in Table 1. If
TF-IDF bags are used in combination with times-
tamps, then the performance further increases to
91.7%, setting a tough baseline to beat.

Contextual embeddings, by themselves, achieve
sub-par clustering performance: In line with
prior work, we observe that dense document em-
beddings, both when used as the sole representation
and in conjunction with timestamps, are unable to
match the clustering performance of TF-IDF bags.
It can be seen in Table 1 that even our best BERT
model (entity aware BERT trained on event simi-
larity) only achieves an F1 score of 69% individ-
ually and 82.7% when combined with timestamp
representations. These scores are 17.8% and 9%
lower than their corresponding TF-IDF counter-
parts. BERT embeddings are richer representations
that encode linguistic information including syntax
and semantics through its pre-training. Thus, the
model is unable to distinguish between events at
the desired granularity and ends up clustering to-
gether topically related events (for instance, two
different events related to soccer).

Fine-tuning objective impacts the effectiveness
of embeddings for clustering: In most NLP

tasks, fine-tuning contextual embeddings on a re-
lated pertinent objective is beneficial, we observe
that the choice of fine-tuning objective is critical
to the task performance. While the baseline pre-
trained P-BERT model achieves a clustering score
of 89.6% when used in conjunction with TF-IDF
and timestamp representations (TF-IDF + P-BERT
+ Time), fine-tuning embeddings on event classi-
fication (TF-IDF + C-BERT + Time) drops the
performance to 87%. This drop in performance can
be attributed to the following reasons. Firstly, the
large output space (593 events) and small dataset
size (12k documents) make it hard for the model
to learn effectively during fine-tuning. In addition
to this, the classification objective requires that the
embeddings of documents from different events
be non-linearly separable. But this is not directly
compatible with how the embeddings are used by
the weighted similarity model, which is to compute
cosine similarity. This discordance entails that the
fine-tuning process degrades the clustering perfor-
mance. The event similarity triplet loss is a more
suitable fine-tuning objective and it is observed
that fine-tuning BERT on this objective (TF-IDF
+ S-BERT + Time) results in a better clustering
performance of 92.04%.

External entity knowledge makes embeddings
more effective for clustering: The introduction
of external knowledge through the entity aware
BERT architecture significantly improves the clus-



2337

Metric TF-IDF + E-S-BERT + Time Miranda Gain
B-Cubed 94.76 92.36 2.40†

CEAF-e 76.93 69.57 7.36†

CEAF-m 93.31 90.19 3.12†

MUC 99.30 98.88 0.42‡

BLANC 98.13 96.93 1.20§

V Measure 97.98 97.01 0.97†

Adjusted Rand Score 96.26 93.87 2.39§

Adjusted Mutual Information 97.99 97.02 2.97§

Fowlkes Mallows Score 96.38 94.11 2.27§

Table 2: Results of clustering performance across different evaluation metrics. For each metric computed using
precision, recall and F-1 scores, only the F-1 scores are reported. Statistically significant gains, with p <<< 0.001
are denoted by † and p < 0.01 by ‡. Gains denoted by § are not evaluated for significance, in line with literature.

tering performance of the model. It can be seen
in Table 1 that introducing entity awareness and
training on the event similarity task (TF-IDF + E-
S-BERT + Time) results in a clustering score of
94.76%3, achieving a new state-of-the-art on the
dataset4. The results are statistically significant and
p values from a paired student’s t-test are reported
in Table 2. This is almost 3 points better than
the corresponding model without entity awareness,
which highlights the importance of this external
knowledge. When given external knowledge from
an NER system, the BERT model, like sparse TF-
IDF representations, is able to draw attention to
entities and highlight them in the document embed-
dings. It is observed that the model learns to project
entities and non-entities in mutually orthogonal di-
rections and thereby adds emphasis to entities.

In our experiments, we observe an increase of
almost 1 point in F1 score by considering only a
subset of the OntoNotes corpus (Weischedel et al.,
2013) labels 5. Ignoring entity classes like ORDI-
NAL and CARDINAL helps as they don’t provide
useful information for our clustering task. The
scores reported in Table 1 correspond to entity-
aware models trained on this label subset. We also
experimented with separate embeddings for each
entity type instead of the binary entity presence-
absence embeddings and observed that it degrades
F1 score by more than 2 points.

Ablating time and non-streaming input:
When we ablate timestamp from the representation

3The mean and standard deviation of the precision, recall
and F-1 scores over five independent training and evaluations
of our model are 94.64±0.28, 94.72±1.33 and 94.75±0.59.

4We observe similar results on the TDT Pilot dataset (Allan
et al., 1998), as shown in Section 4.4

5Our entity label subset consists PERSON, NORP, FAC,
ORG, GPE, LOC, PRODUCT, EVENT, WORK OF ART,
LAW and LANGUAGE.

(rows that are not marked with “Time” in Table 1)
and then stream documents in random order (rows
marked with (“out- of-order”) in Table 1), the
number of clusters increase over when accounting
for time. When ablating time, we also observe that
supplying documents in random order produces
fewer clusters and better b-cubed F1 scores. We
observe examples of clusters that are incorrectly
merged in the absence of temporal information (in
the out-of-order setting). See Appendix for actual
examples from our output.

Cluster fragmentation is not captured well by
B-Cubed metrics The improvements our model
makes can be seen clearly by observing the num-
ber of clusters created by the model. While the
previous state-of-the-art model produced 484 clus-
ters, ours produces only 2766, which is closer to
the true cluster count of 222. Our model produces
far less cluster fragmentation, resulting in a 79.4%
reduction in the number of erroneous additional
clusters created. We argue that this is an important
improvement that is not well captured by the small
increase in B-Cubed metrics.

While B-Cubed F1 score is the standard metric
reported in the literature, it is an article-level met-
ric which gives more importance to large clusters.
This entails that B-Cubed metrics heavily penalize
the model’s output for making mistakes on large
clusters while mistakes on smaller clusters can fall
through without incurring much penalty. In our
experiments, we observed that this property of the
metric prevents it from capturing cluster fragmen-
tation errors on smaller events. In the news stream
clustering setting, small events may correspond to
recent salient events and thus, we want our metric

6The mean and standard deviation of the cluster count over
five independent training and evaluations of our model are
312± 27.
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to be agnostic to the size of the clusters.
We thus use an additional metric that weights

every cluster equally - CEAF-e (Luo, 2005). The
CEAF-e metric creates a one-to-one mapping be-
tween the clustering output and gold clusters using
the Kuhn-Munkres algorithm. The similarity be-
tween a gold cluster G and an output cluster O is
computed as the fraction of articles that are com-
mon to the clusters. Once the clusters are aligned,
precision and recall are computed using the aligned
pairs of clusters. This ensures that unaligned clus-
ters contribute to a penalty in the score and cluster
fragmentation and coalescing is captured by the
metric.

In order to ensure that our model’s better perfor-
mance is metric-agnostic, we also empirically eval-
uated our clustering model against prior work using
several clustering metrics, the results of which are
presented in Table 2. For this, we compare with
Miranda et al. (2018) since their results are readily
replicable. It can be observed that our model con-
sistently achieves better performance across most
metrics and is thus robust to the metric idiosyn-
crasies. Our model achieves an improvement of
7.36 points on the CEAF-e metric, which shows
that our clustering model performs better than con-
temporary models on smaller clusters as well.

4.4 Results on TDT

To validate the robustness of our clustering model,
we evaluate it on the TDT Pilot corpus (Allan et al.,
1998). The TDT Pilot corpus consists of a set of
newswire and broadcast news transcripts that span
the period from July 1, 1994 to June 30, 1995. Out
of the 16,000 documents collected, 1,382 are an-
notated to be relevant to one of 25 events during
that period. Unlike the Miranda et al. (2018) cor-
pus, TDT Pilot does not have the article titles. We,
therefore, train all the components of our ensem-
ble architecture using only the document body text.
The TDT corpus does not provide pre-trained TF-
IDF weights, so we train the weights on the entire
corpus as a pre-processing step. Unlike Miranda,
the TDT Corpus also lacks standard train and test
splits. We create our own splits across 25 events.
The splits are described and listed in the Appendix.

In line with our observations on the Miranda
et al. (2018) corpus, we observe similar results
on the TDT corpus. We achieve the best result
on this corpus on a model with TF-IDF represen-
tations combined with temporal representations,

BERT entity-aware representations fine-tuned on
the event similarity task. The best result has a b-
cubed precision of 81.62, b-cubed recall of 95.89
and a b-cubed F1 of 88.18. We generate 12 clus-
ters which matches the number of clusters in the
ground truth.

We show that even in a cross-corpus setting,
dense contextual embeddings, when augmented
with pertinent fine-tuning, external knowledge and
the conjunction of sparse and temporal representa-
tions, are a potent representation strategy for event
topic clustering.

5 Conclusion

In this paper, we present a novel news stream clus-
tering algorithm that uses a combination of sparse
and dense vector representations. We show that
while dense embeddings by themselves do not
achieve the best clustering results, enhancements
like entity awareness and event similarity fine-
tuning make them effective in conjunction with
sparse and temporal representations. Our model
achieves new state-of-the-art results on the Miranda
et al. (2018) dataset. We also analyze the problem
of cluster fragmentation noting that our approach
is able to produce a similar number of clusters as
in the test set, in contrast to prior work which pro-
duces far too many clusters. We note issues with
the B-Cubed metrics and we complement our re-
sults using CEAF-e as an additional metric for our
clustering task. In addtion, we provide a compre-
hensive empirical evaluation across many metrics
to show the robustness of our model to metric id-
iosyncrasies.
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A Appendix

The TDT corpus does not have a training and test
split and we thus partition the corpus into two al-
most equal portions such that all documents in a
single event are part of the same split. Our train-
ing set consists of 873 documents and our test set
consists of 680 documents. The events in each
partition of the TDT corpus is shown in Table 3

Events in Our Train Split
Karrigan Harding, Shannon Faulker, Quayle lung clot,
Haiti ousts observers, NYC Subway bombing,
Carlos the Jackal, USAir 427 crash, Lost in Iraq,
Death of Kim Jong Il, Clinic Murders, Kobe Japan
quake, Serbs violate Bihac, OK-City bombing
Events in Our Test Split
Pentium chip flaw, Cuban riot in Panama,
Humble TX flooding, WTC Bombing trial,
Cessna on White House, Aldrich Ames, Halls copter,
Serbians down F-16, Carter in Bosnia, Comet into
Jupiter, DNA in OJ trial, Justice-to-be Breyer

Table 3: Events in the training and test splits of the TDT
Pilot corpus

Actual example of clusters incorrectly merged
when documents are supplied out-of-temporal-
order. Cluster label # 1024 in the Miranda test-
set, contains articles on Qatar being selected as
FIFA worldcup host and issues with immigrant
labour there are discussed in negative sentiment.
The ground truth is a large cluster with 1869 doc-
uments. An example document title in this cluster
is “Qatar World Cup sponsors targeted for improv-
ing workers’ rights” with timestamp 2015-05-25
15:27:00. Cluster # 288 is a singleton about an
upcoming Boston Celtics game and has a nega-
tive tone on their recent performance with an ar-
ticle titled “Celtics kick away a winnable game”
with timestamp 2014-11-06 10:27:00. This is in-
correctly merged with cluster # 1024. There are
many more clusters that are incorrectly merged
with cluster # 1024.
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